Funkční vývoj střední obličejové etáže u pacientů s rozštěpem patra

DISERTAČNÍ PRÁCE

Obor: Chirurgie 5103V019

Školitel:
Prof. MUDr. Jiří Veselý, CSc.

Doktorand:
MUDr. Zdeněk Dvořák

Brno 2009
Děkuji školitelům MUDr. Jitce Vokurkové Ph.D. a Prof. MUDr. Jiřímu Veselému Csc. za cenné rady a odborné vedení při vzniku této práce a za ochotu zasvěcovat mne do oboru plastické chirurgie. Dále chci poděkovat MUDr. Ivaně Halačkové a MUDr. Pavlovi Horníkovi za odborné rady a pomoc při zpracování ortodontických a ORL výsledků, primáři MUDr. Tomáši Výškovi a MUDr. Tomáši Mrázkovì za cenné připomínky k chirurgii rozštěpu a všem lékařským a ostatním pracovníkům z týmu odborníků, zabývajících se rozštěpovou problematikou a všem ostatním, kteří mě jakkoliv pomohli.

Všem patří moje poděkování

Zdeněk Dvořák
Obsah

Poděkování .. 2
Obsah .. 3
Úvod .. 5
Cíl práce .. 6
1. Historie a současný stav poznání ... 7
 1.1 Historie léčby rozštěpových vad ... 7
 1.2 Embryologie vývoje obličeje a jeho poruchy .. 11
 1.3 Klasifikace rozštěpových vad ... 15
 1.4 Standardy multidisciplinární péče o dítě s rozštěpem obličeje 21
 1.4.1 Genetik ... 22
 1.4.2 ORL specialista .. 24
 1.4.3 Plastický chirurg ... 25
 1.4.4 Psycholog .. 26
 1.4.5 Foniatr a logoped ... 26
 1.4.6 Stomatologická péče .. 27
 1.4.7 Ortodontista .. 27
 1.4.8 Pediatr .. 27
 1.5 Multidisciplinární terapie rozštěpových vad na KPECH Brno 28
 1.6 Přehled chirurgických metod a nové trendy léčby rozštěpů patra 30
 1.7 Ortodontická léčba a ortognátní operativa ... 44
 1.7.1 Ortodoncie .. 44
 1.7.2 Ortognátní chirurgie .. 51
 1.8 ORL problematika pacientů s rozštěpem patra .. 57
 1.9 Vývoj řeči a její terapie u pacientů s orofaciálním rozštěpem 64
2. Experimentální část ... 70
 2.1 Cíl experimentální části ... 70
 2.2 Materiál a metoda ... 70
 2.3 Výsledky .. 71
 2.3.1 Sekce teoretická .. 73
 2.3.1 Sekce datová ... 74
 2.3.1 Sekce orientačního zpracování ... 75
 2.4 Diskuze .. 76
3. Klinická část ... 78
 3.1 Cíl klinické části .. 78
 3.2 Materiál a metoda ... 78
 3.2.1 Chirurgické sledování pacientů s rozštěpovou vadou ... 79
 3.2.2 Foniatrické sledování pacientů s rozštěpem obličeje .. 79
 3.2.3 ORL sledování pacientů s rozštěpovou vadou .. 80
 3.2.4 Ortodontické sledování pacientů s rozštěpovou vadou 81
 3.3 Výsledky .. 82
 3.3.1 Výsledky epidemiologického průzkumu ... 82
 3.3.2 Chirurgické výsledky pacientů s rozštěpem ... 86
 3.3.3 Foniatrické výsledky pacientů s rozštěpem .. 95
 3.3.4 ORL výsledky léčby pacientů s rozštěpovou vadou ... 105
 3.3.5 Ortodontické výsledky léčby pacientů s rozštěpovou vadou 111
 3.4 Diskuze .. 115
Závěr..126
Seznam použité literatury a pramenů ..128
Anotace..140
Annotation...141
Seznam příloh..142
 Příloha č. 1 – Seznam obrázků ...143
 Příloha č. 2 – Seznam tabulek ...144
 Příloha č. 3 – Seznam grafů ...146
 Příloha č. 4 – Vzorový příklad „Databáze Rozštěp 2008“ ..147
 Příloha č. 5 – Informační příručka pro rodiče dětí s rozštěpem obličeje148
Souhlas k citaci práce ...149
Úvod

Pro stabilní incidenci rozštěpových vad je problematika léčby tohoto onemocnění stále aktuální a při nynější natalitě v České republice - zhruba 100 000 dětí ročně – se každým rokem narodí přibližně 180 dětí postižených touto vadou.

Rozštěpové centrum na KPECH vzniklo v době založení kliniky a léčba rozštěpových vad zde má mnohaletou tradici. Proto jsem si k vypracování své disertační práce jsem si zvolil právě téma léčby rozštěpových vad obličeje. Cílem předkládané práce je zhodnocení terapeutických výsledků centra a inovace protokolu léčby se zaměřením na multidisciplinární péči o pacienty.
Cíl práce

CÍL: Zhodnotit funkční vývoj střední obličejové etáže u pacientů s rozštěpem patra operovaných na KPECH Brno a srovnat výsledky léčby pacientů na KPECH Brno s publikovanými výsledky z jiných rozštěpových center.

HYPOTÉZA: Funkční výsledky u pacientů s rozštěpem patra dosahují uspokojivých hodnot ve srovnání se zdravou populací a terapeutické výsledky u pacientů s rozštěpem obličeje léčených na KPECH jsou srovnatelné s výsledky z ostatních rozštěpových center publikovanými v odborné literatuře.
1. Historie a současný stav poznání

1.1 Historie léčby rozštěpových vad

Rozštěpové vady obličeje provází lidskou společnost od nepaměti. V pravěku a dřívějších dobách byly tyto vady označovány za dílo čidla a děti postižené rozštěpovou vadou byly obvykle vyloučeny ze společnosti a často ponechány napospas okolní divočině. Historické doklady o rozštěpových vadách obličeje a jejich léčbě začínají nálezem sošky hlavy člověka s rozštěpem rtu ze 4 stol. př. n. l. nalezené v Korintu. Další milníky pokroku léčby až do současnosti jsou shrnuty v tab. 1.1,2,3,4

<table>
<thead>
<tr>
<th>Letopočet</th>
<th>Autor</th>
<th>Metoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. stol. př. n. l.</td>
<td>Neznámý</td>
<td>Evropa – Korintské vykopávky – socha hlavy s celkovým rozštěpem</td>
</tr>
<tr>
<td>390. př. n. l.</td>
<td>Neznámý</td>
<td>Asie – Čína - dynastie Chin – písemné doklady o specializovaném lékaři na chirurgii rozštěpových vad5</td>
</tr>
<tr>
<td>1. stol. n. l.</td>
<td>A. C. Celsus (25 př. n. l. – 50 n. l.)</td>
<td>Autor spisu „De Medicina“, k uzávěru defektu užívá posunu.</td>
</tr>
<tr>
<td>2. stol. n. l.</td>
<td>Galénos z Pergamu (129-200)</td>
<td>Zavedl do chirurgie k sešíti defektu cut-gut tj. vstřebatelný šicí materiál vyrobený z ovčích střev. Byl osobním lékařem několika římských císařů.</td>
</tr>
<tr>
<td>10. stol.</td>
<td>Albucasis</td>
<td>Arabský chirurg z Cordoby – pálil šťupavý okraj rozštěpu a zavedl různé typy jehel k sutuře obličeje.</td>
</tr>
<tr>
<td>14. stol.</td>
<td>J. Yperman (1295-1351)</td>
<td>Vlámsko – První plně dochovaný dokument popisující rozštěpovou vadu a její chirurgickou léčbu, používá okrvavění okrajů a suturu nití, neužívá pomocné nářezy na tvářích, k odležení sutury protahuje rtěm dlouhou jehlu zafixovanou obmotovanou voskovanou nití do tvaru „leťaté 8“.</td>
</tr>
<tr>
<td>1552</td>
<td>J. Houlier</td>
<td>Zabýval se defekty patra, jednak vzniklými při onemocnění syfilidou a jednak po střelných poraněních. Navrhl přímou suturu patra a při neúspěších, které se často u těchto operací dostavovaly, doporučoval k vyplnění perforace patra vok nebo speciální tampón.</td>
</tr>
<tr>
<td>1556</td>
<td>P. Franco</td>
<td>Napsal 2 knihy o léčbě rozštěpů, užívá okrvavění okrajů rtu</td>
</tr>
</tbody>
</table>

4 PANTALONI, M., HOLLIER, L.: Cleft palate and vopharyngeal incompetence, SRPS, 2001; 9 (23). 47 s.
<table>
<thead>
<tr>
<th>Rok</th>
<th>Autor</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1564</td>
<td>A. Paré</td>
<td>Okluze rozštěpu patra stříbrnými a zlatými destičkami – nazývá je „obturateurs“.</td>
</tr>
<tr>
<td>1575</td>
<td>A. Paré</td>
<td>První užívá termín „bec-de-lievre“ = zajecí pysk.</td>
</tr>
<tr>
<td>1597</td>
<td>G. Tagliacozzi</td>
<td>K sutuře okrvaveného rtu užívá matracový steh přes všechny vrstvy, u oboustranných rozštěpů neresekující prolabilium.</td>
</tr>
<tr>
<td>17. století</td>
<td>J. Cooke</td>
<td>Odmítá resekci mezičelistí.</td>
</tr>
<tr>
<td>1764</td>
<td>Le Monnier (popsáno 1766 Robertem)</td>
<td>První zmínka o chirurgickém zákroku na měkkém patře (nevešla ve známost). Do okrajů založil stehy a okraje leptal až srostly.</td>
</tr>
<tr>
<td>1798</td>
<td>P. J. Desault X. Bichat</td>
<td>K léčbě protrudující praemaxily používali kompresivní bandáže.</td>
</tr>
<tr>
<td>1816</td>
<td>C. F. von Graefe</td>
<td>Leptání rozštěpů patra kyselinou solnou a tinkturou ze španělských mušek, později užíval okrvavění okrajů při prosté sutuře.</td>
</tr>
<tr>
<td>1819</td>
<td>P. J. Roux</td>
<td>Obříznuti okrajů rozštěpů patra a sutura, spory o prioritu sutury patra s Graefem.</td>
</tr>
<tr>
<td>1824</td>
<td>J. C. Warren</td>
<td>První operace tvrdého patra za provedení mobilizace orálního mukoperiostu a jeho sutury v Americe.</td>
</tr>
<tr>
<td>1834</td>
<td>J. F. Dieffenbach</td>
<td>Mobilizace 2 laloků mukoperiostu za použití postranních uvolňovacích nářezů, prováděl i osteotomii patrových desek od alveolu a suturu drátem ve střední rovině, navrhl frakturu hamulů k usnadnění sutury patra.</td>
</tr>
<tr>
<td>1843</td>
<td>J. F. Malgaigne</td>
<td>Koncept sutury rtu za použití místních laloků.</td>
</tr>
<tr>
<td>1844</td>
<td>G. Mirault</td>
<td>Stanovuje základy operační techniky jedno a oboustranných rozštěpů rtu za použití trojúhelníkovitého lalůčku.</td>
</tr>
<tr>
<td>1845</td>
<td>W. Fergusson</td>
<td>Detailní popis funkce patrových svalů.</td>
</tr>
<tr>
<td>1861</td>
<td>B. R. C. von Langenbeck</td>
<td>Řádně publikuje Dieffenbachovu metodu, používá elevate mukoperiostu, čímž se proslavuje.</td>
</tr>
<tr>
<td>1862</td>
<td>P. G. Passavant</td>
<td>Navrh frakturu augmentaci zadní stěny hltanu k zmenšení prostoru, který musí krátké měkké patro při uzávěru překlenout.</td>
</tr>
<tr>
<td>1864</td>
<td>C. Frobelius</td>
<td>1. statistika o výskytu rozštěpů v Petrohradském nalezinci.</td>
</tr>
<tr>
<td>1870</td>
<td>J. Wolff</td>
<td>Upozornil na význam m. orbicularis oris a nutnost jeho rekonstrukce, zavedl mobilizaci a posun rtu mediálně.</td>
</tr>
<tr>
<td>1874</td>
<td>K. Schö enborn</td>
<td>Poprvé provádí velofaryngofixaci s dolní stopkou, v roce 1886 metodu inovuje za použití faryngeálního lalůčku s horní stopou.</td>
</tr>
<tr>
<td>1884</td>
<td>W. Hagedorn</td>
<td>Hagedorn poprvé užívá čtvercového lalůčku z laterální strany rozštěpového defektu vkládaného mediálně k obnovení výšky rozštěpeného rtu.</td>
</tr>
<tr>
<td>1890</td>
<td>R. Gersuny</td>
<td>Používal injekce vaselinu, parafinu a později chrupavku k augmentaci zadní stěny hltanu pro redukci nazality.</td>
</tr>
<tr>
<td>1891</td>
<td>W. Rose</td>
<td>Popsal metodu přímé sutury pro rekonstrukci rtu.</td>
</tr>
<tr>
<td>1912</td>
<td>J. E. Thompson</td>
<td>Pro získání adekvátní délky rtu u rozštěpů rtu provádí zalomenou incizi a přimou suturu.</td>
</tr>
<tr>
<td>1924</td>
<td>W. Rosenthal</td>
<td>Znovu propracoval dodnes užívanou velofaryngofixaci (VFF) s dolní stopkou prováděnou při primární sutuře patra.</td>
</tr>
<tr>
<td>Rok</td>
<td>Autor</td>
<td>Detail</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1925</td>
<td>G. M. Dorrance</td>
<td>Při sutuře patra posouvá celé patro dozadu – pushback – za přerušení obou palatinálních nervově-cévních svazků</td>
</tr>
<tr>
<td>1925</td>
<td>F. Ernst</td>
<td>Přes laterální faryngeální prostor („Ernstův prostor“) láme hamulus pterygoideus mediálním směrem k usnadnění sutury měkkého patra.</td>
</tr>
<tr>
<td>1927</td>
<td>A. A. Limberg</td>
<td>Při sutuře patra používá odlomení hamulu, sesunutí tkání dozadu, odlabává zadní a mediální okraj velkého palatinálního otvoru s radikální uranoplastikou (odlomení celého mediálního pterygoideálního křídla). Pro složitost operace se metoda nerozšířila.</td>
</tr>
<tr>
<td>1928</td>
<td>W. E. Wardill</td>
<td>Vytváří umělý Passavantův val a to přičně protnutím zadní stěny hltanu a podélnou suturopou (⇒ Wardillův val).</td>
</tr>
<tr>
<td>1930</td>
<td>V. P. Blair</td>
<td>Metoda sutury rtu vycházející z Mirraultova trojúhelníkovitého laloku červeně, nezachovává plně Cupidův oblouk, finálním výsledkem je lineární jizva rtu.</td>
</tr>
<tr>
<td>1937</td>
<td>W. E. Wardill, T. P. Killner</td>
<td>Modifikovali Veauovu operaci patra. Použili trojúhelníkovou plastiku s retropozicí měkkého patra u izolovaných rozštěpů patra a čtyřúhelníkovou plastiku u celkových rozštěpů.</td>
</tr>
<tr>
<td>1942</td>
<td>A. B. LeMesurier</td>
<td>Vychází z Hagedornova čtvercového laloku z laterální strany nad červenou rtu, jako první zachovává Cupidův oblouk.</td>
</tr>
<tr>
<td>1944</td>
<td>W. Schneckendiek</td>
<td>Koncept časného uzávěru měkkého patra a odloženého uzávěru tvrdého patra k omezení alterace růstu čelistí.</td>
</tr>
<tr>
<td>1945</td>
<td>J. B. Brown, F. Mc Dowell</td>
<td>Další modifikace sutury rtu vycházející z Mirraultova trojúhelníkovitého laloku červeně z laterální strany, opět je výsledkem lineární jizva rtu.</td>
</tr>
<tr>
<td>1952</td>
<td>C. W. Tennison</td>
<td>Sutura rtu s použitím trojúhelníkovitého laloku z laterální strany nad hranicí retní červeně⁶⁷</td>
</tr>
<tr>
<td>1955</td>
<td>R. Millard jr.</td>
<td>Metoda rotačně posuvného laloku pro suturu rtu⁶⁷⁷</td>
</tr>
</tbody>
</table>

⁷ MILLARD, DR JR, A Primary Camouflage of the Unilateral Harellook. Transactions of the First International Congress of Plastic Surgery, s. 160 - 166.
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>T. D. Cronin</td>
<td>Popsal metodu transnazální disekce nazální sliznice k umožnění jejího posunu při rekonstrukci patra</td>
</tr>
<tr>
<td>1959</td>
<td>P. Randall</td>
<td>Modifikovaná sutura rtu dle Tennisona s matematickým definováním jednotlivých rozměrů</td>
</tr>
<tr>
<td>1970</td>
<td>O. Kriens</td>
<td>Zavádí intravelární veloplastiku</td>
</tr>
<tr>
<td>1970</td>
<td>M. Fára</td>
<td>Podrobně popisuje strukturu svalů u rozštěpů patra na základě pitvy 26 kadáverů</td>
</tr>
<tr>
<td>1970</td>
<td>G. Pfeifer</td>
<td>Technika „vlnovitého řezu“ pro suturu rtu</td>
</tr>
<tr>
<td>1975</td>
<td>E. N. Kaplan</td>
<td>Užívá bukální mukózní lalok k uzávěru defektu patra</td>
</tr>
<tr>
<td>1976</td>
<td>L. Bařinka</td>
<td>Provádí suturu rtu s použitím rozsáhlého laterálního trojúhelníkovitého laloku zaujímajícího celou výšku filtra, metoda publikována v roce 1990</td>
</tr>
<tr>
<td>1984</td>
<td>P. W. Black</td>
<td>Koncept sutury rtu u oboustranného rozštěpu s rekonstrukcí filtra z prolabia, m. orbicularis oris a retní červeně tubercula z laterálních částí rtu</td>
</tr>
</tbody>
</table>

1.2 Embryologie vývoje obličeje a jeho poruchy

Třetí až osmý týden vývoje lidského zárodku v délce nazýváme obdobím organogeneze nebo též embryonální periodou. V tomto období z 3 základních zárodečných listů (ektodermu, mezodermu a endodermu) vzniká množství specifických tkání a orgánů. Je to též období, ve kterém se formuje budoucí hlava a krk zárodku.

Základní tkání pro vývoj obličeje zárodku je mezenchym. Ten v oblasti hlavy vzniká z paraxiálního a laterálního mezodermu, ektodermálních plakod a především z buněk nervové lišty. Buňky nervové lišty pocházejí z neuroektodermu předního, středního a zadního mozu a během vývoje migrují ventrálně do faryngových (žaberních) oblouků a rostrálně kolem předního mozu a optických váčků do oblasti středního obličejového výběžku. Narušením vývoje buněk nervové lišty vznikají těžké kraniofaciální malformace. Protože též tyto buňky přispívají k formování konotrunkálního septa, rozdělujícího výtokový srdeční trakt na pulmonální a aortální kanál, mnoho dětí s kraniofaciálními defekty má rovněž srdeční vady, zahrnující persistující truncus arteriosus, Falotovu tetralogii či transpozici velkých cév.

Buňky nervové lišty patří bohužel k pluripotentním buňkám, které jsou snadno vulnerabilní a snadno podléhají působení takových látek jako alkohol či kyselina retinoová. Jedním z důvodů zvýšené vulnerability je pravděpodobně deficit enzymů superoxiddismutázy a katalázy, které patří mezi „žhášeče“ volných radikálů, které bez jejich působení poškozují buňku. V lidském těle se buňky nervové lišty podílejí na vzniku povolových tkání, skeletu obličeje a lebky, gangliích hlavových nervů, derivují z nich C- buňky štítné žlázy, buňky konotrunkálního septa, odontoblasty, buňky kůže hlavy a krku, spinální ganglia, sympatická a preaortální ganglia, parasympatická ganglia gastrointestinálního traktu, dřeň nadledvin, Schwannovy buňky, buňky glie, arachnoidei a pia mater a samozřejmě melanocyty. Nelze se proto divit, že rozštěpové vady jsou často spojeny s psychomotorickou retardací či zvýšenou kazivostí chrupu.

Typické rozštěpové vady obličeje vznikají poruchou formování primárního a sekundárního patra v 6.–9. týdnu těhotenství. Nejkritičtější je 8. týden, kdy dochází k srůstu mediálních nazáklých výběžků s maxilárními výběžkem a horizontalizaci laterálních patrových desek sekundárního patra. Základní kroky vývoje obličeje jsou definovány v tab. 2 a 3 i s popisem geneze rozštěpových vad. 13, 14, 15, 16, 17

12 **Sadler, T. W.: Langman’s Medical Embryology.** 445 s.
13 **Vacek, Z.: Embryologie pro pediatry.** 313 s.
14 **Moore, K.L., Persaud, T.V.N.: Zrození člověka: Embryologie s klinickým zaměřením.** 564 s.
<table>
<thead>
<tr>
<th>Tab. 2 - Stručný přehled embryogeneze obličeje</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Počátek čtvrtého týdne gravidity – začátek formování obličeje kolem stomodea vytvořením pěti obličejových výběžků:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- jednoho frontonazálního výběžku</td>
</tr>
<tr>
<td>- párového maxilárního výběžku</td>
</tr>
<tr>
<td>- párového mandibulárního výběžku</td>
</tr>
</tbody>
</table>

Maxilární a mandibulární výběžky jsou derivátem I. faryngeálního (žaberního) oblouku. Velikost embra – 2 mm.

| Koncem 4. týdne (embryo 4 mm) se v laterokaudální části frontonazálního výběžku vytváří oválná ztlustění ektoderm tj. nazální plakody. Dochází k splývání párových mandibulárních výběžků vycestováním mezenchymu do hraniční zóny mezi ektoderm a endoderm. Poruchou tohoto procesu event. vzniká střední rozštěp dolní čelisti – No. 30 dle Tessiera. |

| Postupným vývojem dochází k vyšší proliferaci buněk na okrajích plakod a v jejich středu vzniká plochá deprese. |

| 5. týden gravidity (embryo 6 mm). Mezenchym po obvodu plakod dále proliferuje a vytváří podkovovité valy – mediální a laterální nosní výběžky. Plochá prohlubeň v centru plakod vytváří nasální jamky, které představují základ nostril (nares) a dutiny nosní. Po vytvoření primitivního základu obličeje z mezenchymu frontonazálního výběžku a I. žaberního obouklou se sekundárně přesunuje do základu obličeje i mezenchym II. žaberního obouklou, z něhož se diferencuje svalstvo tváří a rtů (zdrojem veškerého mezenchymu v této oblasti jsou buňky nervové lišty. |

15 Burdi A.R.: Developmental Biology and Morphogeneses of the Face, Lip and Palate. Cleft Lip and Palate: Diagnosis and Management, s. 3 - 10.
Dochází k proliferaci mezenchymu maxilárních výběžků, tedy k jejich zvětšení a relativnímu posunu mediálně, tedy k sobě. Zatím laterálně nasální výběžek zůstává oddělený od maxilárního výběžku štěrbinou = sulcus nasolacrimalis.

Tyčinkovité ztlustění ektodermu na dně sulcus nasolacrimalis po zanoření do mezenchymu a luminizaci dává vznik ductus nasolacrimalis. Tento se v horní části rozšiřuje a vzniká saccus lacrimalis.

Konec pátého týdne (embryo 8 mm).
V tomto období vznikají v úrovni krku primordia ušních boltců splýváním 6 hrbolků – 3 z prvního a 3 z druhého žaberního oblouku.
Konec šestého týdne (embryo 15 mm).
Oba maxilární výběžky splývají s laterálními nosními výběžky vycestováním mezenchymu podél linie sulcus nasolacrimalis. Poruchou mezodermální penetrace dochází k vzniku nejčastějšího kraniofaciálního rozštěpu – No. 3 dle Tessiera.

7. – 10. týden (embryo 17 mm – fetus 50 mm)
Mezodermální penetraci splývají mediální nasální výběžky mezi sebou a s maxilárním a laterálním nasálním výběžkem. Splynutím mediálních nosních výběžků vzniká intermaxilární segment. Pokud mediální výběžky nesplynou, vzniká velmi vzácný střední rozštěp rtu a nosu – dle Tessiera No 0, který je též součástí autozómánně recesivního Mohrova syndromu.

Postupným vývojem jednotlivých částí obličeje dochází k postupnému posunutí základů zrakového aparátu mediálně a ušní boltce „vystupují“ kraniálně. Narušením těchto pochodů vzniká hypertelorizmus či nízce posazené boltce, znaky, které se řadí mezi malé vývojové vady člověka a upozorňují na stigmatizovaný nitroděložní vývoj.

Po 8. týdnu (embryo 30 mm) intrauterinního vývoje lidský zárodek přechází do fetaálního období, ve kterém jsou již vytvořeny základní znaky lidského plodu. Pokud mezenchym v předchozím období dostatečně nepenetroval do oblasti řeže mediálního nazálního a maxilárního výběžku, vlivem dalších růstových odstředivých sil dochází k roztrhnutí slabě epitelové přehrady mezi výběžky a vzniká typická rozštěpová vada.
Tab. 3 - Přehled jednotlivých fází při formování sekundárního patra

<table>
<thead>
<tr>
<th>6. týden (embryo 10 mm)</th>
<th>Po vnitřních stranách maxilárních výběžků se vytvářejí 2 mezenchymové výstupky – laterální patrové výběžky, které z počátku vývoje rostou mediokaudálním směrem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. - 8. týden (embryo 25-30 mm)</td>
<td>Dochází k prodlužování patrových výběžků po stranách jazyka, s rozvojem čelistí se jazyk relativně zmenšuje, posouvá dolů a nad ním se vytváří supralinguální prostor. Konec 8. týdne (embryo 30 mm) Během několika hodin pravděpodobně působením vnitřních sil vznikajících v mezenchymové matrix hydratací hyaluronové kyseliny dochází k horizontalizaci patrových desek. Horizontalizace probíhá od zadního okraje měkkého patra rostrálním směrem (srůstání výběžků poté naopak).</td>
</tr>
<tr>
<td>nosní septum vyrůstá z vnitřní strany splynulých mediálních nasálních výběžků kaudálně a během 9. týdne (fetus 40 mm) srůstá s horizontalizovanými laterálními patrovými výběžky odpředu směrem nazad.</td>
<td></td>
</tr>
<tr>
<td>Patro se vyvíjí z 2 základů – primárního patra a sekundárního patra. Primární patro vzniká vzájemným splýváním mediálních nasálních výběžků v šestém týdnu vývoje, které vytvoří premaxilární část maxily (úsek před foramen incisivum). Sekundární patro se formuje po horizontalizaci laterálních palatinálních výběžků maxily srůstem s primárním patrem a nosním septem.</td>
<td></td>
</tr>
</tbody>
</table>
Klasifikace rozštěpových vad

Rozštěpové vady hlavy se dělí na 2 základní skupiny – rozštěpy faciální a kraniofaciální (v některých zdrojích se uvádí jako typické a atypické). Faciální rozštěpy lze poté dále dle přítomnosti či nepřítomnosti syndromu rozdělit na syndromové a nonsyndromové.

Během historického vývoje léčby rozštěpových vad vzniklo množství klasifikačních systémů, ale pouze malá část z nich našla širší klinické využití. Každé centrum pro léčbu rozštěpových vad využívá některou z klasifikací dle svých potřeb.

Faciální rozštěpy poprvé v roce 1922 Davis a Ritchie rozdělili do 3 skupin – prealveolární, postalveolární a alveolární. Veau v roce 1931 popsal klasifikaci s rozdělením pouze patrových rozštěpů do 4 kategorií – skupina 1 - rozštěpy měkkého patra, skupina 2 - rozštěpy měkkého a tvrdého patra, skupina 3 - celkově jednostranné rozštěpy a skupina 4 - celkové oboustranné rozštěpy. Klasifikace nezahrnuje samostatné rozštěpy rtu.

Kernahan a Stark v roce 1958 publikovali klasifikaci faciálních rozštěpů založenou na embryogeneze obličeje. Rozdělili patro na primární a sekundární s foramen incisivum jako hraničním bodem. Jimi vymezené 3 skupiny rozštěpů zahrnují – 1) rozštěpy rtu a alveolu, 2) rozštěpy měkkého a tvrdého patra a 3) celkové rozštěpy = kombinace 1 + 2.

Kernahan později navrhl vizualizaci klasifikované vady pomocí proužkového Y diagramu, který je v současné době nejvíce užíván. Elsahy a Miliard tento diagram upravili přídáním trojúhelníkovitých polí pro popis deformity dna nosní dírky a nosního křídla. Friedman poté diagram propracoval s přídáním popisu dalších postižených struktur a vytvořil stupnice k hodnocení deformity v jednotlivých úsecích. Vzniká tím velmi podrobný záznam, který lze v praxi uchovávat nejlépe za podpory počítačové databáze. Diagram užívaný v klinické praxi je zobrazen na obr. 1.

Podrobné zhodnocení rozštěpové vady dítěte

<table>
<thead>
<tr>
<th>Příjmení a jméno:</th>
<th>Číslo chorobopisu:</th>
<th>Dg: UCL</th>
<th>BCL</th>
<th>UCLP</th>
<th>BCLP</th>
<th>CP</th>
<th>SC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bez protruze</th>
<th>Mírná protruze - do 45°</th>
<th>Střední protruze - 45°- 90</th>
<th>Těžká protruze - nad 90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravé prolabium</td>
<td>Levé prolabium</td>
<td>Bez protruze</td>
<td>Mírná protruze - do 45°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bez vady</th>
<th>Minimální poškození</th>
<th>Mírná deformita</th>
<th>Střední deformita</th>
<th>Těžká deformita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravý nosní oblouk</td>
<td>Levý nosní oblouk</td>
<td>Bez vady</td>
<td>Minimální poškození</td>
<td>Mírná deformita</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bez vady</th>
<th>Minimální poškození</th>
<th>Mírná deformita</th>
<th>Střední deformita</th>
<th>Těžká deformita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravý nosní dno</td>
<td>Levý nosní dno</td>
<td>Bez vady</td>
<td>Minimální poškození</td>
<td>Mírná deformita</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bez vady</th>
<th>Min. pošk. - subkutánní rozštěp</th>
<th>Min. pošk.- zářez v ret. červeni</th>
<th>1/3 rozštěp rtu;</th>
<th>2/3 rozštěp rtu</th>
<th>Kompletní rozštěp rtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravý horní ret</td>
<td>Levý horní ret</td>
<td>Bez vady</td>
<td>Min. pošk. - subkutánní rozštěp</td>
<td>Min. pošk.- zářez v ret. červeni</td>
<td>1/3 rozštěp rtu;</td>
</tr>
</tbody>
</table>

|----------------|----------|---------------------------------|-------------------|------------------|-------------------------------|-------------------------------|

<table>
<thead>
<tr>
<th>Bez vady</th>
<th>Parciální rozštěp</th>
<th>Kompletní rozštěp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravá premaxila</td>
<td>Levá premaxila</td>
<td>Bez vady</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bez vady</th>
<th>Rozštěp zadní 1/3</th>
<th>Rozštěp zadních 2/3</th>
<th>Kompletní rozštěp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvrdé patro</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bez vady</th>
<th>Min. pošk. - hypoplasie m.uvulae</th>
<th>Min. pošk. - uvula septata</th>
<th>Min. pošk. - uvula bifida</th>
<th>Submukózní rozštěp patra okultní</th>
<th>Submukózní rozštěp patra otevřený</th>
<th>Rozštěp zadní 1/3</th>
<th>Rozštěp zadních 2/3</th>
<th>Kompletní rozštěp patra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Měkké patro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bez vady</th>
<th>Mírné postižení</th>
<th>Střední postižení</th>
<th>Těžké postižení</th>
</tr>
</thead>
</table>

Obr. 1 - Friedmanova modifikace Kernahanova Y proužkového diagramu užívaná v praxi na KPECH
Schwartzův RPL systém (R - pravý ret a alveolus, P – patro, L – levý ret a alveolus) klasifikuje všech základních 63 fenotypů faciálních rozštěpů pomocí trojčíselného kódu, v němž čísla v jednotlivých pozicích dle stupně postižení nabývají hodnoty 1 – 3.

