OpenCL Cryptographic Library

MASTER THESIS

Bc. Martin Preisler

Brno, May 2015
Declaration

Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source.

Bc. Martin Preisler

Advisor: RNDr. Adam Rambousek
Acknowledgement

Hereby I would like to thank my thesis advisor RNDr. Adam Rambousek and technical consultant Dr. Ir. Nikolaos Mavrogiannopoulos for valuable pointers, encouragement and support.

I would also like to thank Ing. Peter Vrabec for the unique opportunity to work on this project at Red Hat, Inc.

Last but not least, I am very grateful to Adam Preisler, Bc. Jan Štěpnička and Red Hat, Inc. for lending me various hardware for testing.
Abstract

Modern GPUs are devices with very high parallelism for a very low cost. Integer and logic instruction support enable us to use them for many workloads unrelated to rendering. Cryptographic algorithms like AES or Blowfish can benefit from being executed on the system’s GPU. Such execution off-loads work from the main CPU, freeing it to do other tasks on a server system. For bulk encryption and decryption the whole operation can often be faster as well. This thesis describes implementation of an OpenCL library of commonly used ciphers — AES-ECB, AES-CTR, AES-GCM and Blowfish-ECB. Integrations of the library with existing software are included. The library provides abstractions that enable easy implementation of additional ciphers in the future.
Keywords

OpenCL, cryptography, AES, Blowfish, ECB, CTR, GCM, CUDA, GPU Compute, GPGPU
Contents

1 Introduction .. 1
2 Motivation .. 3
3 Prior Art .. 4
 3.1 AES Encryption in GPU Gems 3 4
 3.2 SSLShader .. 5
 3.3 Acceleration of AES Encryption on CUDA GPU 5
 3.4 Bulk Encryption on GPUs 6
4 Design .. 7
 4.1 Readability and Portability versus Performance 7
 4.2 Choosing GPU Compute API 7
 4.2.1 CUDA ... 8
 4.2.2 OpenGL Compute Shaders 9
 4.2.3 OpenCL .. 9
 4.3 Programming Language 11
 4.4 Target Platforms 12
 4.5 Symmetric Cryptography Primer 12
 4.5.1 AES .. 14
 4.5.2 Blowfish 14
 4.6 Amdahl’s Law ... 15
 4.7 GPU Compute Basics 16
5 Implementation .. 18
 5.1 OpenCL Abstraction 18
 5.2 GPU Architecture 20
 5.2.1 Specifics of GPU Threads 22
 5.2.2 Memory Access 23
 5.3 Benchmark Suite 24
 5.4 Memory Transfer Between Host and OpenCL Device 25
 5.5 Cryptographic Algorithm Context 27
 5.6 Regression Testing 29
 5.7 Storage of OpenCL Kernel Source Code 29
 5.8 OpenCL Memory Access 30
1 Introduction

GPUs advanced rapidly by adopting and optimizing 16bit floating point operations. This enabled real-time 3D rendering. At first all rendering was done using a so called fixed pipeline. With fixed pipeline developers were tied to a limited set of functionality. As GPUs got more complex and more and more rendering features were bolted into the fixed pipeline, there was a need to program GPUs directly. Low-level GPU programming has been introduced. The GPU programs were called shaders because they enabled developers to implement various different shading models not available in fixed pipeline. This led to a revolution in the graphics rendering world. Many new rendering techniques were being created every month. At this stage shaders still had to fit into a pipeline. There were two types — vertex shaders and pixel shaders.

Despite this limitation, shaders could be used to solve other problems than just rendering — n-body simulations, heat transfer problems and others. Solving these was a hack at the time. Developers had to adapt the problem to fit the pipeline and solving a problem meant rendering an image that represented the result. For iterative simulations the results image was fed back as a texture into the algorithm to advance another step. Big focus on floating point operations meant that integer processing was incomparably slow or even absent. This was a non-issue for many problems but it made it difficult or even impossible to solve some problems. 16-bit floating point is not a good replacement for 32-bit integers. It was also quite difficult to implement for these GPUs. There were many different shading languages, all quite low-level, similar to assembly. Writing a portable solution to a problem meant writing many different low-level shaders or relying on a meta-language like NVIDIA Cg.

Cg was a collaboration between NVIDIA and Microsoft. It promised to simplify development by enabling developers to write in a familiar C-like high-level syntax that was compiled into low-level shader code. Despite focus on NVIDIA hardware the Cg language was quite usable on many different GPUs. In 2009 OpenGL ARB announced GLSL — an official high-level shading language of OpenGL. Similarly, Microsoft introduced HLSL as an official high-level shading language of DirectX. Most developers moved to either GLSL or
1. INTRODUCTION

HLSL and Cg was discontinued in 2012 [5]. Shader development was quite common at this stage but using GPUs for generic problem solving was still difficult.

NVIDIA reacted to these events and started Compute Unified Device Architecture — CUDA [15]. CUDA brought a high-level C-like language, fast integer and logic instructions, and much better debugging tools to GPU Compute developers. Two years later, OpenCL was introduced as a vendor-neutral alternative to CUDA. OpenCL was well received by AMD and Intel because it finally enabled GPU Compute outside NVIDIA hardware. CUDA and OpenCL allowed developers to implement their problem solvers without having to fit them into a rendering pipeline. At this stage GPU Compute took off and started to be used even outside laboratories for video encoding, video compositing, finance simulations, machine learning, and more. [9].

One of suitable tasks for GPU Compute is symmetric block cryptography. Each block can usually be processed by a different thread which makes the problem a perfect fit for massively parallel GPUs.

In this thesis we will explore ways to implement well-known cryptographic algorithms like AES and Blowfish on GPU hardware. We will focus on usage outside of a laboratory on commonly available hardware. OpenCL will be our main tool to avoid vendor lock-in.
2 Motivation

A lot of processing power is spent for cryptographic operations in a typical server workload. Processing power that may be needed for generating the content. Special instructions for many popular cryptographic algorithms are commonly available in modern CPUs [10]. These instructions offer tremendous speed-up but it still costs cycles to encrypt and decrypt. In a typical headless server environment the GPU is either idle or completely absent. In this thesis we explore the idea to use this powerful idle hardware to lower the CPU load and possibly speed-up encryption and decryption. Modern GPUs are cheap, relatively energy efficient and readily available due to high consumer demand fueled by modern computer games [22].

While there are a few projects implementing one or a few specific cryptographic algorithms in either CUDA or OpenCL, we could find none that provide a stable API and is suitable for production. From our research none of those projects reached a mature state where there are stable maintained releases with packages available in common Linux distributions. Many were extremely bleeding edge and optimized for one particular device and use-case, focused solely on achieving the best performance. While this project does not aim to be the best performing or use the lowest amount of memory, it is designed to be portable, readable and usable.

Another motivation is to create a test bed to implement more cryptographic algorithms in OpenCL in the future. A lot of setup code has to be written to even safely compile an OpenCL kernel and transfer all the data. This project should enable developers to focus on just the OpenCL kernel.
3 Prior Art

There are many other similar projects. In this section we summarize some of them.

3.1 AES Encryption in GPU Gems 3

The first prior art we looked at was this chapter from a well known book about various GPU techniques from 2007 [31]. It was released roughly at the time when integer processing began to be available on consumer GPUs. Instead of using CUDA or OpenCL it uses plain OpenGL low-level shaders because CUDA was only in its infancy at the time. The researchers use new features in NVIDIA GeForce 8 like Transform Feedback Mode and Typed Registers. AES key schedule is done on the CPU. AES processing is implemented as a vertex shader and as a fragment shader. Both approaches are compared with fragment shader decisively winning in performance.

For large buffers the researchers achieved throughput of 53 MB/s with vertex shader and 95 MB/s with fragment shader.

Figure 3.1: GPU Gems 3 AES throughput comparison
3.2 SSLShader

Keon Jang et al. [29] explore SSL protocol acceleration on commodity GPUs. The paper presents a hypothesis that lack of cheap SSL hardware accelerators may be preventing wide SSL adoption. The researchers present SSLShader — a transparent SSL proxy. The authors show that latencies increase when using the GPU but the throughput is high enough for the solution to be useful. In conclusion the paper states that common GPUs are a viable alternative to specialized SSL accelerator hardware and may be the driving force for wider SSL adoption in the future.

