Masarykova univerzita
Lékařská fakulta

VĚK A REFRAKČNÍ VADY

Vedoucí diplomové práce: MUDr. Jan Richter
Vypracovala: Bc. Jana Kadavá
Obor: Optika - Optometrie

Brno, květen 2006
Poděkování:

Čestné prohlášení:

Prohlašuji, že jsem tuto diplomovou práci na téma **Věk a refrakční vady** vypracovala samostatně pod vedením svého vedoucího diplomové práce MUDr. Jana Richtera a s použitím odborné literatury, kterou všechnu uvádím v seznamu použité literatury.

V Brně dne 18.5.2006
OBSAH:

1. **Úvod** .. 7

2. **Anatomie oka** .. 8

 - **2.1. Tunica fibrosa** .. 9
 - 2.1.1. Rohovka (cornea) .. 9
 - 2.1.2. Bělima (sclera) ... 10

 - **2.2. Tunica vasculosa** .. 10
 - 2.2.1. Cévnatka (chorioidea) ... 10
 - 2.2.2. Řasnaté tělísko (corpus ciliare) ... 10
 - 2.2.3. Dušovka (iris) ... 11

 - **2.3. Tunica nervea** .. 11
 - 2.3.1. Pigmentová vrstva sitnice (stratum pigmenti retinae) 11
 - 2.3.2. Sitnice (retina) .. 11

 - **2.4. Obsah oka** ... 12
 - 2.4.1. Komorový mok (humor aquaeus) ... 12
 - 2.4.2. Čočka (lens cristallina) ... 12
 - 2.4.3. Sklice (corpus vitreum) .. 13

3. **Refrakce oka** ... 13

 - **3.1. Refrakce rohovky** ... 13

 - **3.2. Refrakce čočky** ... 14

 - **3.3. Gullstrandův schématický model oka** ... 14

 - **3.4. Redukované oko (podle Donderse)** .. 15

3. **5. Základní pojmy týkající se refrakce oka** ... 15

 - 3.5.1. Daleký bod R ... 15

 - 3.5.2. Blízký bod P ... 16

 - 3.5.3. Akomodační šíře ... 16

4. **Refrakční vady** ... 17

 - **4.1. Myopie** .. 18
 - 4.1.1. Charakteristika myopie ... 18
4.1.2. Rozdělení myopie ... 19
4.1.3. Korekce myopie ... 20

4.2. Hypermetropie ... 21
 4.2.1. Charakteristika hypermetropie ... 21
 4.2.2. Rozdělení hypermetropie .. 22
 4.2.3. Korekce hypermetropie .. 23

4.3. Presbyopie ... 24
 4.3.1. Charakteristika presbyopie ... 24
 4.3.2. Příznaky presbyopie ... 25
 4.3.3. Korekce presbyopie ... 25

4.4. Astigmatismus ... 26
 4.4.1. Charakteristika astigmatismu ... 26
 4.4.2. Rozdělení astigmatismu .. 27
 4.4.3. Korekce astigmatismu ... 28

4.5. Anisometropie ... 29
 4.5.1. Charakteristika anisometropie ... 29
 4.5.2. Rozdělení anisometropie .. 29
 4.5.3. Korekce anisometropie .. 29

4.6. Afakie ... 30
 4.6.1. Charakteristika afakie ... 30
 4.6.2. Korekce afakie ... 30

5. Možnosti korekce refrakčních vad ... 31

5.1. Brýlové obruby a kontaktní čočky ... 31
 5.1.1. Komplikace způsobené brýlovými obrubami 32
 5.1.2. Komplikace spojené s nošením kontaktních čoček 32
 5.1.3. Optické hledisko ... 33

5.2. Chirurgická korekce refrakčních vad 35
 5.2.1. PRK ... 36
 5.2.2. Lasik ... 37
 5.2.3. Lasek ... 37
 5.2.4. Implantovaná (fakická) čočka .. 38
 5.2.5. Refrákční výměna čočky (RLE) .. 38
VĚK A REFRAKČNÍ VADY

5.2.6. Prelex ... 39
5.2.7. DTK ... 39
5.2.8. Astigmatická keratotomie ... 40
5.2.9. ICR ... 40
5.2.10. Intrakorneální čočky ... 41

6. Věk a refrakční vady ... 41

6.1. Vývoj vidění... 42

6.1.1. Dětství ... 43
6.1.2. Stáří ... 44

7. Výzkum... 45

7.1. Úvod ... 45
7.2. Vyšetřované osoby a metodika ... 46
7.3. Rozbor výsledků ... 47
7.4. Hodnocení .. 72

8. Závěr ... 74

9. Literatura ... 75

10. Příloha č. 1... 77
1. Úvod

Vidění je jeden z nejdůležitějších smyslů, neboť pomocí něj získáváme více než 80% informací z okolního světa, který nás obklopuje. Vidění je důležitý fyziologický děj skládající se z mnoha faktorů, které jsou vzájemně propojené.

Vývoj oka je ovlivněn vnějšími i vnitřními faktory, např. změny způsobené mechanickým poškozením, stárnutím, astigmatismem, myopií, hypermetropií, které se můžou vyskytnout v různých věkových kategoriích. Se změnami růstu oka se mění refrakce oka. U novorozenců existuje hypermetropie přibližně 2,0 až 3,0 D. Díky zvětšující se délce oka, nastává v refrakci období myopizace, která pokračuje až do třetího desetiletí života. Od 40. roku díky snížené lámavosti čočky nastává období hypermetropizace, které sahá až do 70. roku života.

Oko i mozek podléhají ve stáří anatomickým a fyziologickým změnám, které ovlivňují kvalitu vidění. Snížuje se kontrastní citlivost, citlivost na světlo, barevné, prostorové a hloubkové vidění a zraková ostrost. S přibývajícím věkem ubývá schopnosti akomodace, což nazýváme presbyopie. Na tyto změny způsobené věkem je třeba se dívat jako na změny fyziologické.
2. Anatomie oka

Zrakové ústrojí se skládá z periferní části, ze zrakové dráhy a zrakového ústředí. Periferní část tvoří oční bulby a jejich přidatné orgány, které jsou uloženy v očníci.

Parametry bulbu

Vzdálenost oční koule od stěn očnice je přibližně 1 cm. Oční koule má přibližně podobu koule a rozeznáváme na ni přední a zadní pól. Průměrně má bulbus vzdálenost mezi předním a zadním pólem 24,2 mm, od ekvátoru k ekvátoru, tj. transverzálně 24,1 mm a vertikálně 23,6 mm. Oční koule váží přibližně 7 gramů. U novorozence je velikost bulbu oproti oku dospělému třetinová. Růst oka je velmi rychlý v prvních pěti letech života, poté se zpomaluje a ještě před dokončením růstu těla se zastavuje.

Spojnicí mezi oběma póly bulbu řikáme oční osa. Tato anatomická osa se prakticky spojuje s optickou osou, což je přímka, která spojuje bod maximálního zakřivení rohovky a obě plochy čočky. Leží na ni také uzlový bod tzv. redukovaného oka.

Na bulbu rozlišujeme tři oční obaly. Zevní obal (tunica fibrosa) je pevný, vazivový, pod ním je umístěn střední, cévnatý, obal (tunica vasculosa) a pod ním vnitřní, nervový, obal (tunica nervea). Tyto tři oční stěny vytváří schránku pro obsah oka, který je průhledný. Obsahuje čočku (lens cristallina), sklivec (corpus vitreum) a komorovou vodu (humor aquaeus).

![Obr. č. 1
Anatomic oka](image)
2.1. Tunica fibrosa

Pevný obal oka oko chrání a udržuje jeho formu. Tvoří jej přední průhledná část – rohovka (cornea) a zadní neprůhledná bílá část – bělima (sclera).

2.1.1. Rohovka (cornea)

Rohovka je hladká, lesklá a průhledná tkáň tvořená kolagenními vláknami. Má tvar horizontálně uložené elipsy, horizontální průměr je 11,5 – 12 mm, vertikální 11 mm. Svě konečné velikostí dosahuje již v šestém měsíci života. Poloměr zakřivení přední plochy se udává 7,8 mm a zadní plochy 7 mm. Zevně hraničí se vzduchem a směrem dovnitř je ve styku s komorovou vodou, což zvyšuje její lomivou sílu. Trénující výšky rohovky je v centru přibližně 0,6 milimetrů a v periférii 1 mm.

Pro vysoký obsah nervových vláken je rohovka nejcitlivější tkání lidského těla. Za normálního stavu nemá rohovka žádné cévy. Její výživa je obstarávána cévní pleteni okolo jejího okraje, dále je výživa uskutečňována z komorové vody a částečně ze slz.

Rohovka je vzhledem ke své optické mohutnosti nejdůležitější složkou optického systému oka. Z celkové hodnoty lomivosti oka v akomodačním klidu 58 D připadají na rohovku ¾, tj. 43 D.

V limbu přechází rohovka do spojivky na vnější straně a do bělimy na straně vnitřní. Oblast limbu je široká asi 1 mm.

2.1.2. Bělima (sclera)

Je to bílá neprůhledná tkáň, která obsahuje jen malé množství cév. Její trénující se pohybuje od 0,5 mm do 1,5 mm. Nejsilnější je v zadní části bulbu. Zevní plocha bělimy je kryta v přední části spojivkou. Na bělimu se upínají všechny okolyspné svaly. Při zadním pólů oka, nasáhnou od něj, vystupuje z bulbu zrakový nerv. Ve stěně bělimy
jsou otvůrky pro cévy a nervy. Vnitřní plocha bělimy je kryta velmi tenkou vrstvou řídkého vaziva, které ji odděluje od střední vrstvy oční stěny.

2.2. Tunica vasculosa

Střední vrstva bulbu, která se nazývá živnatka (uvea), se skládá z větší zadní části – cévnatky (chorioidea), střední části – řasnatého těliska (corpus ciliare) a přední části – duhovky (iris).

2.2.1. Cévnatka (chorioidea)

2.2.2. Řasnaté tělisko (corpus ciliare)

Řasnaté tělisko je tvořeno na průřezu trojúhelníkovitým prstencem, který je umístěn při zevenin okraj duhovky, vzadu přecházející do cévnatky. Do nitra oka z něj směřují vlákna závěsného aparátu, na nichž je zavěšena čočka. Řasnaté tělisko obsahuje hladký ciliární sval, jehož smršťováním a uvolňováním dochází k vyklenutí nebo k oploštění čočky, a tím ovlivňuje její optickou mohutnost. V řasnatém tělisku se také tvoří komorový mok, který má význam při udržování nitroočního tlaku a je součástí optického systému oka.

2.2.3. Duhovka (iris)

Duhovka je přepážka mezi větším zadním segmentem oka a menší přední částí oka. Má tvar clonky. Vnitřní okraj duhovky se označuje jako zornicový a zevní jako kořen duhovky. Uprostřed duhovky je otvor – zornice (pupilla), jejíž šířku ovládají dva
hladké svaly. Jeden typ svalových vláken je uspořádán radiálně a tvoří rozvěrač zornice (m. dilatator pupillae), druhý typ je uspořádán círкуlárně a tvoří sval zvaný svěrač zornice (m. sphincter pupillae). Při osvětlení se zornice zužuje, v šeru rozšiřuje. Množství pigmentu v duhovce určuje barvu očí a chrání oko před oslněním. Duhovka je prostoupena četnými cévami.