Obr. 2 - Grafické znázornění Kriensovy LAHSHAL klasifikace faciálních rozštěpů

Mezinárodní klasifikace nemocí, desátá revize (dále MKN 10) stanovuje kódy pro klasifikaci všech nemocí a celé palety příznaků, abnormálních nálezů, zdravotních obtíží, sociálních situací a příčin poranění a nemocí. MKN je publikována WHO (Světovou zdravotnickou organizací). Je celosvětově používána pro statistické účely, pro refundaci nákladů a pro umělou inteligenci. Pro rozštěpové vady byly v této klasifikaci vymezeny kódy Q 35 - Q 37, ale bohužel tyto byly dříve stanoveny autory bez znalosti fenotypového projevu vady s uvedením nesmyslných diagnostických MKN 10 se ale stala nedílnou součástí klinické praxe a každé pracoviště si proto vybralo a upravilo některé kódy pro svoje účely. Náprava se uskutečnila až vydáním 2. revize MKN – 10

24 KRIENS, O.: Documentation of Cleft Lip, Alveolus, and Palate, Multidisciplinary management of cleft lip and palate. s. 127 – 133.
a to 1. 1. 2009. Přesto bude trvat nějakou dobu, než bude předchozí situace zpětně napravena (viz tab. 4).

<table>
<thead>
<tr>
<th>KLASIFIKACE – mkn 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozštěp patra</td>
</tr>
<tr>
<td>Q 35.1 Rozštěp tvrdého patra</td>
</tr>
<tr>
<td>Q 35.5 Rozštěp tvrdého patra s rozštěpem měkkého patra</td>
</tr>
<tr>
<td>Q 35.7 Rozštěp čípku</td>
</tr>
<tr>
<td>Q 35.9 Rozštěp patra, NS.</td>
</tr>
<tr>
<td>Rozštěp rtu</td>
</tr>
<tr>
<td>Q 36.0 Oboustranný rozštěp rtu</td>
</tr>
<tr>
<td>Q 36.1 Středový rozštěp rtu</td>
</tr>
<tr>
<td>Q 36.9 Jednostranný rozštěp rtu</td>
</tr>
<tr>
<td>Rozštěp rtu, čelistí a patra</td>
</tr>
<tr>
<td>Q 37.0 Rozštěp tvrdého patra s oboustranným rozštěpem rtu</td>
</tr>
<tr>
<td>Q 37.0 Rozštěp tvrdého patra s jednostranným rozštěpem rtu</td>
</tr>
<tr>
<td>Q 37.4 Rozštěp tvrdého a měkkého patra s jednostranným rozštěpem rtu</td>
</tr>
<tr>
<td>Q 37.5 Rozštěp tvrdého a měkkého patra s oboustranným rozštěpem rtu</td>
</tr>
<tr>
<td>Q 37.8 Neurčený rozštěp patra s oboustranným rozštěpem rtu</td>
</tr>
<tr>
<td>Q 37.8 Neurčený rozštěp patra s jednostranným rozštěpem rtu</td>
</tr>
</tbody>
</table>

Kraniofaciální rozštěpy se rozdělují dle následujících klasifikací.

American Association of Cleft Palate Rehabilitation schválila a používá klasifikaci navrhnutou Harkinsem v roce 1962\(^{25}\). Kraniofaciální rozštěpy v ní rozdělil na 4 kategorie na základě lokace patologie:

1. Rozštěpy mandibulárního výběžku - zahrnují rozštěpy dolního rtu,
2. Nazo-okulární rozštěpy - zahrnují malformace mezi křídlem nosu a mediálním kantem
3. Oro-okulární rozštěpy – lokalizované mezi dutinou ústní a orbitou mezi mediálním a laterálním kantem. Boo-Chai\(^{26}\) klasifikaci později doplnil rozdělením oroookulárních rozštěpů na 2 podskupiny s hranicí procházející přes foramen infraorbitale
4. Oro-aurikulární rozštěpy lokalizované mezi ústním koutkem a tragem boltce.

Karfišova klasifikace navržená na základě morfologických a embryologických nálezů dělí kraniofaciální rozštěpy do 5 skupin:

Skupina A: Rhinencefalické malformace
Skupina B: Branchiogenní malformace – malformace I. a II: žaberního oblouku.

Skupina C: Orbitopalpebrální malformace
Skupina D: Kraniocefalické malformace (Apertův sy, Cruzonův sy apod.)
Skupina E: Atypické deformity (kongenitální tumory, atrofie, hypertrofie, pravě šikmé rozštěpy, nezařaditelné k linii fúze jednotlivých výběžků).

Van der Meulenva klasifikace je založená na embryologickém podkladě a užívá termín dysplázie, protože ne všechny malformace v ní zahrnuté jsou rozštěpového charakteru. Vady jsou v ní rozlišeny na základě poruchy utváření dané embryonální oblasti:

1) Cerebrokraniální dysplázie (anencefálie, mikrocefálie)
2) Cerebrofaciální dysplázie (s rozštěpem, s dysostózou, se synostózou, s dysostózou a synostózou, s dyschondrózou)
3) Kraniofaciální dysplázie jiného původu (kostního, kutánního, neurokutánního, neuromuskulárního, muskulárního a vaskulárního).

Tessierova klasifikace publikovaná v roce 1973 je nejkomplexnější a nejužívanější klasifikace kraniofaciálních rozštěpů, založená na rozsáhlé osobní zkušenosti a pozorování autora. Rozštěpy jsou označeny čísly 0 - 14 dle pozice vůči orbitě, protože ta náleží jak k obličeji, tak ke kalvě. No 30 bývá označen rozštěp dolní čelisti. Poloha jednotlivých rozštěpů je vyobrazena na obr. 3 a jejich příklady v tab. 5.

Obr. 3 – Tessierova klasifikace kraniofaciálních rozštěpů.

<table>
<thead>
<tr>
<th>No.</th>
<th>Tab. 5 - Klinické příklady jednotlivých kraniofaciálních rozštěpů dle Tessiera</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 0</td>
<td> </td>
</tr>
<tr>
<td>No. 1</td>
<td> </td>
</tr>
<tr>
<td>No. 2</td>
<td> </td>
</tr>
<tr>
<td>No. 3</td>
<td> </td>
</tr>
<tr>
<td>No. 4</td>
<td> </td>
</tr>
<tr>
<td>No. 5</td>
<td> </td>
</tr>
<tr>
<td>No. 6</td>
<td> </td>
</tr>
<tr>
<td>No. 6,7,8</td>
<td> </td>
</tr>
<tr>
<td>No. 7</td>
<td> </td>
</tr>
<tr>
<td>No. 8</td>
<td> </td>
</tr>
<tr>
<td>No. 9</td>
<td> </td>
</tr>
<tr>
<td>No. 10</td>
<td> </td>
</tr>
<tr>
<td>No. 11</td>
<td> </td>
</tr>
<tr>
<td>No. 12</td>
<td> </td>
</tr>
<tr>
<td>No. 13</td>
<td> </td>
</tr>
<tr>
<td>No. 14</td>
<td> </td>
</tr>
<tr>
<td>No. 30</td>
<td>Střední rozštěp mandibuly</td>
</tr>
</tbody>
</table>

20
1.4 Standardy multidisciplinární péče o dítě s rozštěpem obličeje

Díky zvýšenému riziku vývojových, psychologických, chirurgických a zubních potíží je péče o děti s rozštěpem obličeje převážně soustředěna do rozštěpových center, kde se na jejich léčbě podílí skupina specialistů. Do multidisciplinárního týmu patří pediatr, plastický a maxilofacíální chirurg, ortodontista, protetik, stomatolog, foniatr, logoped, ORL lékař, genetik a psycholog. Ačkoliv základní zároky vysoce specializované korektivní chirurgie jsou prováděny do 1 roku věku dítěte, celková léčba u dítěte probíhá od narození až do dospělosti.

Eurocleft project byla evropská intercentrická studie mezi lety 1996 a 2000, která probíhala v rámci programů BIOMED II a INCO COPERNICUS založenými Evropskou komisí. Cílem projektu bylo vytvořit registr jednotlivých rozštěpových center v celé Evropě poskytující péči o rozštěpové pacienty, stanovit soubor minimálních požadavků na léčbu těchto vad v centrech a vytvořit společnou metodiku pro budoucí intercentrická srovnání.

Průzkum též ukázal širokou rozmanitost modelů péče a klinické praxe v Evropě. V 201 centrech, která byla v projektu registrována, bylo nalezeno 194 různých protokolů léčby a to jen pro celkové jednostranné rozštěpy. Je praktikováno 17 různých sekvencí operací k uzavření rozštěpového defektu. Ačkoliv 86 týmů (42.8 %) při prvním zákroku uzavírala ret a při druhém společně tvrdé a měkké patro, téměř každý další možné pořadí následných operací je v některém centru prováděno. Dle jednotlivých protokolů v Evropě je nejčastěji sutura rtu prováděna ve 3 měsících života, patro je rekonstruováno ve věku 12 měsíců.

Také koncept péče o rozštěpové pacienty v jednotlivých zemích je výrazně odlišný. Zatímco ve skandinávských zemích je tradiční centralizace péče, v dalších zemích jako Francie a Německo existuje velké množství center, které však léčí jen několik pacientů s rozštěpem ročně. Znovu bylo prokázáno, že malácentra s malým počtem rozštěpových pacientů mohou dosahovat horších výsledků léčby.

28 WORNOM, I.L. ET AL.: Core Curriculum for Cleft Lip/Palate and other Craniofacial Anomalies, Cleft Lip and Palate, s. 283 - 300.
Výsledkem projektu byla tedy praktická směrnice, deklarující minimální doporučení pro péči o rozštěpové pacienty a minimální rozsah dokumentace terapeutických výsledků. Její jednotlivé požadavky do budoucna umožní intercentrické srovnání terapeutických výsledků a optimalizaci péče jednotlivých centrech (viz tabulka 6).

The American Cleft Palate-Craniofacial Association (ACPA) je mezinárodní nezisková lékařská společnost, která sdružuje odborníky zabývající se léčbou nebo výzkumem vrozených vad obličeje a hlavy. Členové ACPA se podílejí na managementu péče o děti a dospělé s rozštěpem rtu, s rozštěpem patra a s kraniofaciálními anomáliemi. Vzhledem k různorodým potřebám těchto pacientů je základem léčby interdisciplinární spolupráce a týmová péče. ACPA sdružuje více jak 30 odborností v 50 zemích světa. Oficiálním časopisem společnosti je šestkrát ročně vycházející interdisciplinární Cleft Palate - Craniofacial Journal. Od roku 1991 společnost vytváří standardy pro léčbu dětí s rozštěpovou vadou obličeje.30 Její jednotlivé parametry jsou uvedeny v následném textu - přehledu péče jednotlivých specialistů v rámci multidisciplinárního rozštěpového týmu. ACPA také stanovila minimální požadavky na vlastní rozštěpový tým. Mezi ně patří přítomnost plastického chirurga, ortodontisty, protetika, foniatria, logopeda, ORL lékaře, pediatra a psychologa v týmu, který se pravidelně schází k plánování další terapie jednotlivých pacientů. Mezi ostatní podmínky patří minimální požadavek léčby padesáti rozštěpových pacientů ročně a minimálně deseti nových případů ročně léčených jedním chirurgem.

Přehled péče jednotlivých specialistů v rámci multidisciplinárního týmu:

1.4.1 Genetik

Genetické vyšetření je zaměřeno na rozpoznání etiopatologické příčiny vzniku rozštěpové vady a jeho cílem je těž stanovení rizika opakovaní rozštěpové vady při další koncepci.

30 AMERICAN CLEFT PALATE-CRANIOFACIAL ASSOCIATION: Parameters for Evaluation and Treatment of Patients with Cleft Lip/Palate or Other Craniofacial Anomalies - Summary of Recommendations, http://www.acpa-cpf.org/teamcare/
Tab. 6 - Timing a rozsah minimální dokumentace pro pacienty s různými typy rozštěpu obličeje
dle doporučení studie Eurocleft

<table>
<thead>
<tr>
<th>Celkový jednostranný nebo oboustranný rozštěp /ret, alveolus, patro/</th>
<th>Timing</th>
<th>Otisk chrupu</th>
<th>teleRTG</th>
<th>Foto</th>
<th>Řeč</th>
<th>Audiometrie, tympanometrie</th>
<th>Spokojenost pacienta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primární operace</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 roky</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 let</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10 let</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 let</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Izolovaný rozštěp patra</th>
<th>Timing</th>
<th>Otisk chrupu</th>
<th>teleRTG</th>
<th>Foto</th>
<th>Řeč</th>
<th>Audiometrie, tympanometrie</th>
<th>Spokojenost pacienta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primární operace</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 roky</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 let</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 let</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rozštěp rtu</th>
<th>Timing</th>
<th>Otisk chrupu</th>
<th>Foto</th>
<th>Spokojenost pacienta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primární operace</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 roky</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 let</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 let</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 let</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Implantace kostního štěpu do alveolu</th>
<th>Timing</th>
<th>OPG</th>
<th>Fotodokumentace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Před vložením štěpu</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6 měsíců po implantaci štěpu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po prořezání špičáků</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faryngoplastika</th>
<th>Timing</th>
<th>Vyšetření řeči</th>
</tr>
</thead>
<tbody>
<tr>
<td>Před operací</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1 rok po operaci</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ortognátní chirurgie</th>
<th>Timing</th>
<th>teleRTG</th>
<th>Otisk chrupu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Před operací</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1 rok po operaci</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* Jen v případech společného postižení alveolárního výběžku

Nejčastější příčinou je inzult ze zevního prostředí organismu demaskující multifaktoriálně podmíněnou genetickou dispozici. Rozštěpová vada může být též součástí syndromů, které lze většinou identifikovat na základě anamnézy a klinického vyšetření. Chromozomální vyšetření dětí a rodičů je indikováno v případě výskytu přidružených malformací u dítěte, při opoždění růstu a výskytu psychomotorické retardace.

Rozštěpové vady lze rozdělit z genetického hlediska do dvou skupin, které mají tendenci opakované v rodinách, ale vzájemně se nemísí. I. genetickou skupinu tvoří rozštěpy vzniklé poruchou vytváření primárního patra v embryonálním období (na které event. navázala porucha utváření sekundárního patra) – tj. rozštěpy rtu a čelisti a celkové rozštěpy. Incidence je zhruba 1:1000 zdravých dětí, 15% vad je součástí syndromů a riziko jejich opakování při negativní rodinné anamnéze je cca 4%. II. genetickou skupinu tvoří rozštěpy vzniklé chybou při utváření sekundárního patra, jejich incidence je 1:2000, 50% je součástí syndromů a empirické riziko v nezatížené rodině je 3%.

1.4.2 ORL specialista

U pacientů s rozštěpem patra je ubikviterní výskyt sekretorické mediotitidy. Tento je nutno co nejdříve sanovat myringotomií a zavedením ventilačních trubiček do bubínku (TVT). Proto jsou nutné pravidelné kontroly ušním lékařem již v ranném novorozeneckém věku. ORL lékař též sleduje v kojeneckém věku výskyt obstrukční spánkové apnoe, event. provádí výměny TVT, v předškolním věku při výskytu velofaryngeální insuficience s nasalencí provádí nasoendoskopii nebo

mnohopohledovou videofluoroskopii se sledováním pohybu měkkého patra při fonaci36,37 před indikací revizní operace patra. Další výkony, jako korekční septorhinoplastiky při deformaci nosní přepážky a nosní neprůchodnosti, se provádějí až v dospělosti.

1.4.3 Plastický chirurg

Cílem rekonstrukčních operací je obnova tvaru a funkce rozštěpem postižených obličejových struktur. Operace probíhají etapovitě během celého dětství až do dospělosti.

V neonatální periodě někteří chirurgové provádějí suturu rtu eventuálně i patra. Medicínský přínos tohoto postupu dosud nebyl prokázán a vzniká vyšší riziko hlavně anesteziologických komplikací38 v časné pooperační péči na novorozenecké JIP.

Sutura rtu se provádí ve třetím měsíci života dítěte obvykle po splnění „pravidla desíti“ – věk víc jak 10 týdnů, hmotnost dítěte víc jak 10 liber a hladina Hb v krvi vyšší než 10 g/dl. Nejčastěji se celosvětově užívá metoda trojúhelníkovitého lalůčku dle Tennisona-Randala39 nebo metoda rotačně-posuvného laloku publikovaná Millardem.40 Sutura měkkého a tvrdého patra se obvykle provádí do 1 roku věku nejčastěji metodami dvojlalokové plastiky, Wardill-Kilnerovou metodou nebo dvojitou reverzní Z-plastikou dle Furlowa.41

Velofaryngeální dysfunkce u 2-3 letých dětí přetrvává asi u 10 % dětí. Pokud je indikována operace, provádí se obvykle prodloužení měkkého patra dle Furlowa nebo konstrukce faryngeálního laloku. V předškolním věku je u některých dětí s oboustranným rozštěpem rtu indikováno prodloužení kolumely, u jednostranných forem korekce měkkého nosu. Ve věku 9 - 10 let po předchozí indikaci ortodonta a prořezaní 1/3 – ½ špičáku se uzavírá kostěný defekt alveolu nejčastěji štěpem z lopaty kyčelní kosti.

40 MILLARD, D.R. JR.: A Primary Camouflage of the Unilateral Harellook. \textit{Transactions of the First International Congress of Plastic Surgery}. s.160 - 166.
V období časné dospělosti po dokončení růstu splanchnokrania se v indikovaných případech provádí korekce tvrdého nosu, septorhinoplastiky, monomaxilární a bimaxilární operace čelistí (podrobněji viz kap. 1.6 Přehled chirurgických metod a nové trendy léčby).

1.4.4 Psycholog

Intervence psychologa jsou vhodné jak pro rodiče, již v době narození dítěte s rozštěpovou vadou (pokud je diagnóza stanovena ultrazvukovým vyšetřením v době gravidity), tak po celou dobu léčby pacienta. Pomáhají překlenout krizové okamžiky.

Rozsáhlá recenze psychologické literatury o dětech s rozštěpem obličeje a dalšími kraniofaciálními anomáliemi týkající se adaptace rodičů, sociální způsobilosti, sebepřijetí, emocionálního přizpůsobení a kognitivních funkcí ukázala, že 30-40% dětí ve většině studií má potíže s internalizací či externalizací problémů, poruchami učení a se sociální způsobilostí. Ve všech těchto případech je vždy vhodná intervence psychologa.

1.4.5 Foniatr a logoped

Správné řeči a normálního jazykového vývoje je dosahováno rozvojem čtyř základních komunikačních parametrů – rezonance, artikulace, fonace a jazykového rozvoje.

1.4.6 Stomatologická péče

Děti s rozštěpem obličeje obvykle trpí vysokou kazivostí zubů. Proto je třeba pro ně zajistit kvalitní pedostomatologickou péči. Dispensární péči poskytují obvykle

dlouhodobě spolupracující pedostomatologové v terénu. Případné extrakční sanace chrupu lze u dětí po konzultaci provádět i během jiných rekonstručních a korekčních výkonů.

1.4.7 Ortodontista

Cílem ortodontické terapie u dětí s rozštěpem je správné vedení růstu a rozvoje obličeje a dentice od narození do dospělosti.

Předchirurgická ortopedie je indikována u pacientů s širokým celkovým jednostranným a oboustranným rozštěpem. Cílem této metody je zúžení rozštěpové štěrbiny a usnadnění sutury rtu. Léčba probíhá obvykle během 1-3 měsíce života pomocí speciální snímatelné patrové desky s píny k formování hrotu nosu, která se vkládá do rozštěpového defektu mezi krměními.

Dítě s rozštěpem je na ortodoncii dispenzarizováno již v období smíšeného chrupu, kdy zpravidla začíná aktivní ortodontická léčba snímatelnými i fixními aparáty (např. transpalatinálním obloukem, aparátem typu 4+2). Ve stálém chrupu je plně indikována léčba fixními aparáty na obou čelistech, společně s protetikem je těž naplánován rozsah následné protetické rekonstrukce chrupu. Pacienti s nepříznivým růstem čelistí jsou připravováni na ortodontico-chirurgické řešení mezičelistních vztahů po ukončení růstu.

1.4.8 Pediatr

Dítě s rozštěpem obličeje kromě základní pediatrické péče, stejně jako u každého dítěte, navíc vyžaduje další zvláštní zdravotní péči specifickou dle vady a věku dítěte. V novorozenecí období se zaměřuje na diagnostiku přidružených anomálií či syndromů a zvládnutí výživy dítěte. V dalším období života dítěte provádí pravidelné kontroly růstu a monitoring psychomotorického vývoje se zvláštním důrazem na jazyk, řeč a sluch, pro častá onemocnění středního ucha. Pravidelně stanuje též akutní respirační infekty, ke kterým jsou děti s rozštěpem predisponovány.

Každé centrum pro léčbu rozštěpových vad obličeje by mělo splňovat podmínky standardů péče doporučené EUROCLEFT Projectem i ACPA s přihlédnutím k národním specifikám. V rámci takto poskytované multidisciplinární péče má každý člen léčebného týmu nezastupitelnou úlohu a jen dobrou koordinaci mezi odborníky lze dosáhnou těch nejlepších terapeutických výsledků.

1.5 Multidisciplinární terapie rozštěpových vad na KPECH Brno

Léčba od prvních měsíců života do zhojení sutury patra (obvykle do 1 roku života) je koordinována plastickým chirurgem, v pozdějším věku je hlavním koordinátorem multidisciplinární péče ortodontista. Léčba pacientů probíhá dle protokolu uvedeného v Tab. 7.

Pro lepší informovanost rodičů dětí s rozštěpem obličeje a zlepšení jejich spolupráce v rámci terapie byla vypracována informační brožura. Viz příloha č. 5.
<table>
<thead>
<tr>
<th>Timing</th>
<th>Lékař a procedura /provedená vyšetření, dokumentace/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. týden</td>
<td>1. kontakt - plastický chirurg /zhodnocení vady/</td>
</tr>
</tbody>
</table>
| konec 3. m. | Pediatr /doplněná anamnéza/
| | Plastický chirurg - sutura rtu /fotodokumentace/ |
| 6. - 8. měsíc | Genetické vyšetření |
| 8. měsíc | ORL vyšetření /audiometrie,tympanometrie |
| konec 8.m. | Pediatr, plastický chirurg - sutura patra /foto, otisk patra/ |
| 2,5 roku | Foniatické vyšetření / á 6 m. do cca 5 let/ |
| | Logopedie |
| 3 roky | Kontrolní vyšetření:
| | Plastický chirurg - kontrola, indikace korekčních operací, hlavně prodloužení kolumely /fotografie/ |
| | Ortodontické vyšetření /otisky pro muzejní modely dočasného chrupu/ |
| | ORL /audiometrie, tympanometrie event. nazoendoskopie / |
| | Foniatrie +/- nahrávka řeči ve 3-4 letech, vyšetření VPI - videofluoroskopie/ |
| 4 roky | Plastický chirurg – prodloužení patra u případů VPI |
| 5-6 let | Kontrolní vyšetření:
| | Plastický chirurg - kontrola /fotografie/ |
| | Ortodontické vyšetření /otisky pro muzejní modely smíšeného chrupu, pravidelné KO 2x ročně, léčba snímatelnými aparáty/ |
| | ORL vyšetření /audio - tympanometrie/ |
| | Foniatrie / příp. nahrávka řeči/ |
| 8-10 let | Plastický chirurg – implantace kostního štěpu /fotografie/ |
| 10 let | Kontrolní vyšetření:
| | Plastický chirurg - kontrola /fotografie/ |
| | ORL vyšetření /audio - tympanometrie/ |
| | Foniatrie |
| | Ortodontická léčba /teleRTG, ve smíšeném chrupu snímatelné aparáty, po výměně chrupu aparáty fixní/ |
| 13-14 let | Kontrola protetikem - konzultace rozsahu budoucí náhradních operací, eventuálně indikace chirurgické korekce mezičelistních vztahů u pacientů s nepříznivým růstem /po dokončení růstu/ |
| 16-18 let | Kontrola všemi specialisty /fotografie, tRTG, otisky pro muzejní modely po dokončení ortodontické léčby, audio-tympanometrie/ |
| | Chirurgické korekce nepříznivých mezičelistních vztahů, korekce tvrdého nosu |
| | Dotazník spokojenosti pacientů a rodičů s výsledkem léčby |

Tab. 7 - Přehled léčebného protokolu
1.6 Přehled chirurgických metod a nové trendy léčby rozštěpů patra

Chirurgická léčba patří mezi základní modality multidisciplinární péče o rozštěpové pacienty. Je rozdělena do jednotlivých kroků postupného uzávěru rozštěpového defektu a eventuálně do dalších operací, korigujících dosažený operační výsledek.

1.6.1 Rekonstrukce rtu

Thompson v roce 1912 stanovil obecný timing provádění sutury rtu ve 2-3 měsících života dítěte. Zároveň při dodržení pravidla „10“ (viz kapitola 1.4.3), tyto guidelines patří mezi pravidla ověřená časem, která zaručují dobrou toleranci výkonu ze strany dítěte i komfort operatéra.\(^{45}\) Každý chirurg má oblíbenou techniku pro rekonstrukci rtu u jednostranného a oboustranného rozštěpu. Základem všech technik mimo přímé sutury je víceemně provedení některé z modifikací Z-plastiky k obnovení délky filtra na straně postižené rozštěpem.\(^{46}\) Tato Z-plastika může být umístěna u jednostranného rozštěpu:

- a) v dolní části rtu (Le Mesurier, Hagedorn, Tennison-Randall)
- b) v horní části rtu (Miliard I-III, Mohler)
- c) v horní i dolní části rtu (Skoog, Bařinka, Orticochea)

Je nutné si ale uvědomit, že nejdůležitějším krokom při sutuře rtu je správná rekonstrukce kontinuity m. orbicularis oris, která zajistí správnou funkci a stabilitu pooperačního výsledku v čase\(^{47}\).

Millardova rotačně – posuvná metoda se stala nejpoužívanější metodou k rekonstrukci rtu v angloamerických zemích i celosvětově, a výsledky každě nové operační metody musí být srovnávány vůči tomuto „zlatému standardu“.\(^{48}\)

Mezi další metody, které jsou v dnešní době nejvíce používány patří přímá sutura rtu pro korekci mikroforem rozštěpu, metoda trojúhelníkovitého lalůčku dle

\(^{46}\) PANTALONI, M., BYRD H. S.: Cleft lip I: Primary deformities. SRPS 2001, 9: 21, 44 s.

Tennison – Randala a Mohlerova modifikace Millardovy operace s umístěním backcutu rotace na kořen kolumely. 49

Myšlenka primární rekonstrukce rtu a nosu je použita u Salyerovy modifikace Millardovy metody či Bardachovy modifikace trojúhelníkovitého laloku prováděných také uzavřeně. Otevřenou radikální metodou je rekonstrukce rtu a nosu dle Trotta. 50

Klíčovými kroky při korekci oboustranných rozštěpů rtu jsou kvalitní rekonstrukce m. orbicularis oris posunem ze stran (prolabium sval neobsahuje), rekonstrukce adekvátního vermilia a centrální retní červeně a rekonstrukce úzkého dlouhého filtra a hlubokého vestibula. Aditivním problémem u pacientů s oboustranným rozštěpem je krátká kolumela, která se obvykle řeší prodloužením v druhé operační době či odloženě. Pro podrobnější studium lze doporučit citovanou literaturu.51,52,53,54,55,56,57,58

1.6.2 Rekonstrukce patra

Mnoho autorů uvádí, že optimální věk pro rekonstrukci patra je dán spíše individuálním vývojem artikulace u dítěte (jazykový věk) než chronologickým věkem.59,60 Obvykle ale období vývoje před nástupem artikulace s nejlepšími výsledky řeči spadá do 9-12 měsíce věku dítěte,61 maximálně do 2 let věku. Pozdější rekonstrukce vede k fixaci špatných řečových vzorů, které se později těžko z řeči odstraňují.62 Naopak časná rekonstrukce vedou k částečné restrikci růstového

53 MALEK, R.: Cleft Lip and Palate: Lesions, Pathophysiology and Primary Treatment, 278 s.
55 MILLARD, D.R. JR.: Cleft Craft – The Evolution of Its Surgery II. The Bilateral and Rare Deformities. 922 s.
Potenciálu maxily a střední obličejové etáže, i když v některých studiích tento fakt nebyl potvrzen.

Před výběrem techniky pro rekonstrukci patra je třeba uvážit 2 faktory. Prvním je Rossovo devaté kraniofaciální růst u dítěte s rozštěpem (viz tabulka 8), druhým faktorem jsou patologicko–anatomické poměry svalů měkkého patra se sagitálním průběhem svalových snopců a s náhradními úpony k zadnímu okraji kostného patra a k okraji rozštěpové štěrbiny.

Tab. 8 – Rossovo devaté kraniofaciální růst

| 1. Vlastní porucha kraniofaciálního růstu je minimální mimo oblast přímo postiženou rozštěpem. |
| 2. Růst maxilárního komplexu je dostatečný k vytvoření harmonických skeletálních vztahů. |
| 3. Dentální a alveolární složka je schopna korigovat mírnou deficienci maxilárního komplexu a vytvořit uspokojivou okluzi. |
| 4. Pooperační jízvení omezuje maxilární růst. Každé toto omezení růstu se může zásadně projevit u dětí s rozštěpovou vadou obličeje. |
| 5. Pooperační jízvení patra omezuje volný dentální růst a přetváří zubní oblouk změnou profezavání zubů. |
| 6. Sekundární změny postavení jazyka vyvolají a deformují mandibulu. |
| 7. Časné rekonstrukce alveolu s nebo bez implantace kostního štěpu je zhubná pro faciální růst. |
| 8. Nejdlužším parametrem ovlivňujícím výsledků rekonstrukce patra je chirurg. Mezi tradičními metodami uzávěru rozštěpu patra není většího rozdílu, co se týče omezení růstu čelistí. |

Tento jev je výsledkem rozštěpem narušeného vývoje svaloviny měkkého patra, kdy si svaly namisto přeruseného transversálního průběhu hledají náhradní úpony (viz obr. 4). Na základě těchto zjištění Kriens navrhl rozsáhlejší rozpracování měkkého patra s rekonstrukcí patrových svalů – intravelární veloplastiku.

