Srovnání diagnózy cytologického a histologického vyšetření u zvířat

Rigorózní práce

Kateřina JŮDOVÁ

Plzeň, 2006

Dále bych chtěla poděkovat MVDř. Mužíkovi za podporu při psaní této práce.
Seznam nejdůležitějších zkratek

FNAB tenkojehelná aspirační biopsie (fine-needle aspiration biopsy)

EDTA kyselina etylendiamintetraoctová (činidlo zabraňující srážení krve)

FeLV virus leukémie koček (Feline leukemia virus)

N:C poměr poměr velikosti buněčného jádra ku cytoplasmě (nucleus:cytoplasm)

SCC skvamocelulární karcinom

MU mízní uzlina
OBSAH

Seznam nejdůležitějších zkratek... 3

ÚVOD... 6

1.1. Cytologické vyšetření... 7

1.1.1. Cíl cytologického vyšetření.. 7

1.1.2. Odběr materiálu.. 8

1.1.3. Zhotovení cytologických preparátů FNAB................................. 9

1.1.4. Barvení cytologického preparátu...10

1.2. Vyhodnocení cytologického preparátu... 11

1.2.1. Zánětlivé léze...11

1.2.2. Nezánětlivé léze..13

1.2.3. Kritéria malignity buňky...15

1.3. Rozdělení nádorů dle morfologie..16

1.3.1. Tumory epiteliální...17

1.3.2. Tumory mezenchymální...18

1.3.3. Tumory kulatobuněčné...19

1.3.4. Tumory s „holým“ jádrem..21

1.4. Pozadí preparátů..22

2. CÍL PRÁCE..23

3. MATERIÁL A METODIKA...24

3.1. Odběr a zpracování materiálu...24

3.1.1. Cytologické vyšetření...24

3.1.2. Histologické vyšetření...24

3.2. Rozdělení vzorků..25

3.3. Statistické vyhodnocení...26

4. VÝSLEDKY..27

4.1. Vyhodnocení dle místa odběru..27

4.2. Vyhodnocení dle typu procesu..28

4.3. Vyhodnocení vybraných typů nádorů...29

4.3.1. Mastocytom..29
4.3.2. Melanom ..29
4.3.3. Maligní fibrózní histiocytom ..30
4.3.4. Skvamocelulární karcinom ..30

5. DISKUSE ..31
5.1. Senzitivita cytologického vyšetření ...31
5.1.1. Zánětlivé léze ..31
5.1.2. Nádorová onemocnění ..32
5.1.3. Jaterní léze ..32
5.2. Vybrané typy nádorů ..33
5.2.1. Mastocytom ...33
5.2.2. Melanom ...33
5.2.3. Maligní fibrózní histiocytom ...33
5.2.4. Skvamocelulární karcinom ..34

6. ZÁVĚR PRÁCE ..35

7. SEZNAM LITERATURY ...36

8. PŘÍLOHA ...38
8.1. Mastocytom ...38
8.2. Melanom ..41
8.3. Maligní fibrózní histiocytom ...44
8.4. Skvamocelulární karcinom ...47
8.5. Jaterní léze ...50
I. ÚVOD

Cílem provedení této studie bylo vyšetřit co největší množství vzorků cytologickým a současně histologickým vyšetřením a ověřit tak správnost cytologického vyhodnocení.
1.1. Cytologické vyšetření

1.1.1. Cíl cytologického vyšetření

a) Potlačit zánět léčbou antibiotiky a po určité době znovu lézi vyšetřit. Jestliže útvar regreduje, jednalo se o zánět. V případě že se léze nemění, odebere se znovu cytologický vzorek, kde již zánět nebude zakrývat primární proces.

b) Útvar odebrat rovnou na histologické vyšetření bez předcházející léčby.

Výhody cytologického vyšetření

• rychlost
• snadnost
• minimální náklady
• menší zátěž pacientů (zejména drobných zvířat náchylných ke stresu), většinou odpadne nutnost celkové nebo lokální anestesie.

Nevýhody

• nemusí být vždy reprezentativní odběr materiálu
• některý proces nelze cytologicky jednoznačně určit a měl by následovat odběr tkáně na histologické vyšetření
• neopakovatelnost - museli bychom provést nový odběr

1.1.2. Odběr materiálu

Odběr materiálu se provádí několika způsoby:

• Tenkojehelná aspirační biopsie (FNAB)
• Neaspirační biopsie
• Seškrab
• Otisk
• Stěr

Tenkojehelná aspirační biopsie – nejčastější a nejpoužívanější metoda

Odběr se provádí pomocí tenké jehly (22G) a 10 – 20 ml stříkačky, aby byl vytvořen dostatečný podtlak. Při použití silnější jehly může dojít k nasátí kousků tkání či kontaminaci vzorku krví. Naopak, při použití tenčí jehly se nemusí nasát dostatek materiálu pro cytologické vyšetření.

Neaspirační biopsie,

je modifikací aspirační biopsie s tím rozdílem, že po zavedení jehly do tkáně se nevyvíjí žádný podtlak. Pro nabrání dostatečného množství materiálu je však zapotřebí opakovaného odběru. Neaspirační biopsie se provádí u silně prokrvených tkání či lézí. U této metody odběru by nemělo docházet ke kontaminaci vzorku krví.
Seškrab

Při seškrabu se odebírají buňky z povrchu léze za pomoci čepelky skalpelu. Seškrab se musí odebírat vždy z okrajů postižených tkání. Tkáňový seškrab je vhodný u tkání, které jsou tuhé a buňky hůře exfoliují (mezenchymální tumory). Nevýhodou je, že se získá jen povrchový materiál, který může být sekundárně komplikován zánětlivým procesem (Svoboda et al., 2000). Některé buňky mohou být při použití této metody poškozeny, ale často se v preparátu nachází místo, kde jsou buňky zachovány celé (Thrall, 2000).