![SSLShader reported throughput](image)

Figure 3.2: SSLShader reported throughput

Unfortunately, there is no way to verify claims of the researchers. The software has not been publicly released, the researchers claim on the website [21] that they are in the process of commercializing it.

3.3 Acceleration of AES Encryption on CUDA GPU

Keisuke Iwai et al. [28] provide a concise introduction to CUDA hardware and then explore AES acceleration on NVIDIA GTX 285. Performance of different memory arrangements are compared, as well as different granularities — number of threads operating on one AES block. The final throughput is 4400 MB/s measured with 256 MB plain-text size. The best performing arrangement operated on one AES block per thread and used shared memory for T-box allocation.

While those numbers are amazing, we have to keep in mind that the researchers did not factor in memory transfers and other setup costs. Overlapping
data transfers is mentioned as a possible way to avoid most of memory transfer costs.

In conclusion the researchers write that CUDA GPUs in PCs and even laptops seem to be suitable cryptographic accelerators. Unfortunately, the source code is not provided.

![Figure 3.3: AES throughput comparison depending on granularity](image)

3.4 Bulk Encryption on GPUs

In this article from 2011, Salman Ul Haq et al. [33] focus on encryption of big buffers during transmission or storage. Therefore big latencies are tolerated in favor of large throughput. The use-case relates to the usage of specialized cryptographic accelerator hardware and authors suggest that modern GPUs may be a potential replacement. ECB and CTR AES modes are implemented in OpenCL as part of the paper.

Authors do key expansion in local memory using the GPU, which is a very interesting and novel approach. Unfortunately no performance comparison between CPU key schedule and GPU key schedule is available.

The final solution reportedly has throughput of approximately 4000 MB/s on ATI Radeon HD 5870.
4 Design

In this chapter we outline key design decisions before implementation starts. We also briefly discuss GPU Compute and symmetric cryptography basics.

4.1 Readability and Portability versus Performance

Performance tuning is device-specific, especially with massively parallel devices like GPUs. The goal of this project is not to achieve the best performance for any particular hardware, but provide decent performance on many different hardware configurations. That means that readability, portability and correctness are favored over small performance improvements. Device or platform specific performance optimization should be enabled or disabled using macros. Readability of the code is favored, functions are preferred over macros and other preprocessor tricks, longer variable names are preferred over single letter names.

The ideal result library will not require any performance considerations from the user but test and tune everything by itself. Auto-learning performance-sensitive variables — local work size, block size, etc. — is preferred over asking the user to set them manually.

4.2 Choosing GPU Compute API

Before starting any design we needed to choose a GPGPU API. Prior art mentioned in Chapter 3 used mostly CUDA or OpenCL. We set the following critical requirements for the API:

- cross-platform
- vendor-neutral
- patent unencumbered or at least royalty-free
This ruled out DirectCompute by Microsoft because it is only available on Windows [6]. Three major APIs for doing general purpose computations on the GPU remained, which we summarize in the rest of this section.

4.2.1 CUDA

CUDA from 2007 is the oldest API of the three [15]. It is NVIDIA-only and focused on NVIDIA hardware architecture. It is very powerful, mature, cross-platform and widely used by the industry. Many high-level libraries are offered for CUDA, even commercial ones. Debugger and profiler tools offer high productivity and are stable on Linux from the author’s limited testing.

![CUDA nvprof GUI](image)

Figure 4.1: CUDA nvprof GUI [17]

It is quite well researched and there is a high amount of resources available for it on NVIDIA website [15] and elsewhere. Unfortunately it is as vendor-locked as can be. There is only one implementation and it does not seem this will change in the future.
4.2.2 OpenGL Compute Shaders

Recent graphics hardware has become extremely powerful and a strong desire to harness this power for work (both graphics and non-graphics) that does not fit the traditional graphics pipeline well has emerged. To address this, this extension adds a new single-stage program type known as a compute program. This program may contain one or more compute shaders which may be launched in a manner that is essentially stateless. This allows arbitrary workloads to be sent to the graphics hardware with minimal disturbance to the GL state machine.

Figure 4.2: Section from ARB_compute_shader specification [18]

The most bleeding edge of all the considered options. ARB_compute_shader has been introduced by AMD in 2012 [18]. It uses the familiar GLSL syntax. Unfortunately it requires an OpenGL context which may be impractical in a headless server scenario. That OpenGL context has to support OpenGL version 4.2 which is too recent for practical purposes, it would lock us out of a lot of commonly available hardware.

We could not find any profiler or debugger tools specifically for compute shaders but GLSL tools usually can be used.

4.2.3 OpenCL

OpenCL was initially developed by Apple Inc. with contributions from AMD, IBM, Intel, NVIDIA and Qualcomm. The specification was later submitted to the Khronos Group which ratified and publicly released it on December 8, 2008 [12]. It is an open, royalty-free standard by the Khronos Group. Many different companies and other members [13] participate in development of the standard.

Fundamental concepts are similar to CUDA with differences in nomenclature. OpenCL can target way more hardware than CUDA. Among other devices OpenCL can leverage AMD, NVIDIA and Intel GPUs. Even targeting FPGAs is possible with OpenCL. Furthermore, it is available for many operating systems — Microsoft Windows, Linux, MacOS X and even Android [12].

1. in this context, headless server is a server with no monitor, keyboard or other interfaces
The tooling seems less mature than with CUDA but the API is not locked to any hardware vendor. The single biggest downside in our opinion are the tools. We discovered gRemedy gDEBugger which looked promising. Then we discovered that AMD bought the company behind it and renamed the product to AMD CodeXL [2]. After downloading CodeXL we found that many of the features are only available with AMD GPUs. It is perfectly understandable but unfortunately made the tool unusable for this project because we lacked AMD hardware.

NVIDIA seems to have supported OpenCL profiling and debugging in the past, for example in the CUDA Toolkit 3.1 release [7]. Unfortunately, these old releases are unsupported and cannot be used with new drivers. The profiler tool was rewritten from scratch in CUDA Toolkit 5.0 and since then there is no official OpenCL support in the profiler [8]. When attempting to profile OpenCL code using nvvp or nvprof the tools output an error message “Warning: No
CUDA application was profiled, exiting”. Our attempts to find an alternative profiler for OpenCL and NVIDIA hardware have failed.

The only profiler option for Intel hardware on Linux seems to be the Intel VTune™ Amplifier [11]. Unfortunately, the tool is not freely available. The basic version costs $899.

Despite difficulties with the tooling, OpenCL was chosen for this project in the end. It is not perfect but it fits all our requirements. Its future also looks promising with NVIDIA, AMD, Intel, and others all backing the standard.

4.3 Programming Language

The traditional language choice for a project like this is C. While the C standard does not define any ABI, the ABIs are defined by the platform vendors. These ABIs are kept stable for backward compatibility. The calling conventions are simple and well known which makes it possible to call library functions from other languages. The main drawback of C lies in low productivity when compared to higher level languages. Another important drawback is that C projects are prone to a category of security-sensitive bugs related to memory management.

The OpenCL API is written in C but it is usable from C++ projects and bindings are available for many other languages. We briefly examined PyOpenCL [30] and Ruby-OpenCL [20]. Both bindings offer abstraction and ease of use incomparable to the C API — program sources can be interleaved with the main application, data transfers are convenient and safe, OpenCL errors are reported as exceptions. Using Python or Ruby would however prevent us from integrating with other cryptographic libraries that are mostly written in C. While calling Python or Ruby code from C is possible it requires a lot of boilerplate, performance suffers and it opens a large category of new problems we wanted to avoid.

In the end we chose C++11 because it felt like the right compromise between C and a high-level scripting language. C++11 is suitable due to its high productivity, portability and low run-time performance costs. While being a relatively new standard, compiler support is decent on all target platforms [4].
ory model and other fundamental design features of C++11 are similar to C. This makes integration with GnuTLS, OpenSSL and other libraries possible by writing a thin opaque-pointer wrapper in C — we can use extern “C” to enforce the cdecl calling conventions.