71 POSNICK, J.C., RAMON, L.R.: Staging of Cleft Lip and Palate Reconstruction: Infancy through Adolescence. Cleft Lip & Palate: From Origin to Treatment, s. 319 - 353.
<table>
<thead>
<tr>
<th>Portrét</th>
<th>Autor</th>
<th>Nákres techniky</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambroise Pare (1510-1590)</td>
<td></td>
<td>Léčba rozštěpů patra za pomocí stříbrných a zlatých obturátorů</td>
</tr>
<tr>
<td></td>
<td>Le Monnier de Rouen (1764)</td>
<td></td>
<td>První provedená rekonstrukce patra u dítěte s rozštěpem. Založil stehy, kauteroval okraje rozštěpu a pak stehy zaužil</td>
</tr>
<tr>
<td></td>
<td>Carl Ferdinand von Graefe (1787-1840)</td>
<td></td>
<td>1816 poprvé zevrubně popsal metodu rekonstrukce patra, o rok později byla publikována. Vyuvinul speciální nástroje pro suturu patra po naleptání okrajů rozštěpu kyselinou chlorovodíkovou a tinkturou ze španělských mušek</td>
</tr>
<tr>
<td></td>
<td>Philibere Joseph Roux (1780-1854)</td>
<td></td>
<td>1820 popsal techniku obříznutí rozštěpové štěrby a sblížení okrajů patra třemi silnými voskovanými stehy. Pacient při operaci seděl, vše bylo provedeno při plném vědomí. Po 3 dny po operaci nesměl pacient nic jíst a nesměl mluvit.</td>
</tr>
<tr>
<td></td>
<td>John Stephenson (1796-1842)</td>
<td></td>
<td>Kanadský lékař, který studoval v Edinburgu. V září 1819 podstoupil operaci u Rouxe pro izolovaný rozštěp patra. Podrobně popsal problematiku rozštěpu patra z pohledu pacienta. Sám navrhl provádění operace ve 4 – 6 letech věku před zafixováním špatné mluvy.</td>
</tr>
<tr>
<td></td>
<td>Johan Friedrich Dieffenbach (1792 – 1847)</td>
<td></td>
<td>První úspěšně uzavřel tvrde i měkké patro. Poprvé použil uvolňovací nářezy a eventuálně i osteotomii patra</td>
</tr>
<tr>
<td></td>
<td>Bernard Rudolph Conrad von Langenbeck (1810 – 1887)</td>
<td></td>
<td>1861 popsal svou metodu „uranoplastiky“, kdy elevoval jeden nebo dva mukoperiostální laloky, které mostovitě přesunul a suturoval ve střední čáře – 1. úspěšná metoda uzávěru patra</td>
</tr>
<tr>
<td>Christian Albert Theodor Billroth (1829 – 1894)</td>
<td>Při sutuře patra (dle Langenbecka) první lámal hamuly k snížení tahu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sir William Arbuthnot Lane (1856-1943)</td>
<td>1897 představil koncept překlopného laloku pro uzávěr defektů patra – pro extenzivní jizvení a perforace byla tato technika opuštěna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sir Harold Delf Gillies (1882-1960)</td>
<td>1921 se stomatologem Kelsey Fryem publikoval radikální odpojení celého měkkého patra od tvrdého, defekt patra uzavřen obturátem. 1. pacient Bill Booker – 100% výsledek (po 29 letech prezentován před Královskou chirurgickou společností v Londýně)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>George Morris Dorrance (1877-1948)</td>
<td>Ustanovil potřebu rekonstrukce velofaryngeálního uzávěru u rozštěpových vad. Popsal techniku retroprojízce patra z podkovitého řezu s transplantováním nasální části patra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victor Veau (1871-1949)</td>
<td>Dvouvrstevný uzávěr patra – vomeralní lalúček překrytý mukoperiostálním lalokem v předním pólu patra (1. etapa) a s odstupem elevace mukoperiostálních laloků a posun vzad.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>František Burian (1881-1965)</td>
<td>1933 popsal laterální lalok ze sliznice rtu k dvouvrstevnému uzávěru alveolárního rozštěpu, po Veauově kritice operaci postup krátkodobě opustil, ale pro dobré výsledky se k němu vrátil.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herman a Wolfram Schweckendieckovi</td>
<td>Otec a syn – němečtí lékaři z Marburgu. 1944 – metoda časného uzávěru měkkého patra v 7.-8. měsíci života dítěte s použitím obturátoru na deťekt tvrdého patra do 12-15 let, kdy sekundárně proveden uzávěr. V 60. letech propagována Wolframem Schweckendieckem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenton Braithwaite</td>
<td>V roce 1964 popsal mechanismus velofaryngeálního uzávěru složený ze dvou svalových kliček</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Václav Karfík (přednost KPECH Brno 1948 – 1963)</td>
<td>Publikoval uzávěr alveolárního deťektu dlouhým lalůčkem z nazální přepážky a vomeru</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vojtěch Kubáček (přednost KPECH Brno 1963 – 1984)</td>
<td>Modifikoval čtvercového Axhausenův lalůček z vomeru na trojúhelníkovitý k vytvoření dvojvrstevného uzávěru předního pólu patra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vynálezce</td>
<td>Datum a detaily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidney Wynn</td>
<td>1959 popsal systém osteotomii patra při jeho rekonstrukci v 9 měsících věku dítěte, jejichž výsledky (Millard) „rozehřívají srdce chirurgů a foniatrů a stahují kornární cévy ortodontistů“</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ralph Millard jr. (*1919)</td>
<td>V roce 1966 publikoval užití dvou ostrůvkových laloků z mukoperiostu tvrdého patra stopkovaných na a. palatina magna vložených jako „sandwich flap“ do defektu mezi měkkým a tvrdým patrem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otto B. Kriens</td>
<td>V roce 1969 představil koncept muskulární rekonstrukce měkkého patra zaměřený na disekci m. levator veli palatini a m. tensor veli palatini – intravelární veloplastiku.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miroslav Fára (*1923)</td>
<td>Publikoval podrobnou anatomii svalů obličeje a patra na základě pitevních a histologických nálezů u 26 kadáverů s rozštěpem obličeje.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murari Mohan Mukherji</td>
<td>V roce 1969 publikoval v Cleft Palate Journal metodu rekonstrukce a prodloužení patra užitím tvářových laloků vložených do defektu po odpojení měkkého patra od tvrdého.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Základními principy Bardachovy dvojlalokové plastiky jsou: 73
1) kompletní jednofázová rekonstrukce patra
2) dvouvrstevný uzávěr tvrdého patra a třívrstevný uzávěr měkkého patra
3) uvolnění svalů měkkého patra od zadního okraje patrových desek
a a intravelární veloplastika
4) push-back mukoperiostu tvrdého patra umožňující vytvoření dostatečně
dlouhého měkkého patra event. za cenu denudovaného tvrdého patra

Furlowova metoda 74 umožňuje těž jednofázový uzávěr tvrdého patra za
eventuálního použití uvolňovacích postranních nářezů bez jeho push-backu a měkké
patro se snaží prodloužit pomocí dvou zrcadlově obrácených Z-plastik. Limitací
výkonu jsou tedy široké rozštěpové defekty s hypoplastickým měkkým patrem.

Principem moderní Langenbeckovy operace je elevace dvou dvoustopkových
(mostových) mukoperiostálních laloků tvrdého patra s odpojením svalových úponů
měkkého patra od okraje patrových desek. Limitaci metody je omezená možnost
uzávěru předního pólu patra, omezený push-back měkkého patra se zvýšeným tahem
měkkých tkání na přechodu měkkého a tvrdého patra s možností vytvoření píštělí. 75

Ačkoliv existuje množství technik rekonstrukce patra, cílem všech je dosáhnout
celistvého patra bez oronazálních komunikací a vytvoření dynamického měkkého patra
se schopností vytvoření kvalitního velofaryngeálního uzávěru při fonaci. Snahou je těž
omezit na minimum sekundárně se hojící otevřené plochy tvrdého patra, které
způsobují palatální projizování, restrikci růstu maxily a do budoucna potřebu
ortognátního výkonu v časné dospělosti. 76 Další spornou oblastí rekonstrukce je, zda
rekonstruovat patro v jedné době či dvoufázově. Od konce 30. let je znám koncept
Schweckendiekových - časný uzávěr měkkého patra (při sutuře rtu) a odložený uzávěr

patra tvrdého (za několik měsíců až let).77 Lepší výsledky řeči jsou však dosahovány u jednofázových postupů oproti dvoufázovým78 a mnoho studií prokázalo špatné výsledky řeči u dvoufázových postupů rekonstrukce patra při současném malém či okrajovém zlepšení růstu maxily.79,80

Vomerální lalůček je v literatuře nepřesně vymezen, protože původně byl popsán jako kaudálně stopkovaný lalok k rekonstrukci orálního mukoperiostu předního pólu tvrdého patra a byl provázen vysokým počtem následných perforací.81 Obnažením vomerové–premaxilární sutury a jejím následným projizvením docházelo k omezení vertikálního růstu maxily.82 V dnešní době je ale obvykle užíván kraniálně stopkovaný vomerální lalok k rekonstrukci nazální vrstvy patra. U něho, stejně jako když se odběrová plocha lalůčku na vomeru zatransplantuje slizničním štěpem, pak k vertikálnímu omezení růstu nedochází.83

1.6.3. Reoperační pro velofaryngeální insuficienci

Snahou chirurga při primární operaci patra je obnovit správné anatomické poměry pro optimální funkci velofaryngeálního uzávěru (dále VFU).85 Bohužel dosavadní znalosti neumožňují predikci výsledku vývoje řeči po primární operaci, protože výsledná funkce VFU je ovlivněna mnoha faktory – iniciální tíži vady a

hypoplazie, užitou operační technikou, zkušenost operátéra a individuálním hojením.\(^{87}\)

Loney a Bloem\(^{88}\) navrhnou klasifikaci dysfunkce VFU na 1) velofaryngeální inkompetenci (dána neuromuskulární dysfunkcí) a na 2) velofaryngeální inadekvátnost (dána deficitem tkání). Z důvodu, že klasifikace nebyla univerzánně akceptována, Trost-Cardamonová\(^{89}\) navrhla nové dělení vadné funkce VFU. Obecnou „velofaryngeální inadekvátnost“ rozdělila na: 1) velofaryngeální insuficienci (strukturální defekt, mechanická překážka), 2) velofaryngeální inkompetenci (neurogenní etiologie) a 3) velofaryngeální mislearning („neznalost“ = ostatní příčiny). Pro přetrvávající zmatky v nomenklatuře se nejčastěji užívá obecný pojem – „velofaryngeální dysfunkce“\(^{90}\).

Operační řešení dysfunkce je indikováno po stanovení diagnózy insuficience VFU foniatrem či logopedem individuálně od 3 do 5 let dítěte.\(^{91}\) Všeobecně uznávaným faktem je potřeba kvalitní předoperační diagnostiky, která vytvoří podmínky pro správné naplánování operace s dobrým klinickým výsledkem (z 80 % úspěšnosti na 97% při použití videofluoroskopie a nazoendoskopie).\(^{92,93,94}\) Objektivním vyšetřením je určen rozsah a typ VFU – koronární, cirkulární a cirkulární se zapojením Passavantova valu\(^{95}\) a je stanovena příčina nedomykavosti.

Základní techniky léčby dysfunkce VFU zahrnují prodloužení patra dle Furlowa, horní a dolní faryngeální lalok, faryngoplastiku sfinkterů a augmentaci zadní stěny hlítnu.

\(^{90}\) Sloan, G.M., Zajac, D.J.: Velofaryngeal dysfunction. Plastic Surgery, s. 311 - 337.

Tab. 10 – Některé techniky operace faryngu při velofaryngeální insuficienci

<table>
<thead>
<tr>
<th>Faryngoplastika s horní stopkou</th>
<th>Modifikovaná Hynesova faryngoplastika</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Faryngoplastika dle Jacksona a Silvertona</td>
<td>Orticocheova faryngoplastika</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Metodou první volby je Furlowova operace k prodloužení patra, pokud nebyla užita v rámci primární operace a jedná se o krátké patro s předozadním nedověrem do cca 5 mm.

V případě výrazné předozadní nedomykavosti s dobrou funkcí laterálně (nad 1 cm či selhání prodloužení patra Furlowovou operací) je doporučován faryngeální lalok s horní stopkou a šířkou danou rozsahem pohybu laterálních stěn hlítnu. Stopka faryngeálního laloku by měla být umístěna výše než zadní okraj měkkého patra, aby nezpůsobovala jeho tah dorazokaudálně. Pro menší morbiditu a lepší výsledky je proto doporučováno užití faryngeálního laloku s horní stopkou než s dolní.

Při špatné pohyblivosti patra i addukci laterální stěn je indikována konstrukce širokého faryngeálního laloku za užití „lateral port control“ dle Hoganů – během operace je laterální port vymezen 4mm katétem (Ch 13) právě pro riziko vzniku obstrukční spánkové apnoe.

Další metoda, dynamická sfinkterofaryngoplastika, je založena na elevaci a reinzerce mukomuskulárních laloků z úponů m. salpingofaryngeus a m. palatopharyngeus do laterálních stěn hlítnu k vytvoření kvalitního sfinkteru. Bývá užita v případě zvýšeného rizika pooperační obstrukce dýchacích cest a při laterální nedomykavosti stěn – viz tabulka 10. K augmentaci zadní stěny hlítnu bylo užito mnoho materiálů (homologní či autologní chrupavka, injekce Teflonu, Dacronová silikonová protéza) či vlastní tkáně (srolovaný horní faryngeální myomukózní lalok), ale většinou bez trvalého efektu.

1.6.4 Další sekundární operace

Při persistujících deformitách rtu a nosu je snahou eventuální korekční zákroky (mimo implantaci kostního štěpu a zákroky na skeletu) provést před nástupem dítěte do školy či v ranné dospělosti. Podrobnější informace o těchto zákrocích ale přesahují rámec dizertační práce a pro další podrobnosti lze odkázat na českou odbornou literaturu.¹⁰⁴

¹⁰⁴ DUŠKOVÁ, M. ET AL.: Pokroky v sekundární léčbě nemocných s rozštěpem, 176 s.
1.7 Ortodontická léčba a ortognátní operativa

1.7.1 Ortodoncie

Ortodontická terapie, jako jedna z modalit péče multidisciplinárního kraniofaciálního týmu, musí být vždy plánována a poskytována ve spolupráci s ostatními odborníky terapeutické skupiny, zvláště s chirurgem, protetikem a stomatologem.

Timing a sekvence ortodontické péče o pacienta s rozštěpem lze rozdělit do 4 vývojových období, definovaných věkem a stupněm dentálního vývoje.

1.7.1.1 Neonatální období

Předchirurgická ortopedie (Presurgical orthopedic treatment = PSOT) obvykle začíná již v 1. týdnu života dítěte s cílem vyrovnat a přibližit jednotlivé segmenty rozštěpeného obličeje, aby se svým stavem přibližovaly normálním anatomickým poměrům. Nové poměry umožní snadnější provedení sutury rtu s menším tahem měkkých tkání, či zásah na alveolu – primární kostní štěp či gingivoperiosteoplastiku, přičemž se předpokládalo, že se těmito kroky eliminuje potřeba ortodontické péče v dospělosti. Tento předpoklad se ale nepotvrdil. Primární uzávěr a lveolu kostním štěpem byl pro výraznou retardaci růstu střední obličejové etáže mnoha autory jako metoda odsouzen, přesto je ještě ve světě na některých pracovištích praktikován (Kernahan, Rosenstein – Chicago, USA).

PSOT započal v roce 1950 C. Kerr McNeil, skotský ortodontista, a to na základě spekulace, že kromě výše uvedeného tlak aparátu vyvolá „stimulaci“ růstu skeletu. Metoda se velmi rychle rozšířila a našla si mnoho zastánců po celém světě, kteří poté stanovili její předpokládané efekty – zajištění správné pozice jazyka, usnadnění krmení, usnadnění sutury rtu, psychologická pomoc rodičům, stimulace růstu kostněho patra, snížení výskytu mediotitid a zábrana kolapsu palatálních segmentů a to vše bez jediné evidence-base studie.

Další rozvoj předchirurgické ortopedie nastal po jejím spojení s modelováním měkkého nosu („nasal molding“), při kterém speciálně upravené stenty zvedají a remodelují pokleslou deformovanou chrupavku nosního křídla. Dlouhodobé studie ukazují, že nový lepší tvar nosu je stabilní s menším okolním projizvením. Tim se do budoucna sniţuje potřeba korekčních operací deformit nosu a rtu.

Uţívané PSOT aparáty se dělí na aktivní, semiaktivní a pasivní. Aktivní aparáty jsou uchyceny do čelisti piny a šrouby. Jejich zavedení vyţaduje další celkové anestézie dítěte, protoţe jsou uchyceny přímo do alveolu (Lanthamův aparat).

Semiaktivní aparáty pŧsobí pomocí desek, které se vzájemně posouvají vŧči sobě a vyrovnávají alveolus do poţadovaného tvaru. Obvykle jsou uţívány s elastickými páskami přibliţující měkké části obličeje (McNeilův či Burstonův princip). Pasivními aparátky jsou rozuměny patrové desky, kryjící zadní 2/3 patra doplněné elastikou páskou zevně (Curyšský protokol).

Millard – Lanthamova aktivní metoda je pro vyšoký výskyt předního i laterálního zkříţeného skusu u celkových i oboustranných rozštěpŧ postupně opouštěna. Zvlášť POPLA (Presurgical Orthopaedics, Periosteoplasty and Lip Adhesion) prováděná aktivním aparátkem s následnou gingivoperiosteoplastikou a adhezi rtu vedla k uzavření místa pro laterální řezák a ke katastrofálnímu omezení rŧstu maxily s výskytem otevřeného skusu u 58-60 % pacientŧ oproti 17-18 % kontrolním pacientŧm, kteří tuto proceduru nepodstoupili.

Pro Curyšský protokol PSOT chybí adekvátní studie, které by zhodnotili dopad metody na rŧst střední obličejové etáţe. Dle výsledkŧ DUTCHCLEFT studie (Dánské intercentrické...
prospektivní studie hodnotící PSOT) z roku 1996 lze konstatovat, že neonatální maxilární ortopedie u celkových jednostranných rozštěpů nezlepšuje výživu dítěte, spokojenost rodičů či ortodontický výsledek. Dočasně zlepšuje vývoj řeči u dětí ve věku 2,5 roku, ale výsledky řeči u šestiletých jsou již ve srovnání s kontrolní skupinou stejně.114

Předchirurgická ortopedie je prováděna v mnoha evropských (54\% v roce 2000) i amerických rozštěpových centrech, ale není uznána jako esenciální léčebná metoda pro pacienty s rozštěpem obličeje.

Adheze rtu je další metodou užívanou k přibližení obličejových segmentů u kompletních širokých rozštěpů. Není tedy třeba žádného aparátu a kosmetický efekt je zlepšen za cenu relativně malého chirurgického výkonu a nenáročné pooperační péče ve 3 měsících věku dítěte. Negativními důsledky této metody jsou zvýšené riziko dehiscence, potřeba dalšího definitivního chirurgického výkonu a riziko extenzního projizvení v místě sutury rtu. Následná definitivní rekonstrukce rtu se provádí za 3-6 měsíců po lipadhezi.115

Sutura rtu se celosvětově provádí většinou ve věku 3-6 měsíců, sutura patra ve věku 12-24 měsíců. Při stanovení timingu sutury patra proti sobě stojí požadavek časného uzávěru rozštěpu do 9 měsíce věku (pro časný nástup řečových funkcí z foniatrického hlediska) a požadavek vyhnout se časnému uzávěru patra, (pro pronikavý efekt na vyvíjející se maxilu a dentici z hlediska ortodontického.)116,117

1.7.1.2 Dočasná dentice

Ve věku 2-3 let po vytvoření primární dentice je u některých pacientů již možné stanovit typ vyvíjející se malokluze. Měkké tkáně obličeje obvykle maskují skeletální insuficienci střední etáže u malých dětí. Během vývoje dochází k demaskování vady a dentice obvykle odráží skeletální diskrepanci. Typickou dentální kompenzaci maxilární skeletální deficience je retroklinace dolních řezáků s proklinací horních řezáků k eliminaci anteroposteriorní diskrepance. Protože obvykle bude následovat

ortodontická terapie ve smíšené a pernamentní dentici a evidentně chybí benefity léčby v době primární dentice, bývá pro celkové zkrácení doby ortodontické léčby tato odsunuta do vyšších věkových kategorií. Výjimkou jsou spolupracující pacienti s těžkou sagitální skeletální diskrepancí v době primární dentice. Redirekce či modifikace růstu se provádí pomocí funkčních či deskových snímatelných ortopedických aparátek nebo je možno použít Delaireovy faciální protrakce maxily. Korekce ale častěji mává dočasný efekt a opakováno dochází k relapsu vady. Je třeba vždy zvážit tři části skeletální diskrepance a rozhodnout, zda bude možno provádět úspěšně růstovou modifikaci čelistí nebo bude třeba ortognátické operace.

1.7.1.3 Smíšená dentice

Období smíšené dentice začíná obvykle ve věku 6 - 7 let erupcí prvních stálých stoliček a řezáků. Stálé řezáky, které se prořezávají na okraji rozštěpeného alveolu, bývají rotované, inklinované nebo malformované (nejčastěji hypoplastické). Někdy se vyskytují nadpočetné, chybějící či klinovité řezáky. Tento stav odráží poruchu dentální laminy během embryogeneze s následným narušením vývoje zubních zárodků.

V tomto období je zpravidla zahájena ortodontická léčba snímatelnými ortodontickými aparáty jako příprava horního zubního oblouku k implantaci sekundárního kostního štěpu, který umožní posun či prořezání zubů do oblasti původní rozštěpové štěrbiny (prořezání špičáku cca v 75%). Sekundární kostní štěp se časově rozděluje na časný (2-5 let), intermediální (6 – 15 let) a pozdní (více jak 16 let). Na základě Oslo studie je doporučováno užítí intermediálního kostního štěpu, při kterém již nedochází k omezení maximálního vývoje.

Přínos sekundární spongioplastiky alveolu je následující:

1) Kostní podpora pro neprořezané pernamentní zuby přilehlé k rozštěpové štěrbině

118 Lidral, A.C., Vig, K.W.L.: Role of the orthodontist in the management of patient with cleft lip and/or palate. Cleft Lip & Palate: From Origin to Treatment, s. 381 - 396.
2) Uzávěr oronazálních fistul
3) Podpora a elevace nosního křídla na rozštěpové straně
4) Rekonstrukce kontinuálního alveolárního oblouku (umožňuje ortodontické posuny)
5) Stabilizace alveolárního oblouku či fixace reponované premaxily

Timing operace je dán dentálním věkem. V ideálním případě je to doba, kdy je kořen pernamentního špičáku zformován z 1/4 až z 1/2123, tedy obvykle mezi 8 až 11 rokem věku dítěte. (viz tabulka 11).

Tab. 11 – Stádia vývoje kořene špičáku při posuzování dle RTG nálezu

<table>
<thead>
<tr>
<th>RTG nález</th>
<th>STÁDIA VÝVOJE KOŘENE ŠPIČÁKU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>Kompletní korunka, bez kořene</td>
</tr>
<tr>
<td>Skóre</td>
<td>0</td>
</tr>
</tbody>
</table>

Výjimečně se štěp implantuje dříve ve snaze zlepšit poměry pro prořezání laterálního řezáku. Jako donorská místa spongiosní kosti se používají štěpy z crista iliaca, z krania, z mandibulární symfýzy, z žebra a z tibie.124 Kortikální kost není doporučována pro horší revaskularizaci a vyšší riziko infektu. Nadpočetné zuby bývají peroperačně extrahovány, aby později nenarušovaly prořezávání špičáku. Štěp je osteointegrován za 3 měsíce. Pokud nedojde do určité doby – cca 3 až 6 měsíců k prořezání zubu či vložení implantátu, nastává postupná resorpce štěpu až do podoby jednoduché zevní kostní laminy. Po jednom roce při hodnocení RTG snímku je interdentální septum normálně vysoké (Typ I – 64% pacientů), lehce snížené (Typ II – 32% pacientů), dosahuje výšky ¾ normálního septa (Typ III – 3 %) nebo dojde ke

ztrátě štěpu a septum chybí (Typ IV – 1% pacientů). Dle různých autorů sekundární kostní štěp neovlivňuje negativně následný růst čelisti. Vyrovnání řezáků či jejich posun je možný za 3-6 týdnů po vložení štěpu. Pokud chybí permamentní laterální řezák, může být později prořezaný špičák posunut na jeho místo, ale jen při zachování okluze.

1.7.1.4 Trvalá dentice

U kompletních jednostranných rozštěpů někdy po růstovém spurtu dochází k maximální deficienci a mandibulární prognacii z důvodů sagitální maximální deficience, což vede k vzniku III. třídy malokluze. Pro naplánování dalšího terapeutického postupu je třeba vyšetřit faciální rovnováhu, proporce a profil a provést cefalometrickou analýzu. Při mírné skeletální diskrepanci je možná ortodontická kamufláž s dentální kompenzací. Při nutnosti ortognátní operace zhruba 12-18 měsíců před operací provede ortodontista dekompenzaci vady, vyrovnaní postavení zubů, upraví šířku alveolárního oblouku tak, aby okamžitě po operaci bylo dosaženo správné okluze a artikulace, jinak totiž nastává skeletální relaps. Drobné úpravy okluze se pak provádí 4 - 6 měsíců po operaci v rámci ortodontického finishingu.

Obr. 5 – Ortodontická léčba v permanentní dentici se snímatelnou protetikou

(Z fotoarchivu MUDr. Halačkové, ortodontická ambulance KPECH Brno – Pacient s celkovým oboustranným rozštěpem s nezaloženými laterální řezáky v horní čelisti a ztrátou pravého centrálního řezáku - A) modely chrupu před léčbou a po léčbě, B) foto z průběhu ortodontické léčby, C) pacient s nasazenou náhradou horních řezáků, D) situace v ústech po sejmutí náhrady, E) náhrada horních řezáků

Ortodontická léčba v tomto období se vesměs provádí pomocí fixních ortodontických aparátů jak v rámci kompenzace vady, tak případně jako příprava k ortognátní operaci. U pacientů s chybějícími zuby se defekt buď uzavře posunem laterálních zubů, nebo po konzultaci s protetikem a implantologem se v budoucnu vyřeší protetickou náhradou (viz obr. 5) či implantací dentálního implantátu.¹²⁹,¹³⁰

K dokumentaci vývoje a růstu pacienta a také průběhu ortodontické léčby je vedena fotodokumentace, otisky a následně muzejní modely chrupu u dispenzarizovaných pacientů ve věku 3-4 let věku (období dočasného chrupu), dále mezi 8-11. rokem - při začátku ortodontické léčby (období smíšeného chrupu), následně před zahájením ortodontické léčby fixními aparáty a po ukončení této léčby (období stálého chrupu). Dokumentování pomocí muzejních modelů jsou také pacienti s většími skeletálními disharmoniemi, kteří po ukončení růstu podstupují chirurgické

¹²⁹ DUŠKOVÁ, M.: Rekonstrukce alveolárního výběžku maxily pro následnou aplikaci dentálního implantátu. Pokroky v sekundární léčbě nemocných s rozštěpem, s. 125 - 134.
¹³⁰ URBAN, F.: Dentální implantát v rozštěpovém defektu. Pokroky v sekundární léčbě nemocných s rozštěpem, s. 135 -138.
korekce mezičelistních vztahů (modely a fotografie před operací a po operaci), stejně tak pacienti s chybějícími zuby, u kterých jsou po ukončení ortodontické léčby zhotoveny protetické náhrady chybějících zubů.131

1.7.2 Ortognátní chirurgie

Základní vyšetření pacienta se skeletální disharmonií zahrnuje vyšetření obličeje a jeho proporcí, vyšetření okluze, provedení cefalometrické analýzy a analýzy modelů chrupu. Z nejnovějších metod lze k diagnostice využít CT nebo MRI s následnou 3D rekonstrukcí faciálního skeletu pomocí PC programů, umožňujících diagnostiku a zároveň i modelaci operačního zákroku a velmi přesnou predikci jeho výsledku.132

Správná diagnostika vady poté indikuje správný operační výkon k její korekci.

Faciální analýza zahrnuje vyšetření jednotlivých proporcí obličeje s jeho fotografickou dokumentací. Pacient sedí ve vzpřímené poloze s hlavou skloněnou tak, aby Frankfurtská horizontála (spojnice tragus a dolní kostěný okraj orbity) byla paralelní k podlaze, tedy aby bylo vyloučeno často se vyskytující kompenzační postavení hlavy. Jednotlivé proporce obličeje jsou posuzovány podle základních 9 řeckých kánonů krásy, které Farkas a kol.133 podrobiti kritické analýze a stanovili proporce moderního obličeje běžné rasy. (Viz tabulka 12).

Velmi důležité je posouzení vztahu horního rtu a maximálních řezáků. Při širokém úsměvu má být viděn maximálně 2-4 mm okraj řezáku, při plném úsměvu celé řezáky bez dásňového výběžku. Pokud je vidět větší část zubů a maximální gingiva, působí úsměv rušivě (tzv. „gummy smile“).
Tab. 12 – Klasické a moderní kánony krásy

<table>
<thead>
<tr>
<th>Kánon</th>
<th>Klasické znění</th>
<th>Korigované znění</th>
<th>Nákres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kánon 1</td>
<td>Obličej tvoří polovinu výšky hlavy, hranicí je kořen nosu.</td>
<td>Vzdálenost vertex – endocanthion je větší než endocanthion – gnathion v 80% případů.</td>
<td></td>
</tr>
<tr>
<td>Kánon 2</td>
<td>Obličej s čelem lze rozdělit na 3 stejné části.</td>
<td>Nasion – subnasale < subnasale – gnathion < gnathion ve 100%. Trichion – nasion > nasion – subnasale v 95%. Poměr trichion – nasion : subnasale – gnathion je variabilní.</td>
<td></td>
</tr>
<tr>
<td>Kánon 3</td>
<td>Výšku hlavy lze rozdělit na 4 stejné části.</td>
<td>G – Sn > V – Tr v 87%. V – Tr > Tr – G v 52%. Sn – Gn > G – Sn v 68%. Sn – Gn > Tr – G v 100%. Sn – Gn > V – Tr ve 100%.</td>
<td></td>
</tr>
<tr>
<td>Kánon 4</td>
<td>Délka nosu je rovna výšce ucha.</td>
<td>Délka nosu je menší než výška ucha v 95% případů.</td>
<td></td>
</tr>
<tr>
<td>Kánon 5</td>
<td>Interokulární vzdálenost je stejná jako šířka nosu.</td>
<td>Interokulární vzdálenost je menší než šířka nosu u 38% probandů a větší u 21,4% případů</td>
<td></td>
</tr>
<tr>
<td>Kánon 6</td>
<td>Interokulární vzdálenost je stejná jako šířka oční štěrbiny.</td>
<td>Interokulární vzdálenost je větší nebo stejná jako šířka oční štěrbiny v 85 % případů.</td>
<td></td>
</tr>
<tr>
<td>Kánon 7</td>
<td>Šířka úst je 1,5 – násobek šířky nosu.</td>
<td>Usta jsou širší než 1,5 – násobek šířky nosu u 60% případů.</td>
<td></td>
</tr>
<tr>
<td>Kánon 8</td>
<td>Šířka nosu je stejná jako ¼ šířky obličeje.</td>
<td>Šířka nosu je větší nebo menší než ¼ šířky obličeje u 60% probandů.</td>
<td></td>
</tr>
<tr>
<td>Kánon 9</td>
<td>Inklinace dorza nosu je stejná jako inclinace podélné osy ucha.</td>
<td>Inklinace dorza nosu je větší než inclinace podélné osy ucha v 91% případů. (na vedlejším obrázku je srovnání klasického – A a moderního obličeje bělocha – B.)</td>
<td></td>
</tr>
</tbody>
</table>

V roce 1899 zakladatel ortodoncie Edward H. Angle vyvinul univerzálně akceptovaný systém popisu dentální okluze\(^\text{134}\), klasifikující relativní polohu dolního zubního oblouku vůči hornímu. Vzájemný vztah může být:

\(^{134}\) Kamíněk, M., Štefková, M.: Orthodontie I. 109 s.
- normookluze – Angleova I. třída – meziobukální hrbolek I. horního moláru zapadá do bukálního žlábku dolního I. moláru

Obr. 6 – Hodnocení okluze dle Anglea

Cefalometrická analýza je esenciálním vyšetřením k diagnostice a plánování terapie. Díky ní získáme přehled o poměrech mezi 5 základními komponentami obličeje – kraniem, maxilou, maxilární dentici, mandibulární dentici a mandibulou. K proměření, které se provádí na laterálním RTG snímku hlavy, jsou užívány přesně definované body, linie a úhly. Pozice jednotlivých bodů je uvedena v mnoha odborných statutách a učebnicích ortodoncie nebo plastické či maxilofační chirurgie. (Viz obrázek 7)
Existuje mnoho cefalometrických analýz dle různých autorů zahrnujících mnoho různých veličin, ale pro diagnostiku a plánování terapie ortodontických a skeletálních vad existuje několik kruciálních parametrů, které mají společné (viz tabulka 13)

Podle velikosti ANB úhlu se hodnotí **skeletální třída**, u které je základem třídění ventrodorzální vztah podobně jako u klasifikace okluze.

