ROLE OF Skp2 IN CYTOKINETICS OF CANCER STEM CELLS

Ph.D. Dissertation

Šárka Šimečková

Supervisor: Mgr. Karel Souček, Ph.D. Brno 2018
BIBLIOGRAPHIC ENTRY

Author: Mgr. Šárka Šimečková
Faculty of Science, Masaryk University
Department of Experimental Biology

Title of dissertation: Role of Skp2 in cytokinetics of cancer stem cells

Degree programme: Biology

Field of study: Animal Physiology

Supervisor: Mgr. Karel Souček, Ph.D.
Faculty of Science, Masaryk University
Department of Experimental Biology

Academic year: 2018

Number of pages: 184

Key words: Prostate cancer, cancer stem cells, Skp2, MLN-4924, multiparametric flow cytometry

BIBLIOGRAFICKÝ ZÁZNAM

Autor: Šárka Šimečková
Přírodovědecká fakulta, Masarykova univerzita
Ústav experimentální biologie

Název práce: Úloha Skp2 v cytokinetice nádorových kmenových buněk

Studijní program: Biologie

Studijní obor: Fyziologie živočichů

Školitel: Mgr. Karel Souček, Ph.D.
Přírodovědecká fakulta, Masarykova univerzita
Ústav experimentální biologie

Akademický rok: 2018

Počet stran: 184

Klíčová slova: Rakovina prostaty, nádorové kmenové buňky, Skp2, MLN-4924, mnohoparametrická průtoková cytometrie
DECLARATION

Hereby I declare that I worked on this Ph.D. dissertation on my own under the supervision of my supervisor Mgr. Karel Souček, Ph.D. and I used only primary and secondary literature, which is properly cited and listed in the reference section.

In Brno

Šárka Šimečková
A tumour is recognized as a neoplastic tissue consisting of various cell types and a substantial degree of heterogeneity is found in a tumour mass within cancer cells. Well accepted concepts contributing to such heterogeneity and tumour plasticity are cancer stem cells (CSCs) and the process of epithelial-to-mesenchymal transition (EMT). Both CSCs and EMT were shown to be involved in prostate cancer (PCa) progression. Moreover, the acquisition of a mesenchymal phenotype causing appearance of CSC-like characteristics in PCa was described. Since the CSCs are described as a subpopulation within a tumour that is responsible for tumour heterogeneity and drug resistance, they represent an attractive target for anticancer therapy.

S-phase kinase-associated protein 2 (Skp2) was previously described as an oncogene and its overexpression was detected in various cancers including PCa. It is involved in the regulation of cytokinetics - processes encompassing cell cycle, apoptosis, and differentiation. However, the role of Skp2 in CSCs is not well described yet. Thus, in our study, we focused on the role of Skp2 in prostate CSCs. We found that high nuclear expression of Skp2 and mesenchymal phenotype correlated with high Gleason score in PCa patients. In vitro, increased Skp2 expression was observed in PCa cell lines with mesenchymal and CSC-like phenotype compared to their epithelial counterparts. Conversely, the CSC-like phenotype was less represented in cells, in which SKP2 expression was silenced. Furthermore, we observed that Skp2 downregulation led to increased expression of CSCs markers CD24 and CD44. Additionally, we showed that high expression levels of both CD24 and CD44 was associated with favourable recurrence-free survival for PCa patients. Pharmacological inhibition of SCF^{Skp2} activity resulted in cell cycle arrest, induced late apoptosis in CD24^+ cells, and affected the clonogenic ability of single cells in 2D condition.

The importance of complex analysis of cellular response to experimental treatments in samples with a limited number of cells (e.g., rare populations like CSCs) prompted us to establish a multiparametric flow cytometric assay. This facilitates the
complex analysis of cellular phenotype-dependent response to an experimental treatment on a single cell level. Herein, we describe a seven-parameter flow cytometric assay that could complement routine cell-based tests and bring valuable information to the analysis of complex cellular response in phenotypically characterized cell populations.

In this thesis, we propose that high expression of Skp2 is associated with mesenchymal phenotype concomitant with the CSCs-like characteristics of the cells. Skp2 downregulation or pharmacological inhibition of SCF$^{\text{Skp2}}$ affect cancer CSCs-like properties and change surface expression of CSC markers. Furthermore, we introduce a powerful flow cytometric assay for complex analysis of cellular phenotype after anti-cancer treatments that enables to distinguish a response of a small subset of cells defined by CD surface antigens within heterogeneous samples.
ABSTRAKT

Nádor je abnormální tkáň, která se skládá z různých buněčných typů. Samotné nádorové buňky jsou různorodé. K heterogenitě nádorové tkáně přispívají nádorové kmenové buňky (NKB) a proces epiteliálně mesenchymálního přechodu (EMT). Úloha NKB i EMT ve vývoji rakoviny prostaty již byla prokázána. Mimo to byla popsána souvislost mezi ziskem mesenchymálního fenotypu a fenotypu NKB u nádorových buněk prostaty. I když NKB tvoří jen malou populaci buněk v nádoru, byla popsána jejich rezistence k terapeutikům a jejich podíl na heterogenitě nádoru, a proto představují zajímavý cíl pro protinádorovou terapii.

S-phase kinase-associated protein 2 (Skp2) je onkogen, jehož zvýšená hladina byla popsána u mnoha nádorových onemocnění včetně rakoviny prostaty. Skp2 se podílí na řízení cytokinetiky - buněčných procesů zahrnujících buněčný cyklus, apoptózu či diferenciaci. Jelikož funkce Skp2 u NKB není stále dobře známá, zaměřili jsme se na úlohu Skp2 u NKB prostaty. Výsledky prezentované v předkládané disertační práci ukazují, že zvýšená jaderná hladina Skp2 a mesenchymální fenotyp buněk koreluje s vyšším Gleasonovým skóre pacientů. V in vitro podmínkách jsme pozorovali zvýšenou hladinu Skp2 u buněk s mezenchymálním fenotypem, které navíc vykazovaly znaky typické pro NKB. Snížení hladiny Skp2 v buňkách naopak vedlo ke zvýšení četnosti buněk pozitivních na znaky CD24 a CD44. Ukázali jsme, že u pacientů s rakovinou prostaty je zvýšená hladina těchto znaků spojena s příznivou prognózou bez recidivy. Farmakologická inhibice komplexu SCF^Skp2 vedla k zástavě buněčného cyklu, způsobila buněčnou smrt u CD24^+ buněk a snížila klonogenní kapacitu buněk kultivovaných ve 2D podmínkách.

Naším dalším cílem bylo ustanovit metodu, pomocí které bychom byli schopni komplexně vyšetřit buněčnou odpověď na působení terapeutik i u malých populací buněk (např. NKB) v heterogenních vzorcích. Průtoková cytometrie, která byla za tímto účelem použita, umožňuje vyšetřit sedm parametrů na úrovni jedné buňky a může tak přinést více informací o odpovědi specifických buněk ve vzorku.
Výsledky prezentované v této práci tedy souhrnně popisují asociaci proteinu Skp2 s horší prognózou pacientů s rakovinou prostaty a spojitost s mezenchymálním fenotypem buněk, který je dále spjat s fenotypem NKB prostaty. Snížení hladiny Skp2 nebo farmakologická inhibice SCF^{Skp2} vedla k ovlivnění těchto vlastností a ke změně jejich fenotypu. Dále jsme popsali zavedení účinné cytometrické metody ke sledování komplexní odpovědi buněk s definovaným fenotypem na experimentální působení protinádorové terapie.
ACKNOWLEDGEMENTS

I would like to thank my supervisor, Mgr. Karel Souček, Ph.D., for the opportunity to join his team and work on many interesting projects. Thank you for your help and advice, and creating superbly equipped labs for us. Thank you for the possibility to attend inspiring scientific meetings and conferences. Many thanks to Prof. Jan Vondráček, Ph.D, Prof. Jiřina Hofmanová, CSc., and Prof. Alois Kozubík, CSc., for leading the whole Department of Cytokinetic during my studies.

I would like to thank my dear colleagues, especially Zuzka and Eva, for teaching me most of the methods and for her help during my studies. Thanks to Jano for being always there to give scientific advice, to help and to share a piece of chocolate when needed. Thanks to Radek for his friendship, technical support, and for not losing his enthusiasm even in the times when nothing seemed to work. My thanks further belong to Lucia and Ximena for the creative-scientific happenings and being there to help with anything; thanks to the whole EZKA team and all the others from our lab who contributed to creating our work environment. Special thanks belong to Iva, Martina and Katka for their technical support. Many thanks to our collaborators Assoc. Prof. Jan Bouchal, Ph.D., MUDr. Gvantsa Kharaishvili, Ph.D., from the University Palackého, and to MUDr. Milan Král, PhD., for their cooperation in our projects.

Special thanks belong to my beloved family – especially to my mum, dad, Ondra and my grannies. Thank you for being there always for me; for your love, care, support, understanding and prayers during my studies.

I would love to thank my dear friends Jana, Ivan, Hanka, Ivka, Mercedes, Sarah, Gábi and the 24-7 Prayer family, namely Šárka T., Simča, Radka, Beth, Magda, Zdeňka, Ivana Š. Alena, Edita, Ivana M., Darina, Martin, Daniel V., Veronika & Mirek, and Daniel R. Also, I am grateful for meeting Jenny, Beth, Bev, Tim, Sam, Hannah, Georgina, Danielle, Sahr, 24-7 Ibiza team, and all the boiiis during my journey. Thank you all! You came at the right time and you have been such a blessing for me. Thank you for your great support, your love, and all the fun that we have had together. Thank you for reminding me who I am, and what really matters. Thank you for making me laugh, listening in the times of despair, your encouragement and your prayers.
FINANCIAL SUPPORT

The studies included in this dissertation were supported by grants AZV ČR 15-28628A, 17-28518A & 15-33999A, HistoPARK (CZ.1.07/2.3.00/20.0185), and by project no. LQ1605 from the National Program of Sustainability II (MEYS CR), ICRC-ERA-HumanBridge a.k.a. „REGPOT“ (Grant agreement no. 316 345) from the European Regional Development Fund and MZČR 17-28518A.
Contents