4.4 Target Platforms

The main goal of the library is not to be bound to any platform or hardware but in practice we can only test on several popular platform and hardware combinations. The choice of platforms and hardware was mainly driven by what we had available. It should cover most of common hardware.

List of benchmarked configurations:

- **Main Desktop**: Intel i7-920, 6 GB RAM, NVIDIA GTX 460, Fedora 21
- **Best Desktop**: Intel i5-760, 8 GB RAM, NVIDIA GTX 580, Windows 8.1
- **Laptop 1**: Intel i7-4600U, 12 GB RAM, Intel HD 4000 GPU, Fedora 21
- **Laptop 2**: Intel i7-3615QM, 16 GB RAM, NVIDIA GT 650M, Windows 8.1

All benchmark data are from the **Main Desktop** computer unless stated otherwise.

Unfortunately, we could not secure a consumer AMD GPU on time to test with. Since we are not using any NVIDIA-specific features it is likely that the project works as is with AMD GPUs or requires very small changes. To our best knowledge the code is portable and works on Apple MacOS X but we did not have the hardware to test that hypothesis.

4.5 Symmetric Cryptography Primer

This project will mainly focus on symmetric block ciphers because they are widely used and can usually be parallelized. These ciphers transform plain-text blocks into cipher-text blocks. Let us look at how the ciphers are defined.
\[E_K(P) := \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

\[D_K(C) := \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

\(E_K\) is the encryption mapping, \(D_K\) is the decryption mapping,
\(K\) is the key, \(P\) represents the plain-text, \(C\) represents the cipher-text,
\(k\) is the key-size, \(n\) is the plain-text and cipher-text size.

Figure 4.4: Formal definition of a block cipher

Observe that the size of plain-text and cipher-text matches when using symmetric block ciphers. For each possible key \(K\), \(E_K\) and \(D_K\) are permutations — bijective mappings. The following has to hold for the cipher to be useful:
\(D_K(E_K(P)) = P\).

Symmetric block ciphers can operate in various modes. The most basic one is \(ECB\). In \(ECB\), each block is encrypted separately. This is very easy to implement and relatively easy to debug. If two aligned 128bit blocks in plain-text are exactly the same, the cipher-text blocks will also be the same. Therefore, 128bit aligned patterns in plain-text are visible in the cipher-text.

Figure 4.5: AES-ECB reveals patterns [31]

\(CTR\) is a big upgrade over \(ECB\) security-wise. Instead of encrypting blocks, a counter is encrypted. The counter is different for every block. Furthermore, the counter starts from an initial value that is recommended to be different for every operation. The resulting encrypted counter is used to \(XOR\) the plain-text block. Two equal 128bit aligned plain-text blocks are highly unlikely to result in exact same cipher-text blocks. Two equal plain-texts encrypted with different
initial counters cannot be recognized as the same from the cipher-text. The CTR mode is widely used in practice.

GCM is very similar to CTR but adds authentication. This makes it harder for the attacker to forge cipher-text blocks without being recognized. GCM is widely adopted because of its performance and efficiency. It is used in TLS 1.2, IPSec, IEEE 802.11ad and others. It is also part of NSA Suite B Cryptography.

Another important mode worth mentioning is CBC. CBC hides patterns in plain-text quite well and is widely used in practice. When encrypting, every block depends on a result from the previous block. This makes CBC encryption hard to parallelize and unsuitable for this project.

4.5.1 AES

Originally called the Rijndael algorithm, it is a symmetric block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, or 256 bits. Number of rounds depends on key size and can be 11, 13 or 15. Each round consists of four transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey. The first and final rounds differ slightly from the other rounds.

It is the winning cipher of the AES contest [25], replacing DES as the encryption standard in the US and around the world. It has a relatively fast key schedule and utilizes a key-independent SBox. To this date no practical crypto-analysis techniques have been found that can break AES. AES is widely used in security protocols. It is perhaps the most popular and most researched symmetric block cipher in the world. We have therefore made it the main focus of this project.

4.5.2 Blowfish

This is a symmetric-key block cipher from 1993 by Bruce Schneier [34]. It is much older than AES. Compared to AES, Blowfish has a smaller block size of 64bits instead of 128bits. Key size can vary from 32bits to 448bits. Important distinction from other ciphers is a much slower key schedule. The cipher is therefore suitable for high throughput where the key is not changed very often.

The cipher is built around the Blowfish Feistel function, which uses four
separate SBoxes. The SBoxes are key-dependent and have to be regenerated whenever the key is changed.

Figure 4.6: Blowfish Feistel function [3]

4.6 Amdahl’s Law

An important theorem that allows us to argue about asymptotic speed-up when parallelizing algorithms. Ironically, it was written to argue for the validity of using a single processor for a large-scale computations [27]. We will frequently use the following corollary:

\[
S(N) = \frac{1}{(1 - P) + \frac{P}{N}}
\]

\(N\) is the number of processors,
\(P\) is portion of the problem that is parallel,
\(S(N)\) is the speed-up.

Figure 4.7: Corollary of Amdahl’s law

In essence we reason about theoretical speed-up after adding an arbitrary number of additional processors. Since our use-case usually involves GPUs with hundreds of processors it is very important for the speed-up to trail off as late as possible. An important outcome of this corollary is that we need to parallelize as much of the problem as we can.
In the context of this project the parallel part is the OpenCL kernel itself. The serial part is the initialization, key schedule, kernel compilation, memory transfers and de-initialization. Initialization, kernel compilation and de-initialization are fixed costs give or take. The memory transfer takes longer the more memory we need to move to the OpenCL device but also gets more efficient the more memory we are moving. Key schedule varies depending on the algorithm but is usually either fixed or depends on the key size.

We therefore observe that we get better P values and therefore better speed-up for larger amounts of data.

4.7 GPU Compute Basics

OpenCL is the compute API we used for this project. In OpenCL, one or more compute devices are exposed as OpenCL devices. These may be CPUs, GPUs, FPGAs or others. Each device has a queue that is used to schedule kernel executions.
The compute task we want to solve has to be decomposed into work-items. These work-items form a work-group. The kernel is set up to solve this work-group when it is executed. For many common tasks a loop can easily be transformed into an OpenCL kernel as long as the computations are not interdependent.

```c
// C99
void serial_mul(
    int n,
    const float* a, const float* b,
    float* c)
{
    for (int i = 0; i < n; ++i)
        c[i] = a[i] * b[i];
}

// OpenCL
__kernel void opencl_mul(
    __global float* a, __global float* b,
    __global float* c)
{
    const int i = get_global_id(0);
    c[i] = a[i] * b[i];
}
```

Figure 4.9: C99 serial code compared to OpenCL kernel code

After writing the OpenCL kernel source code we use the API to build it and execute it on an OpenCL device we choose. The model is similar to OpenGL and GLSL, the driver supplied by the vendor gets the high-level source code and builds it into device specific low-level code.
5 Implementation

In this chapter we will focus on how we implemented the library to perform encryption and decryption on a set of cryptographic algorithms to pass test vectors. The resulting library is called oclcrypto.

Only very high-level optimization is done in this chapter.

5.1 OpenCL Abstraction

The first step was to write a very thin abstraction over the OpenCL C API that would allow us to execute kernels and transfer data with ease. While OpenCL provides a C++ API we did not believe it was suitable for this project. The reason is that it is merely a wrapper around the C API and provides no additional functionality. Something that would query the system for available devices, compile the kernels on demand and continuously check for OpenCL errors was necessary.

The abstraction layer had to be thin enough to achieve good performance but high-level enough to make OpenCL easy to use and safe. We did not focus
on providing all features available in OpenCL. Rather, we made the abstraction powerful just enough to serve our needs.

oclcrypto::System

The central part of the library is the **oclcrypto::System** class. When constructed it queries the system for available devices and stores them in a map for later use. It serves as a hub that keeps pointers to available resources and their usage. It also allows its users to cache programs per device, this prevents multiple compilations of the same OpenCL source code.