* I. skeletální třída – tj. průměrný vztah čelistí bez výrazné odchylky. ANB = -1° až +5°

* II. skeletální třída – mandibula je relativně dorzálně posunutá k maxile. ANB > +5°

* III. skeletální třída – mandibula je relativně ventrálně posunutá k maxile. ANB < -1°

Obr. 7 – Základní cefalometrické body
Pokud jsou anomálie na chrupu a vztah zubních oblouků kombinovány se souhlasnou skeletální anomálií, jde o anomálie závažnější, s obtížnější léčbou. Naopak řada jedinců s normookluzí a pravidelným chrupem může mít II. nebo III. skeletální třídu. Je to dáno tzv. „dentoalveolárním kompenzačním mechanismem“, kdy se zuby sklání tlakem rtů a jazyka do příznivějšího postavení. Další informace o chrupu získáme diagnostikou dentálních modelů k určení postavení zubů, transversálního rozměru čelistí a vzájemné artikulace zubních oblouků.137

Tab. 13 – Základní cefalometrické veličiny

<table>
<thead>
<tr>
<th>Název</th>
<th>Popis</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA</td>
<td>Úhel pozice maxily vůči lební bázi (1)</td>
<td>82° ± 3°</td>
</tr>
<tr>
<td>SNB</td>
<td>Úhel pozice mandibuly vůči lební bázi (2)</td>
<td>80° ± 3°</td>
</tr>
<tr>
<td>ANB</td>
<td>Úhel vzájemné pozice obou čelistí (3)</td>
<td>2° ± 3°</td>
</tr>
<tr>
<td>Sklon horního řezáku</td>
<td>Úhel určující inkrinaci osy maxilárního centrálního řezáku ke skeletu maxily (4)</td>
<td>104° ± 6°</td>
</tr>
<tr>
<td>Sklon dolního řezáku</td>
<td>Úhel určující inkrinaci osy mandibulárního centrálního řezáku vzhledem k tělu mandibuly (5)</td>
<td>94° ± 7°</td>
</tr>
<tr>
<td>APo rovina</td>
<td>Spojnice bodu A a Pogionionu, užívaná jako referenční rovina pro retruzi či protruzi předních zubů</td>
<td>-</td>
</tr>
<tr>
<td>Interincizní úhel</td>
<td>Úhel svíraný osami centrálních řezáků maxily a mandibuly (6)</td>
<td>127° ± 9°</td>
</tr>
<tr>
<td>Úhel mandibulární roviny</td>
<td>Úhel svíraný Frankfurtskou horizontálnou a dolní rovinou těla mandibuly (7)</td>
<td>21° ± 3°</td>
</tr>
<tr>
<td>Estetická linie („A – line“)</td>
<td>Spojnice špičky nosu (Pronasali) a měkkotkáčového Pogionionu (Propogionion) je referenční linií k určení protruze rtů (8)</td>
<td>-</td>
</tr>
</tbody>
</table>

Po vyhodnocení modelů a laterálního cefalogramu a eventuální ortodontické předchirurgické terapii, sloužící k eliminaci dentoalveolárních kompenzačních mechanismů je přistoupeno **naplánování chirurgického výkonu**. Typ ortognátní operace je dán velikostí sagitální diskrepance mezi maxilou a mandibulou. U většiny pacientů s pseudoprogenií je metodou první volby osteotomie maxily v linii Le Fort I. U větších sagitálních diskrepací je nutná operace bimaxilární zahrnující navíc sagitální osteotomii mandibuly, s CLOCKWISE nebo CONTRECLOCKWISE rotací okluze obou čelistí. Při plánování rozsahu operace je nutné respektovat proporce pacientova profilu, pooperační artikulaci zubních oblouků a postavení kondylů mandibuly v rámci rovnováhy obou temporomandibulárních kloubů. Plán chirurgické intervence je poté ověřen na modelech v artikulátoru a jsou zhotoveny operační nákusy (splinty), verifikujiící správnou pozici čelistí během operace.

Alternativou k rozsáhlým posunům a rotacím je distrakční osteogenéza horní čelisti.⁹³⁸

1.8 ORL problematika pacientů s rozštěpem patra

Obličejový rozštěp výrazně mění fyziologické funkce celého horního aerodigestivního traktu. Dopad tohoto jevu se projevuje i v otologické problematice, která se stejně jako u zdravých dětí výrazně mění s věkem. V časném dětském věku jsou častější akutní mediotitidy a chronická sekretorická mediotitida, v dalším vývoji se problematika posouvá směrem k řešení následků chronické dysfunkce Eustachovy trubice.

Otitis media je definována jako zánět v oblasti středního ucha. Další klasifikace tohoto zánětu je založena na délce, povaze výpotku a přítomnosti či absenci dalších příznaků (viz tab. 14)

Tab. 14 – Charakteristika jednotlivých typů otitis media

<table>
<thead>
<tr>
<th>Klasifikace otitis media</th>
<th>Nosologická jednotka</th>
<th>Trvání nemoci</th>
<th>Exsudát</th>
<th>Příznaky</th>
<th>Etiologické agens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otitis media acuta</td>
<td>krátké</td>
<td>Hnisavý</td>
<td>Bolest, horečka</td>
<td>Streptococcus pneumoniae, Hemophilus influenzae, Moraxela catarrhalis</td>
<td></td>
</tr>
<tr>
<td>Otitis media chronica secretorica</td>
<td>Krátké, persistující</td>
<td>Nehnisavý</td>
<td>Nebolestivé</td>
<td>Sterilní proces Bakteriální infekce (jak OMA)</td>
<td></td>
</tr>
<tr>
<td>Otitis media chronica suppurativa (s nebo bez cholesteatomu)</td>
<td>persistující (délle než 6-8 týdnů)</td>
<td>Hnisavý</td>
<td>Nebolestivé, otorrhea</td>
<td>Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus species</td>
<td></td>
</tr>
</tbody>
</table>

Hlavní příčinou vzniku medirotitid je dysfunkce Eustachovy trubice, jejímž následkem je postupná resorpce kyslíku a oxidu uhličitého ze středouší se vznikem podtlaku ve středouši. Tento poté vede ke transudaci a akumulaci sterilního výpotku. Dále dochází k metaplasii výstelky středouší se změnou epitelu na cylindrický se
zmoženými pohárkovými buňkami a častou poruchou mukociliárního transportu. Tento patogenetický mechanismus je popsán jako „hydrops ex vacuo“ teorie.139

Eustachova trubice má 3 základní funkce: ventilační, protekční (zábrana ascendentní infekce) a čistící (ťasinkový epitel). U dětí má tuba obecně delší chrupavčitou část v poměru k části kostěné, menší průsvit a je uložena horizontálně, což zvyšuje dispozici k obtoku tuby. Za normálních podmínek je Eustachova trubice pasivně uzavřená a otvírá se cca 2000x -3000x denně na zlomek sekundy.140 Uzávěr je způsoben tlakem měkkých tkání na mediální a laterální chrupavku trubice. Patrové svaly přímo do chrupavčité části tuby neupínají. Kontrakcí m. tensor veli palatini se ústí Eustachovy trubice posouvá laterálně a dolů, kontrakcí m. levator veli palatini se snižuje tlak měkkých tkání na mediální chrupavku a dochází k otevření tuby.141

U pacientů s rozštěpovou vadou je změněnou inzercii a pozici patrových svalů tento mechanismus narušen. Abnormality nosu a patra mají sekundárně vliv také na sníženou pneumatizaci temporální kosti a menší vzduchový objem středouší přispívá k snadnějšímu vzniku patologických změn.142 K obstrukci tuby také může mechanicky přispívat adenoidní vegetace, která je často současně i infekčním fokusem. Protože zevní ústí Eustachovy trubice během polykání není chráněno měkkým patrem, existuje možnost jeho dráždění potravou či regurgitace žaludečního obsahu (83% výpotků obsahuje pepsin/pepsinogen v koncentrace 1000x větší než v séru143).

Výsledkem chronické dysfunkce Eustachovy trubice bez bakteriální infekce je tedy nejčastěji \textbf{chronická sekretorická mediotitida} (OMCHS). Její výskyt u dětí s rozštěpem patra je obvykle udáván 80 – 100\%144,145,146 již ihned po narození147, oproti 1/3 výskytu u dětí bez rozštěpu obličeje.

139 \textsc{Patrick}, J.A.: Otolaryngologic Needs of Individuals with Oral Clefts, \textit{Cleft Lip & Palate: From Origin to Treatment}, s. 397 – 407.
140 \textsc{Otruba}, L., \textsc{Fuhrman}, L.: Poruchy sluchu u rozštěpových pacientů a způsoby jejich řešení. \textit{Pokroky v sekundární léčbě nemocných s rozštěpem}, s. 157 - 164.
143 \textsc{Tasker}, A., \textsc{Dettmar}, P.W., \textsc{Panetti}, M., \textsc{Koufman}, J.A., \textsc{Birchall}, J.P., \textsc{Pearson}, J.P.: Reflex of gastrin juice and glue ear in children. \textit{Lancer} 2002; 359: 493 - 498.
145 \textsc{Paradise}, J.L., \textsc{Bluestone}, C.D., \textsc{Felder}, H.: The universality of otitis media in 50 infants with cleft palate. \textit{Pediatrics} 1969; 44:35 – 42.
146 \textsc{Grant}, H.R., \textsc{Quiney}, R.E., \textsc{Mercer}, D.M., \textsc{Lodge}, S.: Cleft palate and glue ear. \textit{Arch Dis Child} 1988:63:176-179.
Dalšími rizikovými faktory pro vznik OMCHS jsou starší sourozenec, mužské pohlaví, nekojené děti, dětské kolektivy, kouření rodičů a imunodeficience.

Perzistence dysfunkce Eustachovy tuby vede k chronickému negativnímu podtlaku, vpáčení a nakonec k ireverzibilním změnám bubínku, tj. k atelektáze, perforaci či vzniku cholesteatomu (viz obr. 8). Tyto změny v sebe přecházejí kontinuálně, takže atelektáza obvykle předchází vzniku perforace či cholesteatomu.

Obr. 8 – Patogeneze jednotlivých typů zánětů středouši

Klasifikace retrakcí bubínku způsobených podtlakem a fibrosním zánětem ve středouši je uvedena v tabulce 15. Perforace bubínku vede obvykle k vzniku chronické supurativní mediotitidy a umožňuje kontaminaci středouši cestou zevního zvukovodu, např. vodou. Třetí důsledek – cholesteatom – vznikne nahromaděním a opouzdřením odloupaných epitelií za vzniku expanzivní cysty. Tento nepravý cholesteatom

(pseudocholesteatom) s různou mírou ostitického procesu poté destruuje převodní systém a struktury středouší. Pravý cholesteatom (epidermoid) vzniká výjimečně z odštěpku epidermis z doby vývoje I. žaberní štěrbiny se stejnými důsledky.¹⁵⁰

Tab. 15 – Klasifikace retrakcí části bubínku dle různých autorů

<table>
<thead>
<tr>
<th>KLASIFIKACE RETRAKcí</th>
<th>Retrakce pars tensa (dle Sádeho)¹⁵¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. stupeň – mírná retrakce bez kontaktu bubínku s inkudostapediálním skloubením</td>
<td></td>
</tr>
<tr>
<td>II. stupeň – retrakce s kontaktem bubínku s inkudostapediálním skloubením</td>
<td></td>
</tr>
<tr>
<td>III. stupeň – retrakce s kontaktem bubínku s promontoriem bez fixace</td>
<td></td>
</tr>
<tr>
<td>IV. stupeň – retrakce s kontaktem bubínku s promontoriem s fixací</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retrakce ohraničené (dle Charachona)¹⁵²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. stupeň – retrakční kapsa kontrolovatelná, bez fixace</td>
</tr>
<tr>
<td>II. stupeň – retrakční kapsa kontrolovatelná, s fixací</td>
</tr>
<tr>
<td>III. stupeň – retrakční kapsa nekontrolovatelná, s fixací</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retrakce pars flaccida (dle Tose)¹⁵³</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. stupeň – lehká retrakce bez kontaktu s krčkem kladívka</td>
</tr>
<tr>
<td>II. stupeň – retrakce s kontaktem s krčkem kladívka bez arozí kostí</td>
</tr>
<tr>
<td>III. stupeň – retrakce s kontaktem s krčkem kladívka s arozí scuta</td>
</tr>
<tr>
<td>III. stupeň – retrakce s kontaktem s krčkem a hlavičkou kladívka s arozí scuta</td>
</tr>
</tbody>
</table>

Klinicky je chronická sekretorická mediotitida relativně bezpříznaková. Nejčastější manifestací je převodní nedoslýchavost v průměru okolo 25 až 30 dB.¹⁵⁴

I tato střední nedoslýchavost u dětí nepříznivě ovlivňuje vývoj řeči a jazyka, vývoj kognitivních funkcí (horší školní prospěch) a opožďuje se sociální maturace dítěte. Výskyt intratemporálních (akutní mastoiditida, subperiostální absces, obrna lícního nervu, labyrintitida) a intrakraniálních komplikací (meningitida, trombóza laterálního sinu, mozkový absces, otogenní hydrocefalus) je nízký.

Základním nástrojem diagnostiky OMCHS je diagnostická otoskopie či otomikroskopie (viz obr. 9). Audiometrické vyšetření, verifikující tiž převodní nedoslýchavosti, je možno použít až u starších spolupracujících dětí. Proto se

¹⁵⁰ HYBAŠEK, J.: Ušní, nosní a krční lékařství. 220 s.
tympanometrie stává jednoduchou metodou v diagnostice výpotku ve středouši a v posouzení funkce Eustachovy trubice.155

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{images/09.png}
\caption{Otomicroskopické nálezy
\footnotesize{
(Z fotoarchivu MUDr. Horníku, Dětské ORL Centrum Brno – 1) OMCHS s nálezem serosního sekretního
výpotku ve středouši, 2) Implantovaná grommeta 3) Stádium retrakce bubínku s uzurací středoušnich kůstek
4) Středoušní destruované cholesteatom)
}
\end{figure}

Jejím principem je sledování impedance a komplience (tedy pohyblivosti) bubínku v závislosti na změně tlaku ve zvukovodu. Jednotlivé tympanometrické křivky a klinické situace jsou zobrazeny přehledně v tabulce 16.

Terapie OMCHS je medikamentózní, amplifikační a chirurgická. Medikamentózní terapie OMCHS zůstává kontroverzní. Nejčastěji užívané léčebné prostředky jsou antibiotika, steroidy, dekongestiva a antihistaminika, ale výsledkem léčby jsou často spíše projevy nežádoucích účinků těchto léků.156

Amplifikace je založena na použití zesilujících naslouchadel. Bohužel neexistuje studie srovnávající vývoj kognitivních funkcí u dětí s rozštěpem léčených amplifikací či chirurgicky.

155 STOOL, S.E.: Disease of the ear in children with cleft palate and craniofacial anomalies. \textit{Cleft Lip and Palate}, s. 355 - 362

156 LALWANI, A.K.: \textit{Current Diagnosis & Treatment in Otolaryngology—Head & Neck Surgery}. 1056 s.
Tab. 16 – Charakteristika jednotlivých typů otitis media

<table>
<thead>
<tr>
<th>KLASIFIKACE TYMPANOMETRICKÝCH NÁLEZŮ</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLASIFIKACE</td>
</tr>
<tr>
<td>Tympanometrie A (normální nález)</td>
</tr>
<tr>
<td>Tympanometrie B (tekutina ve středouši)</td>
</tr>
<tr>
<td>Tympanometrie C (negativní podtlak ve středouši)</td>
</tr>
</tbody>
</table>

Chirurgická léčba zahrnuje jednorázovou myringotomii s odsátím středoušního sekretu, inzerce ventilačních trubiček (poprvé popsána Armstrongem v roce 1954\(^\text{157}\)) a adenotomii.

Inzerce ventilačních trubiček se pro svoji jednoduchost a okamžitý efekt stala nejčastější chirurgickou procedurou u dětí v USA a u dětí s rozštěpem byla zpočátku doporučována časná agresivní léčba\(^\text{158}\) s opakovaným zavedením ventilačních

trubiček, protože po palatoplastice dochází k snížení výskytu OMCHS jen u malého procenta pacientů (z 97% na 80%).

Ventilační trubičky jsou 2 typů – krátkodobé („grommety“) cca na 1 rok a dlouhodobé („T-tubes“) na více let. Zavedení ventilačních trubiček vede k zvýšenému výskytu otosklerózy (obvykle klinicky němá nebo se projevuje snížením prahu slyšitelnosti do 10 dB). Dlouhodobě zavedené ventilační trubičky ale vedou k vysoké incidenci chronické perforace bubínek a cholesteatomu, proto již v dnešní době nejsou v této dosud používány. Mimo jiné Seagle a kol. zjistil vyšší, tj. 70% výskyt audiologických problémů u amerických dětí léčených inzercí ventilačních trubiček, než u ruských dětí (50%) neléčených v této době. Proto je v dnešní době více obhajován konzervativnější přístup k zavádění ventilačních trubiček.

Adenoidektomie má zásadní dopad na výskyt OMCHS a minimalizuje výskyt výпотku, rekurence zánětu a nutnost opakovaného zavádění ventilačních trubiček. Benefit dříve kontraindikované adenoidektomie je větší, než samostatně zavedené ventilační trubičky. Proto v dnešní době při nálezu OMCHS po palatoplastice je metodou první volby provedení adenoidektomie s myringotomií či zaváděním ventilačních trubiček.

1.9 Vývoj řeči a její terapie u pacientů s orofaciálním rozštěpem

Obor foniatrie se věnuje fyziologii a patofyziologii, řeší klinickou problematiku, diagnostiku, léčbu a léčebnou rehabilitaci poruch řeči, hlasu, vad sluchu a funkci, které tvoří fyziologický základ dorozumívacího procesu166. Protože střední obličejová etáž je součástí hlasového a řečového aparátu člověka, tak její postižení rozštěpem způsobuje závažnou poruchu komunikace, vyžadující péči foniatra a logopeda.

Tab. 17 – Princip fyzioologické tvorby samohlásek a souhlásek

<table>
<thead>
<tr>
<th>Základními jednotkami řeči jsou samohlásky a souhlásky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samohlásky (vokály)</td>
</tr>
<tr>
<td>I. supraglotický prostor</td>
</tr>
<tr>
<td>II: patrojazykový prostor</td>
</tr>
<tr>
<td>III. epifaryngeální prostor</td>
</tr>
<tr>
<td>Souhlásky (konsonanty)</td>
</tr>
<tr>
<td>I. rty</td>
</tr>
<tr>
<td>II. špička jazyka a zadní hrana řezáků</td>
</tr>
<tr>
<td>III. kořen jazyka a hranice měkkého a tvrdého patra</td>
</tr>
<tr>
<td>IV. hypofarynx (v češtině se tento okrsek neuplatňuje)</td>
</tr>
<tr>
<td>V. hrtan (hláška H)</td>
</tr>
<tr>
<td>Dělení souhlásek dle principu a místa vzniku</td>
</tr>
<tr>
<td>Výbuchové (explozivy)</td>
</tr>
<tr>
<td>Alveolární přední - T, D, N</td>
</tr>
<tr>
<td>Alveolární zadní - T, D, Ň</td>
</tr>
<tr>
<td>Velární - K, G</td>
</tr>
<tr>
<td>Třené (frikativy)</td>
</tr>
<tr>
<td>Alveolární přední - S, Z</td>
</tr>
<tr>
<td>Alveolární zadní - S, Ž</td>
</tr>
<tr>
<td>Velární - CH</td>
</tr>
<tr>
<td>Laryngální - H</td>
</tr>
<tr>
<td>Kmitné (vibranty)</td>
</tr>
<tr>
<td>Položené (afrikáty)</td>
</tr>
<tr>
<td>Alveolární zadní - C</td>
</tr>
</tbody>
</table>

(Vytvořeno dle Novák, A.: Foniatrie a pedi audiologie III. Unitisk spol s.r.o. Praha 1997.)

166 NOVÁK, A: Foniatrie, 131 s.
167 WIKIPEDIE, otevřená encyklopedie: Heslo FONETIKA – dostupné na http://cs.wikipedia.org/wiki/Fonetika

Tab. 18 – Průběh fyziologického vývoje řeči

<table>
<thead>
<tr>
<th>Věk dítěte</th>
<th>Stupeň vývoje řeči</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do 6. týdne</td>
<td>Období křiku</td>
</tr>
<tr>
<td>6. týden – 6. měsíc</td>
<td>Rozvoj vazby sluch – hlas, I. období žvatlání</td>
</tr>
<tr>
<td>6. – 9. měsíc</td>
<td>Na vazbu sluch – hlas se napojuje artikulace, II. období žvatlání, na konci stadia napodobování a první rozumění slovům, období ozvěny</td>
</tr>
<tr>
<td>9. – 12 měsíc</td>
<td>Počátek účelových slovních projevů</td>
</tr>
<tr>
<td>12. – 15. měsíc</td>
<td>Zpřesňování významu slov, řeč jako funkce symbolů</td>
</tr>
<tr>
<td>15. – 18. měsíc</td>
<td>Jednoslovné věty, fyziologická fáze kooktání</td>
</tr>
<tr>
<td>18. – 24. měsíc</td>
<td>Dvou slovné věty a agramatické víceslovné věty, začátek období dotazů</td>
</tr>
<tr>
<td>2. rok života</td>
<td>Delší agramatické oznamovací věty, upevnění symbolů v paměti</td>
</tr>
<tr>
<td>3. rok života</td>
<td>Formované víceslovné věty, přebírání gramatických vztažných prostředků</td>
</tr>
<tr>
<td>4. rok života</td>
<td>Druhé období dětských otázek, budování logických a emocionálních vztahů, zdokonalování procesu paměť-řeč</td>
</tr>
</tbody>
</table>

(Vytvořeno dle Novák, A.: Foniatrie a pediaudiologie III. Unitisk spol s.r.o. Praha 1997.)

Pro správnou produktii řeči, zvláště v češtině je důležitý správně fungující velofaryngeální uzávěr. Jeho principem jsou 2 svalové kličky táhnoucí proti sobě. První je tvořena svaly měkkého patra (zvláště m. levator veli palatini, m. tensor veli palatini a m. uvulae) a druhá svaly hltanu (m. constrictor pharyngis superior za účasti m. stylopharyngeus a m. palatopharyngeus).\footnote{Hybašek, I.: Poruchy hlasu a řeči. Ušní, nosní a krční lékařství, s. 177 – 180.} Výsledkem tohoto jevu je přitažení měkkého patra k hltanu s jeho vyklenutím ve smyslu Passavantova valu, a tím pádem oddělení dutiny ústní od dutiny nosní. Při insuficienci tohoto uzávěru uniká proud vzduchu do nosu a vzniká hyperrhinofonia aperta (hypernasalita, otevřená huhňavost).\footnote{Biavatı, M.J., Rocha-Worley, G.R.: Velopharyngeal Insufficiency. E-medicine, 2/2008 dostupné na http://emedicine.medscape.com/article/873018-overview.}
Palatolálií (angl. „cleft palate speech“) nazýváme narušenou komunikační schopnost na základě orofacíálních rozštěpů, vznikající v důsledku orgánového defektu u neoperovaných pacientů nebo při insuficienci velofaryngeálního uzávěru či rozsáhlé oronazální komunikaci u pacientů již operovaných.

Charakteristickými znaky palatolalie je porucha rezonance ve smyslu hypernazality, porucha artikulace a obtížně srozumitelná řeč. Ne vždy se vyskytuje opožděný (narušený) vývoj řeči, poruchy hlasu a poruchy nonverbálního chování.

Pro samohlásky je charakteristické hypernazální (huhňavé) zbarvení, nejvíce patrné u hlásky I a U, nejméně je porušena hláška A, zvláště při zvětšeném čelistním úhlu. Dále mají samohlásky zvláštní bečivý tlačený zvuk, který je nejnápadnější u E a I, a který vzniká nadměrným fonačním tlakem.

Tab. 19 – Klasifikační schémata palatolálií a srozumitelnosti řeči

<table>
<thead>
<tr>
<th>KLASIFIKACE PALATOLÁLIÍ</th>
<th>Hodnocení řeči dle Sováka (4 stupně)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. stupeň</td>
<td>Nepatrné zbytky palatolalie (nenápadná otevřená huhňavost a zbytky dyslalie)</td>
</tr>
<tr>
<td>II. stupeň</td>
<td>Významnější příznaky huhňavosti a poruchy artikulace (nejsou příliš nápadné při komunikaci)</td>
</tr>
<tr>
<td>III. stupeň</td>
<td>Palatolalie velmi nápadná, řeč však srozumitelná</td>
</tr>
<tr>
<td>IV. stupeň</td>
<td>Řeč nesrozumitelná</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hodnocení řeči dle Brohma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
</tr>
<tr>
<td>1b</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Zvuk souhlásek je změněn v důsledku slyšitelného úniku vzduchu nosem (přidatné nosní šelesty) a tím pádem nevzniká dostatečný tlak vzduchu, potřebný k vytváření hlásek na odpovídajících artikulačních místech. Nejméně jsou porušeny nosovky, nejvíce explozivy, frikativy a afrikáty. Následkem kompenzace tohoto stavu je tedy posun artikulační báze vzad. Znamená to, že se děti snaží vytvořit úžinu nebo místo exploze ještě před únikem vzduchu do nosu a přenáší artikulační místa směrem

171 KUTHANOVÁ, B.: Palatolalie. 41 s.
173 BROHM, F.: O vývoji dětské řeči a jejich vadách, 152 s.

Tab. 20 – Diagnostické metody pro vyšetření patrohltanového uzávěru

<table>
<thead>
<tr>
<th>Vyšetření velofaryngeálního mechanismu</th>
<th>Subjektivní vyšetření</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gutzmannova A-I zkouška</td>
<td>Vyslovování A-I při střídavě zmáčknutém a uvolněném chřípí nosu. Při hypernazalitě je nápadná změna hlásky I.</td>
</tr>
<tr>
<td>Czermakova zkouška</td>
<td>Zamlžení kovové destičky nebo zrcátka přiložených k nosu při artikulaci nosovek či orálních hlásek u hypernazality</td>
</tr>
<tr>
<td>Zkouška nafouknutí tváří</td>
<td>Při interdentačním postavení jazyka (zamezuje kompenzací VFI jazykem) se nedaří při insuficienci nafouknout tváře</td>
</tr>
<tr>
<td>Zkouška artikulace exploziv</td>
<td>Oslabení P, B, G ve slabikách</td>
</tr>
<tr>
<td>Zkouška udržení vzduchu v ústech</td>
<td>Zkouška schopnosti udržet vzduch v ústech a uvolnit ho jednou ústy, jednou nosem</td>
</tr>
<tr>
<td>CVNCV zkouška</td>
<td>Hodnotí zjevná rychlost uzávěru - kombinace konsonant (C), vokál (V), nasál (N), konsonant (C), vokál (V) - (CVNCV) klade vysoké nároky na rychlost a kvalitu uzávěru (např. ve slovech pumpa, bomba)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objektivní vyšetření</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nazometrie</td>
</tr>
<tr>
<td>Epifaryngoskopie (nasosedoskopie)</td>
</tr>
<tr>
<td>Mnohapohledová videofluoroskopie</td>
</tr>
</tbody>
</table>

Stupeň palatolalie závisí na rozsahu rozštěpu, na postižení čelisti a chrupu, na přítomnosti poruchy sluchu, na mentálních schopnostech a vlivech okolního prostředí a samozřejmě na včasnosti a kompletnosti rehabilitační péče. U submukózních rozštěpů s velofaryngeální insuficiencí (VFI) se nejčastěji projevuje oslabením explosiv a hyperrhinofonii. V případech rozštěpů měkkého patra pak postižením expoziv K, G a frikativy CH. U celkových rozštěpů i postižením ostatních hlásek II., III. a dokonce i I. artikulačního okrsku v důsledku sníženého tlaku vzduchu.

V rámci diagnostiky je třeba posoudit vlastní funkci orofacíální oblasti (příjem potravy, kojení, polykání, žvýkání, salivaci, motoriku a sensitivitu), vyšetřit vývoj řeči (odchylky, recepce řeči, pasivní a aktivní slovní zásoba, artikulace, gramatická struktura řeči), velofaryngeální uzávěr (subjektivní a objektivní metody – viz tab. 20), výskyt nazality (nosní rezonance – hyperazalita, hyponazalita, smíšená hlučnost) a vyšetřit hlas (fonační doba, kvalita hlasu, hlasový začátek, síla hlasu). Častým nálezem u dětí s rozštěpem je výskyt palatofonie, kdy hlas je typicky ostrý, vysoký až tlačený, bez přiměřeného zabarvení. V rámci diagnostiky je třeba vyšetřit i nonverbální chování pacienta sledováním výskytu souhybů, zdvihání ramen při řeči, zvýšeného napětí svalstva v oblasti krku, různých mimických šklebů, nafukování tváří, vytahování a špulení rtů, chvění chřípí nosu, krčení čela, zužování nosních otvorů a různých grimas horního rtu.174

V terapii řečových poruch je nutná dobrá spolupráce foniatra a logopedu s ušním lékařem a chirurgem. V rámci předoperační komplexní logopedické péče v místě bydlisť je na prvním místě edukační roličů, jak u dítěte podněcovat rozvoj řeči (napodobování zvuků, řečové vzory, stimulující prostředí pro dítě, zpěv apod.).175 Po operaci patra jsou vhodné masáž patra a různá cvičení na usměrňování proudu vydechovaného vzduchu a obličejové mimiky. Jak je dítě schopno po operaci spolupracovat s logopedem, začíná individuální logopedická intervence, nutná u 50 - 80% dětí. Nejdrivé se upravuje výslovnou samohlásek a potě postupně úprava hlásek I., II. a III. artikulačního okrsku s posouváním artikulační báze vpřed. Vyvozené hlásky jsou vždy fixovány v různých hláskových seskupeních a automatizovány do spontánní řeči. Průběžně je procvičován patrohltanový uzávěr.176 Do 2-3 let věku by

174 KNĚKOVA, J.: Logopedie. 224 s.
175 MOLLER, K.T., STARR, C.K., JOHNSON, S.A.: Kniha pre rodičov deti s rúžstępom pery a podnebí, 128 s.
měl foniatr posoudit a eventuálně objektivizovat kvalitu velofaryngeálního uzávěru a ve spolupráci s chirurgem naplánovat možnou korekční operaci – tj. prodloužení patra či konstrukci faryngeálního laloku.177 Ošetření palatolalie by mělo být záležitostí předškolního věku. Zcela správné řeči se dá docílit u dětí do věku šesti let, pokud nemají zafíxovanou vadnou řeč.

177 ČERNÝ, L., FIŠER, J.: Foniatrická péče. \textit{Pokroky v sekundární léčbě nemocných s rozštěpem}. s. 145 – 149.
2. Experimentální část

2.1 Cíl experimentální části

Složitá problematika rozštěpu je problematikou multioborovou, která zahrnuje jak léčbu chirurgickou, tak péči a léčbu foniatrickou, ortodontickou, ORL, pediatrickou či dalších specialistů. Výsledky práce s rozštěpovými pacienty proto nelze hodnotit bez následných kontrol všech uvedených oborů. Cílem práce bylo tedy vytvořit databázi pacientů se zanesením výsledků jednotlivých kontrol, opravit nesourodost užitých klasifikačních schémat a tím umožnit jejich elektronické zpracování, které nahradí klasické zdlouhavé ruční třídění a počítání zatížené vysokou chybou.

Cílem experimentální části je tedy vytvořit databázový program umožňující přehledné zpracování dat o pacientech s rozštěpem obličeje operovaných na KPECH Brno.