Abstract ... 4
Abstrakt ... 6
Contents .. 11
List of abbreviations ... 14
1. Introduction .. 16
 1.1. Prostate gland, prostate cancer and prostate cancer stem cells 16
 1.1.1. Prostate ... 16
 1.1.1.1. Prostate development ... 16
 1.1.1.2. Prostate epithelium ... 17
 1.1.1.3. Prostate stem cells and epithelial cell differentiation 18
 1.1.2. Prostate cancer ... 20
 1.1.2.1. Prostate cancer treatment and drug resistance ... 22
 1.1.3. Prostate cancer stem cells ... 23
 1.1.3.1. Characterisation of prostate cancer stem cells – functional test 25
 1.1.3.2. Detection and isolation of prostate cancer stem cells 27
 1.1.4. Cancer cell plasticity ... 29
 1.1.4.1. Epithelial-to-mesenchymal transition and prostate cancer 30
 1.1.4.2. Epithelial-to-mesenchymal transition and prostate cancer stem cells 30
 1.2. Ubiquitin ligases in the biology of the mammalian cells 32
 1.2.1. Cullin-RING ubiquitin ligases .. 33
 1.2.2. Function of SCF^{Skp2} ubiquitin ligase in the cells 36
 1.2.2.1. Skp2 regulation ... 36
 1.2.2.2. Skp2 function .. 37
 1.2.2.3. Role of Skp2 in cancer .. 39
 1.2.3. SCF^{Skp2} as a target for anticancer therapy .. 40
 1.2.3.1. Pharmacological inhibition of Cullin neddylation 40
 1.2.3.2. Pharmacological inhibition of Skp2 ... 41
 2. Hypothesis and Aims of the work .. 44
 2.1. Hypothesis ... 44
 2.2. Specific Aims of the Thesis .. 46
3. Material and Methods ... 48
 3.1. Cells and Cell Culture ... 48
 3.1.1. DU 145 and PC3 .. 48
 3.1.1.1. Preparation of DU 145 SKP2 Knock-down cell lines 48
 3.1.2. cE2 and E2 ... 49
 3.1.3. HCT 116 ... 49
 3.1.4. SU-DHL-4 ... 49
 3.1.5. Cell culture .. 49
 3.2. Chemicals ... 50
 3.3. Treatments ... 50
 3.3.1. Pharmacological inhibition of SCFSkp2 in DU 145 50
 3.3.2. Establishment of the multiparametric flow cytometric assay 50
 3.4. Methods ... 51
 3.4.1. Skp2 overexpression ... 51
 3.4.2. Spheroid formation assay ... 51
 3.4.3. Tumourigenic potential of SKP2 KD cell lines 51
 3.4.4. Western blot ... 52
 3.4.5. Immunofluorescence microscopy 53
 3.4.6. Cell painting and morphology analysis 54
 3.4.7. Immunoprecipitation .. 54
 3.4.8. RNA isolation and qPCR analysis 55
 3.4.9. Flow cytometry .. 56
 3.4.9.1. ALDH1 activity detection assay 56
 3.4.9.2. Annexin V assay ... 56
 3.4.9.3. Cell cycle analysis ... 56
 3.4.9.4. Immunophenotype analysis 56
 3.4.9.5. Intracellular detection of Skp2 58
 3.4.9.6. Multiparametric analysis .. 58
 3.4.9.7. Instrumentation and data analysis 59
 3.4.9.8. Compensation controls .. 59
 3.4.10. Immunohistochemistry of clinical samples 60
 3.4.11. Survival analysis ... 61
 3.4.12. Statistical analysis ... 61
4. Results... 62
4.1. High Skp2 expression associates with a mesenchymal phenotype and increases tumourigenic potential of prostate cancer cells... 62
4.2. Establishment of a tool for analysis of cellular response to experimental drug treatment in heterogeneous samples (in CSC-like cells)... 88
 4.2.1. Protocol workflow and optimization ... 88
 4.2.1.1. Surface marker selection ... 91
 4.2.1.2. Optimization of permeabilisation .. 91
 Effect of permeabilisation on surface markers detection .. 91
 Effect of permeabilisation on intracellular markers detection 92
 4.2.1.3. Intracellular markers selection.. 94
 4.2.1.4. Optimization of DNA stain.. 94
 4.2.2. Application of the protocol to various models of cancer cell lines................. 96
 4.2.3. Analysis of response to experimental treatment in a heterogeneous sample ... 100
5. Discussion... 104
6. Conclusions.. 112
7. References.. 114
8. List of publications and meeting contributions... 130
 8.1. Articles published in peer-reviewed journals with IF ... 130
 8.1.1. first author .. 130
 8.1.2. Co-author .. 130
 8.2. Manuscripts .. 131
 8.2.1. Manuscripts first author ... 131
 8.2.2. Manuscripts co-author ... 132
 8. 2. 3. Meeting contributions .. 132
 8. 2.3.1. poster presentations (first author only).. 132
 8. 2.3.2. lectures... 134
Appendices.. 135
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>ATP-binding cassette transporter</td>
</tr>
<tr>
<td>ADT</td>
<td>androgen deprivation therapy</td>
</tr>
<tr>
<td>Akt</td>
<td>protein kinase B</td>
</tr>
<tr>
<td>ALDH</td>
<td>aldehyde dehydrogenase</td>
</tr>
<tr>
<td>APC</td>
<td>anaphase-promoting complex</td>
</tr>
<tr>
<td>AR</td>
<td>androgen receptor</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine tri-phosphate</td>
</tr>
<tr>
<td>BPH</td>
<td>benign prostatic hyperplasia</td>
</tr>
<tr>
<td>BRCA</td>
<td>breast cancer type 1 susceptibility protein</td>
</tr>
<tr>
<td>CAND1</td>
<td>cullin associated and neddylation-dissociated 1</td>
</tr>
<tr>
<td>CARN1</td>
<td>castration-resistant Nkx3-1-expressing cells</td>
</tr>
<tr>
<td>CC3</td>
<td>cleaved caspase-3</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CDC25a</td>
<td>cell division cycle 25</td>
</tr>
<tr>
<td>CDH1</td>
<td>Cdc20-homologue 1</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent kinase</td>
</tr>
<tr>
<td>Cdt1</td>
<td>chromatin licensing and DNA replication factor 1</td>
</tr>
<tr>
<td>CK</td>
<td>cytokeratin</td>
</tr>
<tr>
<td>CKIs</td>
<td>cyclin-dependent kinases inhibitors</td>
</tr>
<tr>
<td>COP9</td>
<td>constitutive photomorphogenesis 9</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Clustered Regularly Interspaced Short Palindromic Repeats</td>
</tr>
<tr>
<td>CRL</td>
<td>cullin-RING ubiquitin ligase</td>
</tr>
<tr>
<td>CRPC</td>
<td>castration-resistant prostate cancer</td>
</tr>
<tr>
<td>CSCs</td>
<td>cancer stem cells</td>
</tr>
<tr>
<td>CTCs</td>
<td>circulating tumour cells</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6-Diamidine-2’-phenylindole dihydrochloride</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EdU</td>
<td>5-Ethynyl-2’-deoxyuridine</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EMT</td>
<td>epithelial-to-mesenchymal transition</td>
</tr>
<tr>
<td>EpCAM</td>
<td>epithelial cell adhesion molecule</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>FDA</td>
<td>food and drug administration</td>
</tr>
<tr>
<td>FoxM1</td>
<td>forkhead box M1</td>
</tr>
<tr>
<td>GABP</td>
<td>GA-binding protein transcription factor</td>
</tr>
<tr>
<td>GS</td>
<td>gleson score</td>
</tr>
<tr>
<td>HSC</td>
<td>hematopoietic stem cell</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MDM2</td>
<td>mouse double minute 2</td>
</tr>
<tr>
<td>MEF</td>
<td>mouse embryonic fibroblast</td>
</tr>
<tr>
<td>MET</td>
<td>mesenchymal-to-epithelial transition</td>
</tr>
<tr>
<td>Myc</td>
<td>oncogene cellular homolog</td>
</tr>
<tr>
<td>NAE</td>
<td>nedd8 activating enzyme</td>
</tr>
<tr>
<td>NEDD8</td>
<td>neural precursor cell-expressed</td>
</tr>
<tr>
<td>PCA</td>
<td>downregulated protein</td>
</tr>
<tr>
<td>PCSCs</td>
<td>developmentally</td>
</tr>
<tr>
<td>PFA</td>
<td>principal component analysis</td>
</tr>
<tr>
<td>PI3K</td>
<td>prostate CSCs</td>
</tr>
<tr>
<td>PIN</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>PFA</td>
<td>phosphatidylinositol-3-kinase</td>
</tr>
<tr>
<td>PIN</td>
<td>prostate intraepithelial neoplasia</td>
</tr>
</tbody>
</table>
PTEN: phosphatase and tensin homolog
RING: really interesting new gene
Rbx1/2: RING-box protein 1/2
RNA: ribonucleic acid
RT: room temperature
SCF: Skp1–Cullin–F-box
SP: Side population
TGF-β: transforming growth factor-β
TRAIL: TNF-related apoptosis-inducing ligand
Trop-2: trophoblast cell surface antigen 2
t-SNE: t-distributed stochastic neighbor embedding
Ub: ubiquitin
UGS: urogenital sinus
Xic1: Xenopus cyclin dependent kinase inhibitor
ZEB1: zinc-finger E-box binding homeobox
1. INTRODUCTION

1.1. PROSTATE GLAND, PROSTATE CANCER AND PROSTATE CANCER STEM CELLS

1.1.1. PROSTATE

The prostate is a part of male reproductive system, and its physiological function is to produce secretions that are part of the semen fluid and thereby enhance male fertility. The human prostate is a walnut-sized tubuloalveolar gland that is located below the bladder and surrounds the urethra. It consists of a fibromuscular stroma, a peripheral zone, a transition zone, and a central zone (Figure 1.1).

Figure 1.1 Overview of prostate anatomy
Schema depicts the adult human prostate. Key structures and regions of the prostate are indicated. Adapted from (1).

1.1.1.1. PROSTATE DEVELOPMENT

The development of the prostate is initiated during embryogenesis, and it arises from the primitive urogenital sinus (UGS) (2). The prostate is formed through
epithelial budding from the UGS starting approximately at 10 weeks of gestation in humans. The prostate organogenesis continues by the direct response of prostate epithelial cells to circulating androgens or by indirect response via stromal cells through birth and prepubertal stages, until the prostate achieves its maturity during puberty (reviewed in (2, 3)).

1.1.1.2. PROSTATE EPITHELIUM

The prostate epithelium is heterogeneous and is composed of several distinct epithelial cell types - basal cells, luminal cells, neuroendocrine cells and transit amplifying cells (Figure 1.2). The basal cells exhibit the proliferative role during epithelial renewal (4), the luminal cells are terminally differentiated secretory cells that produce prostate specific proteins in response to androgens, and the neuroendocrine cells secrete neuropeptides and hormones such as chromogranin A, neuron specific enolase, serotonin, and others (5). The different cell types can be distinguished by expression of various markers (6) including Cytokeratins (CK) (7). The basal cells express CK5 and CK14, and very low level of androgen receptor (AR). The luminal cells express CK8, CK18, AR, and secrete Prostate specific antigen (PSA) and prostatic acid phosphatase, while the neuroendocrine cells are androgen receptor negative, and express Chromogranin A and Synaptophysin (Figure 1.2).