While it can be used as a singleton, it is not a true singleton. Creating multiple instances is designed to work fine and there is no static method to get the last instance.

oclcrypto::Device

Represents one OpenCL device. This may be a GPU, FPGA, or even a CPU.

In the oclcrypto API Device owns Programs that have been compiled on it. In turn, each Program owns Kernels which represent global functions in it. Device itself does not do anything to avoid recompiling the same programs all the time, this is a responsibility of the oclcrypto::System class. Devices also allocate and deallocate buffers — represented by oclcrypto::DataBuffer.

Different OpenCL devices cannot share memory or compiled kernels. That is why OpenCL does not allow the same kernel and data to be run on multiple devices. Exactly one device always needs to be chosen to do the processing.

Each device has a command queue. To execute an action on it an action definition has to be placed in the queue. The queue can be processed either serially or out-of-order. For our use-case we decided that the hassle of out-of-order queue execution was not worth it. It may be something to research in the future.

oclcrypto::DataBuffer

Exposes global or constant memory data buffer on an OpenCL device to the user. Buffers can be shared between different programs and kernels but not between different OpenCL devices.
5. IMPLEMENTATION

Reading and writing is achieved via a class template called `DataBufferReadLock` or `DataBufferWriteLock` respectively. These templates implement a common C++ design paradigm called RAII. They automatically lock the buffer and are designed to unlock it when they go out of scope.

oclcrypto::Program

One compiled OpenCL source file. Has one or more kernels. Kernels are the only entry point to OpenCL programs. They take constants or `DataBuffers` as input. Let us take the AES program as an example. It contains definitions of the SBoxes and various helper functions. Then it has the ECB encryption and decryption kernels, CTR encryption kernel and GCM encryption kernel. That is four kernels in total in one OpenCL program.

Transferring input data, executing a kernel and transferring output data back are all actions in the command queue of an OpenCL device.

Compiled programs cannot be transferred between devices. One OpenCL source file has to be compiled multiple times if user wants to execute the code on multiple devices.

5.2 GPU Architecture

Before we start implementing the algorithms we need to research how a typical GPU works. That way we can avoid anti-patterns in OpenCL kernel design.

The main goal of a GPU is to generate graphics content. In the past this was mainly texture mapping, image processing, polygon rasterization and geometry transformations. This and even other problems of computer graphics involve a lot of data being processed with the same function. For this reason GPUs are designed to be capable of processing a lot of data in parallel.

Let us now look at how a GPU is designed. When compared to a CPU a GPU usually has many more processors but each one of them is less powerful than a typical CPU processor. The GPU processors tend to have relatively low clock-speeds and usually do not have dedicated memory or instruction decoder. They are less independent than a CPU processor. On most GPU architectures
5. IMPLEMENTATION

A lot of the processors are executing the same instruction with different data. This paradigm is called SIMT. This is not very flexible but works well with typical GPU workloads. Fewer instruction decoders make the GPUs less complex, cheaper to produce and make thread scheduling simpler. At the same time it causes surprising issues when optimizing for performance. See Section 5.2.1 for more details.

In the remainder of this section we will focus on NVIDIA Fermi [16] architecture, others may differ a bit but also share a lot of traits. The NVIDIA GTX 460 that we are doing most of testing on is one of the Fermi devices.

A Fermi GPU consists of several streaming multiprocessors. Each streaming multiprocessor consists of 32 CUDA cores. Each core has one ALU and one FPU. Processing happens in groups of 32 threads that are called warps in the CUDA terminology. If processing in less than 32 threads is scheduled the scheduler spins up 32 threads and some of them are executing instructions on dummy data. Dummy data is filtered and thrown away when processing finishes.
5. Implementation

5.2.1 Specifics of GPU Threads

GPU threads are very lightweight when compared to CPU threads but they are also less flexible. On a CPU each thread may do completely different instructions. On a GPU any instruction divergence can slow the entire execution down a lot. In the example in Figure 5.3 all of the threads will process the floating point add section but only one thread will actually use the data. The data from

Figure 5.2: High-level diagram of NVIDIA Fermi [16]
threads that do not have local id 0 will be thrown away. That is 31 threads out of 32 that are doing extra processing for no reason. This means that many early out optimization techniques do not apply on GPUs. In fact, early out optimization can slow the kernels down in some cases because the executions diverge.

```c
float a = 0;
float b = 0;
float c = 0;

// ... processing
if (get_local_id(0) == 0)
    a = b + c;

// ... more processing
```

Figure 5.3: Example of divergence

There has to be instruction convergence in every thread of every warp. In case of a divergence some of the threads are kept idling until re-convergence.

5.2.2 Memory Access

Memory has to be read and written in specific patterns to avoid hitting slow paths. The common ideal pattern is that a group of 32 threads read consecutive memory where each thread reads 1/32 of it, the first thread reading the first 1/32 of the memory, the second reading the next, … [16]. Even if we do read sequentially we still have to make sure the memory is aligned. Misaligned access causes the warp to read additional memory that is not used. In case of AES this is a non-issue, the blocks are 128bit which is aligned on all of our target hardware.
Local memory on the GPU is accessed via memory banks. Accessing the same memory bank from multiple threads results in a bank conflict. When a bank conflict occurs the accesses have to be serialized which slows down performance. The amount of memory banks differs between GPUs, NVIDIA GTX 460 has 32 memory banks.

5.3 Benchmark Suite

To measure performance we implemented a benchmark suite. This suite includes synthetic tests that measure throughput of all the implemented algorithms. Memory transfers from host to device are included in the measurements unless stated otherwise. Tests are run multiple times and averaged to improve measurement precision.

Timing methods used in other publications greatly vary, most publications focusing on performance do not factor in memory transfer and other setup costs. All benchmark results in this project factor in all setup costs unless stated otherwise. In practical applications users usually want processed data in host device RAM so we consider measuring with memory transfers closer to real-world usage. For some use-cases users may be able to hide memory transfers performance cost completely by doing it in parallel of encryption or decryption.
5. IMPLEMENTATION

There are a few unexpected issues that result in useless benchmark times. Many GPUs change their clock-speeds depending on their load. This is done to lower heat dissipation and energy consumption. When we first start processing, the GPU runs at a low clock-speed. After less than a second it increases the clock-speed to a middle level and a short while after that it runs at the highest, full design clock-speed. This makes the first benchmarked task seem slower than it actually is. To counteract this effect the GPUs are warmed up first — a dummy task is executed on them. Immediately after the dummy task is finished we run the real benchmark. Instead of having to code a dummy task we simply ran the benchmarks twice in a row to ensure the GPU runs at full design clock-speeds. The nvidia-settings utility was used to verify the clock-speeds.

5.4 Memory Transfer Between Host and OpenCL Device

A typical use-case involves copying data from host RAM to device memory, executing the kernel, and then copying results back to host RAM for further use. Optimizing for fast memory transfers is clearly important. The theoretical limit on 16-lane PCI-E 2.0 is 8 GB/s in both directions [35]. Design limit on DDR3-1333 is 10.66 GB/s. NVIDIA GTX 460 — the main GPU we are testing with — has GDDR5. The design speed of GDDR5 is higher than of DDR3-1333 so we do not need to consider it as a bottleneck.

The initial implementation used generic memory transfers. After the initial memory transfer code has been written, these were the numbers we got from our benchmark.

<table>
<thead>
<tr>
<th></th>
<th>64 kB</th>
<th>256 kB</th>
<th>1 MB</th>
<th>4 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU to CPU (average MB/s)</td>
<td>31.321</td>
<td>32.970</td>
<td>33.229</td>
<td>33.186</td>
</tr>
<tr>
<td>CPU to GPU (average MB/s)</td>
<td>37.656</td>
<td>39.911</td>
<td>40.137</td>
<td>39.792</td>
</tr>
</tbody>
</table>

Table 5.1: Initial implementation memory transfer performance

It turns out that memory transfer was the biggest overall bottleneck after the initial implementation was completed. The first step for improvement is very trivial — remove out of bounds safeties for release builds. This saves a lot
of cycles and enables the compiler to aggressively optimize. Reads and writes
of locked data buffers get optimized to `memcpy` calls.