Otisk

Používá se v případě, že nejde provést odběr FNAB. Otisk je vhodné použít například v průběhu chirurgického zákroku na předem již diagnostikovaném mastocytomu. Exstirpovaný nádor se po osušení několikrát otiskne na sklíčko a po rychlém obarvení se zjistí přítomnost mastocytů. Tím se orientujeme zda byl útvar odebrán celý (může se takto otisknout i operační rána).

Stěr

se používá při vaginální cytologii či odběru z jiných tělních otvorů. Vhodné je provést současně bakteriologické vyšetření. K odběru se využívá sterilních tamponů. Zhotovení preparátu se provádí tak, že se tamponem lehce roluje po sklíčku. Nikdy se tamponem nedělá nátěr, protože to způsobuje velké poškození buněk (Svoboda et al., 2000).

1.1.3. **Zhotovení cytologických preparátů FNAB**

Místo odběru vydezinfikujeme, pevně uchopíme lézi a provedeme do ní vpich jehlou nasazenou na stříkačce, vytvoříme podtlak střídavým nasátím materiálu (můžeme jehlou v lézi pohybovat různými směry, aby se nasálo co nejvíce buněk), následně podtlak zrušíme, po vytážení jehly z místa vpichu jehlu sejmeme ze stříkačky, do té natáhneme vzduch, nasadíme zpět a odebraný materiál ihned po odběru vystříkneme na sklíčko. Získaný materiál na sklíčku rozetřeme buď technikou krevního nátěru, nebo druhým podložním sklíčkem, které se na odebraný materiál položí a rychlejším tahem se materiál na plocho rozetře. Musíme dbát na to, aby nedošlo k poškození buněk, proto na sklíčko příliš netlačíme.

Jestliže jsme odebrali velmi řídkou tekutinu s předpokladem nízké celularity, je vhodné vzorek před nátěrem odstředit (1000 – 1500 otáček/min, po dobu 5 minut).
Supernatant lze použít k dalšímu biochemickému vyšetření (v tomto případě by měl být vzorek odebrán do zkumavky s antikoagulačním činidlem - EDTA) a ze sedimentu se vyhotoví cytologický preparát. Ten se nechá oschnout na vzduchu a následně se obarví. Preparát nesmí přijít do styku s formálovými parami, hůře by se barvil a došlo by k znehodnocení vzorku (Thrall, 2000; Raskin & Meyer, 2001).

1.1.4. Barvení cytologického preparátu

Dle Romanowského – je to rychlé a levné barvení. Dobře barví cytoplazmu a organismy. Jádro a jaderné detaily nejsou tak dobře obarveny jako u barvení podle Papanicolaoua, ale jsou obvykle dostatečně obarveny pro rozpoznání nádorového a zánětlivého procesu a pro průkaz maligního potenciálu (kriteria malignity).

Komerčně se prodávají různé modifikace, které proces barvení zjednodušují a zrychlují. Známá je například souprava Diff-Quik. U barvení touto soupravou je nevýhodou, že nedochází k metachromatické reakci. To znamená, že nemusí dojít k obarvení některých granul mastocytů a mastocyty mohou být pak považovány za makrofágy.

V naší laboratoři je používáno barvení May-Grünwald-Giemsa.

Jednotlivé typy souprav mají předepsaný postup barvení, avšak přesný postup a doba barvení je závislá na tloušťce preparátu, celularitě a obsahu bílkovin v bioptickém materiálu (Cowell et al., 1999; Svoboda et al., 2000).

Methylenová modř – slabě barví cytoplazmu, dobře zobrazuje jaderné rozdíly, infekční agens (bakterie, plísně i kvasinky), trombocyty a granula mastocytů, nebarví erytrocyty. Toto barvení se používá např. pro obarvení retikulocytů. Je také ideálním barvením pro detekci Hemobartonel (Raskin & Meyer, 2001).

1.2. Vyhodnocení cytologického preparátu

Obarvený cytologický preparát se prohlíží mikroskopem. Celularitu a celobuněčné kriteria malignity posuzujeme objektivem 20 a 40. K posouzení jaderných změn je zapotřebí imerzní objektiv 100. K přesnému vyhodnocení cytologického preparátu je důležité znát základní údaje o zvířeti i o útvaru. Důležité jsou - věk zvířete, plemeno, pohlaví, lokalita útvaru a jeho velikost, rozšiření po těle, doba růstu atd.

Léze dělíme na: zánětlivé
 nezánětlivé a) nenádorové
 b) nádorové - benigní
 - maligní

1.2.1. Zánětlivé léze

Zánětlivý proces je charakteristický přítomností různých druhů zánětlivých buněk, mezi něž patří: neutrofily, eosinofily, makrofágy a gigantické mnohojaderné zánětlivé buňky (přeměněné makrofágy), lymfocyty. Podle zastoupení jednotlivých druhů buněk určujeme typ zánětu (Thrall, 2000).

Purulentní zánět obsahuje převážně neutrofily (obecně cca 90 %). Vyskytují-li se v lézi bakterie, a převažují-li zde degenerované neutrofily (rozpadající se nebo již rozpadlé), jedná se o infikovaný zánět (Shelly, 2003).

Postupným stárnutím neutrofilů dochází k hypersegmentaci a rozpadu jejich jádra až k rozpadu celé buňky. Lýza neutrofilů vzniká v důsledku fagocytózy bakterií (Thrall, 2000).

Granulomatózní zánět obsahuje fibroblasty a větší množství makrofágů a gigantických buněk, což jsou přeměněné makrofágy s více jádry. Tento zánět může být způsoben cizorodým materiálem (například injikovaná látka) nebo intracelulárními bakteriemi např. mykobakteriemi (Shelly, 2003).

Smíšený zánět obsahuje větší množství lymfocyttů, plasmocytů nebo makrofágů, v menším množství se mohou vyskytovat nedegenerované neutrofily. Tento typ zánětu je často
způsoben plísňemi nebo cizím tělesem (Shelly, 2003). Plasmocyty jsou ve větším množství přítomny v chronických zánětlivých lézích, kde dochází k antigenní stimulaci lymfocytů a následné produkci protilátek (Thrall, 2000).