Tento úkol lze rozdělit do 3 částí:
1) Sjednotit klasifikaci rozštěpových vad a formát dat
2) Vytvořit systém pro zaznamenávání údajů o rozštěpových pacientech
3) Zaznamenaná data zpracovat

2.2 Materiál a metoda

Za podklad databáze byl zvolen program Microsoft Access pro jeho snadnou obsluhu a pro možnost transformovat výsledky do jiných specializovaných programů Microsoft Office, se kterými je plně kompatibilní. To otevírá široké pole možností zpracování získaných výsledků. Základ databáze byl nejprve vytvořen ve verzi 8.0 (Microsoft Access 97), poté vzhledem k narůstajícím nárokům a vývoji byla databáze převedena do verze 9.0 (Microsoft Access 2000) a rozšířena. Databáze byla nazvána „Databáze Rozštěp 2008” a její vzor je součástí přílohy 4. Minimálními

178 PLECHÁČ, V.: Access – časté operace. 144 s.

2.3 Výsledky

Celým programem uživatele provází HLAVNÍ PŘEPÍNÁCÍ PANEL (HPP), který se objeví automaticky po spuštění databáze, jenž umožňuje snadný a rychlý pohyb po databázi pomocí přepínacích tlačítek (viz obrázek 10).

Pro pochopení stavby celého program je v dalším textu představen výpis jednotlivých oblastí databáze tak, jak je zpřístupňuje HPP.

STRUKTURA HLAVNÍHO PŘEPÍNACÍHO PANELU

TEORETICKÉ POZNÁMKY
- Přehled léčebného protokolu
- Klasifikace rozštěpových vad
- Klinická klasifikace
- MKN - 10
- Zpět
- Foniatrické poznámky
Z předcházejícího schématu lze vyvodit, že celou databázi je možno rozdělit do tří logických celků, které také odpovídají stanoveným cílům této práce:

1) **Sekce teoretická** – tj. obecná část, obsahující klasifikační schéma (TEORETICKÉ POZNÁMKY)
2) **Sekce datová** – tj. oblast sloužící k sběru nových dat (RETROSPEKTIVNÍ SLEDOVÁNÍ, PROSPEKTIVNÍ SLEDOVÁNÍ)
3) **Sekce orientačního zpracování** – část, která umožňuje přehledně zpracovávat aktuální data do tabulek a grafů (VÝSLEDKY).
2.3.1 Sekce teoretická

Tato obecná část databáze obsahuje kromě léčebného protokolu centra přehled klasifikačních schémat užitých při hodnocení výsledků léčby jednotlivými obory. Tato sekce umožňuje každému uživateli databáze se rychle zorientovat v dané problematice a pochopit smysl a validitu jednotlivých údajů (např. viz obrázek 11)

Obr. 11 – Databáze Rozštěp 2008 – Informační tabule s vysvětlením užité podrobné klinické klasifikace
2.3.1 Sekce datová

Datová sekce je nejdůležitější část databáze. Je to oddíl databáze sloužící k zaznamenávání a uchovávání všech informací o rozštěpových pacientech. Celá tato sekce je tvorěna několika formuláři, které jsou uzpůsobeny dle formátu dat pacienta v rámci jednotlivých lékařských disciplín, které se podílejí na léčbě pacientů s rozštěpem. Všechny tyto formuláře čerpají či ukládají data do základních 5 propojených tabulek, které shromažďují všechny záznamy a tvoří jádro celé aplikace. Tyto tabulky jsou též zdrojem dat pro sekci orientačního zpracování. Pro maximální efektivitu práce je většina polí vybavena lokálními nabídkami a vstupními maskami, které zrychlují práci a navíc sjednocují všechny data do jednoho formátu nutného pro další zpracování (viz obrázek 12).

Obr. 12 – Databáze Rozštěp 2008 – Formulář osobní údaje pacienta
2.3.1 Sekce orientačního zpracování

Poslední oddíl databáze tvoří sekce orientačního zpracování. Tato část databáze dovoluje neustále zpracovávat všechny zaznamenané údaje a umožňuje permanentní sledování výsledků rozštěpových pacientů. Prvek SESTAVY je vytvořen k výstupu dat na tiskárnu pro archivaci k určitému datu. Zobrazené grafy (viz obrázek 13 a 14) jsou pak příkladem konkrétního výstupu zaznamenaných dat. Všechny další výsledky jsou uvedeny v klinické části práce, kde databáze Rozštěp 2008 byla prakticky využita pro jejich zpracování.

Velikost Databáze Rozštěp 2008 je 19,4 MB. Celkem se skládá z 23 tabulek a tabulkových dotazů a 53 různých formulářů. Každý pacient může být sledován v 633 různých parametrech. Je v ní evidováno 933 pacientů narozených od 1. 1. 1993 až dosud a léčených v rozštěpovém centru KPECH Brno. Obsahuje údaje o ušních vyšetřeních, foniatrických a logopedických vyšetřeních, ortodontických nálezech a 1799 operacích těchto pacientů, při nichž bylo provedeno 2124 výkonů (tedy průměrně 1,2 výkonu na jednu operaci).
2.4 Diskuze

Počítačové zpracování se stalo důležitou součástí klinického managementu a je již dlouhodobě znám fakt, že zvláště pro data pacientů s rozštěpem obličeje je třeba vytvářet specifické registry a databáze.¹⁸⁰ Jejich tvorba je prospěšná jak pro řízení péče o pacienty v daném rozštěpovém centru, tak i při multicentrických srovnáních či tvorbě národního registru.¹⁸¹ Pro vlastní klinické využití je důležitá přesnost, stručnost a rychlost při zaznamenání údajů o pacientovi, zvláště například při zaznamenávání stupně vady.¹⁸² Vzhledem ke zvyšování složitosti jednotlivých klasifikačních systémů, je nasadě využití počítače jak k jejich záznamu, tak při jejich zpracování. Počítačem generovaná grafická schémata také umožňují snadnou aktualizaci dat o rozštěpových pacientech a zrychlují administrativu.

Přestože téměř všechna zdravotnická zařízení jsou vybavena počítači s různými nemocničními systémy, stále neexistují programy, které by plně uspokojily nároky lékařů na možnosti uchovávání a zpracovávání dat. Nejčastějším důvodem tohoto stavu je špatná spolupráce mezi lékařem a programátorem nemocničních systémů. Lékaři rychle mění své požadavky a často ani nevědí, jaké nároky na systém si mohou dovolit. Na druhou stranu je zde určitá neochota programátorů k změnám složitých databází často z důvodu možného narušení celého systému dat.

Tato databáze tuto situaci neřeší, ale ukazuje možnost vytvořit databázi dle svých představ bez nutnosti programátorských znalostí. Takto vytvořené databáze by se v budoucnu mohli stát předlohou pro profesionální databáze, zaznamenávající potřebné údaje o pacientech. V ideálním případě by to byl osud této databáze - propojení se stávajícím nemocničním systémem nebo aby inovace formátu ukládání dat o rozštěpových pacientech. Teprve tehdy by byl cíl této práce naplněn.
3. Klinická část

3.1 Cíl klinické části

Za předpokladu splnění cílů vytýčených v experimentální části, tedy po vytvoření databáze rozštěpových pacientů léčených na KPECH v Brně, lze přistoupit ke zpracování dosažených terapeutických výsledků. Pomocí nich bude možno zhodnotit funkční vývoj střední obličejové etáže u pacientů s rozštěpem obličeje a posléze srovnat výsledky léčby s publikovanými výsledky jiných rozštěpových center. Tím bude splněn vytýčený cíl dizertace.

Střední obličejová etáž se funkčně podílí na příjmu potravy, dýchání, artikulaci a díky spojení se středouším i na recepci zvuku. Poruchy funkce v této části obličeje jsou léčeny chirurgem po stránce anatomické rekonstrukce, foniatrem a logopedem po stránce řeči a komunikace, stomatologem a ortodontistou v rámci rekonstrukce chrupu a také ušním lékařem v rámci prevence ztráty sluchu. Proto funkci střední obličejové etáže lze kompetentně zhodnotit až na základě terapeutických výsledků dosažených jednotlivými lékařskými disciplínami.

Úkoly klinické sekce lze tedy rozdělit do 4 částí:
1) Zhodnotit chirurgické výsledky operovaných pacientů
2) Zhodnotit vývoj řeči a foniatrické výsledky pacientů
3) Zhodnotit výskyt a následky středoušních komplikací u pacientů s rozštěpem patra
4) Zhodnotit růst čelistí a vývoj dentální složky v rámci ortodontického sledování

3.2 Materiál a metoda

Základní soubor sledovaných pacientů tvoří děti s rozštěpem obličeje narozené od 1. 1. 1993 do 31. 12. 2006, tedy 919 pacientů a to 529 chlapečů a 390 dívek. Dolní hranice byla určena ustanovením standardního týmu rozštěpových chirurgů na KPECH
v roce 1993, horní hranice byla určena tak, aby bylo možno u pacienta zhodnotit alespoň dosažené chirurgické výsledky primární operace.

Atypický typ rozštěpu byl v základním souboru přítomen u 20 dětí (13 chlapců a 7 dívek), zbylé děti byly postiženy typickou formou rozštěpu, tzn. 899 dětí (516 chlapců a 383 dívek). U pacientů byl sledován typ rozštěpu, základní demografické údaje, anamnéza. Dále byla sledována přítomnost syndromů či jiných přidružených vad. Na základě dat z Kliniky plastické chirurgie Královské Vinohrady v Praze, z oddělení plastické chirurgii v Třinci a klinických údajů z KPECH Brno byla stanovena spádovost, neboť relativní počet pacientů z Moravy a Slezska, který byl v brněnském rozštěpovém centru léčen. Tento soubor tvořilo celkem 471 dětí.

Vzhledem k odlišnému timingu péče u jednotlivých lékařských disciplín byl vždy z tohoto základního souboru pacientů vytvořen výběr vhodný ke sledování a zhodnocení dosažených terapeutických výsledků.

3.2.1 Chirurgické sledování pacientů s rozštěpovou vadou

3.2.2 Foniatrické sledování pacientů s rozštěpem obličeje

U 291 pacientů z původního rozsahu souboru nebylo započato foniatrické sledování buď z důvodů malého rozsahu vady, či sledování na jiném pracovišti. Výsledky foniatrických kontrol byly tedy dohledány u 628 pacientů na základě ambulantních karet (362 mužů a 266 žen). Z hodnocení bylo vyřazeno 56 dětí pro přidružený syndrom a dalších 26 pro přítomnost psychomotorické retardace. Konečný soubor tedy tvořilo 546 dětí (321 chlapců a 225 dívek). Byly sledovány výsledky vývoje řeči dle Brohma, přítomnost nazality a orientační vyšetření sluchu ve 3, 4, 5 a 6 letech života dítěte při srovnání na základě typu vady, pohlaví a typu užité operační

3.2.3 ORL sledování pacientů s rozštěpovou vadou
3.2.4 Ortodontické sledování pacientů s rozštěpovou vadou

3.3 Výsledky

3.3.1 Výsledky epidemiologického průzkumu

Graf 1 - Zastoupení pohlaví

Grafem 2 je charakterizováno zastoupení pohlaví u pacientů s typickým nebo atypickým rozštěpem obličeje.

Graf 2 - Zastoupení pohlaví u typických a atypických rozštěpů

Zastoupení jednotlivých typů rozštěpové vady již zobrazuje obrázek 5 v kapitole výsledků experimentální části práce. Pro větší přehlednost je absolutní i relativní zastoupení typů rozštěpu včetně stranového vyjádření zobrazeno v grafu 3 a tabulce 21.

Graf 3 – Zastoupení jednotlivých diagnóz rozštěpu
Tab. 21 – Zastoupení jednotlivých typů rozštěpu v souboru

<table>
<thead>
<tr>
<th>Typ rozštěpu</th>
<th>Chlapci</th>
<th>Dívky</th>
<th>Celkem (absolutní počet)</th>
<th>Relativní počet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypický rozštěp</td>
<td>13</td>
<td>7</td>
<td>20</td>
<td>2,2</td>
</tr>
<tr>
<td>Rozštěp rtu (a eventuálně čelisti)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>levostraný</td>
<td>69</td>
<td>33</td>
<td>102</td>
<td>11,1</td>
</tr>
<tr>
<td>pravostraný</td>
<td>47</td>
<td>21</td>
<td>68</td>
<td>7,4</td>
</tr>
<tr>
<td>oboustranný</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>1,8</td>
</tr>
<tr>
<td>celkem</td>
<td>126</td>
<td>61</td>
<td>187</td>
<td>20,3</td>
</tr>
<tr>
<td>Rozštěp patra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rozštěp čípku, submukózní</td>
<td>28</td>
<td>33</td>
<td>61</td>
<td>6,6</td>
</tr>
<tr>
<td>měkkého patra</td>
<td>17</td>
<td>20</td>
<td>37</td>
<td>4,0</td>
</tr>
<tr>
<td>izolovaný rozštěp</td>
<td>106</td>
<td>147</td>
<td>253</td>
<td>27,6</td>
</tr>
<tr>
<td>Pierre – Robinova sekvence</td>
<td>29</td>
<td>26</td>
<td>55</td>
<td>6,0</td>
</tr>
<tr>
<td>celkem</td>
<td>180</td>
<td>226</td>
<td>406</td>
<td>44,2</td>
</tr>
<tr>
<td>Celkový jednostranný rozštěp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>levostraný</td>
<td>100</td>
<td>46</td>
<td>146</td>
<td>15,9</td>
</tr>
<tr>
<td>pravostraný</td>
<td>55</td>
<td>22</td>
<td>77</td>
<td>8,4</td>
</tr>
<tr>
<td>celkem</td>
<td>155</td>
<td>68</td>
<td>223</td>
<td>24,3</td>
</tr>
<tr>
<td>Celkový oboustranný rozštěp</td>
<td>55</td>
<td>28</td>
<td>83</td>
<td>9,0</td>
</tr>
<tr>
<td>Celkem</td>
<td>529</td>
<td>390</td>
<td>919</td>
<td>100</td>
</tr>
</tbody>
</table>

Další rozbor výsledků se bude týkat jen typických rozštěpových vad. Graf 4 zobrazuje zastoupení pohlaví u jednotlivých typů rozštěpových vad. U rozštěpů patra mírně převažuje ženské pohlaví, u ostatních typů rozštěpu je výrazná predominance mužského pohlaví.

Graf 4 – Zastoupení pohlaví u jednotlivých diagnóz rozštěpu
<table>
<thead>
<tr>
<th>Typické rozštěpy</th>
<th>CLP</th>
<th>CP</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolutně</td>
<td>relativně</td>
<td>absolutně</td>
</tr>
<tr>
<td>Muži</td>
<td>336</td>
<td>68,2 %</td>
<td>180</td>
</tr>
<tr>
<td>Ženy</td>
<td>157</td>
<td>31,8 %</td>
<td>226</td>
</tr>
<tr>
<td>Celkem</td>
<td>493</td>
<td>100 %</td>
<td>406</td>
</tr>
<tr>
<td>Syndrom</td>
<td>17</td>
<td>3,4 %</td>
<td>75</td>
</tr>
<tr>
<td>Syndrom Van der Woundové</td>
<td>6</td>
<td>Pierre - Robinova sekvence</td>
<td>57</td>
</tr>
<tr>
<td>Downův syndrom</td>
<td>2</td>
<td>Goldenharův syndrom</td>
<td>2</td>
</tr>
<tr>
<td>Wolf- Hishorn sy</td>
<td>1</td>
<td>Di Georgův syndrom</td>
<td>2</td>
</tr>
<tr>
<td>syndrom mnohočetných malformací EECs norm. karyotypem</td>
<td>1</td>
<td>Wolfův sy</td>
<td>1</td>
</tr>
<tr>
<td>Syndrom kaudální regrese</td>
<td>1</td>
<td>Trisomie 22</td>
<td>1</td>
</tr>
<tr>
<td>Sy VACTERL</td>
<td>1</td>
<td>Sy, Sedláčkové (sy Griesův, BBB sy)</td>
<td>1</td>
</tr>
<tr>
<td>Sy Dandy Walker</td>
<td>1</td>
<td>Sy Smith -Theilíer - Schenmannové</td>
<td>1</td>
</tr>
<tr>
<td>Peter sy - chromozomální aberace</td>
<td>1</td>
<td>sy Mareden-Walkerův</td>
<td>1</td>
</tr>
<tr>
<td>Klippel - Feilův syndrom</td>
<td>1</td>
<td>susp. Turnerův sy</td>
<td>1</td>
</tr>
<tr>
<td>Klineferterův sy</td>
<td>1</td>
<td>susp. sy. Silver-Russel</td>
<td>1</td>
</tr>
<tr>
<td>Aspergerův sy</td>
<td>1</td>
<td>Sticklerův sy, event. Ehlers-Danlos</td>
<td>1</td>
</tr>
<tr>
<td>Přidružené vrozené vady:</td>
<td>122</td>
<td>24,7 % (100 %)</td>
<td>134</td>
</tr>
<tr>
<td>Pohybový aparát</td>
<td>16</td>
<td>13, %</td>
<td>18</td>
</tr>
<tr>
<td>GIT</td>
<td>9</td>
<td>7,4 %</td>
<td>6</td>
</tr>
<tr>
<td>Dýchací trakt</td>
<td>5</td>
<td>4,1 %</td>
<td>1</td>
</tr>
<tr>
<td>Urogenitální trakt</td>
<td>28</td>
<td>23,0 %</td>
<td>16</td>
</tr>
<tr>
<td>Kardiovaskulární systém</td>
<td>22</td>
<td>18,0 %</td>
<td>22</td>
</tr>
<tr>
<td>Neurologické vady</td>
<td>21</td>
<td>17,2 %</td>
<td>28</td>
</tr>
<tr>
<td>Psychomotorická retardace</td>
<td>14</td>
<td>11,5 %</td>
<td>29</td>
</tr>
<tr>
<td>Oční vada</td>
<td>8</td>
<td>6,6 %</td>
<td>12</td>
</tr>
<tr>
<td>Deformita boltečti postižení vnitřního ucha</td>
<td>10</td>
<td>8,2 %</td>
<td>12</td>
</tr>
<tr>
<td>Kožní a endokrinní systém</td>
<td>27</td>
<td>22,1 %</td>
<td>11</td>
</tr>
</tbody>
</table>
V tabulce 22 jsou uvedeny počty pacientů při rozdělení typických rozštěpů na I. a II. genetickou skupinu\(^{183}\) (tedy skupinu CL/P a CP). Sledovanými parametry byly pohlaví, přítomnost syndromu, sekvence či přidružených vad a pozitivní rodinná anamnéza.

K vyjádření reprezentativnosti souboru pacientů je nakonec třeba jej charakterizovat vůči spádovému regionu. V České republice jsou vytvořena 2 centra pro léčbu rozštěpových vad. Pro region Čech je to Klinika plastické chirurgie Královské Vinohrady v Praze, pro region Moravy a Slezska je to Klinika plastické a estetické chirurgie v Brně (KPECH Brno). Do 1.1.2007 bylo také několik pacientů ročně operováno na Oddělení plastické chirurgie v Třinci. V rámci studie incidence rozštěpů obličeje na Moravě a ve Slezsku v letech 1993-1999 bylo do sledovaného souboru pacientů zařazeno celkem 465 dětí s typickými rozštěpovými vadami, 278 chlapců a 187 dívek. V těchto letech se na Moravě a ve Slezsku narodilo 272 611 dětí. V brněnském centru bylo léčeno 392 pacientů (84,3 %) s rozštěpem, v Praze 8 pacientů (1,7 %) a v Třinci 65 dětí (14,0 %). Průměrná celková incidence byla 1,72 dítěte s rozštěpem na 1000 zdravě narozených dětí. Při cenzu bylo zjištěno, že v brněnském rozštěpovém centru bylo navíc léčeno 12 % dětí ze spádové oblasti Čech. Z výše uvedených hodnot lze usuzovat, že základní soubor pacientů tvoří dostatečně reprezentativní vzorek pacientů s rozštěpovou vadou obličeje narozených na území Moravy a Slezska. Regionální incidence je zobrazena na obrázku 15.

\[\text{Obr. 15 – Grafické vyjádření incidence typických obličejových rozštěpů na území Moravy a Slezska}\]

\(^{183}\) VOKURKOVÁ, J.: Rozštěpové vady obličeje. 75 s.
3.3.2 Chirurgické výsledky pacientů s rozštěpem

Chirurgické výsledky rekonstrukce patra jsou následně prezentovány tak, jak za sebou logicky následují v rámci léčebného protokolu KPEC Brno. Práce se zabývá léčebnými výsledky pacientů s rozštěpem patra, proto výsledky rekonstrukce rtu do ní nebyly zahrnuty.

3.3.2.1 Primární rekonstrukce patra

Obvyklý timing operace patra je stanoven na 9. měsíc života dítěte. Často se ho ale nedaří dodržet z důvodů opakovaných respiračních infektů u dětí nebo z organizačních důvodů operačního programu kliniky. Věk dětí při primární sutuře patra je zobrazen v grafu 5.

Graf 5 – Věk dítěte v době rekonstrukce patra

Tab. 23 – Základní statistické ukazatele charakterizující věk dítěte v době operace

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Průměr</th>
<th>Minimum</th>
<th>Dolní kvartil</th>
<th>Medián</th>
<th>Horní kvartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Věk dítěte</td>
<td>1 rok, 8 měsíců a 18 dní</td>
<td>181 dni</td>
<td>330,75 dni</td>
<td>411, 5 dni (1 rok, 1 měsíc a 1 den)</td>
<td>637,5 dni (2 roky a 7,5 dne)</td>
<td>4178 dni (11 let, 5 měsíců a 13 dní)</td>
</tr>
</tbody>
</table>
V tabulce 24 jsou prezentovány počty pacientů operovaných jednotlivými typy operací v obou základních skupinách pacientů s rozštěpem patra. Zastoupení operačních metod je pro názornost zobrazeno i v grafu 6.

Tab. 24 – Zastoupení operačních metod užitých při primární rekonstrukci patra

<table>
<thead>
<tr>
<th>Operační metoda</th>
<th>CL/P absolutně</th>
<th>CP absolutně</th>
<th>Celkem absolutně</th>
<th>CL/P relativně</th>
<th>CP relativně</th>
<th>Celkem relativně</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furlow</td>
<td>58</td>
<td>224</td>
<td>282</td>
<td>19,9 %</td>
<td>56,4 %</td>
<td>41,0 %</td>
</tr>
<tr>
<td>Dvojlaloková plastika s IVV</td>
<td>161</td>
<td>107</td>
<td>268</td>
<td>55,4 %</td>
<td>27,0 %</td>
<td>39,0 %</td>
</tr>
<tr>
<td>Dvojlaloková plastika bez IVV</td>
<td>71</td>
<td>62</td>
<td>133</td>
<td>24,4 %</td>
<td>15,6 %</td>
<td>19,4 %</td>
</tr>
<tr>
<td>Trojlaloková mukoperiostální plastika</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0,0 %</td>
<td>0,3 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Modifikovaná dvojlaloková plastika s back-cutem</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0,3 %</td>
<td>0,0 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Operační revize</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0,0 %</td>
<td>0,3 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Neurčeno</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0,0 %</td>
<td>0,4 %</td>
<td>0,3 %</td>
</tr>
<tr>
<td>Celkem</td>
<td>291</td>
<td>397</td>
<td>688</td>
<td>42,3 %</td>
<td>57,7 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Graf 6 – Zastoupení operačních metod při rekonstrukci patra u celkových a patrových rozštěpů

Graf 7 – Zastoupení jednotlivých druhů komplikací při rekonstrukcích patra celkově

Časné komplikace po rekonstrukci patra se vyskytly zhruba u jedné ¼ pacientů. V 27 % z nich se jednalo o serózní rýmu, jedna pětina připadla na pooperační febrilie, jedna pětina na vznik dehiscencí, o další pětinu se dělí bronchitické a krvácivé komplikace stejným dílem. Podrobnosti jsou zobrazeny v grafu 7. V tabulce 25 jsou podrobně analyzovány časné komplikace u obou základních skupin rozštěpových vad v závislosti na typu operace.

87
<table>
<thead>
<tr>
<th>Typ komplikace</th>
<th>Operační metody</th>
<th>Dvojlalo (n = 282)</th>
<th>Dvojlalo pl. bez IVV (n = 282)</th>
<th>Dvojlalo pl. s IVV (n = 282)</th>
<th>Fartlov (n = 265)</th>
<th>Celkem (n = 868)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CL/P (n = 71)</td>
<td>CL/P (%)</td>
<td>CL/P (%)</td>
<td>CL/P (n = 151)</td>
<td>CL/P (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,6 0 5,6 4,2 4,2 2,8 1,4 0,0 2,8 4,2 0,0 0,0 0,0 4,2 0,0 21,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,2 4,8 6,5 3,2 8,1 0,0 0,0 0,0 4,8 0,0 1,6 0,8 3,2 0,8 29,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 3 8 5 8 2 1 3 2 5 2 2 1 7 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,5 2,3 6,0 3,8 6,0 1,5 0,8 2,3 1,5 3,8 1,5 0,8 5,3 0,8 24,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 3 20 7 9 0 0 0 3 0 8 0 0 3 8 2 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,5 1,8 12,4 4,3 5,6 0,0 0,0 1,8 0,0 5,0 0,0 0,0 1,8 5,0 1,2 27,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 0 13 6 11 3 1 1 0 1 7 4 3 7 2 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,4 0,0 12,1 5,6 10,2 2,8 1,0 1,0 0,0 1,0 6,5 3,7 2,8 6,5 1,8 30,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 3 33 13 20 3 1 4 0 9 7 4 6 15 4 78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,8 1,1 12,3 4,9 7,4 1,1 0,4 1,5 0,0 3,4 2,6 1,5 2,2 5,6 1,5 29,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 2 9 1 5 0 0 1 0 1 0 0 0 1 1 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 8 3,4 15,5 1,7 8,6 0,0 0,0 1,7 0,0 1,7 0,0 0,0 1,7 1,7 27,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 7 21 8 11 2 1 0 3 4 2 2 2 6 2 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,9 3,1 9,3 3,6 4,9 0,9 0,4 0,0 1,3 1,8 0,9 0,9 2,7 0,9 21,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 9 30 9 16 2 1 1 3 5 2 2 2 7 3 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,7 3,2 13,4 3,2 5,7 0,7 0,4 0,4 1,0 1,8 0,7 0,7 0,7 2,5 1,0 22,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 5 33 11 17 2 1 4 2 12 0 0 3 12 3 76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,2 1,7 11,3 3,8 5,8 0,7 3,4 1,4 0,7 4,1 0,0 0,0 1,0 4,1 1,0 26,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 10 38 16 27 5 2 4 3 7 11 8 6 17 5 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,5 2,5 9,6 4,0 6,8 0,3 0,5 1,0 0,8 1,8 2,8 2,0 1,5 4,3 0,3 25,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46 15 71 27 44 7 3 8 5 19 11 8 9 29 8 175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,6 2,2 10,3 3,9 6,4 1,0 0,4 1,2 0,7 2,8 1,6 1,2 1,3 4,2 1,2 25,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nejvíce dehiscencí patra se vyskytlo při užití Furlowovy metody u rekonstrukce celkových rozštěpů a to až trojnásobně více než při užití této metody u izolovaných rozštěpů patra, kde následný výskyt dehiscencí dosahuje průměrných hodnot. Také použití intravelární veloplastiky (IVV) u dvojlalokové plastiky znamená o 1/3 či až 2,5-násobně vyšší výskyt dehiscencí dle typu rozštěpu. Komplikace ve smyslu sekundárního hojení, alergie, gastrointestinální problémy a dechové obtíže se vyskytují v nízkém procentu. Nejnižší výskyt serózní rýmy a bronchitid byl zaznamenán při užití dvojlalokové metody rekonstrukce patra. Výskyt krvácivých komplikací byl poloviční při užití Furlowovy techniky. Je zajímavé, že u celkových rozštěpů byly krvácivé komplikace u všech metod nulové. Ilustrační snímky k jednotlivým technikám jsou zobrazeny na obrážku 16.

Obr. 16 – Vzhled patra po rekonstrukci jednotlivými operačními metodami

Nejtypičtější pozdní komplikací rekonstrukce patra je vznik perforace, tedy oronazální komunikace. V celém souboru došlo k vzniku perforace u 46 pacientů, tj. v 6,7 %. K jejich uzavření bylo třeba provést 54 výkonů, tedy k uzávěru perforace u jednoho pacienta bylo třeba průměrně 1,17 výkonu. Typ provedených výkonů k uzávěru perforace je zobrazen v grafu 8.

Graf 8 – Zastoupení jednotlivých typů operačních metod užitých při uzávěru perforací patra
Tab. 26 – Počet perforací a typ jejich uzávěru u jednotlivých metod rekonstrukce patra

<table>
<thead>
<tr>
<th>Pacienti</th>
<th>Dvojlaloková plastika bez IVV (n = 133)</th>
<th>Dvojlaloková plastika s IVV (n = 268)</th>
<th>Furlowova metoda (n = 282)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolutně</td>
<td>relativně</td>
<td>absolutně</td>
</tr>
<tr>
<td>CL/P</td>
<td>6</td>
<td>8,5 %</td>
<td>17</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
<td>4,8 %</td>
<td>7</td>
</tr>
<tr>
<td>Celkem</td>
<td>9</td>
<td>6,8 %</td>
<td>24</td>
</tr>
</tbody>
</table>

| Počet operací k uzávěru | 13 | 1,44 | 28 | 1,17 | 12 | 1,00 |

<table>
<thead>
<tr>
<th>Operační technika užávěru perforace</th>
<th>Resutura či posun mukoperiostálního lałoku</th>
<th>Vestibulární lałok</th>
<th>Lałok z jazyka</th>
<th>Prodloužení Furlow</th>
<th>Spongioplastika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet (n)</td>
<td>5</td>
<td>38,5 %</td>
<td>3</td>
<td>23,0 %</td>
<td>2</td>
</tr>
<tr>
<td>Počet perforací (%)</td>
<td>14</td>
<td>50,0 %</td>
<td>5</td>
<td>17,9 %</td>
<td>0</td>
</tr>
<tr>
<td>Perforace (%)</td>
<td>12</td>
<td>100,0 %</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabulka 26 zobrazuje zastoupení perforací u jednotlivých operačních metod a typů rozštěpu. U celkových rozštěpů nejméně perforací patra vzniklo při užití metody dvojlalokové plastiky bez IVV. U izolovaných rozštěpů výrazně nejméně perforací patra vzniká při užití metody dle Furlowa. Ačkoliv pooperačních dehiscencí je v této skupině pacientů 4,9 %, tak procento výsledných perforací po dohojení činí jen 2,6 %. Rozsáhlejší preparace u IVV oproti dvojlalokové plastice bez IVV se projevuje nárůstem dehiscencí cca o 2 %.

Srovnání vlivu provedení operační techniky každým operátorem na výskyt dehiscencí, krvácení a výsledných perforací patra je zobrazen v tabulce 27. Generalizovaně lze říci, že čím je operátér zkušenější, tím méně komplikací vzniká. Špatné výsledky byly dosaženy u skupiny 6 dětí operovaných 5 různými operatéry v době vytváření stálého operačního rozštěpového týmu.