![Prostate epithelium diagram](image)

Figure 1.2 Prostate epithelium. Scheme illustrates the prostate epithelium composed of basal, luminal, transit amplifying cells and neuroendocrine cells. Below, typical markers characterizing distinct cell types are depicted. Adapted from (2) and (8).
The distinct prostate epithelial cells can also be distinguished based on expression of surface markers, mostly represented by CD (cluster of differentiation) markers that often function as receptors and adhesion molecules. Luminal cells are characterised by CD9, CD24, and integrin α2 (CD49b) expression, while CD44, integrin α2 (CD49b), integrin α3 (CD49c), integrin α6 (CD49f), and Trop-2 are expressed in basal cells specifically (9-11). Expression of CD44 and CD133 markers was documented on the surface of neuroendocrine cells (12, 13). Moreover, combined expression of particular surface markers was shown to define the differentiation status of prostate epithelial cells. Specifically, CD24 was described as a marker that distinguished between low differentiated and transit-amplifying cells in the basal layer of human prostate (8). The detection of surface markers expression is useful for identification and isolation of viable cells from the tissue with the possibility of further cultivation of these cells.

1.1.1.3. Prostate Stem Cells and Epithelial Cell Differentiation

In the prostate tissue, presence of stem cells has been reported. Normal stem cells in adult somatic tissue are characterized by their ability of self-renewal and capability to differentiate into specialized cell types. The evidence of the presence of the prostate stem cells was first described in rats in 1980s. The initial experiments demonstrated that the rat prostate underwent regression after androgen deprivation; however, a distinct subset of androgen independent basal cells survived and mediated the prostate regeneration after androgen replacement (14).

Since then, several prostate epithelium differentiation models have been suggested, and three generally accepted models are depicted in Figure 1.3 and summarized in (15). In the linear hierarchical model, the undifferentiated basal cells give rise to one copy of stem cell and a multipotent progenitor cell by asymmetric division (16). The progeny then differentiates to luminal or neuroendocrine cell through the intermediate cell. In the nonlinear hierarchical differentiation model, a common stem cell gives rise to lineage-specific progenitors, which then give rise to the distinct lineage cell types (17). The third model (independent lineage
differentiation model) suggests a presence of multiple stem cells within the epithelium and includes the luminal stem cells (so called CARNs - castration-resistant Nkx3-1-expressing cells) and basal stem cells (18). The stem cells independently give rise to basal, luminal, and neuroendocrine cells. Moreover, the stem cells are possibly multipotent and are able to generate the opposing lineage cells as well.

Figure 1.3 Hypothetic models of prostate cells differentiation. Scheme summarizes the models of prostate epithelium differentiation. A) linear hierarchical differentiation model, B) nonlinear hierarchical differentiation model, and C) independent lineage differentiation model. Adapted from (15).

Postnatal prostate development in mice revealed that the prostate epithelium contained multipotent progenitors, as well as unipotent stem cells that generated only basal or luminal cells, and also bipotent basal stem cells with the capability to generate basal and luminal cells (19, 20). Furthermore, in murine and human tissue, the existence of bipotent progenitors was demonstrated within both basal and luminal populations (11). Interestingly, a recent study revealed that adult prostate epithelium relies upon multipotent basal stem cells that are located in a discrete niche at the
junction between proximal ducts and urethra. They constantly undergo self-renewal, giving rise to bipotent basal progenitors that migrate along the proximal-distal axis of ducts, and are giving rise to luminal cells that replace those lost continually through apoptosis (21). The precise regulation of stem cells cytokinetics (proliferation, differentiation and apoptosis) is critical for proper development and maintenance of the prostatic tissue and its deregulation can lead to neoplastic transformations.

1.1.2. PROSTATE CANCER

Prostate cancer is the second leading cause of cancer-related death in men in Western countries (22). The majority of prostate cancer cases is represented by carcinomas (23) that mainly arise in the peripheral zone of the prostate, while the benign prostatic hyperplasia (BPH) characterised by non-malignant overgrowth of the prostatic tissue originates most frequently in the transition zone (24). These two diseases are the most prevalent neoplastic transformations in prostate and exhibit similarities in clinical manifestations. However, the association between BPH and increased prostate cancer risk is controversial, and yet not fully elucidated (25, 26). The prostate intraepithelial neoplasia (PIN), on the other hand, is widely accepted as the precursor of prostate cancer, and is characterised by luminal epithelial hyperplasia, reduction in basal cells, and enlargement of nuclei and nucleoli (27). The role of inflammation has been implicated in the progression of both, BPH and prostate cancer (28).

Prostate cancer is a multifocal disease, for the primary tumours contain multiple histopathological foci. The lesions exhibit different genetic abnormalities (29), and arise from both basal and luminal cells (30, 31). In the prostate gland, multiple transforming neoplastic events result in latent prostate cancer that does not progress into a clinically detectable disease (32). Human prostate cancers are pathologically classified as adenocarcinoma, with the vast majority corresponding to AR positive acinar adenocarcinoma (32). In the course of the disease progression, metastasis occur. Bones, lungs, and liver are the most frequent sites of distant prostate cancer metastasis (33).
The severity of the prostate cancer is mainly determined by the spread into the body and is defined by the stage of the disease. The stage of prostate cancer is estimated based on the results of staging and diagnostics tests, including detection of PSA level in blood and Gleason score (based on histopathological grading of the biopsy) (34) (Figure 1.4). In stage I, prostate cancer is found in one-half or less of one lobe of the prostate. The Gleason Score (GS) is 6 or lower and PSA level in the blood is lower than 10 ng/ml. In stage II, cancer is more advanced than in stage I but has not spread outside the prostate. The blood level of PSA is between 10 and 20, and the GS is 7 or lower and can be found in one-half or more than one-half of the prostate. The stage III is characterised by the spread of the disease out of the prostate and may disseminate into seminal vesicles, the PSA level, and GS can vary. In stage IV, cancer spreads beyond the seminal vesicles to nearby tissue or organs, metastasis to distant organs may occur, and the PSA level and GS vary.

![Figure 1.4 Prostate cancer staging](image)
The scheme summarises the progression of the prostate cancer. Adapted from (34).

The highest incidence of prostate cancer was reported in North America and Oceania, in the opposite, the lowest occurrence was recorded in Asia (35). Latest statistics available for the Czech Republic show that in 2015, 7 049 new cases of prostate cancer were diagnosed, and 1 440 prostate cancer related deaths were recorded (36). Prostate cancer incidence increases significantly with age of the patients; typically, older men are diagnosed with higher grade and stage of prostate cancer than younger men. A significant correlation between Gleason score ≥ 8 and age
above 80 years was demonstrated (37). Moreover, increased risk of prostate cancer specific-mortality was shown in older patients (>70 years) with Gleason score 6 and 7, compared to younger patients (38). In another study, biologically more aggressive tumours were found in patients aged >70 years. However, higher age was not an independent predictor of survival after radical prostatectomy, whereas adverse prostate cancer features and severe comorbidities were (39).

Risk factors for prostate cancer, such as increasing age, African American race and family history, are recognized (40). Despite the apparent link between prostate cancer and advanced age of the patients, there is an increasing evidence of disease detection in younger men in western countries (35). Recently, increased prostate cancer detection across all age groups with a high-grade disease in younger patients (<50 years) was reported (41). Furthermore, Lin et al. showed that among men who had tumours with a Gleason score between 5 and 7, overall survival was worse with advancing age. Conversely, among men with high Gleason score or locally advanced cancer at diagnosis, the youngest (ages 35-44 years) were at the highest risk of all-cause and cancer-specific death (42). Hereditary prostate cancer accounts for a greater proportion of early onset of prostate cancer (men ≤55 years at diagnosis) (43). Thus, prostate cancer is not only a problem of elderly men but there is an increasing evidence of aggressive disease detected in younger men.

1.1.2.1. PROSTATE CANCER TREATMENT AND DRUG RESISTANCE

Early-stage prostate cancer is usually slow-growing, and may take years to cause any symptoms. The treatment options for early-stage prostate cancer include surgery, radiation therapy and active surveillance (44).

If the disease progresses into an advanced or metastatic prostate cancer, androgen deprivation therapy (ADT) is a critical component of the cure (45). Interestingly, the surgical or medical castration was the first prostate cancer treatment described in the 1940s (46). However, despite the initial tumour regression after ADT, the majority of patients develop castration-resistant disease (45). Current standard treatment of patients with castration-resistant prostate cancer (CRPC) is the anti-
mitotic agent docetaxel (47). Unfortunately, the patients can further develop docetaxel resistance, and therefore, new agents like cabazitaxel, abirateron or enzalutamide to treat patients with acquired docetaxel resistance are under investigation (45, 48, 49). Resistance to conventional treatments and development of CRPC remain challenging in prostate cancer therapy. Therefore, a better understanding of the processes that are behind the CRPC development can lead to the identification of new possible targets to treat this disease.

1.1.3. PROSTATE CANCER STEM CELLS

Cancer stem cells (CSCs) were initially documented in leukaemia and multiple myeloma as a small subset of cells that were capable of extensive proliferation and colony formation in vitro (50). Later on, the CSCs (or cancer stem-like cells) were also described in solid tumours (51, 52) including prostate cancer (53). The prostate CSCs displayed a significant capacity for self-renewal, extensive proliferation, differentiation, and invasion.

In principle, cancer stem cells are described as a small subset of transformed cells within a tumour with the properties of normal stem cells. The resemblance of CSCs to normal stem cells (reviewed in (54)), is shown in Figure 1.5. The CSCs possess the ability of self-renewal and can produce more differentiated progenitors. CSCs further exhibit increased resistance to drugs, avoid apoptosis, and can undergo unlimited division due to active telomerase. The proliferation of CSCs can be switched from quiescence to active proliferation. CSCs are located in an environment called onco-niche that contributes to sustaining their stem cell phenotype. Interestingly, it was shown that stromal cells isolated from the peripheral zone, but not the transitional zone of human prostate, promoted tumourigenic potential of prostatic CSCs (55). In consequence of their features, CSCs are involved in tumour maintenance, contribute to tumour heterogeneity, and promote disease progression (56), metastasis and chemoresistance (summarised in (57)). Moreover, signalling pathways that are essential for maintenance of stem cell phenotype, such as Wnt,
Notch, Hedgehog, PI3K/Akt, Ras/MAPK or STAT3 pathways, may be activated in cancer stem cells (56, 58).

![Diagram showing properties of cancer stem cells and normal stem cells](image)

Figure 1.5 Properties of cancer stem cells and normal stem cells. The scheme illustrates feature similarities among the normal stem cells and cancer stem cells. Adapted from (54).