2.3. Tunica nervea

Vnitřní obal oka se skládá z pigmentové vrstvy (stratum pigmenti retinae) a sítnice (retina).

2.3.1. Pigmentová vrstva sítnice (stratum pigmenti retinae)

2.3.2. Sítnice (retina)

Sítnice je jemná, průhledná blána, vzniklá odštěpením z mozkového základu, s mozkem je spojena zrakovou dráhou. Zevní plocha sousedí s cévnatou a vnitřní se sklivcem. Ve své zadní optické části je sítnice silnější a ve vzdálenosti 3 – 4 mm před ekvátorem přechází k řasnatému tělišku. Sítnice pevně adhéreruje k cévnatce jen při terči zrakového nervu a v oblasti ora serrata. V optické části sítnice rozlišujeme deset vrstev. Základem složité stavby souvrstvy vzájemně propojených nervových buněk. Důležitá je vrstva tyčinek a čípů, jejichž podrážděním začíná proces vidění. Rozložení tyčinek a čípů není rovnoměrné. Čípky, kterých je asi 7 milionů, jsou nakupeny v oblasti zadního pólhu oka v místě nejostřejšího vidění, označováním jako žlutá skvrna. Čípky vidíme ostře za denního světla a rozlišujeme jimi barvy. Od žlutých skvrn do periférie čípů ubývá. Nalézají se zde jen tyčinky, kterých je přibližně 130 miliónů. Pomocí tyčinek rozeznáváme jen světlo a tmu, a slouží nám tedy k vidění za šera a v noci.
Svazky zrakových vláken probíhají radiálně směrem k zadnímu polu oka a spojují se v místě nazývaném terč zrakového nervu (papilla nervi optici), kde zrakový nerv opouští oko.

2.4. Obsah oka

Nitrooční prostor tvoří přední a zadní komora, které jsou spojeny zorníci a vyplněny komorovým mokem. Obsah oka je dále tvořen čočkou a sklivcem.

2.4.1. Komorový mok (humor aquaeus)

Komorový mok je čirá tekutina, která obsahuje látky pro výživu čočky a rohovky. Tvoří se v řasatém tělisku, ze zadní komory se dostává zorníci do přední oční komory a odtud odtéká Schlemmovým kanálem. Má důležitou úlohu při udržování nitroočního tlaku a je součástí optického systému oka. Index lomu komorové vody je 1,336.

2.4.2. Čočka (lens crystallina)

Čočka je dvojvypuklé tělisko o průměru asi 10 mm a tloušťce 3,5 mm. Poloměr zakřivení přední plochy čočky je v klidovém stadiu větší než poloměr zakřivení zadní plochy. Čočka se skládá z pouzdra, kory a jádra. Kromě předního a zadního polou rozlišujeme na čočce ještě ekvátor. Ve své poloze je čočka držena závěsným aparátém čočky. Čočka nemá cévy a je vyživována z komorové vody.

2.4.3. Sklivec (corpus vitreum)

Sklivec tvoří čirá rosolovitá hmota, která vyplňuje prostor mezi čočkou a vnitřní plochou sítnice. Podobně jako komorová voda se sklivec podílí na výživě nitroočních tkání a udržování napětí oční stěny a nitroočního tlaku. Jeho index lomivosti je jako u komorové vody 1,336. Stejně jako čočka nemá cévy.
3. Refrakce oka

Prakticky lze považovat přední a zadní plochu rohovky za paralelní. Hmota rohovky může být zanedbána a její dvě plochy považovány za jednu. Index lomu komorové vody a sklivce je prakticky stejný (1,33), takže společně vlastně tvoří jedno prostředí. Složitý optický systém se tím mění v jednoduchý, tvořený dvěma prvky: rohovkou a čočkou. Obě působí jako konvexní složky a vytváří systém se značnou refrakční hodnotou.

3.1. Refrakce rohovky

Rohovka má jako součást optického systému oka největší lomivost. Její refrakční hodnota se pohybuje mezi + 40 a + 45 D, zatímco lomivost čočky je poloviční. Převaha vlivu rohovky je způsobena větším rozdílem indexu lomu mezi vzduchem a komorovou vodou. Čočka je obklopena komorovou vodou a sklivcem, které mají podobný index lomu. Proto, ponoříme-li oko do vody, která má přibližně stejný index lomu jako komorová voda, ostrost vidění se značně sníží.

3.2. Refrakce čočky

Lomivost čočky je značně komplikována tím, že čočka nemá homogenní strukturu, ale je tvořena z mnoha vrstev o různém indexu lomu. Vrstvy blíže k centru mají vyšší index lomu než vrstvy periferní. Lomivost čočky je navíc zvýšená skutečností, že jednotlivé vrstvy nejsou přesně koncentrické. Poloměr zakřivení přední plochy čočky je asi 10 mm, zatímco zadní plochy asi 6 mm. Index lomu periferních vrstev je asi 1,386, zatímco jádro má index lomu přibližně 1,41. Vlivem nehomogenní struktury čočky je však její skutečná refrakční hodnota vyšší, odpovídala by jednotnému indexu lomu 1,42. Celková lomivost čočky je pak udávána mezi
+ 16 až + 20 D. Zvláštní stavba čočky koriguje nedostatky optického systému oka a akomodaci se její lomivost může zvýšit téměř na dvojnásobek.

3.3. Gullstrandův schématický model oka

Pan Gullstrand provedl četná měření a sestavil model oka s indexy lomu, zakřivením a vzdálenostmi jednotlivých struktur optického systému. Zjednodušený optický systém oka je soustředěn na společné optické ose. Představuje do současné doby nejpropracovanější klasický optický model průměrného lidského oka. Slouží jako výchozí studijní materiál pro formulování očekávaných refrakčních vad oka, zobrazovacích poměrů v něm i pro samotnou korekci zraku. Allvar Gullstrand dostal v roce 1911 za tento model Nobelovu cenu.

![Obr. č. 2
Gullstrandův schématický model oka](image)

3.4. Redukované oko (podle Donderse)

Vzhledem k tomu, že index lomu rohovkové tkáně, komorové vody a sklivce je prakticky shodný, jsou hlavními optickými strukturami oka přední plocha rohovky (40 – 45 D) a čočka (20 D). Celková lomivost oka není jejich prostým součtem, ale činí 58,7 D. Optický systém oka lze bez větší chyby redukovat na jeden ideální lomivý povrch o poloměru zakřivení 5,73 mm, oddělujícím látky o indexu lomu 1 a 1,336. Tento ideální povrch leží 1,35 mm za přední plochou rohovky. Uzlový bod
redukovaného oka je 7,08 mm za přední plochou rohovky. Přední ohnisková vzdálenost je 17,05 mm a zadní ohnisková vzdálenost je 22,78 mm.

3.5. Základní pojmy týkající se refrakce oka

Z refrakčně – zobrazovacího hlediska považujeme za emetropické oko takové, které vytvoří obrazové ohnisko (obraz nekonečně vzdálených předmětů) při minimální akomodaci na sitnici. Oči, které této podmínce nevyhovují nazýváme ametropické.

3.5.1. Daleký bod R

Daleký bod je bod ležící na optické ose , který se zobrazí na sitnici oka při minimální akomodaci. Vzdálenost dalekého bodu od předmětové hlavní roviny oka označujeme a_R. Měříme ji v metrech a u emetropického oka představuje nekonečně velkou vzdálenost.

3.5.2. Blízký bod P

Blízký bod je bod ležící na optické ose, který se zobrazí na sitnici oka při maximální akomodaci. Vzdálenost blízkého bodu od předmětové hlavní roviny oka označujeme a_P a měříme ji též v metrech. Blízký bod má význam při posuzování
momentálního akomodačního výkonu. Spolu s dalekým bodem ohraničuje akomodační interval.

3.5.3. Akomodační šíře

Pomocí akomodační šíře definujeme momentální akomodační výkon oka. Akomodační šíři vyjadřujeme v dioptriích a platí pro ní následující rovnice:

\[
A_S = \frac{1}{a_R} - \frac{1}{a_P}
\]

Akomodační šíře se v průběhu života postupně snižuje, v důsledku zmenšení elastičnosti oční čočky. Tím se mění poloha blízkého bodu.
4. Refrakční vady

Stav, kdy obrazové ohnisko leží na sítnici, je označován jako emetropie, druhé dvě možnosti, kdy obrazové ohnisko leží před, respektive za sítnici, jsou ametropie. Leží-li obrazové ohnisko oka za sítnici, jde o dalekozrakost - hypermetropii, je-li obrazové ohnisko oka umístěno před sítnici, pak takovou oční vadu označujeme jako krátkozrakost - myopii.

Rozhodujícím prvkem určujícím refrakci oka je zřejmě předozadní délka oka. Ta narůstá ze 7 - 18 mm u novorozence na 24 mm u dospělého člověka. Téměř 90% refrakčních vad jsou tzv. osové refrakční vady. Dalekozraké oko bývá kratší (nedorostlé), krátkozraké naopak delší (přerostlé). S narůstající délkou oka, zvláště v prvních letech života, se mění i lomivost rohovky a čočky, aby refrakce zůstávala blízká emetropii.

Obr.č.4
Emetropické oko
4.1. Myopie

4.1.1. Charakteristika myopie

Myopie neboli krátkozrakost je refrakční vada, při které se rovnoběžné paprsky po průchodu relaxovaným optickým aparátém sbíhají v ohnisku před sítnicí. U krátkozrakého oka je tedy lomivost optického systému větší, než předozadní délka tohoto oka. První uspokojivou definici myopie zformuloval jako první Johannes Kepler v roce 1611.

Považujeme-li dalekozraké oko za oko nedostatečně vyvinuté, pak je krátkozraké oko vyvinuté nadměrně. Někteří autoři spatřují v této skutečnosti přizpůsobení se zvýšeným nárokům na práci do blízka, které přináší moderní civilizace.

Obr. č. 5
Myopické oko

4.1.2. Rozdělení myopie

Myopii můžeme rozdělit na 2 typy:

- **myopie osová (axiální)** – je zvětšená předozadní délka očního bulbu,
- **myopie systémová** – je zvětšená lomivost oka, která může být způsobena neúměrně zvýšeným indexem lomu jednotlivých očních prostředí (*myopie indexová*), nebo jsou zmenšené poloměry křivostí jednotlivých opticky účinných ploch (*myopie rádiusová*).

Axiální myopie je nejčastější příčinou krátkozrakosti. Mnohem vzácnější je myopie ze zvýšeného zakřivení rohovky (keratokonus) nebo zvětšeného zakřivení
přední či zadní plochy čočky (přední a zadní lentikonus). Lomivost čočky může být zvýšená i při spasmu akomodace nebo po poranění. S indexovou myopii se lze setkat i při cukrovce a šedém zákalu. Změna lomivosti komorové vody a sklivce nemůže podstatněji ovlivnit refrakci oka.

Podle počtu dioptrií dělíme myopii na:

- myopia simplex (do – 3 D)
- myopia modica (-3,25 až – 6, 0 D)
- myopia gravis (nad – 6,0 D).

O převážně většině krátkozrakých očí si myslíme, že jsou fyziologickou, biologickou odchylkou od normálu. Tento typ myopie je relativně stacionární. Počet krátkozrakostí vyšších než 6D je odhadován na 5 - 15%, počet progresivních, maligních myopií na 1 – 3%.