Eosinofilní zánět obsahuje více než 15 % eosinofilů. Nejčetnější výskyt je u hypersenzitivních reakcí, eosinofilního komplexu koček, parazitární nebo plísňové infekci, kolagenní nekróze. Eosinofily se téměř vždy vyskytují u mastocytomu (Thrall, 2000).

Nekróza tuku. Pro aspirát z nekrotického tuku je charakteristická přítomnost tukových kapének a makrofágů fagocytujících tuk (tukové vakuoly). Některé makrofágy mohou být vícejaderné. Nachází se zde také adipocyty. Jsou to velké buňky s vakuolou naplněnou tukem (běžným barvením se nebarví) a malým jádrem utlačovaným k okraji buňky (Thrall, 2000).

Původcem infekce mohou být viry, bakterie, plísň, kvasinky, prvoci. **Zánět neinfekční povahy** může být způsoben traumatem, teplem, chemickým nebo toxickým činidlem i cizorodým materiálem. Mikroorganismy nemusí být vždy primární příčinou zánětu. Často dochází až k sekundární infekci, jako následek oslabení organismu (alergie, seborea, folikulární abnormality), traumatizace nebo metabolického onemocnění (hypotyroidismus) (Shelly, 2003). Cizorodým materiálem jako zdroj zánětu může být i injekční podání léku, nebo rostlinný materiál vnesený do rány traumatem nebo automutilací.

Erytrocyty v zánětlivých procesech jsou většinou morfologicky pozměněné. Hemoragie ve tkání může být diagnostikována pomocí makrofágů s fagocytovanými erytrocyty a s hemosiderynem nebo pomocí hematoidinových krystalů, které se vytvářejí nejčastěji v makrofážích jako zlaté krystalické struktury z hemoglobinu. Přítomnost trombocytů ve vzorku značí kontaminaci čerstvou krví při odběru.
Postinjekční reakce. Shelly, 2003 uvádí jako klasický příklad postinjekční reakce subkutální aplikaci vakciny proti vztěklině a FeLV u koček do téhož míst. V současné době je zastáván názor, že postinjekční reakce může být způsobena subkutální aplikací jakékoliv látky. V lézi pozorujeme různý počet zánětlivých buněk, především lymfocyty, mononukleární zánětlivé buňky a často i fibroblasty. Červeně se barvíci granulovaný materiál (injikovaná látká) je buď fagocytován makrofágy nebo je volně v pozadí a většinou vytváří agregáty (Thrall, 2000). Postinjekční reakce může vzniknout u psa i u kočky. U koček je riziko vzniku post-injekčního sarkomu. Shelly 2003 uvádí vznik post-injekčního sarkomu u 1 – 10 koček z 10 000 vakcinací.

Granulační tkání budí na první pohled dojem preparátu kontaminovaného krví. Preparáty obsahují poměrně zachovalé krevní elementy. Při porovnání zastoupení buněk s periferní krví nacházíme zvýšený podíl neutrofilů, makrofágy a většinou solitární buňky mezenchymálního původu. Jsou to reaktivní fibroblasty a velice těžko se odlišují od maligních fibroblastů nacházejících se v nádorových lézích (Shelly, 2003).

Při kalcifikaci se v lézích nachází velké množství krystalů, které se barví jako červený až modrý materiál v pozadí. V těchto lézích se nachází různé zastoupení zánětlivých buněk (Thrall, 2000).

1.2.2. Nezánětlivé léze

Nezánětlivé léze rozlišujeme na nenádorové a nádorové, a ty pak na benigní a maligní.

a) Nenádorové léze

Hematom - obsahuje erytrocyty, makrofágy, různý počet neutrofilů a lyzované epiteliální buňky. Typickým nálezem je erytrocytofagie a přítomnost hematoxilinových krystalů nebo hemosiderinu v preparátu. Trombocyty zde nenacházíme.

Serom - neobsahuje velké množství buněk, aspirovaná tekutina je čirá až mlhavá. Serom obsahuje mononukleární buňky, makrofágy, mohou se vyskytovat i nedegenerované neutrofily.
Cysty - klasifikují se dle druhu obsažených buněk nebo podle procesu, který probíhal před jejich vznikem. Obvykle materiál z cysty vytěče při FNAB. V tomto případě je vhodné odebrat celou cystu na histologické vyšetření, které přesně zjistí, o jaký proces se jedná (Shelly, 2003).

b) Nádorové léze

Nádor připadá v úvahu, když buňky vykazují cytologická kritéria malignity, nebo když léze obsahuje buňky, které nejsou typické pro aspirovanou tkáň. Například, když se v mízní uzlině nachází epiteliální buňky, pak se může jednat o metastázu karcinomu v mízní uzlině. Rozlišujeme benigní a maligní nádory.

Benigní nádory obsahují buňky, které jsou velice podobné normálním buňkám vyšetřované tkáňě. V preparátech se nachází uniformní populace buněk. Buňky mají normální zbarvení, tvar a velikost jádra i cytoplasmy. Útvary s těmito buňkami označujeme jako benigní nádory nebo hyperplazie odebrané tkáňě (tyto procesy nelze blíže cytologicky rozlišit). Hyperplastické buňky mohou mít i některé znaky malignity (Thrall, 2000).

Za maligní se považují nádory, které mají u většiny buněk v populaci tři a více znaků malignity. Pro maligní nádory je také charakteristický zmíněný počet abnormálních mitotických figur.

Pro potvrzení cytologického vyšetření a určení prognózy by mělo být po extirpaci nádoru provedeno histologické vyšetření.
1.2.3. Kritéria malignity buňky

Cytoplasma - posuzuje se barva, struktura a obsah granul. Bazofilní cytoplasma značí vyšší proteinovou produkci buňky. Granula nebo vakuoly jsou produktem zvýšeného buněčného metabolismu.