Despite the considerable progress in the field of CSCs biology, the origin of the CSCs is still a matter of debate and remains to be fully elucidated. Up to date, there are several theories describing the CSCs origin (59). The similarity of the CSCs to normal stem cells suggests that they can originate directly from the adult stem cell or more differentiated progenitors/transit amplifying cells that undergo oncogenic transformation. Another possibility is that CSCs can originate from embryonic stem cells (60). As mentioned previously, there is evidence that prostate cancer can arise from both basal and luminal cells. The normal prostate stem cells are located in basal layer of the epithelium (21), and several studies described the prostate cancer stem cells (PCSCs) as those exhibiting characteristics of basal cells (53, 61, 62). On the other hand, luminal cells with stem cells properties were also identified, suggesting that PCSCs arise from luminal progenitors (63) or CARN cells (18).
The role of PCSCs in prostate cancer progression and development of CRPC was suggested in several studies (64, 65). Rybak et al. proposed a model of CRPC development comprising the PCSC (Figure 1.6). They suggested that low-risk prostate cancer progresses in heterogeneous tumours during the active surveillance, and that administration of ADT causes the elimination of androgen-responsive cells resulting in tumour regression. However, ADT insensitive PCSCs remain in the tumour. They could be eventually activated, and subsequently initiate the progression of CRPC (56). Thus, PCSCs represent a target of interest for further studies to describe their characteristics in detail, with the potential of targeting them in cancer treatment (66, 67).

Figure 1.6 Prostate cancer stem cells and CRPC development. The scheme demonstrates the development of CRPC and the role of PCSCs in this process. Adapted from (56).

1.1.3.1. Characterisation of prostate cancer stem cells – functional test

To comprehend the role of CSCs in carcinogenesis and cancer progression, we need tools that enable their investigation. The gold standard method confirming the presence of CSCs within a human tumour is a serial transplantation of tumour cells into immunodeficient mice, where the CSCs give rise to a tumour recapitulating the phenotype of the original tumour (68).

The in vitro approaches used for detection of CSCs comprise functional assays that reflect the CSCs properties such as self-renewal and drug resistance. To confirm CSCs phenotype in vitro, the self-renewal of CSCs is verified by the ability of single
cells to form colonies in 2D conditions (69, 70) or by the formation of tumourspheres in 3D culture. To evaluate the clonogenic capacity of the cells in 2D culture, cells are seeded in low density, and the ability of the single cells to form colonies is analysed. Moreover, the clonogenic capacity of a single cell with a specific immunophenotype can be examined (70). Using this method, a single cell from a heterogeneous sample with defined phenotype is sorted per well in a multi-well plate by fluorescence-activated cell sorting (FACS). The ability of single cells to form colonies is counted. Moreover, microscopic analysis of the phenotype of single-cell-derived colonies is possible (71).

Since the discovery that neural tissue contains a population of stem cells capable to form neurospheres in vitro (72), sphere-forming assays have been adapted for various solid tumours, including prostate cancer (11, 53, 69). In the initial experiments, the cells were cultivated in liquid media, which resulted in cell aggregation, and therefore, the spheres raised from cell aggregates rather than from single cells. To overcome this issue and to promote the growth of single cell-derived spheres, cells may be seeded in low density into a semi-solid medium (73) onto an agar bottom layer. In addition, critical parameters are cell density, medium composition, volume, culture dish, etc. (74).

Another different approach typically used for detection of CSCs is measurement of aldehyde dehydrogenase (ALDH) activity. ALDHs are a group of enzymes that are involved in modulation of several cell functions such as proliferation, differentiation, survival, and response to oxidative stress (summarised in (75)). Originally, this assay was developed to detect hematopoietic stem cells (76) and later on, it was also adapted for identification of PCSCs (77-79). ALDH1A1 activity was linked to cancer stem cells phenotype and worse prognosis of the patients (80-82). High expression of ALDH1 was also correlated with poor prognosis of the patients with prostate cancer (83) as well as with high activity of ALDH1 in the PCSCs (77, 84), and resulting in promotion of radioresistance (85). The principle of this assay is based on a conversion of non-fluorescent substrate to a fluorescent product by the
activity of ALDH (76). The fluorescent signal of individual cells is then detected by flow cytometry.

The chemoresistance of the CSCs is further, at least partially, caused by high expression of ATP Binding Cassette (ABC) transporters, particularly ABCG2 and ABCG1. These transporters are involved in efflux of the xenobiotics, and represent a major cause of multidrug resistance of these cells (86). The CSCs expressing high levels of ABCG2 were identified in primary tumours from patients with various malignancies (87). Castillo et al. showed high expression and activity of ABCG2 in prostate CSCs that were isolated from patients and cultivated as tumourspheres. These cells manifested the character of basal cells with cancer stem cell properties, including resistance to drugs (69). The assay used for detection of the CSCs based on the ABCG2 activity utilizes the ability of the cells to expel the DNA binding dye Hoechst 33342. These cells are then defined as a “Side population” (SP) (88). Pateawala et al. showed that the SP was enriched in CSCs and expressed a higher level of ABCG2. Surprisingly, they demonstrated that ABCG2⁺ and ABCG2⁻ cells exhibited similar tumourigenic properties (89).

1.1.3.2. DETECTION AND ISOLATION OF PROSTATE CANCER STEM CELLS

For detection and isolation of CSCs from the tissue of interest or in experimental conditions in vitro, a variety of markers presented on the cellular surface is used. These molecules mainly function as receptors and adhesion molecules. The phenotype of the cells is complex, and therefore, the cells are often identified based on a combination of several markers. PCSCs and tumour initiating cells share common features with normal stem cells (Figure 1.5), including molecules expressed on their surface. Over time, several markers defining prostate stem cells in normal tissue were described and applied to identification of PCSCs. For instance, Goldstein et al. described that both human and mouse prostate epithelial cells positive for Trop-2 and CD49f were capable to differentiate into basal, luminal and neuroendocrine cells in vitro and could regenerate prostatic tubules in vivo (10). Subsequently, in the study of Garraway et al., it was shown that cells isolated from prostate cancer tissue with the
CD44+/CD49f+/Trop2+ phenotype possessed high spheroid formation ability, and were able to differentiate and form tubular structures in vivo (90). In human, basal prostate CSCs with the CD44+/α2β1 high/CD133+ phenotype were identified (53). Further, the cells with CD44+/CD24− phenotype are commonly used to define prostate cancer stem cells (91-93). Next, it was shown that expression of cancer stem cell markers CD49b, CD49f and c-met in primary prostate tumors was associated with progression of bone metastasis (94). Selected markers of prostate CSCs are listed in Table 1.1.

Table 1.1 Selected prostate cancer stem cells markers

<table>
<thead>
<tr>
<th>Marker</th>
<th>Function</th>
<th>Species</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD24<sup>neg</sup></td>
<td>Cell-to-cell adhesion and cell-matrix interactions</td>
<td>Human</td>
<td>(8, 91)</td>
</tr>
<tr>
<td>CD44</td>
<td>Transmembrane glycoprotein</td>
<td>Human, Mouse</td>
<td>(53, 95, 96)</td>
</tr>
<tr>
<td>CD49f</td>
<td>Integrin subunit α6 mediates adhesion and migration</td>
<td>Human, Mouse</td>
<td>(97-99)</td>
</tr>
<tr>
<td>CD117</td>
<td>c-kit, receptor-tyrosin kinase</td>
<td>Mouse</td>
<td>(96)</td>
</tr>
<tr>
<td>CD133</td>
<td>Suggested role in glucose metabolism and cytoskeleton alteration</td>
<td>Human, Mouse</td>
<td>(53, 96, 100)</td>
</tr>
<tr>
<td>EpCAM</td>
<td>Epithelial cell adhesion molecule</td>
<td>Human</td>
<td>(101)</td>
</tr>
<tr>
<td>Integrin α2β1</td>
<td>Mediates adhesion and migration</td>
<td>Human</td>
<td>(53)</td>
</tr>
<tr>
<td>Trop-2</td>
<td>Tumour-associated calcium signal transducer 2</td>
<td>Human, Mouse</td>
<td>(10)</td>
</tr>
<tr>
<td>Sca-1</td>
<td>Stem cell antigen-1</td>
<td>Mouse</td>
<td>(10, 96-98, 102)</td>
</tr>
</tbody>
</table>
1.1.4. Cancer cell plasticity

Solid tumours are recognized as neoplastic heterogeneous tissue comprising tumour parenchyma that is represented by tumour cells, and tumour stroma that is composed of stromal cells, immune cells and endothelial cells (103). The tumour heterogeneity results also from differences between individual tumor cells. The intra-tumour phenotypic heterogeneity is a consequence of tumour tissue evolution driven by heritable and non-heritable causes. Two major concepts contributing to non-heritable development of intratumoural heterogeneity are CSCs and cellular plasticity.

Epithelial-to-mesenchymal transition (EMT) is a physiological process critical for fetal development from early stages of the embryogenesis (104). EMT is further recognised as a physiological response to injury, employed in wound healing, and involved in organ regeneration. In pathological conditions, this process is tightly linked to inflammation, and if the inflammation persists, fibrosis of the tissue leading to tissue degeneration can occur (105). The process of EMT is exploited in cancer by neoplastic cells and contributes to tumour heterogeneity and plasticity, favouring migration and metastasis (106).

Most of the cancer patients develop a carcinoma – cancer of epithelial origin. The epithelial cells are confined within a basement membrane and are characterised by tight cell-to-cell interaction and apical-basal polarity. During the process of EMT, the cells undergo multiple changes - they lose their epithelial features, undergo cytoskeletal reorganisation, gain the ability to migrate, and thus enable initiation of metastasis (104). Furthermore, there is an evidence of a reverse process to EMT - a transition from a mesenchymal to an epithelial state (MET) that occurs when tumour cells colonise distant sites (107). These transitions are a consequence of cellular changes that are driven at molecular level. The functional markers used for EMT detection are then molecules involved in the regulation of cell adhesion (E-cadherin, EpCAM), motility (N-cadherin) or cytoskeletal reorganisation (vimentin).
1.1.4.1. **EPITHELIAL-TO-MESENCHYMAL TRANSITION AND PROSTATE CANCER**

Downregulation of the major adhesion molecule E-cadherin is a well-established hallmark of EMT in many cancers including prostate and is associated with poor prognosis of prostate cancer patients (108, 109). It was shown that epigenetic suppression of E-cadherin expression facilitated by Zeb1 in prostate cancer cells promoted EMT and resulted in cell migration and metastasis (110, 111). Indeed, EMT was described as a crucial step in the progression and metastasis of prostate cancer (112, 113).