Nejčastějším typem stacionární krátkozrakosti je myopie školní. Objevuje se obvykle mezi 6. a 7. rokem a zřídka přesahuje – 5,0 až – 6,0 D. S pokračujícím růstem oka pomalu progreseuje a okolo 20. roku se stabilizuje. Tzv. pozdní myopie vzniká okolo 18. roku a dosahuje – 2,0 až –3,0 D. Velmi vzácně se tento typ myopie vyskytuje mezi 20. a 25. rokem.

Progresivní myopie je v řadě zemí, včetně Japonska, nejčastější příčinou slepoty. Není to jen vada refrakce oka, ale choroba, určená pravděpodobně dědičnými a postnatálními činiteli. Všeobecně se považuje za příčinu malá rezistence bělimy, která ustupuje normálnímu nitročnímu tlaku a rozpíná se především při zadním pólu oka, zatímco přední segment oka zůstává bez podstatných změn. Žádná z velkého počtu teorií zatím nedovede uspokojivě vysvětlit příčinu vzniku vyšších myopií.
4.1.3. Korekce myopie

Paralelní paprsky tvoří v krátkozrakém oku ohnisko před sitnicí. Divergentní paprsky mohou vytvořit ohnisko na sitnicí. Proto ke korekci krátkozrakosti užíváme rozptylek.

Obr. č. 6
Myopické oko bez korekce

Obr. č. 7
Myopické oko s korekcí

Korekční podmínka pro myopii je, že obrazové ohnisko korekčního skla musí splývat s dalekým bodem ametropickéhooka. Změní se i vzdálenost blízkého bodu, která je u myopického oka kratší než u oka emetropicického (viz obr. č. 6 a 7). Obecně platí, že dospělému pacientovi s myopií předepisujeme nejslabší rozptylku, s níž dosáhneme nejlepšího visu. U nízké a střední myopie předepisujeme plnou korekcí a doporučujeme její stálé nošení, myopická korekce na blízko navozuje správnou pracovní vzdálenost. U presbyopických myopů předepisujeme brýle na čtení slabší o 1 až 3 D. U vysoké myopie nebývá zpravidla plná korekce pacientem tolerována. Míra
podkorigování je individuální a je kompromisem mezi zrakovou ostrostí a subjektivní snesitelností korekce. U děti předepisujeme vždy plnou korekci.

4.2. Hypermetropie

4.2.1. Charakteristika hypermetropie

Hypermetropie nebo-li dalekozrakost je refrakční vada, u které je lomivost optických prostředí menší než předozažadní délka optického systému oka. U hypermetropického oka, které je v akomodačním klidu, vzniká proto obraz pozorovaného předmětu za sítnici. Obraz, který dopadá na sítnici je tak zamlžený, nezřetelný a je i menší. Autorem názvu hypermetropia je oftalmolog Helmholtz Donders, který používal název hyperopia.

Podle Stenströma je hypermetropie nejčastější refrakční vadou. Přibližně 50% všech refrakčních stavů tvoří lehká hypermetropie mezi 0 až 1 D.

Na rozdíl od oka emetropického je hypermetropické oko relativně malé. Čočka, jejíž se velikost nemění, se jeví jako relativně velká, a přední komora je proto mělká. Dalekozraké oko je proto predisponováno ke glaukomu.
4.2.2. Rozdělení hypermetropie

Podobně jako u myopického oka rozlišujeme dvě základní formy hypermetropie:

- **hypermetropie osová** – je-li předozadní délka očního bulbu zkrácena,
- **hypermetropie systémová** – anomálie v lomivosti optického systému oka, která může být způsobena neúměrně nízkými indexy lomu jednotlivých očních prostředí (hypermetropie indexová), nebo poloměry křivostí jednotlivých opticky funkčních ploch oka jsou větší (hypermetropie rádiusová).

Přibližně 50 % refrakčních vad tvoří lehká hypermetropie – mezi 0 a 1,0 D. Fyziologická hypermetropie je do 0,5 D. Nejčastěji formou je osová hypermetropie. Při narození jsou skoro všechny oči dalekozraké, případně 2,5 až 3,0 D, ale s růstem těla roste i oko. Hypermetropie se vyskytuje i v pozdějším věku, dokonce u víc než 50 % očí naleznete určitý stupeň dalekozrakosti. Zkrácení předozadní osy oka zřídkakrě

Přibližně 50 % očí nalezne určitý stupeň dalekozrakosti. Zkrácení předozadní osy oka zřídkakr

S indexovou dalekozrakostí se setkáváme spíše u starších lidí a také při léčení diabetu. K narůstání dalekozrakosti vede rovněž posunutí čočky směrem dozadu, jak vrozené, tak následkem nemoci nebo úrazu. Značná hypermetropie vzniká při afakii. U vyšších hypermetropů, zvláště při anizometropii, hrozi zvýšené riziko vzniku strabismu a amblyopie.

Kontrakce ciliárního svalu může při akomodaci zvýšením refrakční hodnoty čočky vykorigovat část nebo i celou hypermetropii. Celkovou **totální** hypermetropii tvoří dalekozrakost:

1. latentní – vyrovnává se základním, fyziologickým napětím ciliárního svalu (dosahuje asi 1 D)
2. manifestní – ta se dále dělí na:
 a) fakultativní hypermetropii – zvládnutelná zvýšeným akomodačním úsilím
 b) absolutní – kterou akomodace není schopna vyrovnat.

Absolutní dalekozrakost nám prakticky určuje nejslabší spojka, se kterou vyšetřovaný vidí ostře do dálky. Rozdíl v hodnotě této nejslabší spojky a nejsilnější spojky, se kterou vyšetřovaný ještě vidí ostře do dálky, nám určuje fakultativní...

4.2.3. Korekce hypermetropie

U dalekozrakého oka vzniká obraz vytvořený bez akomodace čočky za sitnici. Proto dalekozraké oko může vytvořit ostrý obraz na sitnici jen zvýši-li lomivost svého dioptrického aparátu (akomodaci nebo předsunutím spojné čočky).

![Obr. č. 9
Hypermetropické oko s korekcí](image1)

![Obr. č. 10
Hypermetropické oko s korekcí](image2)
4.3. Presbyopie

4.3.1. Charakteristika presbyopie

Již od útlého dětství se ustavičně zmenšuje schopnost akomodace. Přestává ve stáří, kdy čočka znemožňuje uvést v činnost dynamickou refrakci. Tím se stále více znesnadňuje ostré vidění blízkých předmětů. Duann sledoval změny akomodace způsobené věkem u velkého počtu lidí a získal tak průměrné hodnoty, které zobrazuje obrázek č. 11. Zatímco v časném dětství je akomodační šíře 14 D a blízký bod 7 cm, v 36 letech je již pouze poloviční - 7 D. V 45 letech dosahuje hodnoty 4 D a v 65 letech zůstává pouze 1 D akomodační šíře.

![Obr. č. 11](image_url)

Duanův graf

Pohodlné vidění do blízka vyžaduje, aby byla zachována 1/3 akomodace v rezervě. Jakmile k tomuto stavu dojde a blízký bod je vzdálen 22 cm od oka, nastává presbyopie. U emetropů je tomu ve 40 letech. Hypermetrop musí využít části své akomodace ke korekci své refrakční vady, proto se u měj presbyopie dostaví dříve. U myopie je tomu naopak
4.3.2. Příznaky presbyopie

Presbyopie se projevuje zpravidla při čtení. Písmo se stává nezřetelným, rozmazaným a písmena a řádky přeskakují. Presbyop si zpravidla pomáhá oddalováním textu a zakláněním hlavy a čte raději při jasném osvětlení, kdy jsou zornice úzké. Později se dostavuje únava a bolest očí, bolesti hlavy až nevolnost. Spojivky a okraje viček jeho očí jsou zpravidla chronicky překrvané.

4.3.3. Korekce presbyopie

Obr. č. 12
Znázornění hlavního pracovního bodu

Korekce presbyopie musí být prováděna individuálně. Akomodace, která zůstává v určitém věku se různí nejen u různých jednotlivců, ale i u každého oka. V zájmu udržení souladu mezi akomodací a konvergencí se mají předepisovat nejslabší skla, která jsou snesitelná při dobrém a pohodlném vidění.
4.4. Astigmatismus

4.4.1. Charakteristika astigmatismu

Astigmatismus je refrakční vada oka, jehož optický systém, hlavně rohovka, nemá schopnost fokusovat světlo na sítnici. Refrakce proto není stejná ve všech meridiánech.

4.4.2. Rozdělení astigmatismu

Rovnoběžné paprsky, vstupující do oka se spojují v různých rovinách. Jinými slovy, optický aparát astigmatického oka má v různých meridiánech různou optickou mohutnost.

U pravidelného astigmatismu paralelní paprsky vstupující do oka vytváří místo jednoduchého bodového ohniska dvě na sebe kolmé ohniskové přímky. Dále jej dělíme na:

a) astigmatismus jednoduchý (simplex) – jeden meridián je emetropický a druhý buď myopický nebo hypermetropický.

b) astigmatismus složený (compositus) – oba meridiány jsou buď hypermetropické nebo myopické.

c) astigmatismus smíšený (mixtus) – Jeden meridián je hypermetropický a druhý myopický.

Astigmatismus přímý, nebo (podle pravidel) má svislý meridián více lomivý než horizontální. Opačně je tomu u astigmatismu nepřímého (proti pravidlu).

4.4.3. Korekce astigmatismu

Malý (zvláště fyziologický) astigmatismus zpravidla není nutné korigovat. Vždy je však nutný individuální přístup, protože u některých osob vede korekce i malého astigmatismu k překvapivému zlepšení zrakové ostrosti a k ústupu subjektivních problémů.

Akomodací jsme schopni vykorigovat sférickou složku refrakční vady, ale ne cylindrickou. Proto při korekci astigmatismu musíme vždy plně vykorigovat cylindrickou složku – astigmatickou diferenci (rozdíl v lomivosti dvou k sobě kolmých meridiánů s maximálně odlíšnou lomivostí). U dospělých, kteří cylindrickou korekci dosud nenosili, bývá nutné začít se snesitelnou korekcí sférické složky. Plnou korekci lze aplikovat u dětí, které jsou adaptabilnější. Při korekci astigmatismu musíme respektovat nejenom dioptrickou hodnotu astigmatické diference, ale i polohu osy korekčního cylindru. Při nesprávné poloze osy vzniká totiž nový astigmatismus v nové ose.

Předpokladem předpisu správné korekce je pečlivé objektivní vyšetření každého oka zvlášť. Pro pacienta samotného není důležitá optimální korekce každého oka zvlášť, ale pohodlné, komfortní vidění oběma očima. Proto musí po objektivním vyšetření následovat vyšetření subjektivní, jehož výsledek je důležitý pro výslednou korekci.

4.5. Anisometropie

4.5.1. Charakteristika anisometropie

Anisometropie je stav, kdy refrakce obou očí není stejná. V malém stupni se vyskytuje velmi často a ve vyšším stupni ji najdeme hlavně u myopií. Anisometropie je spojena s poruchou binokulárního vidění, při kterém vzniká alternující forma vidění – oči se ve vidění střídají. Někdy však vzniká i monokulární vidění, při kterém na slabším, nepoužívaném, oku dochází k tупozrakosti a později i k úchylce oka zevně.