Tab. 27 – Procento dehiscencí, krvácení a perforací patra u jednotlivých chirurgů rozštěpového týmu

<table>
<thead>
<tr>
<th>Operátor</th>
<th>Počet provedených rekonstrukcí patra celkem (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operátor 1</td>
<td>273</td>
</tr>
<tr>
<td>Operátor 2</td>
<td>208</td>
</tr>
<tr>
<td>Operátor 3</td>
<td>173</td>
</tr>
<tr>
<td>Operátor 4</td>
<td>26</td>
</tr>
<tr>
<td>Jiní operátoři</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operátor</th>
<th>Počet operací (n)</th>
<th>Dehiscence (%)</th>
<th>Pooperační krvácení (%)</th>
<th>Perforace (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dvojlaloková plastika</td>
<td>Furlow</td>
<td>Dvojlaloková plastika</td>
<td>Furlow</td>
<td>Dvojlaloková plastika</td>
</tr>
<tr>
<td>Operátor 1</td>
<td>273</td>
<td>101</td>
<td>77</td>
<td>94</td>
</tr>
<tr>
<td>Operátor 2</td>
<td>208</td>
<td>9</td>
<td>123</td>
<td>76</td>
</tr>
<tr>
<td>Operátor 3</td>
<td>173</td>
<td>33</td>
<td>66</td>
<td>10</td>
</tr>
<tr>
<td>Operátor 4</td>
<td>26</td>
<td>18</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Jiní operátoři</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
3.3.2.2 Reoperace pro velofaryngeální dysfunkci

Graf 9 – Věk dítěte v době první reoperace patra pro velofaryngeální insuficienci

Podrobnější charakteristika časového rozložení je zobrazena v tabulce 28.

Tab. 28 – Základní ukazatele charakterizující věk dítěte v době první reoperace pro VF insuficienci

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Průměr</th>
<th>Minimum</th>
<th>Dolní kvartil</th>
<th>Medián</th>
<th>Horní kvartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Věk dítěte</td>
<td>6,75 roku</td>
<td>2,53 roku</td>
<td>5,48 roku</td>
<td>6,41 roku</td>
<td>7,50 roku</td>
<td>12,26 roku</td>
</tr>
</tbody>
</table>

Rozložení a typ reoperací patra pro velofaryngeální dysfunkci (VFD) po jednotlivých metodách palatoplastiky je zobrazeno v tabulce 29. Při užití dvojlalokové plastiky bylo třeba prodlužovat patro u každého čtvrtého dítěte operovaného touto metodou, ať již byla nebo nebyla provedena intravelární veloplastika. Po užití Furlovovy metody vzniká velofaryngeální insuficience u 3% případů a lze ji korigovat faryngeálním lalokem nebo faryngoplastikou. Výhodná je kombinace dvojlalokové plastiky eventuálně prodloužené reoperací dle Furlowa, protože po ní nebylo třeba následně konstruovat extraanatomický faryngeální lalok ani v jednom případě.
Tab. 29 – Počet a typ reoperací pro VF insuficienci u jednotlivých metod rekonstrukce patra

<table>
<thead>
<tr>
<th>Pacienti</th>
<th>Dvojlaloková plastika bez IVV</th>
<th>Dvojlaloková plastika s IVV</th>
<th>Furlowova metoda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relativně</td>
<td>absolutně</td>
<td>relativně</td>
</tr>
<tr>
<td>CL/P</td>
<td>9 (n=43)</td>
<td>20,1 %</td>
<td>39 (n=148)</td>
</tr>
<tr>
<td>CP</td>
<td>10 (n=32)</td>
<td>31,2%</td>
<td>23 (n=91)</td>
</tr>
<tr>
<td>Celkem</td>
<td>19 (n=75)</td>
<td>25,3%</td>
<td>62 (n=239)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Počet operací k obnově uzávěru</th>
<th>13</th>
<th>1,00</th>
<th>65</th>
<th>1,05</th>
<th>8</th>
<th>1,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operační technika korekce VFD</td>
<td>Furlow</td>
<td>19</td>
<td>100,0 %</td>
<td>59</td>
<td>95,1 %</td>
<td>2?</td>
</tr>
<tr>
<td></td>
<td>Faryngeální lalok</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bukální laloky</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Z – plastika orálně</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Furlow a následně faryngeální lalok</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>4,9 %</td>
<td>-</td>
</tr>
</tbody>
</table>

Celkem provedeno 91 reoperací pro VF insuficienci z 561 palatoplastik = 16,2 %

Graf 10 zobrazuje zastoupení jednotlivých palatoplastik v omezeném souboru pacientů s rekonstruovaným patrem pro srovnání se zastoupením palatoplastik, které bylo nutno korigovat pro velofaryngeální dysfunkci.

Graf 10 – Zastoupení operačních metod při rekonstrukci patra a palatoplastik před reoperací pro VF dysfunkci

3.3.2.3 Implantace sekundárního kostního štěpu

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Průměr</th>
<th>Minimum</th>
<th>Dolní kvartil</th>
<th>Medián</th>
<th>Horní kvartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Věk dítěte</td>
<td>9,29 roku</td>
<td>7,17 roku</td>
<td>8,61 roku</td>
<td>9,11 roku</td>
<td>9,78 roku</td>
<td>12,63 roku</td>
</tr>
</tbody>
</table>
Tab. 31 – Přehled operačních komplikací po rekonstrukci alveolu

<table>
<thead>
<tr>
<th>Druh komplikace</th>
<th>Počet pacientů</th>
<th>absolutně</th>
<th>relativně</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poranění n. cutaneus femoris lateralis</td>
<td>0</td>
<td>0,0 %</td>
<td></td>
</tr>
<tr>
<td>Cástěčná dehiscence rány</td>
<td>1</td>
<td>0,8 %</td>
<td></td>
</tr>
<tr>
<td>Krvácení</td>
<td>1</td>
<td>0,8 %</td>
<td></td>
</tr>
<tr>
<td>Prolongovaná serosní sekrece z rány</td>
<td>2</td>
<td>1,7 %</td>
<td></td>
</tr>
<tr>
<td>Infekt HCD, febrílie</td>
<td>3</td>
<td>2,5 %</td>
<td></td>
</tr>
<tr>
<td>Reimplantace kostního štěpu (ortodontista)</td>
<td>1</td>
<td>0,8 %</td>
<td></td>
</tr>
<tr>
<td>Jiná komplikace</td>
<td>1</td>
<td>0,8 %</td>
<td></td>
</tr>
<tr>
<td>Komplikace celkem</td>
<td>8</td>
<td>6,8 %</td>
<td></td>
</tr>
</tbody>
</table>

Protože u všech pacientů nebyl proveden kontrolní ortopanoramatický snímek, nebylo možné posoudit kvalitu štěpu. Komplikace se v souboru pacientů vyskytly v malém procentu a jsou uvedeny v tabulce 31.

3.3.2.4 Celková prooperovanost

Tab. 32 – Přehled prooperovanosti pacientů s různými typy rozštěpové vady

<table>
<thead>
<tr>
<th>Typ rozštěpu</th>
<th>Operace</th>
<th>Výkony</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sum</td>
<td>Avg</td>
</tr>
<tr>
<td>Rozštěp rtu</td>
<td>295</td>
<td>1,60</td>
</tr>
<tr>
<td>Celkový jednostranný</td>
<td>682</td>
<td>3,1</td>
</tr>
<tr>
<td>rozštěp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkový oboustranný</td>
<td>316</td>
<td>3,8</td>
</tr>
<tr>
<td>rozštěp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rozštěp patra</td>
<td>501</td>
<td>1,25</td>
</tr>
<tr>
<td>Celkem</td>
<td>1794</td>
<td>2,02</td>
</tr>
</tbody>
</table>

Nejméně operací a výkonů je třeba u pacientů s rozštěpem patra, poté s rozštěpem rtu, dále s celkovým jednostranným rozštěpem a nejvíce operací a výkonů je třeba při rekonstrukci celkových oboustranných rozštěpů.
3.3.3 Foniatrické výsledky pacientů s rozštěpem

Výběr foniatricky sledovaných pacientů byl hodnocen ve stupni vývoje řeči, v přítomnosti hyperrhinofonia aperta a v orientačním vyšetření sluchu v závislosti na typu rozštěpu, pohlaví a použité operační technice rekonstrukce patra.

Tab. 33 – Vývoj řeči, nazalita a alterace sluchu v různém věku dítěte dle typu vady

<table>
<thead>
<tr>
<th>Brohm (n pacientů)</th>
<th>III. rok</th>
<th>IV. rok</th>
<th>V. rok</th>
<th>IV. rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slupů</td>
<td>CL</td>
<td>UCLP</td>
<td>BCLP</td>
<td>CP</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1b</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>13</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2-</td>
<td>27</td>
<td>28</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>2-3</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>41</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>3-</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3-4</td>
<td>2</td>
<td>11</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Ost.</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Min</td>
<td>1a</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
</tr>
<tr>
<td>Dolní Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Median</td>
<td>2-3</td>
<td>3</td>
<td>3</td>
<td>3-2-3</td>
</tr>
<tr>
<td>Horní Q</td>
<td>2-3</td>
<td>3-4</td>
<td>3-4</td>
<td>3</td>
</tr>
<tr>
<td>Nazalita (%)</td>
<td>III. rok</td>
<td>IV. rok</td>
<td>V. rok</td>
<td>IV. rok</td>
</tr>
<tr>
<td>přítomna</td>
<td>0,0</td>
<td>2,1</td>
<td>3,9</td>
<td>5,6</td>
</tr>
<tr>
<td>naznačená</td>
<td>1,4</td>
<td>6,4</td>
<td>7,8</td>
<td>9,1</td>
</tr>
<tr>
<td>nepřítomna</td>
<td>98,6</td>
<td>91,5</td>
<td>88,3</td>
<td>85,3</td>
</tr>
<tr>
<td>Alterace sluchu (%)</td>
<td>III. rok</td>
<td>IV. rok</td>
<td>V. rok</td>
<td>IV. rok</td>
</tr>
<tr>
<td>V norma</td>
<td>100</td>
<td>99,3</td>
<td>92,5</td>
<td>99,4</td>
</tr>
<tr>
<td>V snížen</td>
<td>0,0</td>
<td>0,7</td>
<td>7,5</td>
<td>0,6</td>
</tr>
<tr>
<td>VS norma</td>
<td>100</td>
<td>98,0</td>
<td>86,8</td>
<td>98,7</td>
</tr>
<tr>
<td>VS snížen</td>
<td>0,0</td>
<td>2,0</td>
<td>13,2</td>
<td>1,3</td>
</tr>
</tbody>
</table>

V tabulce 33 jsou prezentovány výsledky vývoje řeči, nazality a orientačního vyšetření sluchu dle různých typů rozštěpu. Při zhodnocení statistických parametrů v jednotlivých letech věku lze konstatovat, že u všech typů rozštěpu dochází u dětí k postupnému zlepšování stupně vývoje řeči. Nejméně je řeč alterována u rozštěpů rtu,
poté patra, nejvíce u celkových rozštěpů bez zásadního rozdílu mezi jednostrannou a oboustrannou formou. Tyto výsledky jsou patrné též z grafů 13 a 14.

Graf 13 – Vývoj řeči u jednotlivých typů rozštěpu dle vady

- **Rozštěp rtu**
- **Rozštěp patra**

Graf 14 – Vývoj řeči u jednotlivých typů rozštěpu dle věku dítěte

- **3 roky**
- **4 roky**
- **5 let**
- **6 let**
Orientační vyšetření nazality dle Gutzmana ukazuje postupný nárůst incidence u jednotlivých vad ve vyšším věku dítěte, nejvíce je tento trend vyjádřen u izolovaných rozštěpů patra, jak je patrné z grafu 15.

Graf 15 – Výskyt nazality u jednotlivých typů rozštěpu dle věku dítěte

Dle orientačního vyšetření sluchu se největší alterace sluchu objevila u dětí s celkovým oboustranným rozštěpem v 5 letech věku a u 15% případů pro mluvené slovo a u jedné ¼ pacientů pro šepot. V ostatních případech nedoslýchavost zřídka překročila práh 10%. Minimální výskyt byl samozřejmě zaznamenán u dětí s rozštěpem rtu.

V následující tabulce 34 je zobrazen vývoj řeči, výskyt nazalence a alterace sluchu u dětí s celkovým rozštěpem nebo izolovaným rozštěpem patra u obou pohlaví. V žádném parametru vývoje řeči nedochází k význačnější odchylce v závislosti na pohlaví. Tento výsledek je patrný i z grafu 16.
Tab. 34 – Vývoj řeči, nazalita a alterace sluchu v různém věku dítěte dle pohlaví

<table>
<thead>
<tr>
<th>Brohm (n pacientů)</th>
<th>III. rok</th>
<th>IV. rok</th>
<th>V. rok</th>
<th>IV. rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slušný</td>
<td>Podstupně</td>
<td>CLP</td>
<td>CP</td>
<td>CLP</td>
</tr>
<tr>
<td>člověk</td>
<td>člověk</td>
<td>člověk</td>
<td>člověk</td>
<td>člověk</td>
</tr>
<tr>
<td>1</td>
<td>1a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2-</td>
<td>7</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>6</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>19</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3-4</td>
<td>4</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>27</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ost.</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Min</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
</tr>
<tr>
<td>Dolní Q</td>
<td>2-</td>
<td>2-</td>
<td>2-</td>
<td>2-</td>
</tr>
<tr>
<td>Median</td>
<td>3</td>
<td>3</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Horní Q</td>
<td>3</td>
<td>3-4</td>
<td>3</td>
<td>3-4</td>
</tr>
<tr>
<td>Max</td>
<td>Ost.</td>
<td>Ost.</td>
<td>Ost.</td>
<td>Ost.</td>
</tr>
<tr>
<td>Nazalence (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>přítomná</td>
<td>3,4</td>
<td>2,3</td>
<td>4,9</td>
<td>6,5</td>
</tr>
<tr>
<td>naznačená</td>
<td>10,2</td>
<td>5,3</td>
<td>8,6</td>
<td>9,7</td>
</tr>
<tr>
<td>neprítomná</td>
<td>86,4</td>
<td>92,4</td>
<td>86,5</td>
<td>83,8</td>
</tr>
<tr>
<td>Alterace sluchu (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. rok</td>
<td>IV. rok</td>
<td>V. rok</td>
<td>IV. rok</td>
<td></td>
</tr>
<tr>
<td>V norma</td>
<td>95,1</td>
<td>98,6</td>
<td>100</td>
<td>98,6</td>
</tr>
<tr>
<td>V snížen</td>
<td>4,9</td>
<td>1,4</td>
<td>0</td>
<td>1,4</td>
</tr>
<tr>
<td>VS norma</td>
<td>91,8</td>
<td>96,5</td>
<td>98,8</td>
<td>98,6</td>
</tr>
<tr>
<td>VS snížen</td>
<td>8,2</td>
<td>3,5</td>
<td>1,2</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Graf 16 – Vývoj řeči u jednotlivých typů rozštěpu dle pohlaví a věku dítěte
Orientační vyšetření nazality dle Gutzmona ukazuje postupný nárůst plné nebo naznačené nazalence u dětí s přibývajícím věkem, ale tyto hodnoty nejsou proměnné dle pohlaví, ale více dle typu rozštěpu. U rozštěpu patra v 6 letech se vyskytuje nazalita u chlapců i dívek zhruba v 25% případů. Tento jev je patrný i z grafu 17.

Graf 17 – Výskyt nazality u jednotlivých typů rozštěpu dle věku dítěte a pohlaví

<table>
<thead>
<tr>
<th>Typ vady</th>
<th>Čtyři roky</th>
<th>Pětileté</th>
<th>Šestileté</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLP ženy</td>
<td>přítomna</td>
<td>naznačená</td>
<td>nepřítomna</td>
</tr>
<tr>
<td>CLP muži</td>
<td>přítomna</td>
<td>naznačená</td>
<td>nepřítomna</td>
</tr>
<tr>
<td>CP ženy</td>
<td>přítomna</td>
<td>naznačená</td>
<td>nepřítomna</td>
</tr>
<tr>
<td>CP muži</td>
<td>přítomna</td>
<td>naznačená</td>
<td>nepřítomna</td>
</tr>
</tbody>
</table>

Ani v případě výskytu nedoslýchavosti dle orientačního vyšetření sluchu se neprojevila v žádné skupině dětí závislost na typu pohlaví (viz tabulka 34).

Dalším zkoumaným faktorem ovlivňujícím foniatrické výsledky pacientů byl typ užité techniky při rekonstrukci patra. Dvojlaloková metoda rekonstrukce s použitím intravelární veloplastiky dle Kriense (IVV) byla srovnána s operační technikou dle Furlowa. Jak ale vyplývá z tabulky 24 v podkapitole 3.3.1.1, obě techniky byly nejčastěji užívány u pacientů s jiným typem rozštěpu. Jelikož výsledky foniatrických kontrol závisí na typu rozštěpu, byla pro adekvátní srovnání obou metod selektována skupina pacientů se stejným typem vady – tedy s izolovaným rozštěpem měkkého

Tab. 35 – Srovnání vývoje řeči, nazality a alterace sluchu po operaci nekompletního rozštěpu patra dle Furlowa nebo při použití dvojlalokové plastiky s intravelální veloplastikou dle Kriense

<table>
<thead>
<tr>
<th>Slupík</th>
<th>Pokupeč</th>
<th>III. rok</th>
<th>IV. rok</th>
<th>V. rok</th>
<th>IV. rok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Furlow</td>
<td>IVV</td>
<td>Furlow</td>
<td>IVV</td>
<td>Furlow</td>
</tr>
<tr>
<td></td>
<td>n %</td>
<td>n %</td>
<td>n %</td>
<td>n %</td>
<td>n %</td>
</tr>
<tr>
<td>1</td>
<td>1a 0 0,0</td>
<td>0 0,0</td>
<td>4 5,8</td>
<td>0 0,0</td>
<td>12 20,0</td>
</tr>
<tr>
<td></td>
<td>1b 8 10,4</td>
<td>0 0,0</td>
<td>14 20,3</td>
<td>1 10,0</td>
<td>19 31,7</td>
</tr>
<tr>
<td>2</td>
<td>2 18 23,4</td>
<td>1 7,7</td>
<td>17 24,6</td>
<td>2 20,0</td>
<td>14 24,3</td>
</tr>
<tr>
<td></td>
<td>2-3 13 16,9</td>
<td>0 0,0</td>
<td>18 26,0</td>
<td>3 30,0</td>
<td>10 16,7</td>
</tr>
<tr>
<td>3</td>
<td>3 8 10,4</td>
<td>1 7,7</td>
<td>10 14,5</td>
<td>1 10,0</td>
<td>3 5,0</td>
</tr>
<tr>
<td></td>
<td>3-4 7 9,1</td>
<td>0 0,0</td>
<td>2 2,9</td>
<td>0 0,0</td>
<td>1 1,7</td>
</tr>
<tr>
<td>4</td>
<td>4 8 10,4</td>
<td>3 23,0</td>
<td>1 1,4</td>
<td>1 10,0</td>
<td>1 1,7</td>
</tr>
<tr>
<td></td>
<td>Ost. 3 3,8</td>
<td>4 30,8</td>
<td>1 1,4</td>
<td>2 20,0</td>
<td>0 0,0</td>
</tr>
</tbody>
</table>

Min nepřítomna
<table>
<thead>
<tr>
<th></th>
<th>III. rok</th>
<th>IV. rok</th>
<th>V. rok</th>
<th>IV. rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>přítomna</td>
<td>0 0,0</td>
<td>0 0,0</td>
<td>0 0,0</td>
<td>0 0,0</td>
</tr>
<tr>
<td>naznačná</td>
<td>5 7,0</td>
<td>0 0,0</td>
<td>6 9,0</td>
<td>0 0,0</td>
</tr>
<tr>
<td>neprítomna</td>
<td>66 93,0</td>
<td>9 100</td>
<td>58 88,0</td>
<td>7 100</td>
</tr>
</tbody>
</table>

Alterace sluchu (%)

<table>
<thead>
<tr>
<th></th>
<th>III. rok</th>
<th>IV. rok</th>
<th>V. rok</th>
<th>IV. rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>V norma</td>
<td>77 100</td>
<td>13 100</td>
<td>66 95,7</td>
<td>10 100</td>
</tr>
<tr>
<td>V snížen</td>
<td>0 0,0</td>
<td>0 0,0</td>
<td>3 3,3</td>
<td>0 0,0</td>
</tr>
<tr>
<td>VS norma</td>
<td>77 100</td>
<td>13 100</td>
<td>4 94,2</td>
<td>10 100</td>
</tr>
<tr>
<td>VS snížen</td>
<td>0 0,0</td>
<td>0 0,0</td>
<td>65 5,8</td>
<td>0 0,0</td>
</tr>
</tbody>
</table>

Graf 18 – Srovnání vývoje řeči u dětí operovaných dle Furlowa nebo metodou IVV
Zvláště z grafu 18 lze odečíst významně lépe výsledky vývoje řeči ve skupině pacientů operovaných metodou dle Furlowa a to při nízkém výskytu nazality u těchto pacientů. Výsledky byly ověřeny statistickou analýzou na hladině pravděpodobnosti \(p = 0,05 \) s nálezem signifikance lépšího vývoje řeči ve 3 a 5 letech. (pokud \(p = 0,10 \) i ve 4 letech). Rozdíly ve výskytu nazality nebyly statisticky signifikantní. Výsledky analýzy jsou uvedeny v tabulce 36.

Tab. 36 – Statistické srovnání Furlow versus IVV

<table>
<thead>
<tr>
<th>Modalita</th>
<th>Furlow</th>
<th>IVV</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Řeč 3 roky</td>
<td>78; 4 (2 – 10)</td>
<td>13; 9 (3 – 10)</td>
<td>(0,002)</td>
</tr>
<tr>
<td>Řeč 4 roky</td>
<td>68; 3 5 (1 – 10)</td>
<td>10; 4 (2 – 10)</td>
<td>(0,100)</td>
</tr>
<tr>
<td>Řeč 5 let</td>
<td>59; 2 (1 – 8)</td>
<td>8; 2 5 (2 – 10)</td>
<td>(0,024)</td>
</tr>
<tr>
<td>Řeč 6 let</td>
<td>48; 2 (1 – 8)</td>
<td>4; 2 5 (2 – 9)</td>
<td>(0,122)</td>
</tr>
</tbody>
</table>

N (%) Ne/Ano		N (%) Ne/Ano	
Nazalita 3 roky	65 (93%) / 5 (7%)	9 (100%) / 0 (0%)	\(1.000 \)
Nazalita 4 roky	57 (88%) / 8 (12%)	7 (100%) / 0 (0%)	\(1.000 \)
Nazalita 5 let	53 (90%) / 6 (10%)	5 (83%) / 1 (17%)	\(0,510 \)
Nazalita 6 let	43 (90%) / 5 (10%)	2 (67%) / 1 (33%)	\(0,319 \)

\(^{1}\)Mann-Whitney test; \(^{2}\)Fisher exact test
Metoda IVV se od metody čistě dvojlalokové plastiky liší provedením rozsáhlejší disekce patra s vypreparovaním břišek levátorů a jejich suturou ve střední čáře. U čistě dvojlalokové plastiky se provádí pouze uvolnění patologických úponů svalů s push-backem celého patra (viz kapitola 1.6.2). Protože indikační kritéria obou metod se neliší, byly srovnány výsledky foniatrických kontrol na základě typu vady. Do sledování ve skupině izolovaných rozštěpů patra bylo zahrnuto 26 pacientů operovaných metodou dvojlalokové plastiky a 50 metodou IVV, do skupiny s celkovými rozštěpy bylo zařazeno 44 pacientů s dvojlalokovou plastikou a 135 s provedenou intravelární veloplastikou. Výsledky srovnání jsou uvedeny v tabulce 37 a grafech 20 a 21.

Tab. 37 – Srovnání vývoje řeči, nazality a alterace sluchu po operaci izolovaného rozštěpu patra metodou dvojlalokové plastiky s nebo bez intravelární veloplastiky dle Kriense

<table>
<thead>
<tr>
<th>Skupina</th>
<th>Podskupině</th>
<th>III. rok Bez IVV</th>
<th>IVV</th>
<th>IV. rok Bez IVV</th>
<th>IVV</th>
<th>V. rok Bez IVV</th>
<th>IVV</th>
<th>IV. rok Bez IVV</th>
<th>IVV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CP</td>
<td>CLP</td>
<td>CP</td>
<td>CLP</td>
<td>CP</td>
<td>CLP</td>
<td>CP</td>
<td>CLP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP</td>
<td>CLP</td>
<td>CP</td>
<td>CLP</td>
<td>CP</td>
<td>CLP</td>
<td>CP</td>
<td>CLP</td>
</tr>
<tr>
<td>1</td>
<td>1a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1b</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>24</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>7</td>
<td>26</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>7</td>
<td>14</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td></td>
<td>2</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>la</td>
<td>1b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1b</td>
<td>1a</td>
<td>1b</td>
<td>1a</td>
<td>1b</td>
<td>la</td>
<td>1a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1b</td>
<td>1a</td>
<td>1a</td>
<td>1a</td>
<td>1b</td>
<td>la</td>
<td>1a</td>
</tr>
<tr>
<td>Dolní Q</td>
<td></td>
<td></td>
<td>2-</td>
<td>3</td>
<td>2-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Medían</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2-</td>
<td>3</td>
<td>2-</td>
<td>2</td>
<td>2-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2-</td>
<td>2-</td>
<td>2-</td>
<td>2-</td>
</tr>
<tr>
<td>Horní Q</td>
<td></td>
<td></td>
<td>3-4</td>
<td>4</td>
<td>3-4</td>
<td>3</td>
<td>2-</td>
<td>2</td>
<td>2-</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>3-4</td>
<td>3</td>
<td>2-</td>
<td>2</td>
<td>2-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nazalita (%)</th>
<th>III. rok IVV Bez IVV IV. rok</th>
<th>V. rok Bez IVV IVV</th>
<th>IV. rok Bez IVV IVV</th>
</tr>
</thead>
<tbody>
<tr>
<td>přítomna</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>naznačená</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>nepřítomna</td>
<td>12</td>
<td>29</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alterace sluchu (%)</th>
<th>III. rok IVV Bez IVV IV. rok</th>
<th>V. rok Bez IVV IVV</th>
<th>IV. rok Bez IVV IVV</th>
</tr>
</thead>
<tbody>
<tr>
<td>V norma</td>
<td>20</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td>V snížen</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VS norma</td>
<td>19</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>VS snížen</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Graf 20 – Vývoj řeči u dětí s celkovým rozštěpem nebo s rozštěpem patra při provedení nebo neprovedení IVV

Graf 21 – Výskyt nazality při provedení či neprovedení IVV
Z grafů i tabulky jsou patrné lepší výsledky ve vývoji řeči i v menším výskytu nazality u pacientů, kde byla užita intravelární veloplastika při rekonstrukci patra. Tato skutečnost byla konfirmována statistickou analýzou. Při \(p = 0,05 \) byly výsledky řeči signifikantně lepší v izolovaných rozštěpů v 6 letech věku, u celkových rozštěpů ve 4 letech věku. Při hladině pravděpodobnosti \(p = 0,1 \) byl v nazalitě u izolovaných rozštěpů patra nalezen signifikantní rozdíl u 3 a 6-ti letých dětí ve prospěch intravelární veloplastiky. U celkových rozštěpů při stejné hladině pravděpodobnosti byl rozdíl ve vývoji řeči i v nazalitě nalezen u 3, 4 a 6-ti letých pacientů s lepšími výsledky u pacientů s provedenou intravelární veloplastikou. Podrobnosti k výše uvedeným zjištěním jsou zobrazeny v tabulce 38.

Tab. 38 – Statistické srovnání IVV versus dvojlaloková plastika

<table>
<thead>
<tr>
<th></th>
<th>Izolované rozštěpy patra</th>
<th></th>
<th>Celkové rozštěpy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IVV</td>
<td>Bez IVV</td>
<td>(p)</td>
<td>IVV</td>
<td>Bez IVV</td>
</tr>
<tr>
<td></td>
<td>N; Median (mi-max)</td>
<td>N; Median (mi-max)</td>
<td></td>
<td>N; Median (mi-max)</td>
<td>N; Median (mi-max)</td>
</tr>
<tr>
<td>Řeč 3 roky</td>
<td>41; 5 (2 – 10)</td>
<td>20; 6 (3 – 10)</td>
<td>1,059</td>
<td>124; 6 (2 – 10)</td>
<td>39; 6 (2 – 10)</td>
</tr>
<tr>
<td>Řeč 4 roky</td>
<td>41; 3 (2 – 10)</td>
<td>16; 4 (2 – 9)</td>
<td>1,039</td>
<td>121; 4 (1 – 9)</td>
<td>34; 6 (1 – 9)</td>
</tr>
<tr>
<td>Řeč 5 let</td>
<td>30; 2 (1 – 10)</td>
<td>12; 3.5 (2 – 6)</td>
<td>0,254</td>
<td>115; 3 (1 – 9)</td>
<td>27; 4 (1 – 9)</td>
</tr>
<tr>
<td>Řeč 6 let</td>
<td>16; 2 (1 – 9)</td>
<td>5; 3 (2 – 4)</td>
<td>0,035</td>
<td>87; 3 (1 – 9)</td>
<td>19; 3 (1 – 9)</td>
</tr>
<tr>
<td></td>
<td>N (%) Ne/Ano</td>
<td>N (%) Ne/Ano</td>
<td></td>
<td>N (%) Ne/Ano</td>
<td>N (%) Ne/Ano</td>
</tr>
<tr>
<td>Nazalita 3 roky</td>
<td>31 (86%) / 5 (14%)</td>
<td>12 (63%) / 7 (37%)</td>
<td>2,084</td>
<td>109 (92%) / 10 (8%)</td>
<td>29 (81%) / 7 (19%)</td>
</tr>
<tr>
<td>Nazalita 4 roky</td>
<td>35 (95%) / 2 (5%)</td>
<td>13 (81%) / 3 (19%)</td>
<td>2,055</td>
<td>107 (90%) / 12 (10%)</td>
<td>26 (76%) / 8 (24%)</td>
</tr>
<tr>
<td>Nazalita 5 let</td>
<td>23 (82%) / 5 (18%)</td>
<td>9 (75%) / 3 (25%)</td>
<td>2,677</td>
<td>107 (94%) / 7 (6%)</td>
<td>24 (89%) / 3 (11%)</td>
</tr>
<tr>
<td>Nazalita 6 let</td>
<td>13 (87%) / 2 (13%)</td>
<td>2 (40%) / 3 (60%)</td>
<td>2,073</td>
<td>79 (91%) / 8 (9%)</td>
<td>14 (74%) / 5 (26%)</td>
</tr>
</tbody>
</table>

1Mann-Whitney test; 2Fisher exact test
3.3.4 ORL výsledky léčby pacientů s rozštěpovou vadou

Veškeré výsledky ORL kontrol jsou uvedeny v tabulce 40 na straně 107. Předoperační výskyt chronické sekretorické mediotitidy při nálezu tympanometrické B křivky oboustranně byl u všech skupin zhruba 60 %. Normální nález, tedy tympanometrický nález A křivky bilaterálně, byl diagnostikován u 6 – 14 % pacientů. U 20 % pacientů se vyskytly různé kombinace jiných tympanometrických nálezů, u zbylých 10 % pacientů nebyla předoperační tympanometrie z různých důvodů provedena.

Výskyt rekurentních otitid se u všech pacientů v jednotlivých sledovaných skupinách ukázal jako jeden z nejvíce stabilních ukazatelů a jeho hodnota se pohybovala mezi 6 – 10 % u všech pacientů ve všech skupinách bez statisticky významného rozdílu.

Nejméně trvalých následků na sluchu, ať už přítomných či potencionálních bylo registrováno u pacientů s rozštěpem patra, dále u pacientů operovaných metodou dle Furlowa a u pacientů, kteří podstoupili časnou adenotomii při primární operaci patra. Naopak nejvíc přítomných či potencionálních trvalých následků s poškozením sluchu se vyskytlo u pacientů, u kterých byla adenotomie indikována až ve vyšším věku.

Dalším ukazatelem, který se ukázal ve sledovaném souboru variabilní, byla potřeba ventilačních trubiček, které bylo nutno u jednotlivých pacientů implantovat při sanaci chronické sekretorické mediotitidy. Tato potřeba byla vyjádřena průměrným počtem implantací ventilačních trubiček v jednotlivých skupinách pacientů. Dle typu vady bylo nejméně trubiček třeba u pacientů s rozštěpem patra, z operačních metod u rekonstrukce patra dle Furlowa, dále u skupiny pacientů, ve které byla adenotomie provedena při primární operaci patra. Všechna tyto zjištění byla statisticky ověřena Pearsonovým chí - kvadrát testem a Fisherovým exaktním testem a výsledky statistické analýzy jsou zobrazeny v tabulce 39.