The cellular plasticity is represented by the ability of the cells to switch from one state to another. In cancer, this plasticity can be manifested by the EMT status of circulating tumour cells (CTCs) (114, 115). These cells, released from the tumour to the blood stream, are significant predictors of the overall survival of prostate cancer patients (with the number of ≥5 CTC/7.5ml of peripheral blood) (116). CTCs can exist in the epithelial, mesenchymal or intermediate state expressing both epithelial and mesenchymal markers (115, 117). Thus, these data suggest that EMT and MET play a role in the dissemination of prostate cancer cells and could be partial and reversible (118).

1.1.4.2. **EPITHELIAL-TO-MESENCHYMAL TRANSITION AND PROSTATE CANCER STEM CELLS**

The link between EMT and CSCs phenotype was first described in breast cancer (119). Mani et al. observed that EMT generated cells with the properties of cancer stem cells, demonstrated by increased self-renewal and tumourigenic potential. Furthermore, the acquisition of a mesenchymal phenotype concomitant with a CSCs phenotype was described also in prostate cancer. Sun et al. described that in both mouse and human prostate cancer cells, ADT promoted EMT as well as CSC characteristics of the cells, suggesting the link between EMT and PCSCs (120). Kong et al. showed that PCSCs with mesenchymal phenotype displayed stem-cell like features such as increased expression of stem cell related transcription factors Sox2, Nanog, Oct4 and/or Notch1, and exhibited enhanced clonogenic and sphere-forming
ability. This phenotype was regulated by miRNAs from miR-200 family (121). Further, an enrichment of cells with CD24−CD44+ phenotype was observed in prostate cancer cells that acquired docetaxel resistance and underwent EMT (122, 123). Moreover, the low expression of CD24 was correlated with shorter biochemical progression-free survival of the patients (123). Interestingly, in a model of a primary tumour-derived human prostate cells, it was demonstrated that not all cells having a potential for EMT exhibited stem cell-like properties (124). Altogether, emergence of CSCs is tightly linked with EMT and contributes to tumour heterogeneity and cancer cell plasticity, resulting in drug resistance (Figure 1.6), prostate cancer progression, and metastasis.
1.2. **Ubiquitin Ligases in the Biology of the Mammalian Cells**

Proteasome-mediated degradation is a critical mechanism responsible for maintaining the protein homeostasis in the cells. It is crucial for transmission and processing of both extrinsic and intrinsic signals and mediating communication between the cells. Ubiquitin-mediated proteolysis plays an irreplaceable role in the regulation of many cellular processes including cell cycle, differentiation, DNA repair, immune response, transcriptional regulation and others (125). Dysregulation of these processes may lead to serious disorders. Deregulated proteasomal degradation results in accumulation of impaired or misfolded proteins that leads to development of diseases including cancer (126), sickle cell anaemia, and neurodegenerative diseases such as Huntington disease, Alzheimer disease or Parkinson disease.

Degradation of a protein via the ubiquitin-proteasome pathway involves tagging the substrate by covalent attachment of a poly-ubiquitin chain, and degradation of the tagged substrate in the proteasome. Conjugation of ubiquitin to a substrate is a three-step cascade mechanism that is mediated by E1, E2, and E3 enzymes. E1 activates ubiquitin in an ATP-dependent manner. An ubiquitin-conjugating enzyme E2 transfers activated ubiquitin to an E3 ubiquitin ligase which is responsible for recognition of specific substrates and for tagging them by poly-ubiquitin chain (125).

Cell cycle regulation is tightly controlled by expression and activity of cyclin-dependent kinases (CDKs), cyclins and CDK inhibitors (CKIs) (127), as illustrated in Figure 1.7. The level of cyclins and CKIs oscillates during the cell cycle as a result of ubiquitin-mediated proteolysis (128). There are two major ubiquitin ligases involved in the regulation of the cell cycle progression, APCCdh1 and SCFSkp2 (Figure 1.7) (129). Skp2, a variable component of SCF ligase responsible for specific substrate recognition, is targeted for polyubiquitination and subsequent degradation by APCCdh1 during the G1 phase of the cell cycle (130). Conversely, it was shown that the SCF complex plays a role in the degradation of Cdh1 during the S phase (131).
Therefore, the activities of SCFSkp2 and APCCdhl ubiquitin ligases oscillate during the cell cycle. The APCCdhl complex is active in the late M and G1 phases, whereas the SCFSkp2 complex is active in the S and G2 phases (Figure 1.7) (132).

Figure 1.7 Basic principles of cell cycle regulation. The cell cycle is regulated by the activity of cyclin-dependent kinases (CDKs), cyclins and CDK inhibitors (CKIs). Specific CDK-cyclin complexes are required in various phases of the cell cycle. The activity of cyclin-CDKs complexes is further negatively controlled by the activity of CKIs: $p27^{Kip1}$, $p21^{Cip1}$, $p57^{Kip2}$, $p15^{INK4a}$, $p16^{INK4a}$, $p18^{INK4c}$, and $p19^{INK4d}$. The level of CKIs is regulated by their ubiquitination and proteasomal degradation. Two main ubiquitin ligases are involved in cell cycle progression, SCFSkp2, and APCCdhl that negatively regulate one another and therefore, their activity oscillates during the cell cycle. Adapted from (133).

1.2.1. CULLIN-RING UBIQUITIN LIGASES

The Cullin-RING ubiquitin ligases (CRLs) belong to the largest family of E3 ubiquitin ligases, and approximately 20 % of the proteasome-dependent protein degradation is mediated by CRLs-ubiquitination (134). CRLs represent a superfamily of multi-component protein complexes, all sharing a common molecular structure. Scaffold proteins from a Cullin family form the core of these complexes that are nucleated with a catalytic subunit, adaptor protein, and substrate receptors. Human cells express Cullin 1, 2, 3, 4A, 4B, 5 and 7, and each of them forms a multisubunit
ubiquitin ligase (135). The catalytic subunit is supplied by RING proteins Rbx1 or Rbx2, bound to a C-terminal domain of the Cullins, and is responsible for recruiting the ubiquitin-conjugating enzyme E2 (136-138). The adaptor proteins, mediating the interaction with substrate receptors, bind to an N-terminal stalk of Cullins (139, 140).

A key feature of CRLs is that they can assemble with numerous substrate receptors, thus facilitate formation of ubiquitin ligases that share a common catalytic core but recruit different substrates (135). Thus, CRLs mediate specific ubiquitination of a large number of functionally and structurally various substrates, and regulate various biological processes, as depicted in the following scheme (Figure 1.8).

![Figure 1.8 The Role of Cullin–RING ligases in multiple cellular processes.](image)

Cullin–RING ligases (CRLs) have been implicated in the regulation of various cellular processes via ubiquitination of multiple targets. Adapted from (135).

The assembly of the CRLs is a highly dynamic process that is regulated by several mechanisms. Posttranslational modification of Cullins by NEDD8 (neural precursor cell-expressed developmentally downregulated protein) promotes a conformational change of Cullin and therefore plays a central role in CRLs assembly (135). Except Cullin 7 (141), all Cullins can be modified by covalent attachment of NEDD8 (142).

NEDD8 is an 81 amino acid polypeptide which is 80% homologous to ubiquitin (143). Analogous to ubiquitination, the NEDD8 conjugation is a cascade process involving enzymes (144), as illustrated in Figure 1.9. First, NEDD8 is activated in an ATP-dependent manner by the NEDD8-activating enzyme (NAE) (145), linked to a NEDD8-conjugating substrate, and then transferred to substrates forming an isopeptide bond (reviewed in (146)). Cullins are the best-known substrates...
for neddylation (147-149); however, this posttranslational modification affects the function and activity of various proteins including tumour suppressors p53, p73, and their ubiquitin ligase MDM2 (150, 151). Nonetheless, like ubiquitin, NEDD8 can be involved in tagging proteins for their degradation in proteasome (152, 153).

An opposite mechanism involved in CRLs regulation is Cullin deneddylation, the process of NEDD8 detachment operated by COP9 signalosome complex (154). There is evidence of Cullins sequestration that results in inhibition of the CRLs. Protein CAND1 binds unneddylated adaptor-free Cullin-RING complexes resulting in their inactivation (155-157).

However, another study introduced an alternative model of CRL dynamics, showing that only a small fraction of Cullin 1 was associated with CAND1 independently of its neddylation status. The assembly of the CRL complex was driven primarily by the adaptor binding, suggesting that the abundance of adaptor proteins, rather than cycles of neddylation and CAND1 binding drives CRL network organization (158).

Figure 1.9 Ubiquitination and neddylation pathways are involved in proteasomal degradation. For proteasomal degradation, poly-ubiquitination of the target protein is required. Ubiquitin (Ub) is first activated by E1 and then transferred to E3 ubiquitin ligase via E2 enzyme. A posttranslational modification of the core complex protein,
Cullin 1 with an ubiquitin-like molecule, NEDD8, is critical for the activity of SCF$_{Skp2}$ ubiquitin ligase. The process of neddylation is analogous to the ubiquitination. First, NEDD8 needs to be activated by NAE, and then enzymatically transferred by Ubc12 to the target protein. Adapted from (159).

1.2.2. FUNCTION OF SCF$_{Skp2}$ UBIQUITIN LIGASE IN THE CELLS

The SCF$_{Skp2}$ (Skp1–Cullin–F-box protein) is composed of scaffold protein Cullin 1 which interacts with all three subunits of the complex – Rbx1, Skp1 and Skp2 (160). Skp1 serves as an adaptor protein (161) that binds a specific substrate recognition subunit Skp2 through a conserved structural motif called F-box (162, 163). Skp2 is a variable component of SCF$_{Skp2}$ responsible for recognition of specific substrates that are targeted for degradation in the proteasome (164).

1.2.2.1. SKP2 REGULATION

There is evidence of various mechanisms that control Skp2 expression and activity. In cycling cells, Skp2 mRNA and protein expression is regulated in a cell cycle-dependent manner - it is high in S phase and low in G1 and G2/M phase (165, 166). On the contrary, in cells released from quiescence, Skp2 mRNA is detectable in all phases of the cell cycle (167). The expression of Skp2 is regulated by several transcription factors, such as CBF1, GABP, and FoxM1 (168), and the upstream signalling pathway involved in the regulation of Skp2 expression is PI3K/Akt (169-172).

Based on in vitro studies, various stimuli involved in the regulation of Skp2 expression were proposed. For example, adhesion to the extracellular matrix was required for Skp2 expression (173). Recently, it was shown that mechanical cues stimulated Skp2 transcription in human breast cancer cells via Hippo signalling (174). Further, the role of epidermal growth factor (EGF) was implicated in activation of PI3K/Akt pathway and subsequent Skp2 upregulation (175). Moreover, a Skp2 autoinduction loop during G1 was described (176).
Protein phosphorylation is one of the most important and well-studied posttranslational modification. An important role of protein phosphorylation in the regulation of Skp2 function was reported. Gao et al. showed that Akt1-mediated phosphorylation of Skp2 at Ser72 promoted its cytoplasmic localization and impaired APCCdh1-mediated destruction of Skp2 (171). Lin et al. showed that Skp2 phosphorylation by Akt triggered SCF complex formation resulting in E3 ligase activity, cytoplasmic relocalization, and promotion of cell migration (177).