Každý rozdíl 0,25 D v refrakci působí 0,5% rozdílu ve velikosti obou sítincových obrazů – aniseikonii. Přičemž 5% rozdíl je přibližně horní hranice, která se dá ještě snést. Snaha o fúzi obrazů vyvolává u vyšších rozdílů astenopické obtíže. Velikost sítincového obrazu je závislá na refrakci oka – dioptrická aniseikonie, a na hodnotě brýlové čočky, její poloze a sklonu – brýlová aniseikonie. Aniseikonie odpovídá za mlhavé vidění, astenopické potíže a problémy v binokulárním a prostorovém vidění.
Anisometropie působí problémy při akomodaci, kdy dochází k boji mezi optimální akomodací jednoho a druhého oka. Při malém rozdílu se oči střídají.

4.5.2. Rozdělení anisometropie

Anisometropii rozdělujeme na hypermetropickou, myopickou, smíšenou a astigmatickou. Zvláštním typem je anisometropie latentní, nebo relativní, kdy optické elementy určující refractions obou očí a zvláště předozadní délka oka, mají různou hodnotu. Ale celkový poměr mezi lomivostí a délku očí je správný.

4.5.3. Korekce anisometropie

Při léčbě anisometropie by bylo ideální předepsat plnou korekci pro každé oko. Prakticky to ale není možné.Překážkou jsou vady korekčních skel, které mění velikost obrazu a při pohledu periferii mají prismatický účinek. Prakticky předepsat plnou korekci je možné jen u dětí do 12 let. U starších pacientů bývá snášen rozdíl maximálně 2 až 4 D.

U myopii s vyšší anisometropii se většinou na dálku plně koriguje brýlovou čočkou jen jedno oko, a druhé se podkoriguje na dobré vidění do blízka. Při předpisu kontaktních čoček se neprojevuje při pohledu stranou prismatický účinek jako u skel. Zvětšení obrazu na sítnici je však u myopie větší a u hypermetropie menší než při brýlové korekci. U anisometropie vyšší než 2,0 D není vhodné předepisovat bifokální brýle. Neboť při pohledu dolů vzniká nežádoucí prismatický efekt, občas i dvojité vidění.

4.6. Afakie
4.6.1. Charakteristika afakie

Afakie je stav označující chybění čočky v oku. K tomuto stavu dochází nejčastěji po operaci šedého zákalu – katarakty, po úrazech, ale může být i vrozenou vadou.

Emetropické oko se stává po odstranění čočky silně hypermetropické. Paralelní paprsky přicházející z nekonečna se zobrazí až 31 mm za rohovkou, z čehož vyplývá, že je to až 7 mm za sítnici, co odpovídá přibližně + 20,0 D. V brýlové obrubě to bude vzhledem ke vzdálenosti jen + 10,0 D. Protože je vyloučena akomodace, musíme pacientovi předepisovat i druhé brýle pro práci na blízko.

4.6.2. Korekce afakie

Je třeba si uvědomit, že afakické oko vykorigované brýlemi na normální zrakovou ostrost je pro binokulární vidění při zdravém druhém oku nepotřebné. Mezi sítnicovými obrazy těchto očí je totiž 33% rozdíl. Při korekcí kontaktními čočkami se tento rozdíl udává okolo 10%.

V dnešní době se už výlučně používá ke korekci afakie intraokulární čočka. Při jedné operaci se zároveň odstraní čočka původní a na její místo se vloží intraokulární čočka. Tím se úplně vyruší aniseikonie a zorné pole zůstane neporušené.
5. Možnosti korekce refrakčních vad

Lidé s refrakční vadou si v dnešní době mohou sami zvolit, jaké pomůcky použijí ke korekci své refrakční vad. Jestli vyберou korekci pomocí brýlí či kontaktních čoček, nebo se svěří do rukou lékařů a podstoupí chirurgický zákrok.

5.1. Brýlové obruby a kontaktní čočky

Samotné rozhodování daného člověka je ovlivněno mnoha individuálními vlastnostmi osobnosti. Jeho momentální životní situaci, dostupnosti refrakčních a kontaktologických center v daném regionu.

Osobnost každého člověka je ovlivněna mnoha vnitřními i vnějšími okolnostmi, sociálním a kulturním prostředím.

Dnes brýlové obruby a kontaktní čočky plní nejen funkci korekční, ale také estetickou. Máme tedy na trhu dvě významné vzájemně se konkurující korekční pomůcky.

Já se zde jen krátce zmíním o možnýchkomplikacích spojených s nošením brýlí či kontaktních čoček. A rozeberu optické aspekty těchto korekčních pomůcek.

5.1.1. Komplikace způsobené brýlovými obrubami

Jednou z hlavních komplikací jsou **alergické reakce** na složky obsažené v brýlových obrubách. Je to především alergie na nikl, proto se dnes více používá legovaná ocel a titán. Řešením může být použití plastové brýlové obruby.

Dalším velkým problémem jsou **otlaky** v místě styčných ploch brýlové obruby. A to především v místě dotyku sedel s kůži. Tato komplikace může být řešena několika

Při pádech a nejrůznějších úrazech nezřídka dochází k poranění kůže nebo oči prasklou obrubou či skly. Zabráníme tomu výběrem vhodných materiálů obrub i čoček. U minerálních čoček využíváme možnosti tvrzení.

5.1.2. Komplikace spojené s nošením kontaktních čoček

Téměř u každého nositele kontaktních čoček nacházíme určité „běžné“ změny, které jsou fyziologickou reakcí rohovky na změněné podmínky. Jsou různého rozsahu v závislosti na typu použité kontaktní čočky a na režimu nošení.

Mluvime-li o komplikacích, jedná se o funkční či fyzičcké poškozeni integrity zevního segmentu oka. Nejúčinnějším opatřením proti komplikacím je prevence. U každého pacienta je nutno individuálně zvolit optimální typ kontaktní čočky, režim nošení a péči.

Mudr. Pavel Rezek je rozděluje komplikace do následujících kategorií:

1. Mechanická poškození (poškození způsobené pacientem, poškození způsobené čočkou)
2. Zánětlivé neinfekční komplikace (Gigantopapilární konjunktivitida, horní limbální keratitida, pseudoherpetická keratitida, alergická kontaktní konjunktivitida)
3. Zánětlivé infekční komplikace (rohovkový vřed, acantamoebová keratitida)
4. Snížení přívodu kyslíku k rohovce (neovaskularizace, edém rohovky)
5.1.3. Optické hledisko

Mezi korekci brýlovým sklem a kontaktní čočkou existují určité rozdíly, které pak např. ovlivňují: zorné pole, velikost sítnicového obrazu, akomodaci, konvergenci, apod.

1. Brýlové sklo umístěné v brýlové obrubě je vzdálené od rohovky obvykle 12 až 15 mm. Naproti tomu kontaktní čočka leží přímo na rohovce.

Obr. č. 15
Zorné pole u korekce spojnou čočkou
Velikost sítnicových obrazů: Brýlová skla ovlivňují velikost obrazu na sítnici mnohem více než kontaktní čočky. Myop korigovaný brýlemi má sítnicový obraz menší, než kdyby byl korigovaný kontaktní čočkou. Hypermetrop korigovaný brýlemi má sítnicový obraz větší než stejný hypermetrop korigovaný kontaktní čočkou. Rozdíl ve velikosti závisí na velikosti ametropie. Čím je ametropie těžší, tím je i tento rozdíl větší.

Akomodace: Existují rozdíly v akomodační zátěži mezi okem emetropickým a okem ametropickým. Závisejí na velikosti ametropie a na vzdálenosti korekční pomůcky od hlavních bodů oka. Krátkozraký má akomodační zátěž menší než dalekozraký. Myopové musí na stejnou vzdálenost akomodovat při pohledu přes kontaktní čočku více než při pohledu přes brýle. U hypermetropů je to obrácené, tedy: na stejnou vzdálenost musí při pohledu přes kontaktní čočku akomodovat méně než při pohledu přes brýle. Celkové rozdíly jsou malé, projevují se především u myopů korigovaných kontaktiními čočkami při děle trvající práci na blízko.

Konvergence: Při pohledu na blízko přes na dálku centrovaná brýlová skla dochází k vedlejšímu prizmatickému účinku. U spojních čoček s bází zevně a u rozpůlných čoček s bází dovnitř. Tudíž myopové korigovaní brýlemi musí konvergovat více a hypermetropové méně. U kontaktních čoček k žádnému prizmatickému účinku nedochází.
Anizometropie: Při korekci brýlovými skly dochází k potížím binokulárního vidění. Při korekci kontaktními skly jsou odstraněny potíže s nestejným zorným polem, odpadají potíže akomodace, konvergence a anizeikonie. Vezeme-li v potaz pouze anizeikonii není vždy korekce kontaktními čočkami opticky lepší. U ametropie z nestejné délky obou očí je opticky lepší varianta s brýlovou korekcí a u ametropie z nestejné lomivosti obou očí je opticky lepší korekce kontaktními čočkami.

5.2. Chirurgická korekce refrakčních vad

Úprava refrakční vady běžnými korekčními pomůckami, jako jsou brýle nebo kontaktní čočky, neposkytuje vždy požadovaný komfort v profesním životě, sportovním vyžití a v neposlední řadě i v kosmetickém ohledu. Vysoká úroveň lékařské techniky a zdravotnického personálu dovoluje dnes úspěšně chirurgicky korigovat i složité refrakční vady, a brýle tak definitivně odložit.

Obor, který se zabývá problematikou chirurgické korekce refrakčních vad oka, se nazývá refraktivní chirurgie. V posledním desetiletí je tento obor v popředí zájmu odborné i laické veřejnosti. K úpravě refrakčních vad používá zákroků jak na povrchu oka (rohovce, skléře), tak v nitru oka (nitrooční čočky) a případně i kombinovaných zákroků. Jedná se většinou o zákroky nadstandardní, které nejsou hrazeny zdravotními pojišťovnami. Jsou soustředěny do specializovaných refraktních center a vyžadují náročné technické a instrumentární vybavení.

Refraktivní zákroky na rohovce lze pro přehlednost dělit na laserové a chirurgické.

5.2.1. PRK

Zákrok se označuje jako fotorefraktivní keratectomie (PRK). Spočívá v oploštění přední plochy rohovky v centru (korekce krátkozrakosti) nebo v periférii (korekce dalekozrakosti).

Indikací k provedení PRK jsou nižší stupně refrakčních vad: myopie do -3,0 D a hyperopie do ±2 D. Stejného účinku k oploštění povrchu rohovky v ose astigmatismu využívá metoda fotoastigmatické keratectomie (PARK). Je indikována u astigmatismu do ±2,0 Dcyl.

Výhodou metody PRK je minimální zátěž pacienta peroperačně a dobrá a relativně rychlá stabilita pooperáční refrakce při správně zvolené indikaci (nižší stupně refrakčních vad). Nevýhodou je pooperáční dyskomfort, související s peroperačním snesením epitelu, riziko tvorby subepiteliálního zkalení rohovky, související s defektem Bowmanovy membrány, až jizvení (scar), spojeného s návratností vady. Je možná i ztráta nejlépe korigované zrakové ostrosti oproti předoperáční a poměrně dlouhodobá lokální aplikace steroidů po operaci s rizikem vzniku steroidního glaukому a šedého zákalu.