<table>
<thead>
<tr>
<th></th>
<th>64 kB</th>
<th>256 kB</th>
<th>1 MB</th>
<th>4 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU to CPU (avg)</td>
<td>291.582</td>
<td>318.691</td>
<td>341.806</td>
<td>339.364</td>
</tr>
<tr>
<td>CPU to GPU (avg)</td>
<td>239.343</td>
<td>262.314</td>
<td>275.879</td>
<td>271.146</td>
</tr>
</tbody>
</table>

Table 5.2: Memory transfer performance with safety checking off and full optimization

DataBuffer transfers were no longer the main bottleneck but we decided to
push the performance a little bit further. The last optimization came from mov-
ing from generic memory buffers to `pinned memory`. In our tests we discovered
that it is worth it for all but the smallest buffer sizes. When using `pinned mem-
ory` in `oclcrypto` we let the `OpenCL` driver from the vendor allocate shadow
memory for device buffer and we tell it to map and unmap it when we want
to access it. That means that the `OpenCL driver` can allocate the memory in
whichever way is most performant on that architecture. The speed-up over
generic buffers is quite incredible, especially when reading back big buffer sizes.

<table>
<thead>
<tr>
<th></th>
<th>64 kB</th>
<th>256 kB</th>
<th>1 MB</th>
<th>4 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU to CPU (avg)</td>
<td>65.874</td>
<td>449.561</td>
<td>810.093</td>
<td>822.656</td>
</tr>
<tr>
<td>CPU to GPU (avg)</td>
<td>59.671</td>
<td>234.991</td>
<td>306.883</td>
<td>312.932</td>
</tr>
</tbody>
</table>

Table 5.3: Pinned memory transfer performance

This performance was still not close to the theoretical limit of 8 GB/s. At this
point we decided that any other optimization for memory transfers did not have
a decent cost / benefit ratio. Memory transfers stopped being the bottleneck for
our use-cases.
5.5 Cryptographic Algorithm Context

The goal of this library is to hide the added complexity of GPU computing from the user. Cryptographic Context classes are written to do just that. User is expected to construct them, set their parameters, execute them and collect resulting data. Besides having to read data from GPU DataBuffers all the GPU complexity is hidden. Reading from GPU DataBuffers is made a bit more convenient with C++ operator overloading.

The high level cryptographic API is centered around oclcrypto::System. Users
are expected to construct at least one System class and reuse it for all their cryptographic needs. Each cryptographic algorithm has its own context class that needs to be setup and then executed. Users are encouraged to reuse the same context class in case they are using the same key for multiple chunks of input. Reusing the context enables the library to skip key schedule if key remains the same.

Typical life-cycle of a cryptographic context involves construction, setting a key, setting an initialization vector or nonce, setting the input data, executing the encryption or decryption and finally copying the resulting data back for further use. Since the key schedule usually does not depend on the processing mode, each cryptographic algorithm has a base class that does the key schedule and then a class for each supported mode.

![Diagram](image.png)

Figure 5.6: Various AES modes share the key expansion code

```cpp
oclcrypto::System system;
// we assume user wants to use the first device available
oclcrypto::Device& device = system.getDevice(0);
oclcrypto::AES_ECB_Encrypt context(system, device);
context.setKey(key);
context.setPlainText(plaintext, plaintextSize);
context.execute(256); // use 256 threads
auto cipherText = context.getCipherText() -> loadRead<unsigned char>();
```

Figure 5.7: Cryptographic context usage example
To avoid API usage mistakes, the encrypt and decrypt contexts have method names with plain-text and cipher-text instead of just input and output.

5.6 Regression Testing

Correctness is obviously very important in cryptographic algorithms. Since this project involves optimizing them for speed we need to make sure we do not break functionality. I have chosen boost:test to implement test cases for the cryptographic algorithms.

The NIST test vectors were added to the test suite to avoid regressions when changing the kernels. Furthermore we have added a few round trip smoke tests.

The entire test suite is executed by running oclcrypto-test.

```bash
$ ./oclcrypto-tests
Running 25 test cases...
*** No errors detected
```

Figure 5.8: Expected test suite output

As algorithms were added test vectors were added to the test suite. As a result, the project has a high test coverage.

5.7 Storage of OpenCL Kernel Source Code

Existing projects related to OpenCL (see Chapter 3) typically store the kernel sources in separate files. At run-time, these files are opened, their contents are read and passed to the OpenCL API for compilation. In our experiments this proved to be problematic. The shared object library had to know where to load the sources from. This is a source of problems that we wanted to avoid.

Instead of storing the kernel sources separately we chose to build them into the shared object. Just using static const char variables directly worked quite well but editing was very awkward and inefficient. Syntax highlighting was not available, special characters had to be escaped which made the code harder to
read, any refactoring required awkward indentation and quote character fixes. The solution that was used in the end involves loading separate OpenCL kernel source files and processing them into C/C++ files with a single static const char* variable. This seemed to be the best of both worlds. Files can be edited separately, yet the sources are inbuilt into the shared object. The complexity of getting file paths of the OpenCL kernel right are moved from the user to the person building the library.

The end solution is not perfect and it is quite easy to find test vectors that result in invalid C/C++ code being generated. The C/C++ code is generated at configure time instead of compile time, this can lead to unexpected issues when rebuilding the project. Since this does not affect our OpenCL kernel sources and was not the focus of this project we decided to ignore these issues.

5.8 OpenCL Memory Access

OpenCL has multiple types of device memory.

- global
- constant
- shared
- local
- private

The OpenCL memory types are related to how a GPU is designed, see Section 5.2. Peak throughput as well as latency varies tremendously between different memory types. But choosing the right type of device memory is not enough, there are several memory access anti-patterns in OpenCL and CUDA that may not be obvious to a CPU programmer. Even worse these pitfalls differ between GPU architectures. See Section 5.2.2 for more.

Fortunately, the one thread per AES block kernel naturally avoids many of these pitfalls when reading plain-text — the global data is read sequentially. We have to take extra care when reading the AES expanded key or Blowfish P array
or SBoxes though. The initial implementation read all these from global memory and suffered from low throughput and bank conflicts. This was improved when the data was first copied into local memory, then read. See Section 6.1 for more.

5.9 AES-ECB

AES-ECB was the first algorithm we implemented because it is a building block for both CTR and GCM. In itself ECB is not very useful because patterns in the cipher-text may reveal patterns in the plain-text.

We used the official NIST FIPS 197 specification [32] to draft the first implementation. The first draft is just the NIST pseudo-code coded with OpenCL syntax and processing one AES block with one OpenCL thread. We decided against using heavily optimized AES because it is harder to debug and harder to analyze.

Two look-up tables are required for Sbox and InverseSbox operations. Six look-up tables are required for the Galois Field multiplication which is used in MixColumns and InverseMixColumns. All eight tables are kept in device memory, access to the data is cached. Total memory cost is $8 \times 256 = 2048$ bytes, which is a reasonable cost considering we can then do all the mentioned operations in
5. IMPLEMENTATION

```c
__kernel void AES_ECB_Encrypt(
    __global uchar16* plainText, __global uchar16* expandedKey,
    __global uchar16* cipherText,
    unsigned int rounds, unsigned int blockCount)
{
    int idx = get_global_id(0);
    if (idx < blockCount)
    {
        uchar16 state = plainText[idx];
        state = AES_AddRoundKey(state, expandedKey[0]);

        for (unsigned int i = 1; i < rounds - 1; ++i)
        {
            state = AES_SubBytes(state);
            state = AES_ShiftRows(state);
            state = AES_MixColumns(state);
            state = AES_AddRoundKey(state, expandedKey[i]);
        }

        state = AES_SubBytes(state);
        state = AES_ShiftRows(state);
        state = AES_AddRoundKey(state, expandedKey[rounds - 1]);
        cipherText[idx] = state;
    }
}
```

Figure 5.10: AES-ECB OpenCL kernel

constant time. Furthermore, we can use the same instructions every time which is necessary because of the way GPUs work. See Section 5.2.1 for more.

The algorithm is naturally parallelizable by block — one thread encrypts or decrypts one AES block. In case of AES-ECB decryption simply performs inverse of all the steps of encryption in reverse order.