Na jejím základě můžeme prohlásit, že typ rozštěpu a pohlaví pacienta neovlivňuje signifikantně průběh a následky chronické sekretorické mediotitidy. Při srovnávání jednotlivých operačních technik je užití metody dle Fulowa provázeno implantací menšího počtu ventilačních trubiček pro sanaci středouši. Co se týče trvalých následků, není mezi operačními metodami rozdíl. Zásadně se na výskytu a průběhu chronické sekretorické mediotitidy podepisuje timing a provedení adenotomie.
Nejhorší výsledky má adenotomie indikována v pozdějším věku dítěte, kdežto adenotomie provedená při primární operaci má statisticky signifikantně nejméně trvalých následků a je třeba nejméně ventilačních trubiček pro sanaci středouší.

Tab. 39 – Výsledky statistické analýzy ORL kontrol

<table>
<thead>
<tr>
<th>Modalita</th>
<th>N (%) Ne/Ano</th>
<th>N (%) Ne/Ano</th>
<th>N (%) Ne/Ano</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ženy</td>
<td>Muži</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rekurentní obtížy</td>
<td>44 (94%) / 3 (6%)</td>
<td>63 (94%) / 4 (6%)</td>
<td></td>
<td>~1.000</td>
</tr>
<tr>
<td>TVT</td>
<td>30 (64%) / 17 (36%)</td>
<td>41 (61%) / 26 (39%)</td>
<td></td>
<td>0.846</td>
</tr>
<tr>
<td>Trvalé následky</td>
<td>36 (77%) / 11 (23%)</td>
<td>52 (78%) / 15 (22%)</td>
<td></td>
<td>~1.000</td>
</tr>
<tr>
<td>Rozšíření</td>
<td>CP</td>
<td>UCLP</td>
<td>BCLP</td>
<td></td>
</tr>
<tr>
<td>Rekurentní obtížy</td>
<td>43 (93%) / 3 (7%)</td>
<td>49 (94%) / 3 (6%)</td>
<td>15 (94%) / 1 (6%)</td>
<td>0.988</td>
</tr>
<tr>
<td>TVT</td>
<td>33 (72%) / 13 (28%)</td>
<td>27 (52%) / 25 (48%)</td>
<td>11 (69%) / 5 (31%)</td>
<td>0.110</td>
</tr>
<tr>
<td>Trvalé následky</td>
<td>39 (85%) / 7 (15%)</td>
<td>36 (69%) / 16 (31%)</td>
<td>13 (81%) / 3 (19%)</td>
<td>0.171</td>
</tr>
<tr>
<td>Operace</td>
<td>Furov</td>
<td>IVV</td>
<td>2-laloková plastika</td>
<td></td>
</tr>
<tr>
<td>Rekurentní obtížy</td>
<td>43 (96%) / 2 (4%)</td>
<td>22 (88%) / 3 (12%)</td>
<td>42 (65%) / 2 (5%)</td>
<td>0.385</td>
</tr>
<tr>
<td>TVT</td>
<td>36 (80%) / 9 (20%)</td>
<td>13 (52%) / 12 (48%)</td>
<td>22 (60%) / 22 (50%)</td>
<td>0.007</td>
</tr>
<tr>
<td>Trvalé následky</td>
<td>37 (82%) / 8 (18%)</td>
<td>17 (68%) / 8 (32%)</td>
<td>34 (77%) / 10 (23%)</td>
<td>0.397</td>
</tr>
<tr>
<td>Adenotomie</td>
<td>Časné</td>
<td>Pozdní</td>
<td>Bez AT</td>
<td></td>
</tr>
<tr>
<td>Rekurentní obtížy</td>
<td>24 (89%) / 3 (11%)</td>
<td>16 (94%) / 1 (6%)</td>
<td>67 (96%) / 3 (4%)</td>
<td>0.454</td>
</tr>
<tr>
<td>TVT</td>
<td>20 (74%) / 7 (26%)</td>
<td>4 (24%) / 13 (76%)</td>
<td>47 (67%) / 23 (33%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Trvalé následky</td>
<td>24 (89%) / 3 (11%)</td>
<td>8 (47%) / 9 (53%)</td>
<td>56 (80%) / 14 (20%)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

1Pearson Chi-square test; 2Fisher exact test

V dřívějších dobách u pacientů s rozštěpovou vadou patra nebyla adenotomie z důvodů možného narušení vývoje řeči a vzniku velofaryngeální dysfunkce vůbec doporučována (viz kapitola 1.9). Proto byly srovnány výsledky vývoje řeči a výskytu nazality u 27 pacientů s časně provedenou adenotomii (při primární operaci patra), u 17 pacientů s později provedenou adenotomii a u 70 pacientů s neprovedenou adenotomii. Uvedené výsledky foniatrických kontrol byly sledovány ve 3, 4, 5 a 6 letech věku dítěte a jsou zaznamenány v tabulce 41 a grafích 22 a 23. Při provedení statistické analýzy bylo zjištěno, že nevzniká žádný rozdíl ve vývoji řeči u jednotlivých skupin pacientů a paradoxně u čtyřletých pacientů po časné adenotomii byl zjištěn statisticky signifikantně nejnižší výskyt nazality oproti ostatním skupinám dětí (p = 0,036). Viz tabulka 42.
<table>
<thead>
<tr>
<th>Parametr</th>
<th>Počet sledování (n / %)</th>
<th>Prům. délka sledování (roky)</th>
<th>Vstupní tympanometrie</th>
<th>Recurentní otitidy (n / %)</th>
<th>TVT</th>
<th>Prům.</th>
<th>Trvalé následky</th>
<th>Výpis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A bilat. (n / %)</td>
<td>B bilat. (n / %)</td>
<td>Ostatní (n / %)</td>
<td>0x (n / %)</td>
<td>1x (n / %)</td>
<td>2x (n / %)</td>
</tr>
<tr>
<td>Typ vad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jednostranný</td>
<td>52</td>
<td>4,4</td>
<td>4</td>
<td>29</td>
<td>8</td>
<td>3</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>oboustranný</td>
<td>16</td>
<td>3,8</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td></td>
<td></td>
<td>6,3</td>
<td>56,3</td>
<td>31,3</td>
<td>6,3</td>
<td>68,8</td>
<td>12,5</td>
</tr>
<tr>
<td>Dvojlaloková plastika</td>
<td>44</td>
<td>3,8</td>
<td>13,0</td>
<td>45,7</td>
<td>17,4</td>
<td>6,5</td>
<td>71,7</td>
<td>15,2</td>
</tr>
<tr>
<td>IVV</td>
<td></td>
<td></td>
<td>15,9</td>
<td>52,3</td>
<td>15,9</td>
<td>4,5</td>
<td>50,0</td>
<td>25</td>
</tr>
<tr>
<td>Furlow</td>
<td></td>
<td></td>
<td>19,4</td>
<td>45,0</td>
<td>24,0</td>
<td>12,0</td>
<td>52,0</td>
<td>12</td>
</tr>
<tr>
<td>Časná</td>
<td></td>
<td></td>
<td>8,9</td>
<td>46,7</td>
<td>17,8</td>
<td>4,4</td>
<td>80</td>
<td>8,9</td>
</tr>
<tr>
<td>Pozdní</td>
<td></td>
<td></td>
<td>7,4</td>
<td>63,0</td>
<td>14,8</td>
<td>11,1</td>
<td>74,1</td>
<td>7,4</td>
</tr>
<tr>
<td>Neprovedena</td>
<td>17</td>
<td>4,7</td>
<td>5,9</td>
<td>70,6</td>
<td>0,0</td>
<td>5,9</td>
<td>23,5</td>
<td>23,5</td>
</tr>
<tr>
<td>Muž</td>
<td></td>
<td></td>
<td>8</td>
<td>30</td>
<td>17</td>
<td>3</td>
<td>47</td>
<td>9</td>
</tr>
<tr>
<td>Žena</td>
<td></td>
<td></td>
<td>11,4</td>
<td>42,9</td>
<td>24,3</td>
<td>4,3</td>
<td>67,1</td>
<td>12,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brohm</th>
<th>III. rok</th>
<th>IV. rok</th>
<th>V. rok</th>
<th>IV. rok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Podstupě</td>
<td>Časná adenotomie</td>
<td>Pozdní adenotomie</td>
<td>Bez adenotomie</td>
</tr>
<tr>
<td>1</td>
<td>la</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1b</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2-3</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>3-4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Ost.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 41 – Srovnání vývoje řeči, nazality a alterace sluchu u časně, pozdně a neadenotomovaných pacientů s rozštěpem patra

Tab. 42 – Statistická analýza výsledků vývoje řeči a výskytu nazality v závislosti na provedení adenotomie.

<table>
<thead>
<tr>
<th>Modalita</th>
<th>Časná</th>
<th>Pozdní</th>
<th>Bez AT</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N: Median (mi-max)</td>
<td>N: Median (mi-max)</td>
<td>N: Median (mi-max)</td>
<td></td>
</tr>
<tr>
<td>Řeč 3 roky</td>
<td>18; 4.5 (2-10)</td>
<td>12; 6 (2-10)</td>
<td>43; 5 (2-10)</td>
<td>0.505</td>
</tr>
<tr>
<td>Řeč 4 roky</td>
<td>16; 5 (1-10)</td>
<td>11; 6 (1-9)</td>
<td>31; 4 (2-9)</td>
<td>0.964</td>
</tr>
<tr>
<td>Řeč 5 let</td>
<td>15; 4 (1-9)</td>
<td>7; 4 (1-9)</td>
<td>21; 3 (1-8)</td>
<td>0.999</td>
</tr>
<tr>
<td>Řeč 6 let</td>
<td>10; 3 (2-9)</td>
<td>4; 3 (7)</td>
<td>11; 3 (1-6)</td>
<td>0.628</td>
</tr>
</tbody>
</table>

(N) Ne/ANO

1Mann-Whitney test; 2Pearson Chi-square test

Graf 22 – Vývoj řeči u pacientů s časnou, pozdní nebo neprovedenou adenotomií

Časná adenotomie

Pozdní adenotomie

Bez adenotomie

Graf 23 – Výskyt nazality u pacientů s časnou, pozdní nebo neprovedenou adenotomií

Časná adenotomie

Pozdní adenotomie

Bez adenotomie
3.3.5 Ortodontické výsledky léčby pacientů s rozštěpovou vadou

I když z původního souboru pacientů byl sledovaný ortodontický soubor omezen na starší pacienty, zůstává tento soubor pro komplexní zhodnocení „mladý“. Konečný efekt celé léčby lze zhodnotit až po dosažení dospělosti pacienta, což pro danou skupinu pacientů znamená až rok 2020. Proto byla provedena alespoň dílčí analýza ze získaných záznamů.

V tabulce 43 jsou přehledně uvedeny výsledky analýzy modelů dočasného a smíšeného chrupu pro obě pohlaví. V dočasním chrupu je u žen nižší incidence jednostranného i oboustranného zkříženého skusu. Ve smíšeném chrupu již 2x více žen než mužů dosahuje správné okluze, znovu se opakuje nižší výskyt zkříženého a také i obráceného skusu. Poměrné zastoupení vad okluze v dočasné a smíšené dentici se neliší a je zobrazeno v grafu 24.

Graf 24 – Poměrné zastoupení vad okluze u dočasného a smíšeného chrupu pacientů s rozštěpem patra
Tab. 44 – Přehled vad okluze a cefalometrická analýza u pacientů s jednotlivými typy rozštěpu patra

<table>
<thead>
<tr>
<th>Typ vady</th>
<th>Dočasný chrup</th>
<th>Smíšený chrup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCLP %</td>
<td>BCLP %</td>
</tr>
<tr>
<td>Správná okluze</td>
<td>25 18,1</td>
<td>4 8,9</td>
</tr>
<tr>
<td>Stěsnání</td>
<td>0 0,0</td>
<td>1 2,2</td>
</tr>
<tr>
<td>Jednostranný zkřížený skus</td>
<td>90 65,2</td>
<td>15 33,3</td>
</tr>
<tr>
<td>Obostranný zkřížený skus</td>
<td>6 4,3</td>
<td>23 51,1</td>
</tr>
<tr>
<td>Hyperdoncie</td>
<td>35 25,4</td>
<td>14 31,1</td>
</tr>
<tr>
<td>Hyperdoncie</td>
<td>8 5,8</td>
<td>2 4,4</td>
</tr>
<tr>
<td>Otevřený skus</td>
<td>1 0,7</td>
<td>0 0</td>
</tr>
<tr>
<td>Obrácený skus</td>
<td>38 27,5</td>
<td>12 26,7</td>
</tr>
<tr>
<td>Ostatní</td>
<td>4 2,9</td>
<td>1 2,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soubor</th>
<th>Docházející</th>
<th>Nedocházející</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>138 80,7</td>
<td>45 71,4</td>
<td>135 56,0</td>
</tr>
<tr>
<td></td>
<td>33 19,3</td>
<td>18 28,6</td>
<td>106 44,0</td>
</tr>
<tr>
<td></td>
<td>171 71,0</td>
<td>63 26,1</td>
<td>241 100,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ vady</th>
<th>Dočasný chrup</th>
<th>Smíšený chrup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCLP %</td>
<td>BCLP %</td>
</tr>
<tr>
<td>Správná okluze</td>
<td>25 18,1</td>
<td>4 8,9</td>
</tr>
<tr>
<td>Stěsnání</td>
<td>0 0,0</td>
<td>1 2,2</td>
</tr>
<tr>
<td>Jednostranný zkřížený skus</td>
<td>90 65,2</td>
<td>15 33,3</td>
</tr>
<tr>
<td>Obostranný zkřížený skus</td>
<td>6 4,3</td>
<td>23 51,1</td>
</tr>
<tr>
<td>Hyperdoncie</td>
<td>35 25,4</td>
<td>14 31,1</td>
</tr>
<tr>
<td>Hyperdoncie</td>
<td>8 5,8</td>
<td>2 4,4</td>
</tr>
<tr>
<td>Otevřený skus</td>
<td>1 0,7</td>
<td>0 0</td>
</tr>
<tr>
<td>Obrácený skus</td>
<td>38 27,5</td>
<td>12 26,7</td>
</tr>
<tr>
<td>Ostatní</td>
<td>4 2,9</td>
<td>1 2,2</td>
</tr>
</tbody>
</table>

| Výsledky cefalometrické analýzy pacientů s otevřeným a obráceným skusem |
|--------------------------|-----------------|
| Soubor pacientů | |
| teleRTG indikován | 32 100,0 |
| teleRTG nenažen | 16 50,0 |
| teleRTG nekvalitní | 3 9,4 |
| teleRTG proveden | 13 40,6 |
| Cefalometrická analýza | |
| | (provedena u pacientů s otevřeným a obráceným skusem) |

| Výsledky cefalometrické analýzy pacientů s otevřeným a obráceným skusem |
|--------------------------|-----------------|
| Soubor pacientů | |
| teleRTG indikován | 32 100,0 |
| teleRTG nenažen | 16 50,0 |
| teleRTG nekvalitní | 3 9,4 |
| teleRTG proveden | 13 40,6 |

V tabulce 44 jsou prezentovány výsledky analýzy modelů dočasného a smíšeného chrupu sledovaných pacientů v závislosti na typu rozštěpu a také výsledky cefalometrické analýzy desetiiletých pacientů. Obecně lze říci, že omezením růstu střední etáže u pacientů s rozštěpem dochází ke dekompenzaci skusu v čase. Správné okluze nejčastěji dosahují pacienti s izolovaným rozštěpem patra v 70 % v dočasném chrupu a v 50 % ve chrupu smíšeném. Nejčastější vadou je u nich právě stěsnání dentice. Typickou vadou pro celkově jednostranné rozštěpy je v 60 % se vyskytující jednostranný zkřížený skus, pro 50 % pacientů s celkovým oboustranným rozštěpem je to oboustranný zkřížený skus. Polovina pacientů celkovými rozštěpy má hypodoncii. Vyšší výskyt obráceného skusu je u pacientů s celkovým jednostranným rozštěpem než s celkovým oboustranným rozštěpem a pohybuje se v rozmezí 30 – 40
%, U těchto pacientů, kteří byli starší 10 let byl dohledán telerentgen pro cefalometrickou analýzu. Tu se podařilo provést ale jen u 40 % pacientů a to vzhledem ke špatné dispenzarizaci či špatné kvalitě RTG snímků, u kterých se sice podařilo odhadem stanovit skeletální třídu, ale díky k rozostření skeletu a měkkých tkání nebylo možno provést exaktní cefalometrické měření.

V rámci I. skeletální třídy byla vymezena podskupina pacientů, označených jako I. třída spějící ke III. třídě a to pro pacienty s ANB úhlem -1° až 0°. U těchto pacientů lze předpokládat, že po pubertálním růstovém spurtu jich část vlivem hypoplazie střední obličejové etáže spadne do III. skeletální třídy. Skeletální vada (III. skeletální třída) se u pacientů s obráceným skusem vyskytla v 50 % případů. Při aproximaci získaných dat lze předpokládat, že skeletální vada se vyvine asi u 20 % pacientů s celkovým jednostranným rozštěpem a u 30 % pacientů s celkovým oboustranným rozštěpem a tito se stanou adepty na ortognátní chirurgickou léčbu. U zbylých 70 – 80 % pacientů se bude pravděpodobně jednat o vady dentální.

Z uvedené tabulky také vyplývá, že zatímco děti s celkovými rozštěpy jsou zvětší části dispenzarizováni ortodontistou v rozštěpovém centru, děti s izolovaným rozštěpem patra jsou často ortodontisticky léčeny na spádovém pracovišti, protože se jedná pravděpodobně o lehčí ortodontické případy.

Tab. 45 – Přehled vad okluze u jednotlivých metod rekonstrukce izolovaného rozštěpu patra

<table>
<thead>
<tr>
<th>Typ vady</th>
<th>CP</th>
<th>Dočasný chrup</th>
<th>Smíšený chrup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Správná okluze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stěsnání</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jednostranný zkrčený skus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oboustranný zkrčený skus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypodonce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperdonce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otevřený skus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obrácený skus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostatní</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soubor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ vady</th>
<th>CP</th>
<th>Dočasný chrup</th>
<th>Smíšený chrup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dochází</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nedochází</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ vady</th>
<th>CP</th>
<th>Dočasný chrup</th>
<th>Smíšený chrup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dochází</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nedochází</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V tabulce 45 jsou zobrazeny vady skusu u dětí s izolovaným rozštěpem patra při užití různých operačních technik. V souboru je patrná vyšší incidence obráceného skusu a stěsnání u dvojlalokové plastiky oproti ostatním operačním metodám. Obdobně v tabulce 46 jsou zobrazeny výsledky pro pacienty s celkovým rozštěpem. Alarmující hodnotou je téměř 60 % výskyt obráceného skusu ve smíšené dentici u pacientů operovaných metodou dvojlalokové plastiky. Nejlepších výsledků bylo v obou souborech dosaženo při užití Furlowovy metody. Díky neúplnosti souboru a dalším výše zmíněným faktorům lze ale všechny uvedené výsledky považovat pouze za orientační.

Tab. 46 – Přehled vady okluze u jednotlivých metod rekonstrukce celkového rozštěpu.

Typ vady	CLP	Dočasný chrup		Smíšený chrup									
		Dvojlaloková plastika	%	IVV	%	Furlow	%	Dvojlaloková plastika	%	IVV	%	Furlow	%
Správná okluze	6	21,4	11	9,7	12	32,4	2	10,5	0	0	5	20,0	
Stěsnání	1	3,6	0	0	0	0,0	0	0,0	0	1	1	4,0	
Jednostranný zkřížený skus	16	57,1	69	61,1	18	48,6	9	47,4	59	60,8	14	56,0	
Oboustranný zkřížený skus	2	7,1	24	21,2	1	2,7	2	10,5	25	25,8	3	12,0	
Hypodoncie	3	10,7	42	37,2	3	8,1	5	26,3	57	58,8	5	20,0	
Hyperdoncie	1	3,6	6	5,3	3	8,1	0	0,0	4	4,1	4	16,0	
Otevřený skus	1	3,6	0	0,0	0	0,0	0	0,0	0	0	0	0,0	
Obrácený skus	7	25,0	34	30,1	8	21,6	11	57,9	37	38,1	6	24,0	
Ostatní	1	3,6	4	3,5	0	0,0	2	10,5	3	3,1	6	24,0	
Soubor		28	70,0	113	82,5	37	78,7	19	47,5	97	70,8	25	53,2
		12	30,0	24	17,5	10	21,3	21	52,5	40	29,2	22	46,8
		40	100,0	137	100,0	47	100,0	40	100,0	137	100,0	47	100,0
3.4 Diskuze

Střední obličejová etáž je v obličeji kraniálně ohraničena horizontální linii procházející kořenem nosu, kaudální hranici tvoří okluzní rovina zubů horní čelisti. Střední obličejová etáž je dále dělena na část centrální a laterální. Toto dělení bylo zavedeno Mc Indoem ve 40. letech 20. století a užívá se dodnes.\(^{184}\)

Centrální část střední obličejové etáže tedy tvoří nazomaxilární komplex a právě tento je tangován typickými rozštěpovými vadami obličeje. Funkčně se centrální část podílí na dýchání, na příjmu potravy, artikulaci a pomocí Eustachovy tuby ventiluje středouší, tedy se podílí i na vnímání zvuku.

Protože obličejový rozštěp nelze chápat jen jako prosté rozpolcení tkání ve vymezené typické lokalitě, ale jak rozpoznal již akademik F. Burian, jedná se o komplexní postižení měkkých i tvrdých tkání střední obličejové etáže při jejich současně malpozici a hypoplázii. Tento fenomén byl jím nazván jako „rozštěpový iktus“.\(^{185}\)

Plastický chirurg při korekcí rozštěpových vad restauruje anatomické poměry, které byly rozštěpovým ikttem zasaženy, jako základní předpoklad správné funkce centrální části. Tím že původní vada zasahuje do mnoha orgánových systémů je při zhodnocení a dalším rozvoji funkce střední obličejové etáže potřeba kooperace dalších specialistů, vzniká tedy potřeba multidisciplinárního týmu.\(^{186}\) Při hodnocení terapeutických výsledků na poli rozštěpových vad obličeje je tedy nutno zhodnotit nejen výsledky chirurgických, ale též foniatrických, logopedických, ORL a též ortodontických kontrol. Jen za tohoto předpokladu si lze vytvořit ucelený obraz funkce a vývoje střední obličejové etáže u pacientů s rozštěpem patra. V následujícím textu bude nejprve analyzován základní soubor sledovaných pacientů a poté výsledky chirurgických, foniatrických, otorhinolaryngologických a ortodontických kontrol.

Základní soubor byl tvořen 919 pacienty narozenými v třináctiletém období od roku 1993 do roku 2006. Takto velký soubor sledovaných pacientů je srovnatelný

\(^{184}\) LUKÁŠ, J., DIBLIK P., VOSKA, P.: Poranění obličeje z pohledu ototinolaryncologa, oftalmologa a maxillofaciálního chirurga, 161 s.
\(^{185}\) BURIAN, F.: Chirurgie rozštěpů rtu a patra. 304 s.
\(^{186}\) WORNOM, I.L. ET AL.: Core Curriculum for Cleft Lip/Palate and other Craniofacial Anomalies. Cleft Lip and Palate, s. 283 – 300.
s velkými studiemi známymi z Dánska a USA.¹⁸⁷ Všichni pacienti byli léčeni v rozštěpovém centru KPECH fakultní nemocnice u sv. Anny v Brně, které bylo evidováno ve studii EUROCLEFT Project. Počtem léčených pacientů se řadí na 22. místo v Evropě.¹⁸⁸ Protože péče u každého specialisty z rozštěpového týmu je indikována v různém věku dítěte, byly z tohoto základního počtu pacientů vybrány určité věkové kategorie pro zhodnocení chirurgických, foniatrických, ORL a ortodontických kontrol.

Rozštěpové vady obličeje jsou nejčastější vrozenou vývojovou vadou hlavy a krku. Incidence rozštěpů rtu, alveolu a/nebo patro je zhruba 1 na 500 až 1 na 700 živě narozených dětí v Evropě.¹⁸⁹

Předchozí epidemiologické studie v České republice se soustředily na oblast Čech. Celková incidence rozštěpů v Čechách byla shledána 1,9 dítěte s rozštěpem na 1000 zdravých v roce 1974¹⁹⁰, později 1,74 : 1000 v roce 1995¹⁹¹ a 1,86 na 1000 zdravých v roce 2000¹⁹². Tato hodnota se výrazně neliší od hodnot publikovaných v různých studiích ve střední Evropě, je vyšší než ve Slovinsku a Itálii.¹⁹³ Naopak vyšší incidence byla zjištěna ve Francii, v Nizozemí¹⁹⁴, v Dánsku a ve Švédsku.¹⁹⁵ Hladina incidence v čase byla shledána jako stabilní, stejně jako v jižní Francii.¹⁹⁶ Narůstající incidence byla referována v Dánsku¹⁹⁷ a ve Slovinsku.¹⁹⁸

Predominance chlapců ve skupině dětí s rozštěpem rtu a celkovým rozštěpem (CLP) je známa již od roku 1942, kdy ji poprvé v Dánsku popsala Fogh-Andersen. Tento jev byl v základním souboru pacientů potvrzen, stejně jako v různých jiných studiích.199,200

Taktéž byla opakovaně nalezena lehká predominance operovaných dívek ve skupině dětí s izolovaným rozštěpem patra, vysvětlováná prodlouženou vulnerabilní fází formování sekundárního patra u ženského pohlaví. V dánské národní studii v roce 1994 bylo zjištěno, že predominance dívek platí pouze v případě, kdy jsou statisticky zpracovány jen operované případy. Pokud se ale do skupiny rozštěpů patra zahrnou i mírné formy vady a děti s rozštěpem patra, které zemřely ještě před operací, tak se naopak projevila opět mírná predominance mužského pohlaví.201 V základním souboru pacientů byla také potvrzena predominance levonosemné formy. Jev je vysvětlován predilekčním krevním zásobením pravé strany hlavy při formování aortálního systému u fétu.

Zastoupení jednotlivých typů rozštěpů ve Slovinsku bylo vyjádřeno poměrem CL : CLP : CP jako 0,6 : 0,9 : 1. V Dánsku je tento poměr 1,2 : 1,4 : 1, v Iránu 1,8 : 2,8 : 1, v Japonsku 1,3 : 1,7 : 1.202 Ve sledovaném souboru pacientů se vady vyskytují v poměru 0,5 : 0,8 : 1 (21 % CL, 45 % CLP a 34 % CP).

Při hodnocení přítomnosti syndromů u jednotlivých skupin rozštěpů byla nalezena jejich přítomnost u 3,4 % pacientů s rozštěpem rtu a celkovým rozštěpem a u 4 % pacientů s rozštěpem patra, při zahrnutí Pierre - Robinovy sekvence u 18,5 % pacientů s rozštěpem patra. Z přidružených malformací se v obou skupinách vyskytovaly nejčastěji vady urogenitálního a kardiovaskulárního systému, dále vady neurologické a psychomotorická retardace (ta byla dvakrát častější ve skupině izolovaných rozštěpů patra). I se započtením syndromů se přidružené vady vyskytly ve 28,1 % u pacientů s CLP, u CP to bylo u 51,5 % pacientů. V Severní Francii byly nalezeny poměrně vyšší hodnoty, ve skupině CLP byly vady přidruženy u 50,9 %

pacientů, ve skupině CP u 46,7 % pacientů. V San Diegu (USA) Jonesová zase napočítala přibližně stejné hodnoty jako v hodnoceném souboru, tedy 35% výskyt vad u pacientů s CLP a 54% u pacientů s CP.

V rámci chirurgického souboru byly sledovány výsledky primárních rekonstrukcí patra, reoperace pro velofaryngeální insuficienci, parciální výsledky z implantací kostních štěpů do defektu alveolu a byla zhodnocena celková prooperovanost pacientů.

Co se týče timingu primární operace, tak lze říci, že se ho podařilo dodržet jen v polovině případů, 75% pacientů bylo odoperováno do 2 let věku, většina zbylých 25% připadá na pacienty typu casus socialis a na pacienty se submukózním rozštěpem patra. Příčiny tohoto stavu byly nastíněny již v podkapitole výsledků – jsou jimi časté respirační infekty u dětí s rozštěpem patra s následnou kontraindikací elektivní operace pediatrem či anesteziologem. Díky různým organizačním důvodům je další operace naplánována s odstupem zhruba třech měsíců, a pokud dítě znovu onemocní a je znovu výkon odložen, pak se timing primární operace bliží obsoletnímu modelu načasování výkonu s následnými horšími výsledky tvorby řeči. Proto nepřekročitelnou hranicí by se měla stát doba jednoho a půl roku života dítěte, kdy už plně nastupují všechny jeho řečové funkce.

Ve sledovaném souboru je převládající metodou pro rekonstrukci patra u dětí s celkovými rozštěpy dvojlaloková plastika s intravelární veloplastikou. U skupiny dětí s izolovanými rozštěpy patra je to metoda dvojitě reverzní Z plastiky dle Furlowa. Obě metody ve svých skupinách pacientů byly užity ve více jak 50 % případů. Tento stav je odrazem postupné inklinace operatérů k nové operační metodě dle Furlowa. Ta umožňuje získání dostatečně dlouhého patra bez nutnosti či minimalizaci push-backu mukoperiostu tvrdého patra. Dobré zkušenosti s touto metodou jsou známy z různých srovnávacích studií. Bohužel z vlastního principu metody též vychází její

206 Kokavec, R.: Chirurgická liečba rozštěpov pery a podnebí, 84 s.

limitace, vznikající zvláště u širokých rozštěpů patra s výraznou hypoplazii zbylých struktur, u kterých je poté konstrukce plastiky na hranici technických možností. Tomu odpovídá i největší počet dehiscencí patra zjištěných v souboru pacientů s celkovými rozštěpy operovaných touto metodou. Použití intravelární plastiky u dvojlalokové plastiky (tedy rozsáhlejší preparace patra) se v souboru sledovaných pacientů projevilo též vyšším výskytom dehiscencí a pooperačního krvácení.

Stejně jako v souboru pacientů z New Jersey, tak i ve sledovaném souboru nebyl nalezen signifikantní rozdíl mezi Furlowovou metodou a IVV ve frekvenci perforací patra.209

Celkově lze říci, že časné komplikace ve smyslu sekundárního hojení, alergie, gastrointestinální problémy a dechové obtíže se vyskytují ve sledovaném souboru v nízkém procentu. Ve vyšším procentu nalezneme pooperační febrilie či serosní rýmu, ale tyto nemají vliv na další morbiditu pacienta. Vážně časné komplikace jako krvácení, dehiscence a infekce se vyskytují u všech metod ve velmi malém procentu, nebylo zaznamenáno jediné úmrtí pacienta.