5.2.2. Lasik

Moderní excimer laserovou metodou je metoda lasik. Lasik probíhá ve dvou fázích. V první fázi se provádí parciální lamelární naříznutí rohovky (keratectomie) pomocí mikrokeratomu a jeho výsledkem je tvorba rohovkové lamely. Ve druhé fázi následuje laserová fotoablace stromálního lůžka excimerovým laserem.

Indikací k tomuto zákroku jsou vyšší stupně refrakčních vad: myopie od -3,0 do -10,0 D, hypermetropie od +3,0 do +5,0 D a astigmatismus nad ±2,0 D. Metoda lasik se stala dominantní metodou v korekci refrakčních vad pro rychlou a dobrou stabilitu a vysoký komfort pro pacienta. Výkon však vyžaduje drahé technologické vybavení a dovednost chirurga. Předností metody lasik je zachování neporušeného povrchového epitelu rohovky a Bowmanovy membrány (druhá vrstva rohovky) v optické ose. S tím souvisí minimalní pooperáční dyskomfort a bolestivost, rychlá zraková rehabilitace, dobrá stabilita pooperáční refrakce a minimalní riziko jizvení rohovky.
Je třeba zdůraznit fakt, že dobrým výsledkem není dosažení fyziologické zrakové ostrosti, tj. 5/5 bez korekce. Pacient může být spokojen i se zbytkovou vadou upravitelnou běžnými optickými pomůckami. Pro laserové zákroky není vhodný pacient s celkovým závažným onemocněním (autoimunitní choroby, poruchy imunity ve smyslu imunosuprese).

5.2.3. Lasek

Z dalších excimer laserových zákroků je nutné se zminit též metodu lasek (laser subepithelial keratomileusis), jako metodu přínosnou pro korekci nižších stupňů krátkozrakosti a astigmatismu. Jedná se v podstatě o modifikaci PRK, kdy se před vlastním laserovým výkonem epitel neodstraní, ale za pomoci 20% roztoku etylalkoholu jen šetrně srolová v potřebném rozsahu (8,5 mm). Vytvoří se tak epiteálání lamela spojená můstekm s ostatním epitelem rohovky, která se po vlastním laserovém zákroku reponuje do původní polohy a výkon je ukončen aplikací terapeutické kontaktní čočky (5 dní). Metoda lasek kombinuje výhody a eliminuje nevýhody metod PRK a lasik. V případě peroperačního poškození epiteálání lamely lze zákroko dokončít jako PRK. Výhodou této metody je malý pooperační dyskomfort, rychlejší obnova epitelu oproti PRK a nižší riziko peroperačních komplikací oproti lasiku.

5.2.4. Implantovaná (fakická) čočka

Tato metoda je nejvhodnější pro lidi s vysokým stupněm myopie a hypermetropie mající tenkou rohovku, na které není možný laserový zákrok.

Výhody této metody jsou, že se dosahuje velmi přesných výsledků i u vysoké myopie a hypermetropie.

Implantované čočky jsou velmi jemné umělé čočky, které jsou uzpůsobené k trvalému umístění v oku. Operace se provádí ambulantně v místní nebo celkové anestezii na operačním sále. Čočka se umisťuje do přední komory mezi rohovku a duhovku. Může se umístit i na duhovku nebo do zadní komory mezi duhovku a vlastní čočku. Celá operace trvá přibližně 15 až 30 minut.
5.2.5. Refrakční výměna čočky (RLÉ)

Tato metoda je velmi podobná moderní operaci šedého zákalu. Operace se provádí ambulantně v dokonalém místním znecitlivění kapakami pod operčním mikroskopem na operačním sále. Operující zavádí do oka tunelovým otvorem v rohovce mikrochirurgické nástroje. Celý chirurgický zákrok trvá obvykle 15 až 30 minut.

Refrakční výměna čočky se doporučuje lidem starším 40 let. Protože mladší lidé mají většinou ještě zachovanou schopnost zaostřit na blízko pomocí vlastní čočky.

Obnova zraku i po tomto zákroku je rychlá. Už první den po operaci je vidění na velmi dobré úrovni, ale někdy je vlivem otoku oka rozmazané.

Tato metoda je nejvhodnější pro lidi s vysokým stupněm myopie a hypermetropie, nebo se známkami katarakty. Výhodou této metody je účinnost v širokém rozsahu myopie a hypermetropie, a také velká přesnost výsledku i u velmi vysokých vad.

5.2.6. Prelex

Tato metoda je vhodná pro lidi, kteří po 40. roku života potřebují korekci na dálku a zároveň dioptrie na blízko.

Výhodou této metody je, že je schopná zajistit vidění bez brýli do dálky i do blízka. Navíc trvale odstraňuje riziko vzniku šedého zákalu.

PRELEX - Prebyopic Lens Exchange je metoda podobná refrakční výměně čočky s implantací speciální multifokální nitrooční čočky. Po operaci může víc než 60% pacientů odložit brýle do dálky i do blízka. U 30% pacientů je nutné příležitostně použítí brýlí, např. při řízení auta v noci.

PRELEX není vhodný pro všechny pacienty. Podmínkou uspěšnosti PRELEX je klidová šifra zornice větší než 3 mm, neboť pacienti s velmi úzkou zornicí nejsou
schopni využít lámové plochy nitrooční multifokální čočky umístěné mimo její střed. Tato metoda též není vhodná pro pacienty trpící jinými očními chorobami. Přizpůsobení se novému stavu je podminěné operací obou očí. Dokonalá adaptace na nový stav může trvat až 3 měsíce.

5.2.7. DTK

Tato metoda je nejvhodnější pro lidi s nízkým stupněm hypermetropie a s vysokým stupněm astigmatismu.

Výhodou této metody je, že centrální oblast rohovky zůstane po zákroku neporušená. A také to, že se jedná o neinovazivní zákrok bez řezu do rohovkové tkáně.

DTK - Diode Laser Thermokeratoplasty je technicky jednoduchý laserový chirurgický zákrok.

Celková doba aplikace laserové energie je kratší než 2 min a celá operace trvá přibližně 5 až 15 minut. Ale vzhledem ke lepší účinnosti a stabilitě výsledku se dneska doporučuje u hypermetropických pacientů použít raději metodu LASIK.

5.2.8. Astigmatická keratotomie

Tato metoda je vhodná pro lidi s různým stupněm astigmatismu. Během zákroku operatér snižuje nadměrné vyklenutí rohovky pomocí incizí – řezů diamantovým nožem. Délka, počet a místo incizí v periferii rohovky určují výsledný dioprický efekt operace. Operace se provádí ambulantně v místním znecitlivění pod operačním mikroskopem.

Výhodou této metody je, že je účinná v širokém rozsahu astigmatismu a může být kombinována s laserovými i nelaserovými technikami refrakční chirurgie.
5.2.9. ICR

5.2.10. Intrakorneální čočky

V iniciálním stadiu je implantace syntetických intrakorneálních čoček. Speciální umělá čočka je umístěna do stromálního lůžka rohovky po vytvoření rohovkové lamely pomocí mikrokeratomu (podobně jako u metody lasík). Pro výrobu čoček se používají biokompatibilní materiály s vysokým refrakčním indexem - polysulfón nebo hydrogel. Tyto unikátní hydrogely jsou propustné pro kyslík a živiny a mají identický refrakční index jako rohovka, čímž snižují riziko rozptylu světla. Vysoký obsah vody (78 %) zajistí dokonalou adhezi rohovkové lamely. Intrakorneální čočky mají průměr 4,5 až 5,5 mm s efektivní šíří optické zóny větší než 5,25 mm a tloušťkou od 30 do 60 mikrometrů v centrální části, s čímž souvisí nižší riziko haló efektu a deformace obrazu. Jeví se jako vhodné především pro korekcí dalekozrakostí (do ± 6,0 D).

Nespornou výhodou této metody je její reverzibilita (extrakce čočky po odklopení rohovkové lamely), regulovatelnost (změna polohy čočky nebo její výměna) a stabilita výsledné refrakce. Nevýhodou je možný vznik jizvy se ztrátou transparence rohovky a možnými negativními optickými fenomény. S touto technikou jsou dosud malé zkušenosti.
6. Věk a refrakční vady

Zrak je zdrojem více než 80% všech pro nás důležitých informací. Na rozdíl od ostatních smyslů, které nám slouží již bezprostředně po narození, získává dítě se zdravým okem i mozkem prostřednictvím zraku jen minimální informace. Je to dáno tím, že nevidíme okem jako takovým, ale mozkem. Mozkem v oku je jeho předsunutá část sítnice, která je prostřednictvím zrakového nervu ve stálem spojení s vyššími zrakovými centry. Podobně jako se zdravé dítě musí naučit číst a psát, tak se také musí se zdravým okem naučit vidět. Tento proces je velmi náročný a zdravému dítěti trvá 7 až 8 roků, než se naučí dobře vidět oběma očima. S tímto viděním, které dítě získá do této doby, musí vystačit po celý život.

6.1. Vývoj vidění

Při narození není u dítěte ukončen vývoj očí po stránce funkční ale ani anatomické. Vývoj vidění je velmi složitý a komplexní proces, který prochází fázi aktivní a pasivní.

Předpokládá se, že rozhodující vliv na refrakci oka mají genetické, hereditární vlivy. Potvrzují to výsledky výzkumu dvojčat. Ale expresivitu genů ovlivňují pravděpodobně i zevní vlivy. Zatímco myopie bývá zjištěna asi u 3% pomocných zaměstnanců, mezi studenty to bývá více než 30%. Zkalení optických prostředí oka
přispívá ke vzniku myopie, naopak přerušení optických podnětů (pobyt ve tmě, stavy po extrakci čočky) obvykle navozuje hypermetropii.

Schopnost živých organismů udržet refrakci oka co nejbližší ideálnímu stavu – emetropii – označujeme jako emetropizaci. Tento proces zajišťuje až u 97% obyvatelstva dobré vidění do dálky i do blízka (± 4 D).

Refrakce se během života mění. Relativně stabilní období mezi 20. a 50. rokem předchází a následují dvě za sebou jdoucí fáze, při nichž se lomivost vzhledem k dané délce oka plynule nejprve snižuje a potom zvyšuje. A s přibývajícím věkem se mění i zraková ostrost. Po narození pokračuje přes narůstání předozažní délky oka, hypermetropizace, a to až do osmého roku života. Po osmém roce je hypermetropizace vystřídána myopizací, která trvá asi do 20 let. Mezi čtyřicátým a pětadesátým rokem probíhá opět hypermetropizace, následována druhou fázi myopizace. Tento průběh lze sledovat na Slataperově křivce pro indexovou myopii (viz obr. č. 17).