Jádro – je centrem buněčné reprodukce a aktivity. Posouzení jádra je základním diagnostickým kritériem malignity.

Nádorové buňky mají zvýšenou reprodukční a metabolickou aktivitu, a proto dochází ke změnám vnitřní struktury: 1) jádra (hrubá struktura chromatinu), 2) jadérek (zviditelnění jadérek, změny tvaru, velikosti a počtu) 3) cytoplasmy (bazofilní cytoplasma, vakuolizace).

Posuzované znaky malignity:
1. Anisokaryóza – je různá velikost jádra v buněčné populaci.

2. Pleomorfismus - je různá morfologie buněk - variabilita v jádrech a velikosti buněk.

4. Zvýšená mitotická aktivita - nenormální organizace a separace jaderného chromatinu, výskyt abnormálních mitóz.

![Image 1]

5. Jadérka – vyskytují se odlišnosti v počtu, velikosti a tvaru jadérek.

![Image 2]

![Image 3]

![Image 4]

1.3. Rozdělení nádorů dle morfologie buněk

Tyto kategorie nejsou vytvořeny podle původu buněk, ale podle jejich základní cytomorfologické charakteristiky. Ta by měla pomoci při určení nádoru.

1. Tumory epiteliální
2. Tumory mezenchymální
3. Tumory kulatobuněčné
4. Tumory s „holým jádrem“ (Naked Nuclei Tumors)
1.3.1 Tumory epiteliální

Skvamocelulární karcinom

Skvamocelulární karcinom (SCC) je epiteliální nádor vyskytující se u psů i koček.

Preparáty ze špatně diferencovaného SCC mohou obsahovat populaci buněk s výraznými znaky malignity (různý poměr jádro:cytoplasma, variabilita ve velikosti a tvaru jader a jadřík, bazofilní cytoplasma) a s nedostatečnou keratinizací. Některé buňky mohou obsahovat agregáty malých vakul obkružujících jádro (perinukleární vakulizace), vakuly mohou být i roztroušeny po celé buňce. Keratinizované buňky mají homogenní modrozeleně se barvíce cytoplasma, ojediněle mohou mít buňky cytoplasmu nahloučenou u jedné strany buňky. Keratinizace a perinukleární vakulizace buněk je hlavním rozlišovacím znakem při cytologické diagnostice skvamocelulárních karcinomů (Cowell et al., 1999).
1.3.2. Tumory mezenchymální

Maligní fibrózní histiocytom

Histologická klasifikace rozlišuje několik podtypů maligního fibrózního histiocytomu. Tento tumor se vyskytuje častěji u koček než u psů. Pokud se maligní fibrózní histiocytom nachází v kůži vyznačuje se infiltrativním a agresivním růstem, ale vzácně tvoří metastázy (Cowell et al., 1999; Raskin & Meyer, 2001).

V cytologickém preparátu se nachází větší množství mnohojaderných obrovských buněk. Tyto buňky mají charakteristický vzhled a mohou mít 20 – 30 jader. Dále obsahuje mezenchymální buňky se známkami malignity a malý počet malých buněk podobajících se histiocytům (Cowell et al., 1999; Thrall, 2000).

Melanom

pigmentová granula mohou u dobře diferencovaných melanomů zakrývat celou strukturu buňky včetně jádra. Špatně diferencované melanomy obsahují velmi pleomorfní buňky s výraznými znaky malignity, např. různý poměr jádro:cytoplasma, velká jádra, hrubý chromatin a zřetelná jadéřka. U amelanotických melanomů je v buňkách obsaženo velice málo pigmentu. V cytologických preparátech můžeme nalézt několik buněk obsahujících malé množství granul v cytoplasmě pouze při velmi pečlivé diagnostice.

1.3.3. Tumory kulatobuněčné

Mastocytom

Mastocytomy se mohou vyskytovat v anaplastické formě, která se vyznačuje jen velmi malým nebo žádným počtem granul. Při důkladném hledání však můžeme i u značně anaplastických tumorů nalézt několik granul v cytoplasmě. Buňky vykazují výrazné známky malignity (anisocytóza, anisokaryóza, jaderný pleomorfismus, různý poměr jádro:cytoplasma) (Cowell et al., 1999). U této formy se předpokládá agresivní růst do okolí a vysoký metastatický potenciál. U mastocytomů s uniformními silně granulovanými buňkami (grade I) předpokládáme dobrou prognózu. U mastocytomů, které obsahují mastocyty s malým až téměř žádným počtem granul a výraznými známkami malignity (grade III) předpokládáme špatnou prognózu (Kohout et al., 2001). Mastocyty se v malém množství mohou nacházet v kůži, normálních mízních uzlinách, kostní dřeni a orgánech dutiny břišní.

Cytologie je v případě mastocytomů přínosem i pro rychlé stanovení hranic excize tumoru. Při nedostatečném odstranění tumoru je jeho další růst velice pravděpodobný (Cowell et al., 1999; Kohout et al., 2001; Meinkoth & Cowell, 2002).

Kožní psí histiocytom

Histiocytomy jsou častými tumory mladých psů, uvádí se do pěti let věku.

Lymfom

V naší studii nebyl dosažen odpovídající počet diagnostikovaných lymfomů, proto nebyly zahrnuty do klasifikace vybraných typů nádorů.

1.3.4. Tumory s „holým“ jádrem (Naked Nuclei Tumors)

1.4. Pozadí preparátů

Pro kompletní posouzení preparátu je důležité mimo posouzení buněk i posouzení pozadí. Pozadí je velice často kontaminováno periferní krví. Při cytologickém vyšetření některých orgánů musíme s přítomností krevních elementů počítat téměř vždy (ledviny, játra, slezina apod.), u jiných to ukazuje na možnou technickou chybu při odběru nebo na přítomnost patologického procesu (mízní uzliny, kůže apod.). Bílkovinné agregáty tvoří obvykle granulovanou strukturu pozadí (exsudát v dutině břišní, synoviální tekutina).