Acetylation, another posttranscriptional modification, leads to increased Skp2 stability, promotes its cytoplasmic retention and oncogenic function (178). Recently, the Hippo signalling pathway was implicated in the induction of Skp2 acetylation, cytosolic retention and promotion of cell polyploidy (179). Regarding Skp2 localization and protein stability regulation, a role of TGF-\(\beta\)1 cytokine was proposed. TGF-\(\beta\)1 induced Skp2 nuclear translocation and subsequent ubiquitination by APCCdh1, resulting in growth inhibition (180).

Degradation of Skp2 in G1 is regulated by APCCdh1 (130). Besides, enrolment of gap junction protein in the regulation of Skp2 stability was reported. Connexin 43 was described as a negative regulator of Skp2 protein stability via promotion of its ubiquitination and degradation (181). Next, the interaction of Skp2 with Connexin 50 was shown to result in Skp2 cytoplasmic retention, its auto-ubiquitination and proteasomal degradation (182).

1.2.2.2. SKP2 FUNCTION

The regulation of Skp2 expression is tightly linked to the cell cycle, and Skp2 itself is involved in cell cycle regulation, as mentioned in previous chapters. For a deeper insight into Skp2 physiological function, genetically engineered mice with Skp2 deletion were prepared (183). The Skp2 deletion resulted in reduced body weight of the Skp2 knockout mice compared to their littermate controls, yet both male and female were fertile with no evidence of any illness. However, tissue abnormalities manifested by increased nuclei size concomitant with the accumulation of Skp2 substrates, p27Kip1, and cyclin E were observed. Changes in DNA content and severe
proliferation defects induced by loss of Skp2 were reverted in p27^{Kip1} knockout hepatocytes to normal (184).

Skp2 is a significant player in the cell cycle machinery through targeting cell cycle regulators for proteasomal degradation. The timely precise degradation of these regulators is critical for proper cell cycle progression. Skp2 is essential for entry in S phase (165) via regulating the stability of Cyclin E (185), S/G2 transition (186), and also G2/M progression (187) in a p53 dependent manner (188). The prominent Skp2 substrate is the CKI, p27^{Kip1}. Apart from this major substrate, Skp2 also regulates multiple cell cycle regulators, regulators of apoptosis, DNA damage, DNA repair and DNA recombination (168). These substrates are listed in Table 1.2. In accordance with the function of these substrates, Skp2 deregulation is manifested in proliferation, differentiation and other cellular processes tightly linked to the cell cycle.

Table 1.2 Skp2 substrates and their function

<table>
<thead>
<tr>
<th>Skp2 substrates</th>
<th>Main function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>p27, p21, p57</td>
<td>Cell cycle inhibition</td>
<td>(172, 189-195)</td>
</tr>
<tr>
<td>E2F</td>
<td>Transcription</td>
<td>(196)</td>
</tr>
<tr>
<td>Cyclins D, E, A</td>
<td>Cell cycle progression</td>
<td>(185, 190)</td>
</tr>
<tr>
<td>Myc</td>
<td>Cell cycle/Apoptosis</td>
<td>(197, 198)</td>
</tr>
<tr>
<td>Cdt1, Orc1</td>
<td>DNA replication</td>
<td>(199-201)</td>
</tr>
<tr>
<td>BRCA2</td>
<td>DNA repair</td>
<td>(202)</td>
</tr>
<tr>
<td>Rag-2</td>
<td>DNA recombination</td>
<td>(203)</td>
</tr>
<tr>
<td>CDK9</td>
<td>Transcriptional elongation</td>
<td>(204)</td>
</tr>
<tr>
<td>Foxo1</td>
<td>Apoptosis</td>
<td>(205)</td>
</tr>
</tbody>
</table>

Apart from the role of Skp2 in the regulation of the cell cycle *per se*, it is implicated in the regulation of other cellular processes such as differentiation, survival, apoptosis or migration (206). Skp2 was shown to play a role in maintaining
the pool of hematopoietic stem cells (HSCs). Inactivation of Skp2 in HSC and progenitor cells resulted in delayed entry into the cell cycle, enhanced HSC quiescence, increased pool size, and increased HSC maintenance. The impaired ability to rapidly enter the cell cycle diminished the ability of HSC and progenitor cells to regenerate haematopoiesis after bone marrow transplantation (207).

The engagement of Skp2 in cellular differentiation was demonstrated in several models. For instance, Skp2 promotes adipocyte differentiation via a p27Kip1 independent mechanism in MEFs (208). In adipocyte tissue, Skp2 was likewise shown to control adipocyte proliferation during the development of obesity (209). The role of Skp2 was further described in neural differentiation in Xenopus model. Skp2 regulated differentiation independent of the cell cycle via degradation of CDKI Xic1 (210).

In addition, Skp2 was implicated in the regulation of cell survival and apoptosis. In both non-transformed and transformed cells, induction of apoptosis after Skp2 depletion was observed (183, 211-214). The involvement of Skp2 in apoptosis regulation may be, at least partially, explained by degradation of its substrate FOXO1, a protein from forkhead transcription family, that promotes apoptosis signaling (205, 215).

1.2.2.3. ROLE OF SKP2 IN CANCER

One of the cancer hallmarks is excessive proliferation of the transformed cells (103). Due to the involvement of Skp2 in the degradation of cell cycle inhibitors, it has been recognized as an oncogene and its overexpression was detected in various cancers including prostate (216), breast (217), gastric (218), cholangiocarcinoma (175), colon (219-221) and metastasis (222).

In prostate cancer, several signaling pathways involved in Skp2 deregulation were described, including androgen receptor (223), PTEN (216) and PI3K/Akt (169) signaling pathways. In a mouse model, the essential role of Skp2 in the development of prostate cancer was described. It was shown that overexpression of Skp2 in prostate gland induced hyperplasia, dysplasia and low-grade carcinoma (224). High expression
of Skp2 in tumours accompanied by $p27^{\text{Kip1}}$ downregulation was correlated with poor prognosis in patients and it was implicated as a prognostic marker in many cancers including prostate (216, 225-231).

In non-small-cell-lung cancer, Skp2 amplification and overexpression were associated with presence of lymph node metastases (232). Further, cytoplasmic Skp2 was shown to enhance E-Cadherin ubiquitination and destruction, resulting in cellular migration (178). Conversely, downregulation of Skp2 inhibited the growth and metastasis of gastric cancer cells in vitro and in vivo (233). In combination with oncogenic stress, Skp2 downregulation restricted prostate cancer development in vivo (221). The above-described involvement of Skp2 in tumourigenesis, its overexpression in various cancers and correlation with worse prognosis and metastasis in patients, makes Skp2 an appealing target for anticancer therapy.

1.2.3. SCF$^{\text{Skp2}}$ AS A TARGET FOR ANTICANCER THERAPY

The process of protein turnover is an attractive target in anticancer therapy. The first proteasomal inhibitor tested in humans, bortezomib (234), was approved by Food and Drug Administration (FDA) for treatment of multiple myeloma in 2008. Apart from Bortezomib, two other proteasome inhibitors were recently approved by FDA: carfilzomib, and ixazomib (235). However, as anti-cancer drugs, they are limited to lymphomas and multiple myeloma. Therefore, there is an interest in developing drugs with reduced toxicity that can be used to target proteasome also in non-haematological tumours (236). One possibility how to achieve this goal is to block the upstream components of the ubiquitin-proteasome system.

1.2.3.1. PHARMACOLOGICAL INHIBITION OF CULLIN NEDDYLYATION

Cullin1 neddylation is a crucial step for SCF$^{\text{Skp2}}$ assembly (155, 156). Therefore, one of the ways how to inhibit the activity of this complex is the disruption of the neddylation process. MLN-4924 (Pevonedistat), a potent ATP competitive inhibitor targets selectively the NAE enzyme (134) (Figure 1.10). This inhibitor is recently in phase III clinical trials for haematological malignancies and in the second
phase for several haematological cancers and solid tumour malignancies (237). As an alternative to MLN-4924, a natural product-like inhibitor (238) and a metal-based inhibitor (239) blocking NAE activity were described, but both were tested only in vitro, so far.

In vitro and *in vivo* studies demonstrate that inhibition of the neddylation process via MLN-4924 results in multiple cell type-dependent effects, caused by the accumulation of CRL substrates. Nevertheless, cell cycle deregulation, growth restriction, induction of apoptosis, and cellular senescence are the most common cellular responses to MLN-4924 treatment (134, 221, 240-245). Further, inhibition of migration after MLN-4924 treatment was described (246, 247). Interestingly, Swords *et al.* showed that MLN-4924 significantly reduced the viability of leukemic cells compared to peripheral blood mononuclear cells from healthy donors. (248).

The radiosensitization effect of MLN-4924 on cancer cells was demonstrated *in vitro* and/or *in vivo* in the models of breast cancer (249), nasopharyngeal carcinoma (250), head and neck squamous carcinoma (251), and pancreatic cancer (252). Moreover, in pancreatic cancer, it was shown that MLN-4924 treatment suppressed angiogenesis, tumour growth and metastasis (253). Apart from radiosensitization, enhanced response to other pro-apoptotic stimuli in neoplastic B-cells (254) or cervical carcinoma (255) was described. Further, the ability of MLN-4924 to sensitize cisplatin resistant ovarian cancer cells (256, 257), paclitaxel-resistant lung adenocarcinoma cells (258), or pancreatic cells to apoptosis (259) was demonstrated by *in vitro* studies.

1.2.3.2. Pharmacological Inhibition of Skp2

The activity of SCFSkp2 E3 ligase can be selectively targeted (Figure 1.10). Based on the SCFSkp2 structure, inhibitors targeting specifically the protein-protein interactions within the SCFSkp2 complex were designed. The Skp1 and Skp2 interaction represents a target for pharmacological inhibition to prevent SCFSkp2 activity. Indeed, several agents targeting this interaction were identified. Compound A, tested in multiple myeloma, induced cell cycle arrest, cell death and even overcame resistance
to drugs including bortezomib (260). Further example of a drug targeting Skp1 and Skp2 interaction is compound #25. Treatment with this agent resulted in specific inhibition of SCF^{Skp2}, accumulation of p27^{Kip1} and p21^{Cip1} proteins, led to the restriction of CSCs population and tumours regression in vivo (261). Moreover, it induced resensitization of castration-resistant prostate cancer cells to chemotherapeutics such as paclitaxel or doxorubicin (262).