Several straightforward optimization steps were available for the first prototype. We can use the restrict keyword for non-overlapping memory buffers. The read_only and write_only keywords can be used to decorate inputs and outputs. This helps the compiler optimize more aggressively. The performance numbers looked quite promising. As we can see from Figure 5.11 the speed clearly increases as plain-text sizes increase. Larger key sizes cause more AES rounds to be processed, so the speed decreases as AES key size increases.
5. IMPLEMENTATION

<table>
<thead>
<tr>
<th></th>
<th>4 kB</th>
<th>16 kB</th>
<th>64 kB</th>
<th>256 kB</th>
<th>1 MB</th>
<th>4 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECB-128 MB/s</td>
<td>2.256</td>
<td>8.908</td>
<td>34.835</td>
<td>79.933</td>
<td>123.244</td>
<td>128.204</td>
</tr>
<tr>
<td>ECB-192 MB/s</td>
<td>2.285</td>
<td>9.043</td>
<td>33.310</td>
<td>72.023</td>
<td>106.990</td>
<td>110.899</td>
</tr>
<tr>
<td>ECB-256 MB/s</td>
<td>2.277</td>
<td>9.087</td>
<td>31.633</td>
<td>65.513</td>
<td>94.524</td>
<td>97.673</td>
</tr>
</tbody>
</table>

Figure 5.11: AES-ECB performance

5.10 AES-CTR

Before doing any further optimization we decided to go ahead and implement the CTR mode. CTR is not just an important mode to benchmark, it is also a practical way to encrypt and decrypt files and is therefore very suitable for our case studies.

The AES-CTR kernel is just a small step away from ECB. Instead of encrypting the plain-text, a counter is incremented and then encrypted with given key. Instead of always starting from zero the counter starts from a value called Initial Counter or also Initial Vector. The encrypted counter is then used to XOR the plain-text block. The advantage is that patterns in plain-text do not show in the cipher-text. Extra care has to be taken to avoid reusing initial counters as that can expose the key!
Incrementing the counter in a generic way turned out to be a difficult task. The counter is a 128-bit number and there is simply no widely available function in OpenCL that can add two 128-bit numbers with proper carry and overflow. Incrementing a 128-bit counter by one would be reasonably fast and easy to do but that is not enough for our use case. We cannot use any results from any of the threads as that would create dependencies and slow processing down. Instead we need a generic 128-bit integer addition.

The first version we implemented looked like this:

```c
void AES_CTR_IncrementIC(uchar16 * ic, unsigned int id)
{
    // TODO: This will not carry over the last half!
    //       We need some sort of a uint4_add function.

    // because of endianess we need to flip
    unsigned long last = (unsigned long)ic->sfedcba98;
    last += id;
    uchar8* last_uuchar8 = (uchar8*)&last;
    // and then flip it back
    ic->s89abcdef = last_uuchar8->s76543210;
}
```

There are several issues with this implementation. First of all it does not
carry over the last half, as the comment says. It also assumes **endianess** of the
device which goes against our requirements to be hardware neutral.

We will focus on fixing **endianess** first. If the device is *little endian* we can
compile the program with `LITTLE_ENDIAN` macro defined. Using `#ifdef`
in the OpenCL source we can choose the appropriate code path.

Fixing the carry-over proved to be much more difficult. One possible solu-
tion is to copy the last half, add to it, then check if the new version is lower than
the old version. If it is we need to add the carry-over to the first half. This re-
quires many more instructions and only affects cases where the IC is chosen to
have high least significant bits. We have decided to ignore this issue and instead
recommend using suitable ICs.

After the counter increment was implemented, we took code from the **ECB**
kernel and used it to encrypt the counter.

<table>
<thead>
<tr>
<th></th>
<th>4 kB</th>
<th>16 kB</th>
<th>64 kB</th>
<th>256 kB</th>
<th>1 MB</th>
<th>4 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR-128 MB/s</td>
<td>2.263</td>
<td>9.072</td>
<td>34.971</td>
<td>87.186</td>
<td>139.519</td>
<td>145.386</td>
</tr>
<tr>
<td>CTR-192 MB/s</td>
<td>2.258</td>
<td>8.959</td>
<td>34.603</td>
<td>77.764</td>
<td>118.955</td>
<td>123.517</td>
</tr>
<tr>
<td>CTR-256 MB/s</td>
<td>2.262</td>
<td>9.047</td>
<td>32.656</td>
<td>70.260</td>
<td>103.500</td>
<td>107.357</td>
</tr>
</tbody>
</table>

Figure 5.13: AES-CTR performance
5. IMPLEMENTATION

5.11 AES-GCM

The encryption and decryption is just a small step from AES-CTR. We decided not to include a processing chart for GCM as it just a variation of the previous processing modes. A big difference between CTR and GCM counter processing is that GCM allows us to assume that the last 32 bits of Initial Counter are zeros. This helps a lot with a fast hardware implementation of counter incrementing. It also means that the counter will wrap around after 4294967295 blocks. But since that is more than 17 GB of plain-text this is not a big issue. In practical use plain-text of that size will not be transferred at once.

The encryption and decryption are easy to implement. However we also have to do authentication as part of AES-GCM. And GCM authentication cannot be easily parallelized. The authentication tag for block n depends on authentication tag of block $n-1$. See figure 5.14. This creates a chain of dependencies between all the blocks and really stalls the processing. It may be possible that there is something better than serial processing — like a reduction — available but we could not find any. Since the authentication is serial it makes sense to always do it on the CPU. The serial part of the algorithm is too large for a big speed-up with massive parallelization — see Section 4.6 for more about Amdahl’s Law.
5.12 Performance Comparison of AES Modes

Before we measured and looked at the numbers we expected to find that all three AES modes have roughly the same performance. Surprisingly, the performance numbers of AES-CTR and AES-GCM are consistently better than AES-ECB. The difference is significant. It is very difficult to say the reason for this with absolute certainty but AES-CTR and AES-GCM are most likely more cache friendly on NVIDIA GTX 460. If possible we would back this up with data from nvprof but the tool refuses to profile OpenCL programs. CTR and GCM modes of AES are almost identical so the performance numbers are very close.
5.13 Blowfish-ECB

Because of the smaller block-size Blowfish has better occupancy for smaller plain-text sizes than AES — two times as many threads can be used for the same plain-text size. We therefore expect the ECB mode to be at least twice as fast as AES-ECB.

Our initial implementation stored the key-dependent SBoxes in global memory.

Blowfish was implemented mainly for performance comparison purposes. In practice it is rarely used compared to AES, the smaller block-size makes it more performant but also less secure than AES. For this reason we only implemented the ECB mode. Other modes can be added quite easily if there is demand for them. Typical AES key sizes were used for comparison purposes.
As we can see from Figure 5.16, performance is independent of key size. The reason for this is that the key size only affects the key schedule and the key schedule for *Blowfish* is defined in such a way that it takes roughly the same time regardless of key size [34]. Let us now compare the performance to our AES implementation.
Figure 5.17: AES vs. Blowfish performance

We can see that the performance is noticeably faster than AES. The main reason for this is higher occupancy — twice as many of the GPU threads are being used for the same plain-text size — and lower amount of table look-ups while processing. Our implementation of Blowfish on average uses a lower amount of table look-ups than the AES implementation. It is also likely that Blowfish is more cache friendly on GPU.
6 Performance Evaluation

In this chapter we optimize the OpenCL kernels and evaluate performance on various hardware setups.

6.1 Optimizing Memory Access

After the basic implementation was completed we started to optimize. The first logical step was to optimize memory access in the kernels. The initial prototypes used registers and global memory directly. Using local memory for resources shared between threads in a warp offered potential for better performance. Local memory has much lower latencies and is much faster than global memory. See Section 5.2.2 for more. To copy global memory to local in a device-agnostic way we used async_work_group_copy.

```
__local uchar16 localExpandedKey[15];

event_t cacheEvent;

cacheEvent = async_work_group_copy(
    localExpandedKey,
    expandedKey,
    rounds,
    cacheEvent
);

const int global_id = get_global_id(0);
uchar16 state = plainText[global_id];

wait_group_events(1, &cacheEvent);
```

Figure 6.1: Using local memory in AES-ECB kernel

We expected dramatic speed-up when copying expanded key to local memory and using the local copy in all threads of a warp. The difference between using __constant and this solution was noticeable for small plain-text sizes but as the buffers got bigger there was no difference.
Unfortunately, without access to solid profiler tools we can only speculate why the difference is so small for large buffer sizes.