Nukleární materiál z destruovaných buněk vytváří často na pozadí vláknitou bazofilní strukturu, především při přítomnosti neutrofilů (chronické zánětlivé procesy, nekrotická tkáň, v mízní uzlině dochází k rozpadu lymfatických buněk po aplikaci kortikoidů).

Součástí pozadí cytologických preparátů bývají i bakterie, vývojová stadia parazitů, nečistoty, pylová zrnka, spóry plísní a v řadě případů i epiteliální buňky pokožky odebírající. Zde je vždy nutné pečlivě posoudit přítomnost fonocytované v makrofážích a neutrofilech. Pak je velice pravděpodobné, že se jedná skutečně o přítomnost bakterií v procesu. V případě odběru vzorku z uhynulých zvířat je při nálezu bakterií v procesu vždy nutné posoudit přítomnost zánětu. Pokud chybí známky zánětu, může se jednat o postmortální změny (Jůdová & Huml, 2003).
II. CÍL

- Stanovit celkovou senzitivitu cytologického vyšetření.
- Stanovit spolehlivost cytologického vyšetření podle lokalizace místa odběru.
- Stanovit spolehlivost cytologického vyšetření podle typu procesu.
- Stanovit senzitivitu cytologického vyšetření u jednotlivých vybraných typů tumorů.
III. MATERIÁL A METODY

3.1. Odběr a zpracování materiálu

3.1.1. Cytologické vyšetření

Barvení cytologických preparátů
- 15 min alkohol-éter (1:1)
- 5 min May-Grünwald
- Opláchnutí v destilované vodě
- 20 min Giemsa Romanowski (3ml:50ml dest. vody)
- Opláchnutí pod tekoucí vodou

Po obarvení byly preparáty prohlíženy mikroskopem Zeiss přehledným zvětšěním (objektivem 20) a následně, pro posouzení jaderné struktury imerzním objektivem. Fotografické snímky byly pořízeny pomocí mikroskopu Olympus BH2, fotoaparátem Olympus 40-40 a upraveny počítačovým programem PhotoImpact5.

3.1.2. Histologické vyšetření

Bioptické tkáňové vzorky byly fixovány v 10% pufrovaném formalínů (doba byla závislá na velikosti biopsie) a zpracovány běžnou parafinovou technikou. Histologické řezy byly obarveny základním barvením hematoxylin-eozinem. U vzorků, kde to bylo pro interpretaci nutné, bylo provedeno speciální barvení, a to až po posouzení základního barvení
patologem. Speciální barvení bylo použito například v těchto případech: obarvení granul mastocytů barvením podle Giemsy (u degranulovaných mastocytů barvením toluidinovou modří), průkaz polysacharidů PAS reakcí, průkaz acidorezistentních tyčinek barvením podle Ziehl – Neelsena, barvení pouzder kryptokoků mucikarmínem, obarvení kolagenního vaziva (osteosarkom, fibrom, leiomyom) barvením Weigert van Giesonovo.

3.2. Rozdělení vzorků

Tab. č.3.1

<table>
<thead>
<tr>
<th>typ procesu</th>
</tr>
</thead>
<tbody>
<tr>
<td>zánětlivý proces/nekróza</td>
</tr>
<tr>
<td>dysplastický/hyperplastický</td>
</tr>
<tr>
<td>tumorózní proces</td>
</tr>
<tr>
<td>benigní epiteliální</td>
</tr>
<tr>
<td>benigní mezenchymální</td>
</tr>
<tr>
<td>benigní kulatobuněčný</td>
</tr>
<tr>
<td>maligní epiteliální</td>
</tr>
<tr>
<td>maligní mezenchymální</td>
</tr>
<tr>
<td>maligní kulatobuněčný</td>
</tr>
<tr>
<td>normální</td>
</tr>
<tr>
<td>jiné</td>
</tr>
</tbody>
</table>

Pro studii byly odebrány vzorky z lézí 26 koček a 225 psů. Jen 12 vzorků bylo odebráno z lézí ostatních zvířat (2 fretky, 2 morčata, králík, ocelot, Pudu jižní, andulka, kaloně, psoun, laboratorní myš, potkan).

Pro specifikaci shody cytologické diagnózy s histologickou, byly výsledky rozděleny do následujících čtyř kategorií: úplná shoda, částečná shoda, neshodují se a nereprezentativní vzorek. Do kategorie „úplná shoda“ byly zařazeny vzorky, u kterých se cytologická a histologická diagnóza zcela shodovala, např. cytologicky byl vzorek určen jako zánět tukové...
tkáně a histologická diagnóza zněla septální panikulitis. Jiným příkladem úplné shody u nádorových procesů byla cytologická diagnóza hemangiosarkom a definitivní histologické potvrzení - hemangiosarkom. Jako „částečná shoda“ byly klasifikovány případy:

1. situace, kdy se shodoval buněčný typ nádoru i stupeň malignity (např. cytologicky byl diagnostikován maligní vřetenobuněčný tumor a histologicky se jednalo o fibrosarkom),

2. stav, kdy se shodoval buněčný typ nádoru a neshodoval se stupeň malignity (např. cytologicky - adenom slinné žlázy a histologicky - acinózně-solidní karcinom slinné žlázy),

3. neshoda buněčného typu nádoru a shoda ve stupni malignity (např. cytologicky - karcinom a histologicky - hemangiosarkom).

Do kategorie „neshodují se“ byly zařazeny vzorky, kdy se diagnózy od sebe úplně lišily, např. cytologicky byl proces určen jako benigní tumor mezenchymálního původu a histologicky se jednalo o infundibulární cystu. Do této kategorie byly zařazeny i vzorky, kdy se sice shodovala diagnóza neoplazie, ale neshodoval se již buněčný typ ani stupeň malignity (např. cytologická diagnóza byla benigní epiteliální tumor a histologicky se jednalo o myxoidní sarkom). Jako „nereprezentativní vzorek“ byly klasifikovány případy, kdy odběr vzorku na vyšetření byl nedostatečný nebo byl odebrán z nevhodného místa (např. k cytologickému vyšetření byla aspirována pouze krev a tuková tkáň u histologicky určeného fibromu).