Another approach to inhibit SCF^{Skp2} activity is to target the interaction of Skp2 with its substrates specifically. As described above, the prominent substrate of Skp2 is p27^{Kip1}. To be recognised by Skp2, p27^{Kip1} needs to be phosphorylated (195), and it requires the accessory protein Cks1 to be bound to Skp2 (263, 264). An in silico screen identified series of inhibitors SKPin C1-C20 that target the binding interface for p27^{Kip1} on Skp2/Cks1 (265). These molecules selectively inhibited Skp2-mediated p27^{Kip1} degradation, resulting in cell cycle arrest. Besides the cell cycle arrest and p27^{Kip1} accumulation, the ability of SKPin C1 to inhibit tumour growth in vivo was shown (266).

Furthermore, natural compounds isolated from plants like curcumin (267-269), caffeic acid (270), rottlerin (271) or genistein (272) were tested in vitro and exhibited anti-tumour activity manifested by cell cycle arrest, apoptosis or inhibition of migration via Skp2 downregulation. Thus, targeting the activity of SCF^{Skp2} is a promising approach in anti-cancer therapies.
Figure 1.10 Pharmacological inhibition of SCFSkp2. Several compounds that inhibit the activity of SCFSkp2 ubiquitin ligase were described. MLN-4924, an inhibitor of the neddylation process, abrogate the SCFSkp2 assembly. Compounds A and #25 target Skp1 and Skp2 interaction. The SKPin C1 inhibitor specifically targets p27Kip1 binding to Skp2/Cks1 interface. Adapted from (159).
2. HYPOTHESIS AND AIMS OF THE WORK

2.1. HYPOTHESIS

The Role of Skp2 in Prostate Cancer Stem-like Cells

Prostate cancer is a heterogeneous disease, characterized by multifocal lesions (29), and arising from both basal and luminal cells (30, 31). The CSCs are considered to be responsible for disease progression and can cause the relapse of the disease (56). CD24 was described as a marker distinguishing between low differentiated and transit-amplifying cells in the basal layer of human prostate (8). Moreover, prostate cancer cells with CD24$^{+}$CD44$^{+}$ phenotype are considered CSCs (122, 123).

One of the cancer hallmarks is excessive proliferation of the transformed cells (103). Skp2 is involved in cell cycle regulation, mainly via the degradation of CKIs. Therefore, it has been recognized as an oncogene, and its overexpression was detected in various cancers including prostate (216).

Based on the published results, we postulated the following hypothesis:

- High expression of Skp2 is associated with the progression of the prostate cancer and the EMT status.

- The expression of Skp2 is increased in the prostate CSC-like cells compared to non CSC-like cells. The downregulation of Skp2 will abrogate the CSC-like properties of the cells.
Pharmacological modulation of SCF^{Skp2} will affect cytokinetics of CSC-like cells. The cells with CSC phenotype CD44^{+}CD24^{-} will be more sensitive to MLN-4924 treatment than CD44^{+}CD24^{+} cells.

Pharmacological inactivation of the SCF^{Skp2} complex will decrease self-renewal capability of prostate CSCs.

Establishment of a tool for analysis of cellular response to experimental drug treatment in heterogeneous samples (in CSC-like cells)

Based on the high advantage of flow cytometry as a methodological approach to detect various cytokinetic parameters cell populations, and the possibility of analysis of such parameters on single cell level, we hypothesised that:

- The introduction of a multiparametric protocol for the assessment of complex cellular responses to experimental treatments on single cell level will serve as a powerful tool in experimental work.

- In a heterogenous sample, various subpopulations including CSC-like cells are present. These subpopulations respond differently to experimental treatment.
2.2. **Specific Aims of the Thesis**

Aim 1: The Role of Skp2 in Prostate Cancer Stem-like Cells

- To examine the localization and expression of Skp2 in patients with prostate cancer and its correlation with the disease grading.

- To evaluate the EMT status of the cells in the prostate cancer.

- To analyse Skp2 expression, EMT status and CSC characteristics in *in vitro* cultures. To describe the effect of Skp2 downregulation on the CSC-like properties of the cells.

- To examine the biological effects of SCF\(^{Skp2}\) pharmacological inhibition.

- To disclose the potential of pharmacological inactivation of SCF\(^{Skp2}\) complex to affect CSC-like characteristics of prostate cancer cells (expression of CSC-like markers and self-renewal capacity).

Aim 2: Establishment of a tool for analysis of cellular response to experimental drug treatment in heterogeneous samples (in CSC-like cells)

- To establish a multiparametric flow cytometric assay to analyse the cellular response to experimental drug treatment of the cells. To comprehend simultaneous detection of surface markers for immunophenotyping, proliferation (based on the cell cycle and measurement of DNA synthesis), DNA damage, and cell death (determined by viability and apoptosis markers) to depict the complex response of the cells to the experimental treatment.
• To optimize critical steps necessary for establishment of the assay.

• To analyse the effects of the experimental drug treatment in various subpopulations within the heterogeneous samples.
3. MATERIAL AND METHODS

3.1. CELLS AND CELL CULTURE

3.1.1. DU 145 AND PC3

DU 145 human cancer cells (ATCC) derived from brain metastases of prostate cancer and PC3 human cancer cells derived from bone metastasis of prostate cancer were cultivated in RPMI 1640 (Thermo Fisher Scientific [TSF], Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS) (TFS), penicillin (100 U/ml), and streptomycin (0.1 mg/ml; Biosera, Nuaille, France). PC-3 AC (age control) and PC-3 DR (docetaxel resistant) cells were obtained from prof. Watson (Dublin, Ireland) and cultivated as described (273).

3.1.1.1. PREPARATION OF DU 145 SKP2 KNOCK-DOWN CELL LINES

DU 145 were transfected with Skp2 p45 CRISPR/Cas9 KO Plasmid (h) (sc-400534) and Skp2 p45 CRISPR/Cas9 KO Plasmid HDR (sc-400534) using Lipofectamine 3000 (TFS Scientific, USA) to prepare SKP2 knock-down (KD) cell lines or with Control CRISPR/Cas9 Plasmid (sc-418922, all Santa Cruz Biotechnology, Inc.; SCBT) and empty vector pIRES puro2 (kindly provided by Prof. V. Bryja, Ph.D., Masaryk University, Brno, Czech Republic) to prepare control cells. Cells were selected in media with puromycin (300 ng/ml; TFS Scientific) for one week. RFP positive single cells (indicating insertion of plasmid with puromycin resistance in a site of CRISPR deletion) were sorted using FACS Aria II Sorp system and 100-μm nozzle (20 psi) to obtain single cell-derived SKP2 KD clones. Post-sorting purity was determined immediately after sorting. In the control group, viable cells were sorted.
3.1.2. **CE2 AND E2**

Mouse prostate adenocarcinoma cells (274) (a generous gift from Dr. Pradip Roy Burman, University of Southern California, Los Angeles, CA), were cultivated in Dulbecco’s modified Eagle medium (DMEM) (TFS) supplemented with recombinant human (rh) epidermal growth factor (rh-EGF) (6 ng/ml; Sigma-Aldrich, St. Luis, MO, USA), rh-insulin (5 µg/ml; Sigma-Aldrich), bovine pituitary extract (25 µg/ml; Hammond Cell Tech, Windsor, CA, USA), 10 % FBS, penicillin, and streptomycin.

3.1.3. **HCT 116**

Human colon adenocarcinoma cells (a generous gift from Dr. Bert Vogelstein, Johns Hopkins University, Baltimore, MD) were cultivated in McCoy’s medium (TFS) containing 10 % heat-inactivated FBS, penicillin, and streptomycin.

3.1.4. **SU-DHL-4**

Human diffuse large B-cell lymphoma cells (a kind gift from Dr. Martin Trbušek, Masaryk University, Czech Republic), were cultivated in RPMI 1640 supplemented with 10 % FBS, penicillin, and streptomycin.

3.1.5. **CELL CULTURE**

All adherent cell lines were cultivated in TPP (Trasadingen, Switzerland) or FALCON™ (TFS) cultivation flasks and plates in a humidified incubator at 37°C in an atmosphere of 5% CO₂. The cells (except SU-DHL-4 growing in suspension) were harvested by washing with 0.05% EDTA in PBS followed by trypsinization (0.05% w/v trypsin/0.53 mM Trypsin-EDTA; GE Healthcare Life Sciences, Little Chalfont, UK). The AmpFLSTR® Identifiler® PCR Amplification Kit (TFS) was used to verify the origin of cell lines.
3.2. CHEMICALS

MLN-4924 was obtained from Active Biochem (Hong Kong, China); dimethyl sulfoxide (DMSO), MG-132, Triton X-100, and phosphate-buffered saline (PBS) were obtained from Sigma-Aldrich; TRAIL was kindly provided by Dr. Ladislav Anděra, Institute of Molecular Genetics, CAS, Prague, Czech Republic. The staining buffer for flow cytometry was 1% bovine serum albumin (BSA; Serva Electrophoresis GmbH, Heidelberg, Germany) in PBS with 0.1% NaN₃ (Sigma-Aldrich). A buffered, 4% formaldehyde solution in PBS was prepared in-house from powder (Fluka). Fumitremorgin C (Abcam, ab144258) was used for ABCG2 inhibition.

3.3. TREATMENTS

3.3.1. PHARMACOLOGICAL INHIBITION OF SCFSkp2 IN DU 145

Cells were treated in subconfluent conditions 24 hours after seeding with MLN-4924 inhibitor or vehicle (DMSO). The concentration range varied from 0.04 µM to 3 µM. The cells were treated for 24 to 96 hours as indicated in individual experiments. In clonogenic assay, single cells were sorted in medium containing 0.04 µM MLN-4924 and cultivated for 3 weeks.

3.3.2. ESTABLISHMENT OF THE MULTIPARAMETRIC FLOW CYTOMETRIC ASSAY

For the induction of DNA damage and/or apoptosis, exponentially growing cells were treated with experimental drugs. cE2 and SU-DHL-4 were treated with lethal concentrations of MG-132 (1 µM and 5 µM, respectively) for 24 hours. DU 145 and HCT 116 were treated with lethal concentration of TRAIL (50 ng/ml) for 2 hours. All cell lines were treated with MLN-4924 (DU 145 and HCT 116 0.33 µM,
SU-DHL-4 1 μM, cE2 5 μM) for 24 hours. Concentrations were selected based on pilot experiments. In all cases, corresponding vehicle at the appropriate dilution was applied in the control groups.

3.4. **METHODS**

3.4.1. **Skp2 OVEREXPRESSION**

DU 145 cells were transfected using Neon transfection system (TFS) with control plasmid (pcDNA3.1) or Skp2 (pcDNA3 Skp2-Myc) plasmid that was a gift from Axel Brunger (Addgene Plasmid #19947) (275), incubated for two days and harvested for flow cytometric analysis to detect surface markers.