Za pozdní komplikace rekonstrukce patra lze považovat perforace a velofaryngeální dysfunkci. Celkově byly u všech pacientů po operaci patra perforace nalezeny v 6,7%. Při srovnání se staršími daty jich v roce 1992 Mrázek před ustavením stálého týmu rozštěpových chirurgů napočítal 17,2 %, v roce 2000 jich Vokurková v souboru svých pacientů napočítala 4,1 %. V literatuře se frekvence perforací pohybuje obvykle mezi 9 – 50 %.211,212

I ve sledovaném souboru se opět potvrdil fakt, že čím zkušenější operátor, tím nižší výskyt dehiscencí a následných perforací. Tento fakt koreluje i s daty z jiných rozštěpových center.213,214 Pokud budeme srovnávat výskyt perforací u jednotlivých metod, tak u izolovaných rozštěpů patra jich nejméně nalezneme při užití Furlowovy...
metody a nejvíce u dvojlalokové plastiky s IVV. U celkových rozštěpů byl výskyt perforací patra obecně vyšší, nejmenší u dvojlalokové plastiky, největší při užití IVV. Při sledování výskytu oronazálních komunikací u Furlowovy metody zjistíme několik zajímavých skutečností. Použití této metody u celkových rozštěpů znamená čtyřnásobně vyšší výskyt perforací než jaký nalezneme u pacientů s izolovaným rozštětem patra. Avšak uzávěr těchto komunikací bývá snadnější a ve všech případech jej vyřešila resutura či mukoperiostální posun oproti situaci u ostatních metod rekonstrukce patra, u kterých byly perforace uzavírány též pomocí vestibulárního laloku, alaloku z jazyka či kompletní resuturou patra v rámci jeho prodloužení. Zajímavý je i fakt, že průřezem času dochází u této metody díky sekundárnímu hojení k snížení počtu původních dehiscencí na nižší počet výsledných perforací, což je přesně opačný jev než u ostatních dvou metod. Příčinou tohoto jevu je pravděpodobně vzájemný posun linii uzávěru v jednotlivých vrstvách plastiky daný vlastním principem této metody.

Operace pro velofaryngeální dysfunkci jsou obvykle indikovány při přítomnosti nazality na základě foniatrického a logopedického vyšetření objektivizovaných v ideálním případě nasoendoskopii či mnohopohledovou videofluoroskopii. Příčinou stavu je obvykle krátké a málo pohyblivé měkké patro. Timing korekčních operací je sič individuální, ale obecnou snahou je léčbu ukončit před začátkem školní docházky. Velofaryngeální dysfunkce se ve sledovaném souboru vyskytla u 16,2 % pacientů, což je číslo, které je přibližně udávané v zprávách z jednotlivých vrstvách plastiky daný vlastním principem této metody.

Operace pro velofaryngeální dysfunkci jsou obvykle indikovány při přítomnosti nazality na základě foniatrického a logopedického vyšetření objektivizovaných v ideálním případě nasoendoskopii či mnohopohledovou videofluoroskopii. Příčinou stavu je obvykle krátké a málo pohyblivé měkké patro. Timing korekčních operací je sič individuální, ale obecnou snahou je léčbu ukončit před začátkem školní docházky. Velofaryngeální dysfunkce se ve sledovaném souboru vyskytla u 16,2 % pacientů, což je číslo, které je přibližně udávané v zprávách z jednotlivých vrstvách plastiky daný vlastním principem této metody.
benefit Fulowovy operace s 3% incidencí nazality ve srovnání s 25% hladinou u metody dvojlalokové plastiky a IVV. Insuficience vzniklá u pacientů s dvojlalokovou plastikou byla ve všech případech řešena úspěšně Furlowovou operací, u metody IVV (pravděpodobně vlivem většího projizvení patra po disekci svalů) bylo nutno u 5 % pacientů po Furlowově operaci pro pokračující insuficiencí provést reoperaci s konstrukcí faryngeálního laloku. Veloaryngeální dysfunkce po Furlowově operaci byla většinou řešena faryngeálním lalokem s horní stopkou, paradoxní jsou ale případy dvo pacientů, u nichž byla provedena reoperace patra dle Fulowa po primární Furlowově operaci. Oba pacienti mají dobré výsledky řeči a nasalita v šesti letech věku u nich byla nulová.

Z výše uvedených dat lze říci, že po stránce chirurgické při správné indikaci má nejmenší počet komplikací operační metoda dle Fulowa, poté metoda dvojlalokové plastiky a nejhorší výsledky metoda IVV.

Výsledky implantací sekundárního kostního štěpu byly zhodnoceny jen okrajově, protože doposud se jedná o mladý soubor pacientů a u více než 60 % pacientů bude teprve implantace kostního štěpu provedena. Komplikace implantací jsou velmi nízké, nižší než udávané v literatuře, ale vlastní kvalita kostního štěpu nemohla být pro množství chybějících OPG snímků posouzena. Z toho vyplývá i nutnost zlepšení spolupráce ortodontisty a chirurga při kontrole vhojení štěpu alespoň za pomocí OPG za 6 měsíců po implantaci nebo lépe při užití techniky RVG zvláště pokud bude započata náhrada chybějících zubů za pomocí inzercie dentálních implantátů.

Při hodnocení celkové prooperovanosti pacientů s rozštěpem obličeje je nejméně operací a výkonů třeba u pacientů s rozštěpem patra, poté s rozštěpem rtu, dále s celkovým jednostranným rozštěpem a nejvíce operací a výkonů je třeba při rekonstrukci celkových oboustranných rozštěpů.

Řeč je jednou z funkcí střední obličejové etáže, která je u pacientů s rozštěpem obličeje plně umožněna jen v případě celistvého tvrdého patra (bez komunikací) a dobře hybného měkkého patra se schopností dosáhnout zadní stěny hlínu.
s vytvořením kvalitního patrohlantového uzávěru. Jen za těchto předpokladů lze dosáhnout dobré kvality řeči bez úniku vzduchu do nosu při fonaci.

Z výsledků foniatrických kontrol vyplývá, že nejméně je řeč alterována u pacientů s rozštěpem rtu, poté u pacientů s rozštěpem patra, zato nejvíce u pacientů s celkovým rozštěpem bez zásadního rozdílu mezi jednostrannou a oboustrannou formou. Tento fakt je logický a byl opakovaně potvrzen v různých studiích.222 Pohlaví na výsledky vývoje řeči a přítomnosti nazality nemá vliv.

Další proměnou, která měla vliv na stupeň vývoje řeči a přítomnost nazality, je operační technika užitá při rekonstrukci patra. Aby byl vyloučen vliv typu rozštěpu na řeč, byli vždy hodnoceni jen pacienti se stejným typem vady. V případě srovnání metody rekonstrukce patra dle Fulowa a metody IVV byl soubor srovnávaných pacientů vymezen přítomností rozštěpu měkkého patra maximálně s drobným zářezem do patra tvrdého. Dosažené výsledky na statisticky signifikantní hladině potvrdily, že operační technika dvojitě reverzní Z-plastiky umožňuje u pacientů s rozštěpem dosažení lepších výsledků řeči než metoda intravelární veloplastiky. Předpokládaný nižší stupeň nazality po Furlowově metodě nebyl statisticky potvrzen, ale je udáván v jiných studiích.223

Na druhou stranu byl prověřen význam provedení intravelární veloplastiky u dvojlalokové plastiky. Zvlášť byly srovnávány výsledky u pacientů s izolovaným rozštěpem patra a u pacientů s celkovými rozštěpy. V obou skupinách intravelární veloplastika vedla k lepšímu stupni vývoje řeči a nižší nazalitě, což bylo ověřeno a potvrzeno statistickou analýzou. Tímto se potvrzuje význam kvalitnější rekonstrukce svalů patra pro řeč i za cenu většího operačního výkonu s následnými vyššími časnými i pozdními pooperačními komplikacemi. V literatuře se přesto vyskytují studie, které význam intravelární veloplastiky popírají224 a naopak takové, které ji považují za esenciální pro rekonstrukci patra.225

Další významnou úlohou střední obličejové etáže je ventilace středního ucha pomocí Eustachovy trubice. Při poruše jejího mechanismu dochází u pacientů

\begin{flushright}
\footnotesize
\end{flushright}
k rozvoji chronické sekretorické mediotitidy. U dětí bez rozštěpové vady patra se její relativní riziko pohybuje okolo 30 %, u dětí s rozštěpem má sekretorická otitida incidenci okolo 90 – 100 %.226,227 Ve sledovaném souboru pacientů předoperačně vyšetřených ušním lékařem za objektivizace nálezu tympanometrií byla bilaterální chronická sekretorická mediotitida nalezena u 60% pacientů a u 6 - 14 % pacientů byl nalezen bilaterálně normální středoušní nález.

V dětském ORL centru při rozštěpovém centru KPECH Brno jsou pacienti léčeni ve světě etablovanou konzervativní metodou.228 Při tomto terapeutickém postupu jsou ventilační trubičky implantovány při simultáním nálezu bilaterální sekretorické mediotitidy a jednoho z následujících faktorů: 1) opakované epizody akutní otitidy (více jak 3 za 6 měsíců), 2) audiologicky prokázána ztráta sluchu o více než 30 dB nebo 3) subjektivně rodiči pocitovaná ztráta sluchu. V ostatních případech jsou pacienti s pozitivním nálezem jen pravidelně observováni. Recurrentní otitidy, počet ventilačních trubiček a trvalé následky byly sledovány vzhledem k typu vady, typu operace, typu a provedení adenotomie a vzhledem k pohlaví. Pohlaví nemá dle statistické analýzy na výskyt a průběh onemocnění středouší vliv, protože distribuce ukazatelů odpovídá spíše predominanci obou pohlaví k jednotlivým typům rozštěpů. V literatuře se nepravidelně, ale často objevuje vyšší kumulativní incidence a prevalence sekretorické mediotitidy u mužského pohlaví.229 Stejně jako v jiných studiích se typ vady ukázal jako statisticky nevýznamná proměnná.230 Typ operace se ukázal jako statisticky významný vzhledem k počtu implantovaných trubiček u jednotlivých pacientů ve prospěch Furlowovy metody, na rozdíl od prací jiných autorů, kteří žádné ovlivnění operační technikou ve svých souborech pacientů nenalezli.231

\begin{thebibliography}{99}
\end{thebibliography}
Jedním z nejdůležitějších nálezů ve sledovaných sestavách pacientů bylo zjištění vlivu adenotomie a jejího timingu na průběh chronické sekretorické mediotitidy. Z výsledků vyplynulo, že časně provedená adenotomie – tedy při primární operaci – vede k redukci nálezu chronické mediotitidy se statisticky významným poklesem počtu trvalých následků. Vliv adenotomie vyplynul již z dřívějších studií, kdy Gates zjistil, že kombinace adenotomie s implantací ventilačních trubiček přináší na poli chronické sekretorické mediotitidy lepší terapeutické výsledky než samostatně provedená implantace trubiček. Adenotomie ale dříve byla jinými autory u pacientů s rozštěpem patra obecně odmítána s argumentací ve smyslu zhoršení funkce velofaryngeálního uzávěru. Tento argument ale neobstojí, zvláště když si uvědomíme, že vývojem dítěte dochází fyziologicky k postupné involuci adenoïdní vegetace. Zvláště důležité bylo i následující zjištění, tedy že u dítěte po časné adenotomii nedochází k narušení vývoje řeči a u čtyřletých pacientů byla dokonce zjištěna nejnižší hladina nazalence v souboru. Naopak se ukázalo, že v případech, kdy se s adenotomou otálelo a byla nakonec provedena v pozdějším věku dítěte, tam byly nalezeny častěji trvalé následky na kvalitě sluchu a sekretorická mediotitida probíhala u těchto pacientů urputněji. Toto zjištění by mohlo vysvětlovat předchozí odpor různých operatérů k provedení adenotomie, protože v dřívějších dobách byl timing operace patra posunut do vyššího věku dítěte, kdy se benefit časně adenotomie již nemohl projevit a pozdě provedená adenotomie situaci nezlepšila. Na základě výsledků studie tedy můžeme s velkou pravděpodobností konstatovat, že přínos adenoïdní vegetace pro kvalitu patrohltanového uzávěru je minimální a u dětí s rozštěpem patra se projevuje spíše negativně díky kombinaci jejího vlivu na obturaci ústí Eustachovy trubice a jejího vlivu ve smyslu možného infekčního fokusu.

Po stránce ortodontické bylo těžké zhodnotit dosažené terapeutické výsledky, protože dosud žádný pacient ze sledovaného souboru nedosáhl dospělosti. Proto všechny výsledky byly aproximovány. I přesto můžeme říci, že tyto parciální výsledky odpovídají literárním odkazům. Již jen nárůst vad skusu od situace v dočasně dentici

po jejich zastoupení ve smíšeném chrupu dává tušit alteraci růstu čelistí. Ta se nejčastěji projeví stěsnáním chrupu u pacientů s rozštěpem patra a obráceným skusem u pacientů s celkovými rozštěpy. Z velkých studií je znám fakt, že tiží vady je přímo úměrná alterace předozadního růstu čelistí.235 Anteroposteriorní délka patra bývá sice někdy normální u pacientů s celkovým oboustranným rozštěpem, ale tento jev vzniká na základě neadekvátního předsunutí praemaxily a ne na základě normálního růstu.236 Ze zjištěných výsledků dále vyplývá, že u pacientů s celkovými rozštěpy se ve vyšším procentu objevují známky restrikce fyziologického anterokaudálního růstu splanchnokrania než u pacientů s izolovaným rozštěpem patra. Tento jev přispívá k vysvětlení, proč u pacientů s izolovaným rozštěpem patra je v šesti letech vyšší výskyt nazalence než u pacientů s celkovými rozštěpy a to na základě omezení zvětšování nazofaryngeálního prostoru, které je dané růstem obličeje. Znovu i v našem souboru se potvrzuje fakt, že retardace růstu maxily je přímo úměrná agresivitě operační metody,237 protože u metody dvojlalokové plastiky, při které je víceméně prováděna elevace celého mukoperiostu tvrdého patra, byl nalezen až 60% výskyt obráceného skusu ve smíšené dentici. Jedná se ale o výsledek předběžný, skutečné zhodnocení výsledků růstu bude možné provést až v roce 2020. Do té doby je třeba zkvalitnit ortodontickou dispenzarizaci rozštěpových pacientů a těž zajistit kvalitní studijní materiál (tj. modely chrupu a kvalitní cefalogramy) dle minimálních požadavků Eurocleft projektu.238 Pak teprve budeme moci zjištěné ortodontické výsledky považovat za validní.

Závěr

Cíle práce byly splněny.

Z epidemiologického hlediska výše uvedený soubor pacientů vykazuje všechny charakteristiky středoevropské populace rozštěpových pacientů a lze ho díky jeho ucelenosti považovat za plnohodnotný při analýze dosažených terapeutických výsledků. Na jeho základě byly znovu potvrzeny vzájemné vazby mezi typem rozštěpu, pohlavím, přítomností syndromu a jiných přidružených vrozených vad se stanovením jejich četnosti.

Po provedení analýzy dosažených terapeutických výsledků lze vyvodit následující závěry pro klinickou praxi.

Primární operace patra je třeba provádět do maximálně 1,5 roku věku dítěte před nástupem řečových funkcí. U pacientů s izolovaným rozštěpem patra dosahuje nejlepších terapeutických výsledků operační metoda dle Fulowa. Jeví se nejlepší jak z hlediska výsledků vývoje řeči, výskytu nazality, časných i pozdních pooperačních komplikací, tak i z pohledu nejmenšího počtu ventilačních trubiček pro sanaci chronické sekretorické mediotitid, pokud se vyvine. Pacienti operovaní touto metodou mají dale nízké procento trvalých následků ve smyslu poruchy sluchu a prozatímní výsledky ukazují na málo alterovaný růst čelistí. Celkový rozštěp znamená primárně těžší postižení u nějž je nutno od počátku počítat s horšími terapeutickými výsledky.

Pokud není vhodné užít při rekonstrukci patra metodu dle Fulowa pro velkou šířku rozštěpu a hypoplázií patra, pak je indikována rekonstrukce patra s provedením intravelární veloplastiky i za cenu vyššího procenta perforací a projizvení patra. Vždy,
pokud je to možné, je vhodné provést při primární sutuře patra simultánně adenotomii. Provedení objektivního vyšetření (nazoendoskopie, videofluoroskopie) při následném výskytu velofaryngeální insuficience umožní výběr adekvátní metody k její korekci. Pacienty s rozštěpem patra je třeba sledovat v rámci multidisciplinárního rozšťapového týmu od narození až do dospělosti. Pro možnost budoucího porovnání terapeutických výsledků v rámci intercentrických studií musí frekvence kontrol odpovídat minimálně režimu stanovenému směrnicemi EUROCLEF Project.
Seznam použité literatury a pramenů

128

BROHM, F.: O vývoji dětské řeči a jejich vadách, Orbis Praha 1956, 152 s.

BURIAN, F.: *Chirurgie rozštěpů rtu a patra*. Státní zdravotnické nakladatelství, Praha 1954, 304 s.

133

PANTALONI, M., Byrd H. S.: Cleft lip I: Primary deformities. SRPS 2001, 9: 21, 44 s.

SOVÁK, M.: Logopedie předškolního věku, SPN, Praha 1978

TROST-CARDAMONE, J.E.: Coming to terms with VPI: response to Loney and Bloem. Cleft Palate J 1989; 26: 78 - 80

Anotace

Název: Funkční vývoj střední obličejové etáže u pacientů s rozštěpem patra

Autor: MUDr. Zdeněk Dvořák

Počet stran: 149

Klíčová slova: Rozštěp obličeje, rozštěp patra, multidisciplinární péče

Cíl: Pro posouzení funkčního vývoje střední obličejové etáže u pacientů s rozštěpem patra byla v rámci experimentální části práce vytvořena databáze rozštěpových pacientů operovaných na KPECH Brno. Ta poté umožnila v rámci klinické části zhodnotit dosažené terapeutické výsledky na základě chirurgických, foniatrických, ORL a ortodontických kontrol těchto pacientů.

Metoda: Databáze byla vytvořena na základě programu Microsoft Access, eviduje 933 pacientů s rozštěpem obličeje a sleduje u každého pacienta 633 různých parametrů. Po chirurgické stránce byl hodnocen timing, časné a pozdní komplikace primární operace patra, následné reoperace pro velofaryngeální insufficenci, komplikace implantace kostních štěpů, vliv operátéra a celková prooperovanost u pacientů s různými typy rozštěpu. Byly sledovány foniatrické výsledky vývoje řeči dle Brohma a přítomnost nazalence ve 3, 4, 5 a 6 letech řeči. V rámci ORL kontrol byl sledován výskyt chronické sekretorické mediatitidy a rekurentních akutních zánětů, potřeba a počet implantovaných ventilálních trubíček, výskyt komplikací a trvalých následků. Po ortodontické stránce byly zhodnoceny vady skusu na základě 348 modelů dočasného chrupu a 275 modelů smíšeného chrupu. U části pacientů byla provedena cefalometrická analýza.

Výsledky: Ze základního souboru byl CL/P typ rozštěpu přítomen u 493 pacientů s nálezem 3,4 % pacientů se syndromem a 24,7% pacientů s přidruženou malformací. CP typ rozštěpu se vyskytl v 406 dětí, syndrom byl přítomen v 18,5 % a přidružená vada se vyskytla u 33 % probandů. Chirurgické komplikace se u pacientů vyskyly v nízkém procentu, u 16, 2 % byla provedena reoperace pro velofaryngeální insufficenci. U pacientů operovaných metodou dle Fulowa byly statisticky potvrzeny lepší výsledky vývoje řeči, stejně tak tomu bylo při užití intravelární veloplastiky. Z ORL výsledků vyplýnulo, že nejlepší terapeutických výsledků dosáhli pacienti se simultánně provedenou adenotomií při primární operaci patra. Tento fakt byl těž statisticky ověřen. Dle předběžných ortodontických výsledků se dá předpokládat, že skeletální vada se vyskytne u 20 % pacientů s celkovým jednostranným rozštěpem a u 30% pacientů s celkovým oboustranným rozštěpem.

Závěr: Správnou funkci patra u pacientů s rozštěpovou vadou lze adekvátně zhodnotit jen na základě kontrol odborníků multidisciplinárního rozštěpového týmu. Spolupráce těchto odborníků při léčbě a při jejím hodnocení je základním předpokladem pro správnou léčbu pacienta.
Title: Functional Development of Middle – Face by Patients with Cleft Palate

Author: Zdeněk Dvořák M. D.

Number of pages: 149

Keywords: Orofacial cleft, cleft palate, multidisciplinary treatment

Objective: In order to assess functional development of middle face by patients with a cleft palate a database programme of patients with cleft palate, operated at the Clinic of Plastic and Aesthetic Surgery in Brno, was created in the framework of the experimental part of this study. This database programme enabled to evaluate the achieved therapeutical results on the grounds of surgical, phoniatic, ENT and orthodontic controls of these patients in the clinical part.

Materials: Basic group comprised of 919 patients operated at the Clinic of Plastic and Aesthetic Surgery in Brno who were born in the period from January 1, 1993 to December 31, 2006. On the basis of age 688 children were placed under surgical monitoring, 546 under phoniatic monitoring, 213 children to the evaluation of otorhinolaryngologic controls and 532 children under the orthodontic monitoring.

Methods: The database was created on the basis of the Microsoft Access programme. It registers 933 patients with cleft palate and monitors 633 different parameters by each patient. In surgical regard following issues were evaluated: timing, early and late complications of the primary palatoplasty, subsequent re-operations for velopharyngeal dysfunction, implantation complications of bone-grafting, influence of the operating surgeon and total number of operations of patients with various cleft types. The facts monitored included phoniatic speech assessment results according to Brohm and the presence of hypernasality in 3, 4, 5 and 6 years of child age. In the framework of ORL controls one the occurrence of chronic otitis media with effusion and recurrent acute otitis, need of and number of implanted ventilation tubes, occurrence of complications and persistent conductive hearing loss were monitored. As far as the orthodontic therapy is concerned, dental anomalies were evaluated on the basis of 348 models of deciduous dentition and 275 models of mixed dentition. A part of the patients underwent the cephalometric analysis.

Results: From the basic group the cleft type CL/P was present by 493 patients with a medical finding, 3.4% of patients with a syndromatic cleft and 24.7% of patients with other anomalies. The CP cleft type occurred by 406 children, syndrome was present in 18.5% and another anomaly was present by 33% of probands. Surgical complications were present in a low percentage, in 16.2% a reoperation for velopharyngeal insufficiency was carried out. Better results of speech assessment were confirmed in the group of patients operated by means of the method according to Fulow, the same went for the usage of intravelar veloplasty. It followed from the ORL results that best therapeutical results were achieved by patients with the simultaneously carried-out adenoidectomy with the primary palate operation. This fact was also statistically verified. According to preliminary orthodontic results it can be supposed that a maxillary undevelopment occurs by 20% of patients with the total unilateral cleft lip and palate and by 30% of patients with the total bilateral cleft.

Conclusion: A correct function of palate by patients with a cleft defect can be adequately evaluated only on the basis of controls of the multidisciplinary treatment team comprised of specialists. Their cooperation in the course of treatment and its evaluation is a basic requirement for an appropriate patient's treatment.
Seznam příloh

Příloha č. 1 – Seznam obrázků...143
Příloha č. 2 – Seznam tabulek...144
Příloha č. 3 – Seznam grafů...146
Příloha č. 4 – Vzorový příklad „Databáze Rozštěp 2008“.............................147
Příloha č. 5 – Informační příručka pro rodiče dětí s rozštěpem obličeje..........148
Příloha č. 1 – Seznam obrázků

Obr. 1 - Friedmanova modifikace Kernahanova Y proužkového diagramu užívaná v praxi na KPECH .. 16
Obr. 2 - Grafické znázornění Kriensovy LAHSHAL klasifikace faciálních rozštěpů . 17
Obr. 3 – Tessierova klasifikace kraniofaciálních rozštěpů. ... 19
Obr. 4 – Anatomie patrových svalů (A – fyziolodický stav, B – rozštěp patra) 33
Obr. 5 – Ortodontická léčba v permanentní dentici se snímatelnou protetikou 50
Obr. 6 – Hodnocení okluze dle Anglea.. 53
Obr. 7 – Základní cefalometrické body .. 54
Obr. 8 – Patogeneze jednotlivých typů zánětů středouší .. 59
Obr. 9 – Otomikroskopické nálezy .. 61
Obr. 10 – Databáze Rozštěp 2008 - Hlavní přepínací panel... 71
Obr. 11 – Databáze Rozštěp 2008 – Informační tabule s vysvětlením užité podrobné klinické klasifikace .. 73
Obr. 12 – Databáze Rozštěp 2008 – Formulář osobní údaje pacienta 74
Obr. 13 – Databáze Rozštěp 2008 – Graf obecného zastoupení pohlaví u všech rozštěpových vad .. 75
Obr. 14 – Databáze Rozštěp 2008 – Graf struktury diagnóz u rozštěpových vad 76
Obr. 15 – Grafické vyjádření incidenc typických obličejových rozštěpů na území Moravy a Slezska .. 85
Obr. 16 – Vzhled patra po rekonstrukci jednotlivými operačními metodami 89
Příloha č. 2 – Seznam tabulek

Tab. 1 - Přehled historie léčby rozštěpových vad obličeje ... 7
Tab. 2 - Stručný přehled embryogeneze obličeje .. 12
Tab. 3 - Přehled jednotlivých fází při formování sekundárního patra 14
Tab. 4 - Opravená klasifikace MKN-10 .. 18
Tab. 5 - Klinické příklady jednotlivých kraniofaciálních rozštěpů dle Tessiera 20
Tab. 6 - Timing a rozsah minimální dokumentace pro pacienty s různými typy rozštěpu obličeje dle doporučení studie Eurocleft ... 23
Tab. 7 - Přehled léčebného protokolu .. 29
Tab. 8 - Rossovo devatero kraniofaciálního růstu .. 32
Tab. 9 - Historický vývoj technik rekonstrukce patra postiženého rozštěpem 34
Tab. 10 – Některé techniky operace faryngu při velofaryngeální insuficienci 41
Tab. 11 – Stádia vývoje kojene špičáku při posuzování dle RTG nálezu 48
Tab. 12 – Klasické a moderní kánony krásy .. 52
Tab. 13 – Základní cefalometrické veličiny ... 55
Tab. 14 – Charakteristika jednotlivých typů otitis media .. 57
Tab. 15 – Klasifikace retrakcí částí bubínu dle různých autorů .. 60
Tab. 16 – Charakteristika jednotlivých typů otitis media .. 62
Tab. 17 – Princip fyziologické tvorby samohlásek a souhlásek ... 64
Tab. 18 – Průběh fyziologického vývoje řeči .. 65
Tab. 19 – Klasifikační schémata palatolálii a srozumitelnosti řeči 66
Tab. 20 – Diagnostické metody pro vyšetření patrohltanového uzávěru 67
Tab. 21 – Zastoupení jednotlivých typů rozštěpu v souboru .. 83
Tab. 22 – Charakteristika souboru pacientů s typickými rozštěpy 84
Tab. 23 – Základní statistické ukazatele charakterizující věk dítěte v době operace ... 86
Tab. 24 – Zastoupení operačních metod užitých při primární rekonstrukci patra 87
Tab. 25 – Jednotlivé časné komplikace po primárních rekonstrukcích patra 88
Tab. 26 – Počet perforací a typ jejich uzávěru u jednotlivých metod rekonstrukce patra ... 90
Tab. 27 – Procento dehiscencí, krvácení a perforací patra u jednotlivých chirurgů rozštěpového týmu .. 90
Tab. 28 – Základní ukazatele charakterizující věk dítěte v době první reoperace pro VF insuficienci .. 91
Tab. 29 – Počet a typ reoperací pro VF insuficienci u jednotlivých metod rekonstrukce patra ... 92
Tab. 30 – Základní statistické ukazatele charakterizující věk dítěte v době rekonstrukce alveolu ... 93
Tab. 31 – Přehled operačních komplikací po rekonstrukci alveolů 94
Tab. 32 – Přehled prooperovanost pacientů s různými typy rozštěpové vady 94
Tab. 33 – Vývoj řeči, nazalita a alterace sluchu v různém věku dítěte dle typu vady .. 95
Tab. 34 – Vývoj řeči, nazalita a alterace sluchu v různém věku dítěte dle pohláví...... 98
Tab. 35 – Srovnání vývoje řeči, nazality a alterace sluchu po operaci nekompletního rozštěpu patra dle Furlowa nebo při použití dvojlalošové plastiky s intravelální veloplastikou dle Kriense ... 100
Tab. 36 – Statistické srovnání Furlow versus IVV ... 101
Tab. 37 – Srovnání vývoje řeči, nazality a alterace sluchu po operaci izolovaného rozštěpu patra metodou dvojlalokové plastiky s nebo bez intravelární veloplastiky dle Kriense.. 102
Tab. 38 – Statistické srovnání IVV versus dvojlaloková plastika... 104
Tab. 39 – Výsledky statistické analýzy ORL kontrol... 106
Tab. 40 – Srovnání výsledků ORL kontrol u jednotlivých skupin pacientů... 107
Tab. 41 – Srovnání vývoje řeči, nazality a alterace sluchu u časně, pozdně a neadenotomovaných pacientů s rozštěpem patra... 108
Tab. 42 – Statistická analýza výsledků vývoje řeči a výskytu nazality v závislosti na provedení adenotomie... 108
Tab. 43 – Přehled vad okluze z analýzy modelů dočasného a smíšeného chrupu dle pohlaví ... 111
Tab. 44 – Přehled vad okluze a cefalometrická analýza u pacientů s jednotlivými typy rozštěpu patra .. 112
Tab. 45 – Přehled vad okluze u jednotlivých metod rekonstrukce izolovaného rozštěpu patra ... 113
Tab. 46 – Přehled vad okluze u jednotlivých metod rekonstrukce celkového rozštěpu. .. 114
Příloha č. 3 – Seznam grafů

Graf 1 - Zastoupení pohlaví ... 82
Graf 2 - Zastoupení pohlaví u typických a atypických rozštěpů 82
Graf 3 – Zastoupení jednotlivých diagnóz rozštěpu 82
Graf 4 – Zastoupení pohlaví u jednotlivých diagnóz rozštěpu 83
Graf 5 – Věk dítěte v době rekonstrukce patra ... 86
Graf 6 – Zastoupení operačních metod při rekonstrukci patra u celkových a patrových rozštěpů ... 87
Graf 7 – Zastoupení jednotlivých druhů komplikací při rekonstrukcích patra celkově 87
Graf 8 – Zastoupení jednotlivých typů operačních metod užitých při uzávěru perforací patra ... 89
Graf 9 – Věk dítěte v době první reoperace patra pro velofaryngeální insuficienci..... 91
Graf 10 – Zastoupení operačních metod při rekonstrukci patra a palatoplastik před reoperací pro VF dysfunkci ... 92
Graf 11 – Poměr dosud provedených implantací kostního štěpu z celkově předpokládaného počtu ... 93
Graf 12 – Věk dítěte v době rekonstrukce alveolu ... 93
Graf 13 – Vývoj řeči u jednotlivých typů rozštěpu dle vady............................... 96
Graf 14 – Vývoj řeči u jednotlivých typů rozštěpu dle věku dítěte 96
Graf 15 – Výskyt nazality u jednotlivých typů rozštěpu dle věku dítěte 97
Graf 16 – Vývoj řeči u jednotlivých typů rozštěpu dle pohlaví a věku dítěte 98
Graf 17 – Výskyt nazality u jednotlivých typů rozštěpu dle věku dítěte a pohlaví..... 99
Graf 18 – Srovnání vývoje řeči u dětí operovaných dle Furlowa nebo metodou IVV 100
Graf 19 – Výskyt nazality u dětí operovaných dle Furlowa nebo metodou IVV 101
Graf 20 – Vývoj řeči u dětí s celkovým rozštěpem nebo s rozštětem patra při provedení nebo neprovedení IVV ... 103
Graf 21 – Výskyt nazality při provedení či neprovedení IVV 103
Graf 22 – Vývoj řeči u pacientů s časnou, pozdní nebo neprovedenou adenotomií... 109
Graf 23 – Výskyt nazality u pacientů s časnou, pozdní nebo neprovedenou adenotomií ... 109
Graf 24 – Poměrné zastoupení vad okluze u dočasného a smíšeného chrupu pacientů s rozštětem patra ... 111
Příloha č. 4 – Vzorový příklad „Databáze Rozštěp 2008“
Příloha č. 5 – Informační příručka pro rodiče dětí s rozštěpem obličeje
Souhlas k citaci práce

Souhlasím s tím, aby moje dizertační práce byla půjčována ke studijním účelům. Žádám, aby citace byly uváděny způsobem užívaným ve vědeckých pracích.

V Brně 16. září 2009

Zdeněk Dvořák