3.3. Statistické vyhodnocení

Senzitivita byla definována jako pravděpodobnost, že cytologie bude detekovat onemocnění. Byla spočítána jako počet případů se shodou mezi cytologickým a histologickým nálezem onemocnění dělený celkovým počtem případů s diagnózou konkrétního onemocnění, např. maligní tumor nebo zánětlivý proces.

Specifita byla definována jako pravděpodobnost, že použití cytologie bude detekovat nepřítomnost nádorového procesu a byla spočítána jako počet případů se shodou mezi cytologickým a histologickým vyšetřením, kde se neprokázával nádorový proces, dělený počtem případů bez nádorového procesu (Cohen et al. 2003).
IV. VÝSLEDKY

4.1. Vyhodnocení dle místa odběru

Na studii byly odebrány vzorky z lézí 26 koček a 225 psů a 12 preparátů bylo z lézí ostatních zvířat. Celkem bylo zařazeno 277 vzorků. Z toho bylo pouze 9 vzorků (3,24%) klasifikováno jako „nereprezentativní“, a to převážně z důvodu špatného odběru vzorku. „Úplná shoda“ cytologické a histologické diagnózy byla klasifikována u 142 (51,2%) případů, „částečná shoda“ u 83 (30%) případů a „neshodovaly“ se nálezy u 43 (15,5%) případů. Posoudíme-li úplnou a částečnou shodu dohromady zvýší se senzitivita cytologického vyšetření na 81,2%. Výsledky v jednotlivých skupinách (podle místa odběru) uvádí tab. 4.1. Z tabulky 4.1 je patrné, že největší procento odlišných diagnóz (kategorie „neshodují se“) bylo u vzorků sleziny 39,1% a jater 23,1%.

<table>
<thead>
<tr>
<th>místo odběru</th>
<th>úplná shoda</th>
<th>%</th>
<th>částečná shoda</th>
<th>%</th>
<th>neshodují se</th>
<th>%</th>
<th>nedostatečný vzorek</th>
<th>%</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>kůže</td>
<td>64</td>
<td>46,7</td>
<td>45</td>
<td>32,8</td>
<td>22</td>
<td>16,1</td>
<td>6</td>
<td>4,4</td>
<td>137</td>
</tr>
<tr>
<td>játra</td>
<td>7</td>
<td>53,8</td>
<td>2</td>
<td>15,4</td>
<td>3</td>
<td>23,1</td>
<td>1</td>
<td>7,7</td>
<td>13</td>
</tr>
<tr>
<td>slezina</td>
<td>10</td>
<td>43,5</td>
<td>3</td>
<td>13,0</td>
<td>9</td>
<td>39,1</td>
<td>1</td>
<td>4,3</td>
<td>23</td>
</tr>
<tr>
<td>MU</td>
<td>16</td>
<td>80,0</td>
<td>1</td>
<td>5,0</td>
<td>3</td>
<td>15,0</td>
<td>0</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>dutina nosní/ústní</td>
<td>14</td>
<td>63,6</td>
<td>6</td>
<td>27,3</td>
<td>2</td>
<td>9,1</td>
<td>0</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>ostatní</td>
<td>31</td>
<td>50,0</td>
<td>26</td>
<td>41,9</td>
<td>4</td>
<td>6,5</td>
<td>1</td>
<td>1,6</td>
<td>62</td>
</tr>
<tr>
<td>celkem</td>
<td>142</td>
<td>51,2</td>
<td>83</td>
<td>30,0</td>
<td>43</td>
<td>15,5</td>
<td>9</td>
<td>3,2</td>
<td>277</td>
</tr>
</tbody>
</table>

Celkem úplná a částečná shoda v % 81,2

Tab. č. 4.1: Zastoupení případů v jednotlivých skupinách podle místa odběru a jejich roztřídění do jednotlivých kategorií hodnocení.
4.2. Vyhodnocení dle typu procesu

Z celkového počtu 277 vzorků bylo histologicky diagnostikováno 214 nádorových procesů a z toho i cytologicky 194 (90,65%). Senzitivita nádorového onemocnění tedy byla 90,65%. Histologicky bylo určeno 45 nádorů benigních, z toho 26 (57,78%) i cytologicky a 169 maligních, z toho 152 (89,94%) i cytologicky. Celkem bylo histologicky určeno 33 vzorků jako zánětlivý proces, z toho 22 (66,67%) i cytologicky viz tab. 4.2. Specifita nádorových lézí byla 66,67%. Pozitivní prediktivní hodnota cytologie v diagnóze nádorových lézí byla 90,23%. Pozitivní prediktivní hodnota cytologie v diagnóze nenádorových lézí byla 67,74%.

Tab. č. 4.2

<table>
<thead>
<tr>
<th>typ procesu</th>
<th>úplná shoda</th>
<th>částečná shoda</th>
<th>neshodující se</th>
<th>nedostatečný vzorek</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>zánětlivý proces</td>
<td>19</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>dysplastický/hyperplastický</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>tumorózní proces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benigní epiteliální</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>benigní mezenchymální</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>benigní kulatobuněčný</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>maligní epiteliální</td>
<td>29</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>maligní mezenchymální</td>
<td>40</td>
<td>28</td>
<td>5</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>maligní kulatobuněčný</td>
<td>27</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>normální</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>jiné</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>celkem</td>
<td>142</td>
<td>83</td>
<td>43</td>
<td>9</td>
<td>277</td>
</tr>
</tbody>
</table>

Tab. č. 4.2: Zastoupení jednotlivých procesů dle histologického vyšetření a jejich rozřiďení do jednotlivých kategorií hodnocení.
4.3. Vyhodnocení vybraných typů nádorů

Nádory byly vybrány tak, aby byl zastoupen alespoň jeden typ nádoru z každé kategorie podle cytomorfologické charakteristiky a současně byl nádor zastoupen v dostatečném počtu případů.