6.1.1. Dětství

Při narození jsou prakticky všechny oči dalekozraké (2,5 – 3,0 D). Rozhodujícím prvkem pro určení refракce dětského oka je narůstající předozažní délka bulbu. Růst oka probíhá ve dvou fázích. V první rychlé infantilní fázi narůstá délka dětského oka u 18 mm na 23 mm. Tato fáze probíhá do tří let věku dítěte. Růst oka o 5
mm by navozoval myopií 5,0 D, kdyby nebyl kompenzován změnami lomivosti rohovky a čočky. Druhá pomalá juvenilní fáze probíhá od 3 do 14 až 16 let. A to narůstáním předozadní délky oka asi o 0,1 mm za rok. Během této fáze naroste odo asi o 1,0 mm což odpovídá myopizaci asi 3,0 D. tento proces vede k myopizaci původně hypermetropického oka. Průměrná hypermetropizace donošeného novorozence bývá 3,0 D.

Podobně jako oko roste i rohovka. Její průměr narůstá během prvního roku života z asi 9,5 mm na 11 až 12 mm. Dosahuje téměř velikosti rohovky dospělého člověka. Zároveň s narůstáním průměru se rohovka ztenčuje a oplošťuje. Podle Eustina klesá lomivost rohovky v 6 měsících z 51,1 D na 42,2 D.

Čočka roste po celý život. U novorozence je téměř kulovitá a má průměr asi 4 mm. V průběhu prvního roku života se velikost čočky zdvojnásobí. Následně dochází k oploštění přední i zadní plochy čočky. Její lomivost klesá podle Berkeho z asi 33 D při narození na přibližně 19 D u dospělého.

Ani po ukončení růstu těla kolem dvacátého roku života nezůstává refrakce oka konstantní.

6.1.2. Stáří

Oko i mozek podléhají ve stáří anatomickým i fyziologickým změnám, které ovlivňují kvalitu vidění. Snižuje se zraková ostrost, kontrastní citlivost, citlivost na světlo, barevné vidění a prostorové a hloubkové vidění. Na tyto změny podminěné stářím je nutno se dívat jako na změny normální. Někdy je velmi těžké diferencovat, kdy už přecházejí ve změny patologické.

Od 40 let díky snížené lomivosti čočky nastává období hypermetropizace, které sahá až do 70 let života. Tato fáze vede ke změlčení přední komory, podminěné zvětšením objemu čočky. Ve vyšším věku dochází rovněž ke zvýšené lomivosti optického systému oka tím, že rohovkové poloměry zakřivení se zvyšují a rohovka se stává strmější. Poklesem tonu horního víčka se sníží tlak na rohovku a rohovka se přibliží sférické ploše.

Během stárnutí dochází v sítnici ke ztrátě smyslových receptorů. Zvláštní význam má senilní degenerace makuly, při které je pozorována ztráta receptorů
v makule, která čini každý rok života 10 – 20 čípůk. Vliv na funkční schopnost mají i změny v pigmentovém epitelu sitnice, který pak nedostatečně zajišťuje receptorové buňky. Ztráty smyslových buněk v periferii jsou příčinou problémů orientací v prostoru.

Příznakem stárnutí duhovkové tkáně je stařecká míóza a snížená schopnost zornice reagovat na změny v osvětlení. Příčinou jsou jednak změny ve stromatu duhovky, která ztrácí svou elasticitu a jednak změny ve svalovině duhovky, která špatně reaguje na nervové impulzy. Úzká zornice vede k prohloubení hloubkové ostrosti, se kterou dochází ke zhoršení rozlišovací schopnosti. Je tím ovlivněna schopnost rozpoznat ostrost předpokládaných značek na optotypech.

Úzká zornice vylučuje chyby optického systému oka, čímž pozitivně ovlivňuje kvalitu zobrazování. Ale na druhou stranu dochází ke sníženému osvětlení sitnice.

Čočka podléhá ve stáří změnám, které se projevují presbyopií a kalením čočky. Čočkové proteiny, které se v mládi prezentují jako polypeptidy, se mění ve stáří ve větší bílkoviny, tzv. krystaliny. Dochází k porušení homogenního prostředí čočky, zvýšené absorpci světla a jeho rozptylu. Výsledkem je zhoršené vidění.
7. Výzkum

7.1. Úvod

Při zadání této práce jsem přemýšlela nad tím, jak pojmout výzkumnou část. Chtěla jsem se zaměřit na to, kolik procent lidí v jednotlivých věkových kategoriích má refrakční vadu. Od začátku mi bylo jasné, že výzkum nemůžu směřovat do očních ordinací, protože tam už chodí pouze lidé, kteří mají se zrakem potíže. Postupně jsem ze svých cílů byla nucena slevit, neboť jsem si uvědomila, kolik bych musela shromáždit respondentů, kdybych chtěla postihnout všechny věkové kategorie.

Největší vztah mezi věkem a refrakčními vadami je u presbyopic. Ale nevěděla jsem, kde bych sehnala tak velké množství seniorů. Po poradě se svým konzultantem jsem přišla s návrhem zaměřit se na dětskou a dospívající populaci. Vybrala jsem si dvě věkové kategorie. První skupinu tvořili žáci pátých a šestých tříd na základních školách. Prvotním záměrem bylo zaměřit se na co nejmladší děti, ale musela jsem zároveň přihlédnout k faktu, aby byly schopny vyplnit dotazník samy a smysluplně. Při volbě jsem se radila s učitelkami na základních školách. Ve druhé kategorii byli studenti třetích a čtvrtých ročníků středních škol.

Na radu MUDr. Jany Richterové jsem dotazník doplnila o několik subjektivních otázek. Porovnání výsledků z těchto otázek mezi výše zmíněnými věkovými kategoriemi vyšlo velmi zajímavě.
7.2. Vyšetřované osoby a metodika

Dotazník byl vytvořen tak, aby k němu nebyly potřeba žádné doplňující informace a aby byl srozumitelný i dětem v 5. třídě. Spolupracovala jsem s učiteli, kteří na těchto školách pracují. Učitelé byli instruováni, aby dotazníky dětem rozdali, ale jejich vyplňování nechali až na doma. Některý den další den je měly odevzdat zpět učiteli. Tím, že jsem zvolila tento postup, se mi spousta dotazníků nevratila. Ale zase na druhou stranu jsem chtěla, aby respondenti měli dostatečný klid na vyplňování, a tím se získané informace co nejvíce přibližily skutečnosti.

Na základních školách dotazník vyplnilo celkem 124 dětí ve věku 10 až 12 let. Z toho bylo 69 dívek a 55 chlapců. Ze středních škol se mi vrátilo 126 dotazníků od respondentů ve věku 18 až 20 let. Na středních školách odpovídal 93 žen a 33 mužů.
7.3. Rozbor výsledků

1. Nosíte brýle nebo kontaktní čočky?
 □ brýle
 □ kontaktní čočky
 □ brýle i kontaktní čočky
 □ nic (přeskočte na 13. otázku)

Podle dotazníků, které jsem dostala vyplněné zpět je procento dětí na základních školách, které nosí brýle velmi malé. Ze 124 respondentů uvedlo pouze 25, že používá některou korekční pomůcku. U všech to byly brýle, pouze jedna divka uvedla, že na sport používá navíc i kontaktní čočky.

ZŠ:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nic</td>
<td>80%</td>
</tr>
<tr>
<td>Brýle</td>
<td>19%</td>
</tr>
<tr>
<td>Brýle i kontaktní čočky</td>
<td>1%</td>
</tr>
</tbody>
</table>

ZŠ: Nosíte brýle nebo kontaktní čočky?

Graf č. 1
Na středních školách je procento studentů s refrakční vadou daleko větší než na školách základních. 53 respondentů uvedlo, že nosí brýle nebo kontaktní čočky. Z toho většina (32 respondentů) uvedla, že nosí pouze brýle, 6 jich používá výhradně kontaktní čočky a 15 z nich používá obě tyto korekční pomůcky.

SŠ:

<table>
<thead>
<tr>
<th></th>
<th>58%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nic</td>
<td>25,4%</td>
</tr>
<tr>
<td>Brýle</td>
<td>4,7%</td>
</tr>
<tr>
<td>Kontaktní čočky</td>
<td>11,9%</td>
</tr>
</tbody>
</table>

SŠ: Nosíte brýle nebo kontaktní čočky?

Graf č. 2

Z výsledků vyplývá, že studenti na střední škole už nepoužívají ke korekci své refrakční vady výhradně brýle. Menší polovina ze studentů s refrakční vadou zaškrtila, že používá kontaktní čočky. Dokonce 6 studentů brýle vůbec nepoužívá a nosí pouze kontaktní čočky.
2. Počet dioptrií ve Vašich brýlích? (prosím, uveďte znaménka +/-)

P oko:
L oko:

Ač jsem u této otázky respondenty prosila, aby nezapomněli vyplnit u počtu dioptrií znaménko +/-, mnozí tak stejně neudělali. Tyto odpovědi jsem proto do výsledků nezahrnula. Žádný respondent neuvěděl cylindrickou složku své refrakční vady.
Děti na základních školách nejčastěji mají v brýlích -1 až -2 dioptrie. Převažovali myopové, kterých bylo 69 %. Zbylých 31 % respondentů byli hypermetropové.

<table>
<thead>
<tr>
<th>Dioptrie</th>
<th>-4,0</th>
<th>-3,5</th>
<th>-3,0</th>
<th>-2,75</th>
<th>-2,5</th>
<th>-2,25</th>
<th>-2,0</th>
<th>-1,75</th>
<th>-1,5</th>
<th>-1,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dioptrie</th>
<th>-1,0</th>
<th>-0,75</th>
<th>-0,5</th>
<th>-0,25</th>
<th>0</th>
<th>+0,25</th>
<th>+0,5</th>
<th>+0,75</th>
<th>+1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dioptrie</th>
<th>+1,25</th>
<th>+1,5</th>
<th>+1,75</th>
<th>+2,0</th>
<th>+2,5</th>
<th>+3,0</th>
<th>+3,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

ZŠ:

ZŠ: Počet dioptrií

49
Na středních školách myopie převládala ještě více. Dotazníky mi vyplnilo 82 % myopů a pouze 18% zůstalo na hypermetropy.

SŠ:

<table>
<thead>
<tr>
<th>Dioptrie</th>
<th>-7,0</th>
<th>-6,0</th>
<th>-5,5</th>
<th>5,0</th>
<th>-4,5</th>
<th>-4,0</th>
<th>-3,5</th>
<th>-3,0</th>
<th>-2,75</th>
<th>-2,5</th>
<th>-2,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dioptrie</th>
<th>-2,0</th>
<th>-1,75</th>
<th>-1,5</th>
<th>-1,25</th>
<th>-1,0</th>
<th>-0,75</th>
<th>-0,5</th>
<th>-0,25</th>
<th>0</th>
<th>+0,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dioptrie</th>
<th>+0,5</th>
<th>+0,75</th>
<th>+1</th>
<th>+1,25</th>
<th>+1,5</th>
<th>+1,75</th>
<th>+2</th>
<th>+2,5</th>
<th>+3</th>
<th>+3,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
SŠ: Počet dioptrií

Graf č. 5

SŠ:

Myopové 82%

Hypermetropové 18%

Graf č. 6
3. *Nosíte raději brýle nebo kontaktní čočky? A proč?*

Tato otázka měla smysl pro ty respondenty, kteří v 1 otázce odpověděli, že používají brýle i kontaktní čočky. Na základní škole to byla pouze jedna dívka, která uvedla: „Raději nosím kontaktní čočky, protože mi brýle vadí ve sportu.“

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brýle</td>
<td>20%</td>
</tr>
<tr>
<td>Kontaktní čočky</td>
<td>80%</td>
</tr>
</tbody>
</table>

Graf č. 7

Nositelé kontaktních čoček, kteří ale přesto radši nosí brýle, jako důvod své volby uvedli:

„Raději nosím brýle, protože po čočkách mi slzi oči.“

„Brýle – kvůli pohodlí.“

„Nosím brýle, kontaktní čočky musím mít jen kvůli sportu.“

Ti respondenti, kteří používají obě korekční pomůcky, ale preferují kontaktní čočky, za nejčastější důvod uvedli pohodli. Navíc se tam vyskytovali ještě tyto odpovědi:

„Nic mi nepřekáží na nose, vidím i do stran.“
„Jsem sportovně založená a brýle mi překážejí.“
„Nic mě netlačí na nose a je to hezčí.“
„Nosím je již od 7 let a nedokážu si bez nich život představit.“
„Jsou pohodlnější při sportu.“

K této otázce se často vyjadřovali i respondenti, kteří nosí pouze brýle. Ti samozřejmě ve 100% udávali, že raději nosí brýle. Jako důvod udávali to, že kontaktní čočky ještě nevyzkoušeli, že mají strach si šáhnout do oka a také vysokou cenu kontaktních čoček. Pro některé jsou brýle pěkným módním doplňkem.