We also managed to get a noticeable speed-up in Blowfish copying the P array and SBoxes to local memory, again especially for smaller buffer size. We can only speculate that larger buffer sizes hide memory transfer latencies.
6.2 Performance Comparison Across Hardware

All charts and data up to this point have been measured on Intel i7 920 with NVIDIA GTX 460 on Fedora Linux 21. This chapter contains comparison with other hardware on other platforms. We will only show charts in this section to save space, for raw data please see the attached benchmark_results.ods file.
These results show quite clearly that there is future potential as GPUs get
faster and faster. *NVIDIA GTX 580* clearly outperforms our main *GPU* by a significant amount. Both *GTX 460* and *GTX 580* are quite old. There are far better performing *GPUs* on the market that we have not tested with. It is very surprising that *portable OpenCL* results from an *Intel i7-4600U* — a mobile *CPU* — are so close to the *GTX 460*. Not having to do memory transfers is a clear advantage in favor of the *CPU* but the *CPU* has just two real cores.

Let us look at latencies — the time between input data transfer starts and result data transfer ends. Predictably, latencies increase as buffer sizes increase.

We can observe that our solution gets more efficient as latencies increase. This suggests that the high performance can be exploited for bulk processing but is less useful for real-world cryptographic protocols.
Blowfish-ECB paints a slightly different picture. Even NVIDIA GTX 650M — the slowest GPU we tested — is faster than Intel i7-4600U for large buffer sizes. The most likely reason is that Blowfish offers twice the occupancy of AES and overall is a simpler algorithm.

These numbers clearly show that cryptography on GPU can be very fast but also exhibits high latencies. For some use-cases like bulk encryption we do not care but for anything real-time — like hard drive encryption — this would be a big issue.

Let us also compare memory transfer speeds of all tested hardware since memory transfers take a significant amount of time with the GPUs. The NVIDIA GTX 650M is excluded for lack of data. Portable OpenCL CPU results are excluded because with pinned memory that is a NOOP.
These charts suggest that the graphics card is the bottleneck when transferring memory. It would be interesting to run these benchmarks with a modern *PCI-E 3.0 GPU* to confirm.
7 Integrations

7.1 oclcrypto-cli

As part of this project we created a small command line tool with an argument syntax inspired by openssl enc. It allows users to encrypt or decrypt files using algorithms available in oclcrypto. It is the simplest practical application of the library. It does not require user to choose any OpenCL device, instead it will choose the first available. The only required arguments are input and output files and key.

```
$ oclcrypto-cli aes-ecb-enc helohelohelohelo
   plain.txt cipher.txt
$ oclcrypto-cli aes-ecb-dec helohelohelohelo
   cipher.txt plain_copy.txt
$ diff -u plain.txt plain_copy.txt
```

Figure 7.1: oclcrypto-cli usage example

7.2 OpenSSL Engine Integration

To properly test the library in practice we decided to integrate it with OpenSSL. The OpenSSL engine API [19] was used because it is modular and allows for plugins to be loaded at run-time that can replace the inbuilt cryptographic functions. That seemed like a great idea at first. The API itself turned out to be not well suited for our use case.

First, let us outline how an ideal API would look like for oclcrypto. Before the cryptographic context class was initialized a function would be called with key size and buffer size. This function would be able to determine whether this cryptographic engine should be used, depending on the buffer size. For example if buffer size is just 128bits the function would decline to be used. That way we would never waste a lot of time setting all the OpenCL infrastructure up just to encrypt 128bits. Secondly, all the data would either be transferred in very big
chunks or even all at once. Transferring partial results out of OpenCL devices incurs a noticeable overhead.

Unfortunately the OpenSSL engine API allows neither of these. When initializing the context class we do not get the key size or the amount of data that will be processed in the future. First the key is set, without any information about future buffer sizes. Given key is expanded, the results are transferred to OpenCL data buffers. When the data starts coming in later, it is too late to perform another CPU key schedule and process the data on the CPU, we would be duplicating work. We conclude that the API is too low-level for our use case. Maybe low-level is not the right word for it but it surely is not suitable for CPU / GPU auto-negotiation.

The work in progress OpenSSL engine integration is optional, only compiled when OpenSSL headers are found at configure-time and can be found in the openssl_engine folder of the project.
8 Security Concerns

Gaming enthusiasts drive the sales of modern consumer GPUs [22] so it is no surprise that GPU manufacturers optimize almost exclusively for computer games. Driver releases are often focused solely on improving performance of a newly released game. Needless to say there is not a big push towards correctness and security in what is mainly gaming hardware. GPU vendors even provide multiple versions of various instructions, one version is correct and adheres to the standard and one is faster but less precise [24].

<table>
<thead>
<tr>
<th>New in GeForce 337.88 Game Ready WHQL drivers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game Ready — This 337.88 Game Ready WHQL driver ensures you’ll have the best possible gaming experience for Watch Dogs.</td>
</tr>
<tr>
<td>Performance — Introduces key DirectX optimizations which result in reduced game-loading times and significant performance increases across a wide variety of games compared with the previous 335.23 WHQL.</td>
</tr>
</tbody>
</table>

Figure 8.1: NVIDIA 337.88 driver release announcement

One of the most common security issues in GPUs are information leaks. Information in this context can be part of a texture or other data buffer.

GPU vendors cut corners to maximize performance. This means that memory in the GPU may not be overwritten when it is being deallocated and future use of this part of memory may reveal past data. Unfortunately, GPU vendors are secretive to maintain their competitive advantage and do not generally release how their architectures work. Di Pietro et al. [26] go into detail about how data is leaked in a paper from 2013. In many instances memory buffers are left at the mercy of the driver and there is no way to be sure that their contents will be overwritten. The driver also handles memory protection. The operating system uses similar methods to protect memory but the protection methods are available for audit and subject to scrutiny.

Vasiliadis et al. [36] look at the issue from the opposite end and propose to store keys in GPU instead of CPU as a measure to avoid key leakage. Running kernels indefinitely is proposed as a way to avoid data buffer leakage. If the
memory is taken by a kernel the scheduler will not allow other kernels to read or write to it. Instead of storing the keys in global memory the keys are stored in registers. As long as the kernel is running the registers are not cleared. Unfortunately registers can only store a few secret keys, the storage space is small on consumer GPUs. To solve this, encrypted keys are stored in global memory and the encryption key is stored in registers. That way, the adversary can steal the encrypted key-store but cannot decrypt it.

Bernstein [23] provided a timing attack against OpenSSL AES implementation in 2005. Using table look-ups in AES makes the implementation susceptible to a timing attack if the attacker can encrypt or decrypt any data. Researching whether a timing attack is viable against our implementation is out of scope of this project. We can speculate that since we use look-up tables our implementation is susceptible. The author provides a list of problems of existing AES implementations and their solutions. Unfortunately the solutions are often not applicable to OpenCL kernels.
9 Areas for Future Improvement

9.1 Splitting up AES Block Processing

All of the algorithms in this project are parallelized per block. In case of AES, one 128bit block is processed by a single thread. A warp of 32 threads processes 32 AES blocks. There is strong indication that AES one block per thread is the fastest arrangement [28]. However, this only applies for very large plain-text sizes where the entire GPU is utilized — occupancy is close to 100%. For small block sizes we end up using just a part of the GPU. It seems viable to use an arrangement with slightly lower throughput but higher occupancy for small plain-text sizes. Four threads per AES block is the first arrangement to explore. In this arrangement, a warp of 32 threads processes 8 AES blocks.