Tab. č. 4.3: Klasifikace vybraných nádorů v této studii.

<table>
<thead>
<tr>
<th>Vybrané nádory</th>
<th>úplná shoda</th>
<th>částečná shoda</th>
<th>neshodují se</th>
<th>nedostatečný vzorek</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>mastocytom</td>
<td>18 (75%)</td>
<td>5 (20,8%)</td>
<td>1 (4,2%)</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>melanom</td>
<td>11 (68,8%)</td>
<td>4 (25%)</td>
<td>1 (6,3%)</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>maligní fibrózní histiocytom</td>
<td>6 (66,7%)</td>
<td>2 (22,2%)</td>
<td>1 (11,1%)</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>skvamocelulární karcinom</td>
<td>5 (55,6%)</td>
<td>2 (22,2%)</td>
<td>2 (22,2%)</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Tab. č. 4.3.1. Mastocytom

V této studii bylo diagnostikováno celkem 24 mastocytomů (tab. č. 4.3, obr. 1-6), v osmnácti případech (75%) se úplně shodovala cytologická i histologická diagnóza. Mezi vzorky klasifikovanými jako „částečná shoda“ byly zařazeny tři vzorky, u kterých byl špatně cytologicky určen buněčný typ tumoru a u dvou vzorků z koček byla cytologická a histologická diagnóza nejasná (eosinofilní dermatitis/mastocytom). Jeden vzorek byl cytologicky diagnostikován jako kočičí histiocytární mastocytom a histologicky se jednalo o eosinofilní kolagenolytickou dermatitidu. Tento vzorek byl zařazen do kategorie „neshodují se“ (4,2%). Senzitivita u mastocytomů byla 75%, respektive 95,8%, sečteme-li úplnou i částečnou shodu.

4.3.2. Melanom

U melanomů jsme zjistili 68,8% „úplnou shodu“ (tab. č. 4.3, obr. 7-12). Z 16 případů byly 3 vzorky, cytologicky určeny jako maligní tumory (2x bez bližší specifikace, 1x sarkom) a histologicky se jednalo o amelanotické melanomy. U jednoho vzorku cytologická diagnóza
byla amelanotický melanom a histologicky byl tumor diagnostikován jako apokrinní karcinom. Tyto vzorky byly klasifikovány jako „částečná shoda“. V jednom případě (kategorie „neshoda“) byl útvar cytologicky mylně diagnostikován jako melanom a histologicky se jednalo o mízní uzlinu s folikulární hyperplazií a mírnou histiocytózou sinů. Senzitivita u melanomů činila 68,8%, respektive 93,8% sečteme-li úplnou i částečnou shodu.

4.3.3. Maligní fibrózní histiocytom

Maligní fibrózní histiocytom koček byl diagnostikován v 9 případech (tab. č. 4.3, obr. 13-18). Do „částečné shody“ byly zahrnuty dva vzorky s cytologickou diagnózou sarkom. V jednom případě byly aspirovány pouze zánětlivé buňky a cytologická diagnóza byla určena jako zánětlivý proces s nekrózou, což se klasifikovalo jako „neshodná diagnóza“ (11,1%). Senzitivita u maligního fibrózního histiocytomu byla 66,7%, respektive 88,9% při součtu částečné a úplné shody.

4.3.4. Skvamocelulární karcinom

Celkem bylo diagnostikováno 9 skvamocelulárních karcinomů (tab.č. 4.3, obr. 19-24) z toho v pěti případech (55,6%) se úplně shodovaly diagnózy v obou metodách. Do kategorie „částečné shody“ byly zařazeny 2 vzorky (22,2%). V jednom případě, histologicky diagnostikovaného SCC, cytologická diagnóza zněla maligní tumor epiteliálního původu komplikovaný zánětem. V druhém případě byl SCC v tlamě kočky cytologicky určen jako vřetenobuněčný tumor. Do kategorie „neshodují se“ byly zařazeny 2 vzorky (22,2%). V této kategorii byl jeden vzorek z mízní uzliny kočky cytologicky klasifikován jako metastáza SCC (jednalo se o kočku se SCC v tlamě) a histologické vyšetření diagnostikovalo mízní uzlinu bez nálezu. Dále jeden vzorek z dutiny nosní byl cytologicky určen jako SCC, zatímco histologicky jako nespecifikální rinitida. Senzitivita u SCC byla 55,6%, respektive 77,8% sečteme-li úplnou i částečnou shodu.
V. DISKUSE

5.1. Senzitivita cytologického vyšetření

V naší studii jsme dosáhli senzitivity cytologického vyšetření 81,2% (úplná a částečná shoda), což se blíží i hodnotám z jiných studií. Mills and Griffiths (1984) uvádí senzitivitu mezi cytologickým a histologickým nálezem 90,4%. Ve studii Eich et al. (2000) zjišťující správnost cytopatologické diagnózy provedené během operace se uvádí senzitivita 89% a specifita 100%. V těchto dvou studiích byly vzorky odebrány podobným způsobem jako v naší studii. Ve vzorové studii (Cohen et al., 2003) byly vzorky odebrány metodou FNAB ještě před chirurgickým zákrokem a málo zkušenými studenty. Tím bylo zvýšeno nebezpečí chyby při odběru. Senzitivita cytologického vyšetření proto byla pouze 56,1% a 11,2% případů bylo hodnoceno jako „nedefinovaný vzorek“. V jiné studii, ze vzorků odebraných privátními veterinárními lékaři a zaslanými k posouzení, bylo 67% vzorků průměrně až nekvalitně odebráno na rozdíl od referenční nemocnice, kde takovýchto vzorků bylo pouze 34% (Stone, 1995). To dokládá důležitost kvalitního odběru vzorku.