I přes malý počet respondentů, kteří nosí obě korekční pomůcky, lze stanovit určité závěry. Většina mladých lidí ještě nemá zkušenosti s kontaktními čočkami. Ale když už se jednou rozhodnou vyzkoušet je, tak si je snadno oblibí. Tento fakt potvrzuje i skupinka 6 respondentů, kteří uvedli, že nosí pouze kontaktní čočky a brýle už vůbec nechtějí.
4. **V kolika letech jste dostali první brýle?**

Pomocí této otázky jsem chtěla zjistit, v kolika letech si děti či mladí lidé obvykle jdou pro první brýle.

Děti na základních školách uvedly tyto různé odpovědi:

ZŠ:

<table>
<thead>
<tr>
<th>Věk</th>
<th>3 roky</th>
<th>5 let</th>
<th>7 let</th>
<th>8 let</th>
<th>9 let</th>
<th>10 let</th>
<th>11 let</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Graf č. 8

Oba respondenti, kteří uvedli, že první brýle dostali ve 3 letech, napsali dodatek, že to bylo z důvodu léčby šilhání.

Nejčastější odpovědi byly 7, 8 nebo 10 let. Děti tedy ve většině případů dostávají své první brýle v období 2. až 3. třídy ve škole.
Na středních školách byly odpovědi rozmanitější. Navic se muselo projevit, proč je na středních školách daleko více studentů s brýlemi či kontaktními čočkami než na školách základních.

SŠ:

<table>
<thead>
<tr>
<th>Věk</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet odpovědí</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Graf č. 9

V této věkové skupině už byly výsledky daleko zajímavější. Nejčastěji se mladí lidé poprvé setkávají s brýlemi v 14, 15 a 16 letech. Určitě se zde projevuje období puberty, vliv hormonů, růst těla a dospívání. Může to být i z důvodu přechodu ze základní školy na školu střední, a tím i změna pracovních nároků na oči.
5. Jak se Vám mění počet dioptrií ve Vašich brýlích?

☐ zvětšuje se
☐ zmenšuje se
☐ nemění se

Procentuální rozložení odpovědí bylo v obou věkových kategoriích velmi podobné, proto jsem se rozhodla vyhodnotit tuto otázku dohromady pro obě skupiny. Tudíž z 78 respondentů jich 48 uvedlo, že se jim jejich refrakční vada zvětšuje. 25 odpovědělo, že se jim počet dioptrií nemění, a pouze 5 respondentů zaškrtlo, že se jim vada zmenšuje.

<table>
<thead>
<tr>
<th>Odpověď</th>
<th>Procentová frekvence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zvětšuje se</td>
<td>61,5%</td>
</tr>
<tr>
<td>Zmenšuje se</td>
<td>6,5%</td>
</tr>
<tr>
<td>Nemění se</td>
<td>32%</td>
</tr>
</tbody>
</table>

Graf č. 10
6. *Nosíte brýle celý den?*

☐ ano
☐ ne

Počet odpovědí u jednotlivých možností se mezi středoškoláky a dětmi navštěvujícími základní školu nelišil. Z celkového počtu 78 respondentů jich 49 odpovědělo, že brýle celý den nenosí.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
<td>37%</td>
</tr>
<tr>
<td>Ne</td>
<td>63%</td>
</tr>
</tbody>
</table>

Graf č. 11
7. Jak často navštěvujete svého očního lékaře?

☐ alespoň 1x za rok
☐ po dvou letech
☐ po třech letech
☐ méně často

Všichni respondenti ze základních škol na tuto otázku odpověděli shodně. Všech 25 dětí s refrakční vadou navštěvuje svého očního lékaře minimálně jednou za rok.

ZŠ:

| Alespoň 1x za rok | 100% |

Na středních školách se už vyskytovaly různé odpovědi, přesto stále většina (38 respondentů) svého lékaře navštěvuje alespoň jedenkrát ročně. Druhá nejčastější odpověď byla „méně často“. Vyskytovala se v 9 případech. 5 studentů napsalo, že navštěvuje svého očního lékaře jednou za dva rok. Odpověď „po 3 letech“ se vůbec nevyskytla.

SŠ:

Alespoň 1x za rok	72%
Po 2 letech	11%
Méně často než po 3 letech	17%

Graf č. 12
8. Radi Vám rodiče při výběru brýlové obruby?

□ ano
□ ne

Pomocí této otázky jsem chtěla zjistit, jak moc se respondenti nechají při výběru brýlí ovlivňovat svými rodiči. Předpokládala jsem velký rozdíl mezi dětmi ze základních škol a mezi studenty středních škol.

Na základních školách téměř všichni respondenti zatrhli odpověď „Ano“. Pouze 4 uvedli, že se při výběru brýlové obruby nenechají ovlivnit rodiči.

ZŠ:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
<td>84%</td>
</tr>
<tr>
<td>Ne</td>
<td>16%</td>
</tr>
</tbody>
</table>

ZŠ: Radi Vám rodiče při výběru brýlové obruby?

Graf č. 13

SŠ:

<table>
<thead>
<tr>
<th>Ano</th>
<th>53%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>47%</td>
</tr>
</tbody>
</table>

SŠ: Radi Vám rodiče při výběru brýlové obruby?

Graf č. 14
9. **Nosíte brýle, které Vám lékař předepsal?**

- □ ano
- □ ne

Ve svém okolí se často setkávám s lidmi s refrakční vadou, kteří brýle nesou, protože jim z nějakého důvodu vadí. Proto jsem tuto otázku umístila i do svého dotazníku. Bylo až překvapující, kolik dětí na základních školách by mělo brýle nosit a nesou je. Celkem 10 z 25 dotázaných odpovědělo, že nesou brýle, ač jim je lékař předepsal.

ZŠ:

<table>
<thead>
<tr>
<th>ZÁPIS</th>
<th>PROCENTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
<td>60%</td>
</tr>
<tr>
<td>Ne</td>
<td>40%</td>
</tr>
</tbody>
</table>

Graf č. 15
Na středních školách už byla situace jiná. Počet jedinců, kteří chodí bez korekce své refrakční vady byl 12, což představovalo 23% z celkového počtu dotázaných.

SŠ:

<table>
<thead>
<tr>
<th>Ano</th>
<th>77%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>23%</td>
</tr>
</tbody>
</table>

SŠ: Nosíte brýle, které Vám lékař předepsal?

Graf č. 16

Rozdíl mezi těmito věkovými kategoriemi může být způsoben tim, že jsem dotazníky předložila na středních školách, které jsou studijně velmi náročné a kladou na své studenty vysoké požadavky. Proto si student gymnázia nemůže dovolit nepřečíst učitelovy poznámky na tabuli.
10. Z jakého důvodu brýle nenosíte?

- vadí mi z estetického hlediska
- jsou nepohodlné
- vadí mi při sportu a práci
- jiný důvod

<table>
<thead>
<tr>
<th>Důvod</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vadí mi z estetického hlediska</td>
<td>31</td>
</tr>
<tr>
<td>Jsou nepohodlné</td>
<td>22</td>
</tr>
<tr>
<td>Vadí mi při sportu a práci</td>
<td>36</td>
</tr>
<tr>
<td>Jiný důvod</td>
<td>11</td>
</tr>
</tbody>
</table>

Graf č. 17
V kolonce jiný důvod byly uvedené následující odpovědi:

„Ještě si na brýle zvykám.“

„Při přechodu ze zimy do tepla se zamlžuji.“

„Lépe vidím bez brýlí, mám více očních vad.“

„Jsou staré a padají.“
11. Jak podle Vašeho názoru, ovlivňují brýle Váš vzhled?

□ pozitivně
□ negativně
□ nepociťuji změnu

Tuto otázkou jsem chtěla zjistit, kolik školáků považuje brýle jako neestetickou zdravotní pomůcku a kolik jich je vnímá jako módní doplněk. Na základních školách děti berou brýle spíše jako nutné zlo a myslí si, že jsou neestetické. 14 dotázaných odpovědělo, že jim brýle ovlivňují vzhled negativně. Pouze 6 žáků vnímá brýle jako pozitivní doplněk a 5 nepociťuji změnu oproti vzhledu bez brýlí.

ZŠ:

<table>
<thead>
<tr>
<th>Pozitivně</th>
<th>24%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negativně</td>
<td>56%</td>
</tr>
<tr>
<td>Nepociťuji změnu</td>
<td>20%</td>
</tr>
</tbody>
</table>

Graf č. 18

SŠ:

<table>
<thead>
<tr>
<th>Pozitivně</th>
<th>39%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negativně</td>
<td>25%</td>
</tr>
<tr>
<td>Nepociťuji změnu</td>
<td>36%</td>
</tr>
</tbody>
</table>

SŠ: Jak podle Vašeho názoru, ovlivňují brýle Váš vzhled?

![Graf č. 19](image-url)
12. Uvažujete do budoucna o laserové operaci Vašich očí?

□ ano
□ ne
□ nevím

V této otázce jsem byla zvědavá, jestli se mladí lidé už dopředu zajímají o možnost chirurgické korekce své refrakční vady a jestli o ní do budoucna uvažují. U dětí na základních školách je tento dotaz jistě velmi předčasný, ale přesto 4 z nich uvedly, že o tomto zákroku do budoucnosti uvažují.

Procentuální zastoupení jednotlivých odpovědí bylo u obou věkových kategorií podobné, proto jsem vyhodnocení nerozdělovala.

<table>
<thead>
<tr>
<th>odpověď</th>
<th>procento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
<td>22%</td>
</tr>
<tr>
<td>Ne</td>
<td>59%</td>
</tr>
<tr>
<td>Nevím</td>
<td>19%</td>
</tr>
</tbody>
</table>

Graf č. 20
13. Máte ještě jinou oční vadu (šilhání, tupozrakost,...) nebo jste měli oční úraz? Jaký?