![Figure 9.1: AES-ECB with 4 threads encrypting 1 AES block](image)

The idea is fairly simple, however there are several obstacles. First of all, for each step of AES-ECB we need the previous step finished and we need its data. So all four threads have to cooperate very closely and wait for each other. The data has to be kept in _local_ memory for easy access. Second obstacle is that each of the four threads has to operate with slightly different instructions. This is not ideal for most GPU architectures that expect a massive amount of threads, each running exactly the same instructions with different input data.
The resulting algorithm should be faster for small buffer sizes because more of the GPU resources are used. However it would likely be slower for large buffer sizes due to the synchronization overhead.

9.2 Interleaving Data Transfer and Processing

Copying data in, processing and then copying data out resembles a lot of real-world use-cases. When used repeatedly on different data, it is possible to copy data to the GPU while the GPU is processing other data that was copied previously. This is called Interleaved Data Transfer and is available in both OpenCL and CUDA. Previous work suggests that interleaving data transfers can hide approximately 65% of the data transfer cost in an AES encryption situation [28].

This project cannot use this technique at the time because it relies on the fact that device queues are processed in-order. This greatly simplifies the code-base at various places. The code-base would require extensive changes — like explicit locking — before Interleaved Data Transfer could be used.

![Figure 9.2: Example of Interleaved Data Transfer](image)

9.3 Secure Key-Store

Our implementation stores the expanded key using global memory on the GPU. The global memory is readable from the host with very few restrictions. Anybody with permissions to use the GPU can read global memory. This renders our project unusable in a multi-user situation where users can use accelerated graphics. An adversary might read other users’ keys by simply reading the global memory.

Switching to other key-store is out of scope of this project and would most likely decrease performance. A possible solution to store encrypted keys in
global memory and the key in registers is mentioned by Vasiliadis et al. [36].

9.4 Khronos Vulkan

The trend in graphics APIs is to expose more of the internal complexity to the developer. Recent announcements of Khronos Vulkan [14] suggests that GPU vendors and developers both prefer the API to be closer to hardware.

It is likely that OpenGL will be replaced by Khronos Vulkan in the future. There is significant functionality overlap between OpenCL and Vulkan, therefore it may happen that OpenCL will also be replaced. It seems like a viable idea to explore the new API and perhaps even provide implementations of the AES and Blowfish kernels for it.
10 Conclusion

We have designed and implemented a portable open-source library for symmetric block encryption and decryption on a GPU or any other OpenCL device. The library supports AES and Blowfish ciphers, the implementations are covered by unit tests and measured by benchmarks. The library API processes all data on an OpenCL device but at the same time hides the complexity of GPU Compute from the user. Users can use the API with very little knowledge about GPUs, OpenCL or related technology.

The performance numbers we measured look promising. We have achieved 252 MB/s of throughput with AES-CTR and 531 MB/s with Blowfish-ECB on NVIDIA GTX 580 including all set-up costs. Consumer GPUs used as OpenCL devices proved to be decent and cost-effective cryptographic accelerators. Efficiency of our solution increases as latencies increase, which makes the solution suitable for bulk processing rather than cryptographic protocols.

While there are problems and areas for improvements, we believe the solution presented can be used in real world applications as a substitute for dedicated cryptographic accelerators.
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>ALU</td>
<td>Arithmetic Logic Unit</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CTR</td>
<td>Counter Mode</td>
</tr>
<tr>
<td>CUDA</td>
<td>Compute Unified Device Architecture</td>
</tr>
<tr>
<td>DDR</td>
<td>Double Data Rate</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>ECB</td>
<td>Electronic Code Book</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>FPU</td>
<td>Floating Point Unit</td>
</tr>
<tr>
<td>GCM</td>
<td>Galois / Counter Mode</td>
</tr>
<tr>
<td>GDDR</td>
<td>Graphics Double Data Rate</td>
</tr>
<tr>
<td>GLSL</td>
<td>OpenGL Shading Language</td>
</tr>
<tr>
<td>GPGPU</td>
<td>General Purpose GPU Computation</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics Processing Unit</td>
</tr>
<tr>
<td>HLSL</td>
<td>High-Level Shading Language</td>
</tr>
<tr>
<td>IC</td>
<td>Initial Counter</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IPSec</td>
<td>Internet Protocol Security</td>
</tr>
</tbody>
</table>
10. Conclusion

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>Initial Vector</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NOOP</td>
<td>No Operation</td>
</tr>
<tr>
<td>NSA</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>NVIDIA Cg</td>
<td>short for C for Graphics</td>
</tr>
<tr>
<td>OpenCL</td>
<td>Open Compute Library</td>
</tr>
<tr>
<td>OpenGL</td>
<td>Open Graphics Library</td>
</tr>
<tr>
<td>OpenGL ARB</td>
<td>OpenGL Architecture Review Board</td>
</tr>
<tr>
<td>RAIi</td>
<td>Resource Acquisition Is Initialization</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>SBox</td>
<td>Substitution Box</td>
</tr>
<tr>
<td>SIMT</td>
<td>Single Instruction, Multiple Threads</td>
</tr>
<tr>
<td>SM</td>
<td>Streaming Multiprocessor</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Sockets Layer</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>XOR</td>
<td>eXclusive OR</td>
</tr>
</tbody>
</table>
Bibliography

10. CONCLUSION

10. CONCLUSION

10. CONCLUSION

A oclcrypto README

A reusable C++11 library for OpenCL hardware accelerated cryptography.

Compilation on Linux

Build dependencies (Fedora)

```
# if you do not have build tools installed already
yum install @development-tools
yum install cmake boost-devel ocl-icd-devel opencl-headers
```

(Replace yum with dnf if you use Fedora 22 or newer.)

Build dependencies (Debian or Ubuntu)

```
# if you do not have build tools installed already
apt-get install build-essential
apt-get install cmake libboost-all-dev \
ocl-icd-opencl-dev opencl-headers
```

Configure step

Feel free to replace build/ with a build directory of your choice. Using the source directory is discouraged and may not work, only out-of-source builds are supported.

```
mkdir build
cd build/
cmake ../
```
Build step

```
cd build/
make
```

Install step

```
 cd build/
sudo make install
```

The command above will install headers into $prefix/include/oclcrypto and libraries into $prefix/lib(64). There is no automatic uninstall step. You are recommended to use the install step while packaging.

Running unit the tests

```
 cd build/
ctest -V
```

Compilation on Windows

Build dependencies

Microsoft Windows unfortunately lacks a well supported package manager, all dependencies have to be downloaded manually.

- *Microsoft Visual Studio* — version 2013 is recommended
- *cmake 2.6+* and *cmake-gui*
- *Boost libraries precompiled for Windows*
- *NVIDIA CUDA Toolkit 5.0+*
Configure step

Run `cmake-gui`, select the repository as the source directory and select directory of your choice as the build directory. Selecting source directory as the build directory is discouraged and unsupported, do an out-of-source build instead. In `cmake-gui`, select Configure, walk through the wizard dialogs and then click Generate. Visual Studio solution and project files will be generated inside the build folder.

Build step

Open the Visual Studio solution, select a desirable configuration — Debug or Release — and click Build.

Install step

It is not customary to run the install step on Windows system. Instead, it is recommended to bundle the built DLL files with your application.

Running the unit tests

Double-clicking `oclcrypto-tests` will work but the output will be lost after tests finish. We therefore recommend running the tests from a terminal emulator of your choice. `cmd.exe` will also work.

```
1 cd build
2 oclcrypto-tests.exe
```

Using the API

Browse the tests/ folder for sample usage of the API.
B Minimal Example Program

```cpp
#include <oclcrypto/System.h>
#include <oclcrypto/Device.h>
#include <oclcrypto/AES_CTR.h>

int main(int argc, char ** argv)
{
    oclcrypto::System system;
    oclcrypto::Device& device = system.getBestDevice();

    oclcrypto::AES_CTR_Encrypt context(system, device);
    context.setKey("helohelohelohelo");
    context.setInitialCounter("1234567890abcdef");
    context.setPlainText("testingplaintext");
    context.execute();

    {  
      auto data = context.getCipherText()->lockRead<unsigned char>();
      // now we can use data[index] to access the resulting ciphertext
    }

    return 0;
}
```