5.1.1. Zánětlivé léze

Senzitivitu 66,7% u zánětlivého procesu si vysvětlujeme tím, že probíhající zánět může způsobovat dysplazii buněk a tím připomínat nádorový proces. V těchto případech je velmi obtížné cytologický preparát přesně vyhodnotit. Ve všech případech „neshodné diagnózy“ (9) byl histologicky určený zánětlivý proces nebo nekróza vyhodnocen cytologicky jako nádorový proces, z toho v 7 případech jako maligní a ve 2 případech jako benigní.
5.1.2. Nádorová onemocnění

5.1.3. Jaterní léze

Tím se zvyšuje senzitivita cytologického vyšetření.

5.2. Vybrané typy nádorů

5.2.1. Mastocytom

Relativně přesná je diagnostika mastocytomů (senzitivita 95,8%). Buňky mastocytomu velice snadno exfoliují, a proto jsou preparáty velmi celulární. Mastocytomy vyššího stupně malignity se mohou cytologicky podobat nádorům mezenchymálního původu. Kulatobuněčné tumory jsou z hlediska vývoje tkáně mezenchymálního původu, ale pro své morfologické vlastnosti buněk jsou uváděny jako samostatná skupina (Kohout et al., 2001). U eosinofilní kolagenolytické dermatitidy koček se jako diferenciální diagnóza uvádí i mastocytom (Scott et al., 2001). V našem případě byl cytologicky určený mastocytom s eosinofilní kolagenolytickou dermatitidou určenou histologicky zaměněn jedenkrát a dvakrát se jednalo o nejasnou diagnózu eosinofilní dermatitis/mastocytom.

5.2.2. Melanom

5.2.3. Maligní fibrózní histiocytom

V naší studii je relativně vysoká senzitivita maligního fibrózního histiocytomu 88,9%, i když se jedná o mezenchymální nádor. Pro většinu mezenchymálních nádorů je typická přítomnost malého množství buněk ve vzorku z důvodu špatné exfoliace buněk při
odběru (Raskin & Meyer, 2001; Cowell et al., 1999). Relativně vysokou senzitivitu maligního fibrózního histiocytomu přisuzujeme jednak znalosti přesné lokalizace léze, podle níž se dá usuzovat na typ procesu, jednak pečlivému odběru vzorku metodou FNAB.

5.2.4. Skvamocelulární karcinom

Ulcerované skvamocelulární karcinomy jsou velice často komplikovány sekundární bakteriální infekcí (Meuten, 2002; Shelly, 2003). SCC v dutině nosní a ústní jsou téměř záhnětlivě změněné.

V našem případě byl mylně cytologicky diagnostikován SCC v dutině nosní (histologicky se jednalo o nespecifickou rinitis). Buňky vykazovaly mírné známky malignity a keratinizaci, tyto znaky naznačovaly, že by se mohlo jednat o dobře diferencovaný SCC. Buňky dobře diferencovaného SCC mohou být obtížně rozpoznatelné od hyperplastických a metaplastických epiteliálních buněk (Cowell et al., 1999).

SCC z dutiny ústní často metastazují do regionálních submandibulárních a retrofaryngeálních mízních uzlin (Meuten, 2002). Cytologicky diagnostikovaná metastáza SCC v retrofaryngeální mízní uzlině kočky (se SCC v dutině ústní) nebyla histologickým vyšetřením potvrzena.
VI. ZÁVĚR

Kvalitní odběr vzorku zvyšuje senzitivitu cytologického vyšetření. Z naší studie je patrné, že i přes výborné podmínky při odběru vzorku a znalostí informací o patologickém procesu je senzitivita cytologického vyšetření 81,2%. Cytologické vyšetření je velice rychlá a levná metoda k získání předběžné diagnózy. Je však zapotřebí mít určité zkušenosti a znalostí s vyhodnocením cytologického preparátu. V nejasných případech by mělo vždy následovat histologické vyšetření, které umožní posoudit i architekturu tkáně v procesu a stanovit definitivní diagnózu.

Posoudíme-li cytologické vyšetření podle místa odběru, tak cytologické vyšetření vnitřních orgánů (játra, slezina) je nejméně spolehlivé.

Senzitivita cytologického vyšetření z hlediska typu procesu je relativně vysoká u tumorózních procesů (90,65%), a to především u maligních tumorů (89,94%). Tumorózní proces může být komplikován zánětlivou reakcí okolní tkáně. Zánětlivý proces vyvolává dysplastické změny buněk, proto je zapotřebí v takových případech dbát zvýšené opatrnosti při hodnocení cytologických preparátů.

Senzitivita cytologického vyšetření mastocytomu a melanomu přesahuje 90%, tyto tumory jsou poměrně snadno cytologicky diagnostikovatelné. Buňky obou tumorů obsahují cytoplasmatická granula, nález těchto granul usnadňuje cytologickou diagnózu. Buňky s malým množstvím granul se při pečlivém prohlížení preparátů dají najít i u degranulovaných (amelanotických) typů tumorů.
VII. LITERATURA

JŮDOVÁ K., HUML O. 2003: Základy cytologie – základní rozlišení tumorózních a zánětlivých procesů. Sborník ze XI. výroční konference ČAVLMZ, Gynekologie a porodnictví, sekce cytologická, Hradec Králové: 84-87

KOHOUT P., BENÁK J., KNOTEK Z. 2001: Cytologická a histologická diagnostika kulatobuněčných nádorů kůže psů a koček. Veterinářství 51: 75-79

MEUTEN D.J. Editor 2002: Tumors in domestic animals. Iowa State Press Fourth Edition; 788

TESKE E. 17.-18.10. 1998b: Cytologie podkožních útvarů, kožních tumorů a lézí. Sborník ze VI. výroční konference ČAVLMZ, Onkologie malých zvířat: 60-68