Na tuto otázku odpovírali i ti respondenti, kteří nemají žádnou refrakční vadu. Přesto se odpovědi moc nesešlo. Ze 124 dotázaných dětí základních škol pouze 3 uvedly, že by měly ještě jinou oční vadu. Jejich odpovědi byly následující:

„Pouze kontroly 1 x ročně a to pro kontrolu pro mozkový nález a epileptický záchvat.“
„Strabismus, tupozrakost.“
„Dřív jsem špatně viděla na levé oko.“

Na středních školách už se vyskytlo více různých možností. Nejčastěji studenti uváděli, že měli v dětství tupozrakost (amblyopii). 4 studenti napsali, že jako děti šilhali, a jeden student trpí nystagmem.

<table>
<thead>
<tr>
<th>Oční vada</th>
<th>Počet odpovědí</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strabismus</td>
<td>4</td>
</tr>
<tr>
<td>Amblyopie</td>
<td>7</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>1</td>
</tr>
</tbody>
</table>

Dále se ještě vyskytovaly odpovědi:
„Chronický zánět spojivek.“
„Mám skvrnu na sítnici.“
„Páli mě oči od počítače.“
„Boli mě oči.“

Oční úraz ve svých dotaznicích vyplnili pouze 3 studenti, jejich odpovědi byly následující:
„Zásah barvou do očí.“
„Píchla jsem se do oka, ale již je to v pořádku.“
„Úraz – ocelová střepina v oku.“
14. Nosili Vaši rodiče v mládí brýle?

☐ ano
☐ ne

Zajímal mě, do jaké míry se projeví dědičnost refrakčních vad. Otázku jsem zvolila velmi jednoduše, protože kdybych se ptala na to, zda rodiče nosili brýle na dálku či na blízko, spousta respondentů by neznala odpověď. Jelikož respondenti vyplňovali dotazník doma, a tudiž měli možnost přímo se zeptat svých rodičů, považuji tyto údaje za velmi reálné.

Nemělo smysl tuto otázku vyhodnocovat zvlášť pro děti základních škol a zvlášť pro studenty středních škol. Zajímavé ale bylo porovnat výsledky, které uvedli respondenti, kteří nosí brýle, s odpovědmi od studentů, kteří brýle nenesí.

Ze 78 studentů, kteří v dotazníku uvedli, že mají refrakční vadu, jich 34 zaškrtnulo, že jejich rodiče v mládí brýle nosili. Zbylých 44 studentů na tuto otázku odpovědělo záporně.

Nositelé brýlí:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
<td>43,5%</td>
</tr>
<tr>
<td>Ne</td>
<td>56,5%</td>
</tr>
</tbody>
</table>

Graf č. 21
U 172 studentů, kteří na začátku dotazníku uvedli, že nenosí ani brýle ani kontaktní čočky, už byl rozdíl mezi počtem kladných a záporných odpovědí daleko větší. Pouze 39 jich napsalo, že jejich rodiče brýle nosili. A 133 jich zaškrtnulo zápornou odpověď.

Respondenti bez brýlí:

<table>
<thead>
<tr>
<th>Ano</th>
<th>22,50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>77,50%</td>
</tr>
</tbody>
</table>

Respondenti bez brýlí: Nosili Vaši rodiče v mládí brýle?

Graf č. 22

Myslím si, že výsledky u této otázky vyšly zajímavě a nepřímo potvrdily dědičný vliv na vznik refrakčních vad.
7.4. Hodnocení

Když jsem se ptala, zda uživatelé preferují brýle nebo kontaktní čočky, jednoznačně zvítězily kontaktní čočky. Většina uživatelů udávala za důvod pohodlí při nošení této korekční pomůcky. Na druhou stranu ale musím říct, že se k této otázce vyjadřovala i spousta respondentů, kteří nosí pouze brýle, a Ti považují brýle za pěkný módní doplněk.

V obou věkových kategoriích převažují myopové. Na základních školách je ale dvakrát více hypermetropů než na školách středních. V tomto věku to může být způsobeno nesouladem mezi růstem oka a jeho refrakcí.

Téměř všichni respondenti uvedli, že se jim jejich refrakční vada zvětšuje nebo zůstává stejná. Pouze 6,5% respondentů napsalo, že jim počet dioptrií klesá. Je to nejspíš způsobeno tím, že většina jich má myopii, která se až do dokončení tělesného růstu zvětšuje.

Větší část (63%) uživatelů nosí brýle pouze příležitostně. Jsou to myopové, kteří nosí brýle pouze do školy, aby viděli na tabulí, doma na televizi, při řízení auta apod.

S návštěvou lékaře je to u dětí a mladistých dobré. Většina jich uvedla, že k němu chodí na kontrolu alespoň jedenkrát za rok. Pouze 9 studentů středních škol napsalo, že tam chodí méně často než po 3 letech. Lze ale předpokládat, že se jedná o studenty, kteří mají od doktora brýle předepsané, ale přesto je moc nenosí.

Ani mě nepřekvapilo, že si většina dětí na základních školách nechá od rodičů poradit při výběru své obrуby. Spíš jsem se podívála, že 4 žáci vyplnili, že na radu rodičů nedají. Situace na středních školách se dala předpokládat. Jedná se o mladé dospívající osobnosti, a tak se nelze divit, že 47% z nich si už do výběru brýlové obrуby nenechá mluvit.
Další otázka přinesla překvapivé výsledky. Přestože se jednalo o malý vzorek (25) žáků základní školy je velmi varovné, že 40% jich uvedlo, že nenosi brýlovou korekci, kterou jim lékař předepsal. U dětí na základní škole to může být způsobeno tím, že mají ještě velkou akomodační šíři. Také jsou na jejich oči kláděny menší nároky, než tomu bývá na školách středních, proto se mohou obejit bez brýlí. Dalším důvodem je nejspíš i fakt, že většina dětí v jednom z následujících dotazů uvedla, že brýle mění negativně jejich vzhled. Je až zarážející, že se takto vyjádřilo 56% dotázaných žáků základních škol.

U středoškoláků bylo procento dotázaných, kteří nenosi předepsanou brýlovou korekci menší. Přesto si myslím, že 23 % je stále velké číslo. Dnešní studenti středních škol už vnímají brýle spíše jako módní doplněk, který nejen že není estetickou vadou, ale mnozi je naopak považuji za součást svoji image.

Když jsem pátrala po důvodu, proč dnešní mladí lidé brýle nenosi, ač k potřebuji, ukázal se velký rozdíl mezi studenty základních a středních škol. Jak jsem se již výše zmínila, té mladší věkové skupině vadí brýle především z estetického hlediska. Středoškolákům nejvíce brýle překáží při sportu či práci, nebo jsou pro ně prostě nepohodlné.

Jedna z posledních otázek mého dotazníku směřovala na oblast laserové léčby refrakčních vad. Myslím si, že žáci základních škol, asi nemají velké znalosti o tomto oboru, přesto 4 z nich zaškrtnuli, že o tomto zákoru do budoucna uvažuji. Z celkového počtu se 22% respondentů vyjádřilo, že se o tuto možnost korekce své refrakční vady zajímají.

Na třináctou otázku odpovídali již všichni respondenti tudiž i Ti, co brýle nenosi. Ptal jsem se na oční úrazy a na jiné oční choroby. Úraz vyplnili pouze 3 respondenti, což představuje 1,2 % všech dotázaných. Nejčastěji uváděná další nemoc byla ambylopie a po ní následoval strabismus.

8. Závěr

Moderní způsob života klade vyšší nároky na kvalitu vidění. Správná korekce přispívá nejen k zvýšení pracovní výkonnosti, ale i k zajištění zrakové pohody v běžném životě člověka. Kvalitní vidění zajistí jen odborně zhotovené a anatomicky přizpůsobené brýle od spolehlivého a patřičně vzdělaného optika, správně naaplikovaná a vybraná kontaktní čočka, a v neposlední řadě i oftalmologem dobře odvedený chirurgický zákrok. Samozřejmostí je ovšem nezbytné, přesné a pečlivé vyšetření.

V této práci jsem se snažila postihnout problematiku refrakčních vad. Ve výzkumné části jsem se zaměřila na dětskou a dospívající populaci a jejich názory týkající se této problematiky. Potvrdil se předpoklad, že refrakční vady jsou geneticky podminěny. Zajímavé výsledky přinesl výzkum v otázkách estetiky brýlí a nošení předešle korekc. Ukázalo se, že problém není jen v tom, jak předepsat správnou korekci. Spousta dětí své brýle nenosí, protože jim vady z estetického hlediska. V dnešní době, kdy je na trhu nepřeberné množství značek brýlí a výběr je opravdu veliký by se nemělo státat, že 56% dětí na základní škole se samy sobě v brýlích nelibí. Může to být způsobeno tím, že většina podléhá ještě názoru rodičů a brýle si nevybírá podle vlastního vuku. Navíc toto číslo může být zatíženo velikou chybou, neboť vzorek zkoumaných dětí byl malý. Přesto si myslím, že výsledky nelze výrazně zlehčovat. Vzorek ze skupiny středoškoláků byl větší, přesto 23% lidí z něj pohlíží na svůj vzhled v brýlích negativně. A jakou cenu má pak pečlivé vyšetření, správně předepsaná brýlová korekce a kvalitně zhotovené brýle, když je ve výsledku mladi lidé nenosi?
9. Literatura

17. RUTRLE, M. Brýlová optika. 2. vyd. Brno: Institut pro další vzdělávání pracovníků ve zdravotnictví. 1993

22. www.lexum.cz

23. www.okooptik.cz

24. www.optiker.at

25. www.sanquis.cz
10. Příloha č. 1

Dotazník

Tento dotazník je anonymní a slouží pouze jako podkladový materiál pro diplomovou práci. Prosim Vás tedy o vyplnění a o uvedení pravdivých údajů.

Vybrané odpovědi označte křížkem podle vzoru

Věk: ..
Pohlaví: □ muž □ žena

1. Nosíte brýle nebo kontaktní čočky?
 □ brýle
 □ kontaktní čočky
 □ brýle i kontaktní čočky
 □ nic (přeskočte na 13. otázku)

2. Počet dioptrii ve Vašich brýlích? (prosim, uveďte znaménka +/-)
 P oko:
 L oko:

3. Nosíte raději brýle nebo kontaktní čočky? A proč?

..

4. V kolika letech jste dostali první brýle?

..

5. Jak se Vám mění počet dioptrii ve Vašich brýlích?
 □ zvětšuje se
 □ zmenšuje se
 □ nemění se

6. Nosíte brýle celý den?
7. Jak často navštěvujete svého očního lékaře?
 □ alespoň 1x za rok
 □ po dvou letech
 □ po třech letech
 □ méně často

8. Radi Vám rodiče při výběru brýlové obruby?
 □ ano
 □ ne

9. Nosíte brýle, které Vám lékař předepsal?
 □ ano
 □ ne

10. Z jakého důvodu brýle nenesete?
 □ vadí mi z estetického hlediska
 □ jsou nepohodlné
 □ vadí mi při sportu a práci
 □ jiný důvod..

11. Podle Vašeho názoru, ovlivňují brýle Váš vzhled?
 □ pozitivně
 □ negativně
 □ nepociťuji změnu

12. Uvažujete do budoucnost o laserové operaci Vašich očí?
 □ ano
 □ ne
□ nevím

13. Máte ještě jinou oční vadu (šilhání, tupozrakost,…) nebo jste měli oční úraz? Jaký?
...
...

14. Nosí Vaši rodiče v mládí brýle?
 □ ano
 □ ne