3.4.2. **SPHEROID FORMATION ASSAY**

For spheroid formation assay, DU 145 (control and SKP2 KD) cells were seeded in semisolid media (0.1% agarose) in plates precoated with 0.5% agar and cultured for three weeks. Cells were seeded in low density, 500 cells/well in a 6 well plate. Spheroids were stained with MTT (276) and counted using ImageJ software. For analysis of cancer stem cells markers, cells were seeded in high density (10 000 cells/well in a 6 well plate) in semisolid media (0.1% agarose) on plates precoated with 0.5% agar and cultivated for three weeks. Spheroids were harvested, incubated with prewarmed PBS/EDTA and Trypsin to obtain single cell suspension. Cells were then stained with antibodies according to standard procedure and analysed by a flow cytometer.

3.4.3. **TUMOURIGENIC POTENTIAL OF SKP2 KD CELL LINES**

Suspension of 1×10^6 cells per mice (in Growth factor reduced Matrigel; 354230; BD Biosciences, Franklin Lakes, NJ, USA) were injected into the right flank of male SHO mice (Crl:SHO-PrKD$^{scid/Hrhr}$). 10 mice per group were used. Six weeks
after injection, mice were sacrificed. Tumour formation rate was then calculated for both control and SKP2 KD cells. The rate was calculated as a ratio of number of mice inoculated with cancer cell and number of mice bearing tumours. Animal experiments were approved by the Academy of Sciences of the Czech Republic (AVCR 2013/13); supervised by the local ethical committee of the Institute of Biophysics of the Czech Academy of Sciences and performed by certified individuals.

3.4.4. Western blot

Samples for western blot were prepared as described previously (277). Proteins were separated using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and detected by specific primary antibodies and secondary antibodies (Table 3.1). Signals were detected using the Immobilon Western HRP Substrate (Merck Millipore, Billerica, MA, USA) and visualized on X-ray films (Agfa, Mortsel, Belgium).

Table 3.1 List of antibodies used for western blot

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Supplier</th>
<th>Source</th>
<th>Cat. No.</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-tubulin</td>
<td>Sigma-Aldrich</td>
<td>Mouse</td>
<td>T9026</td>
<td>1:4000</td>
</tr>
<tr>
<td>β-actin</td>
<td>Sigma-Aldrich</td>
<td>Mouse</td>
<td>A5441</td>
<td>1:8000</td>
</tr>
<tr>
<td>CDK1</td>
<td>SCBT</td>
<td>Mouse</td>
<td>SC-8395</td>
<td>1:500</td>
</tr>
<tr>
<td>CDK2</td>
<td>SCBT</td>
<td>Rabbit</td>
<td>SC-163</td>
<td>1:500</td>
</tr>
<tr>
<td>CDK4</td>
<td>SCBT</td>
<td>Rabbit</td>
<td>SC-601</td>
<td>1:500</td>
</tr>
<tr>
<td>cleaved caspase-3</td>
<td>Cell Signaling</td>
<td>Rabbit</td>
<td>9661</td>
<td>1:500</td>
</tr>
<tr>
<td>E-Cadherin</td>
<td>BD Pharmingen</td>
<td>Mouse</td>
<td>610182</td>
<td>1:5000</td>
</tr>
<tr>
<td>γH2A.X</td>
<td>Cell Signaling</td>
<td>Rabbit</td>
<td>9718</td>
<td>1:1000</td>
</tr>
<tr>
<td>N-Cadherin</td>
<td>BD Pharmingen</td>
<td>Mouse</td>
<td>610920</td>
<td>1:2500</td>
</tr>
<tr>
<td>Nedd8</td>
<td>Cell Signaling</td>
<td>Rabbit</td>
<td>2754</td>
<td>1:1000</td>
</tr>
<tr>
<td>p21<sup>cip1</sup></td>
<td>SCBT</td>
<td>Rabbit</td>
<td>SC-397</td>
<td>1:500</td>
</tr>
<tr>
<td>p27<sup>kip1</sup></td>
<td>SCBT</td>
<td>Rabbit</td>
<td>SC-528</td>
<td>1:500</td>
</tr>
</tbody>
</table>
DU 145 control cells and SKP2 KD cells were seeded on 10 mm cover slips coated with 0.1% gelatine. After 24 hrs, cells were treated with 0.11 μM MLN-4924 or DMSO for another 24 hrs. Then, cells were washed with 1 ml of HBSS, fixed with 4% PFA for 15 min at room temperature (RT), incubated in permeabilising and blocking solution (0.3% Triton X-100 and 5% Donkey serum) for 1 hour, RT. Afterwards, cells were incubated overnight with Skp2 (1:200, Cell Signaling, 4313) and p27 (1:100, Transduction Laboratories, 610242) antibodies and stained with secondary antibody the following day. The secondary antibodies were Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 (TFS, A31571, 1:500 and Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488, TFS, A21206, 1:500). Prior to microscopic analysis, cells were stained with DNA probe and cover slips were anchored to
microscopic slide with Mowiol® 40-88 (Sigma-Aldrich). Between each step, washing with HBSS (3x5 min) was performed. Fluorescent imaging was performed using Olympus FV10i confocal microscope. Images were processed using CellProfiler v2.2.0 software (278).

3.4.6. CELL PAINTING AND MORPHOLOGY ANALYSIS

The cells were seeded in density 50 000 cells/cm² into 4 wells per clone into 384 black well plate (Falcon, #353962) and grown for 2 days at standard conditions. Next, cells were stained with Hoechst 33342, concanavalin A, SYTO14, phalloidin, wheat germ agglutinin and MitoTracker as described previously (279) using epMotion 5075 liquid handling workstation (Eppendorf, Hamburg, Germany). Images were acquired with an ImageXpress Micro (Molecular Devices; San Jose, CA, USA) fluorescence microscope (40x objective). Briefly, 5 fluorescence channels – using DAPI, Cy3, GFP, TxRed, Cy5 filters were captured from 35 sites in each well or 1000 cells per well were acquired with adaptive acquisition set up. Spill overs of fluorescence from different channels were compensated by subtraction of dim signal based on single stained compensation controls. Representative images were artificially colored and scale bar was added to images using ImageJ 1.51p (NIH). Acquired images were processed based on the original cell painting protocol (279). Objects of nuclei, cytoplasm and whole cell areas were segmented and together 1785 features were calculated from 5 fluorescence channels on these three objects using CellProfiler v2.2.0 software. Data was scaled, missing data and constant values in specific features were removed before principal component analysis and t-SNE analysis (perplexity 1605, nr. of iterations 500, minimum cost value 0.5) were performed and plots were produced in R (RStudio, Inc., Boston, MA, USA).

3.4.7. IMMUNOPRECIPITATION

Control DU 145 cells and SKP2 KD cells were treated for 24 hours with 0.11µM MLN-4924 or DMSO. Lysates were prepared using lysis buffer (50 mM
TRIS pH 7.4, 150 mM NaCl, 1 mM EDTA, 8 mM Glycerol, 0.5% IGEPAL® CA-630), incubated with Protein G Sepharose Beads 4® Fast Flow (GE Healthcare, 17-0618-01) to preclean samples. Then, supernatants were incubated with 1 µg control (Unlabeled Rabbit IgG1, Southern Biotech, 0111-01) or p27Kip1 (Santa Cruz, sc-528) antibody for 2 hours at 4°C. Lysates were subsequently incubated with Protein G Sepharose Beads 4® Fast Flow overnight at 4°C. The next day, lysates were washed and prepared for western blot analysis. Between each step, cells were washed with TBS buffer (50 mM Tris-HCl pH 7.8, 150 mM NaCl, 1mM EDTA pH 8).

3.4.8. RNA ISOLATION AND qPCR ANALYSIS

Total RNA was isolated using High Pure RNA Isolation Kit (Roche; Basel, Switzerland) and quantified on BioSpectrometer (Eppendorf). Equal amount of RNA was transcribed to cDNA using High-Capacity RNA-to-cDNA Kit (Applied Biosystems; Foster City, CA, USA). mRNA levels were quantified with gene-specific primers in combination with UPL hydrolysis probes using Roche LightCycler 480 system (Roche). Relative expression levels of CD24 and CD44 were normalized to the housekeeping gene POLR2A. Primers used for qPCR analysis are listed in Table 3.2.

Table 3.2 List of primers used for PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession #</th>
<th>F primer</th>
<th>R primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD24</td>
<td>NM_013290.2</td>
<td>TGGATTTGACATTGCATTG</td>
<td>TGGGGGTAGATTCTCATT</td>
<td>#37</td>
</tr>
<tr>
<td>CD44</td>
<td>NM_000610.3</td>
<td>TCACATTAAGTTTGCATG</td>
<td>AATAGGGCCAGCCTCTAT</td>
<td>#57</td>
</tr>
<tr>
<td>POLR2A</td>
<td>NM_000937.3</td>
<td>CACGTCGACAGGAACATC</td>
<td>GCAAATTCACCAAGAGAG</td>
<td>#1</td>
</tr>
</tbody>
</table>
3.4.9. **FLOW CYTOMETRY**

3.4.9.1. **ALDH1 ACTIVITY DETECTION ASSAY**

Cells were stained according to manufacturer's protocol (Aldehyde dehydrogenase-based cell detection kit; 01700 Stem Cell; Vancouver, Canada). Briefly, cells were harvested, resuspended in Aldefluor buffer, incubated with Fumitremorgin C (Abcam) for 5 min (15 µM). Then, activated aldefluor reagent was added and cells were split into negative control (incubated with DEAB) and stained sample. Cells were incubated for 30 min at 37°C. To discriminate dead cells from analysis, propidium iodide was added to samples prior to the analysis by flow cytometry.

3.4.9.2. **ANNEXIN V ASSAY**

All cells (adherent and floating) were harvested 48 hours after MLN-4924 treatment, and stained according to manufacturer's recommendation. First, cells were stained with CD24 antibody or isotype control for 20 min at 4°C. Subsequently, cells were stained with AnnexinV and propidium iodide for 15 min at RT and analysed by flow cytometry.

3.4.9.3. **CELL CYCLE ANALYSIS**

Cells were harvested and fixed with 70% ethanol and stored at 4°C for at least 30 min. Then, cells were washed from ethanol and incubated in Vindelov’s solution (280) for 30 minutes at 37°C. Cell cycle was analysed using Modfit software LT 3.3 (Verity software House, Topsham, ME, USA). Dead cells, aggregates and debris were excluded from analysis.

3.4.9.4. **IMMUNOPHENOTYPE ANALYSIS**

Cells were harvested using PBS/EDTA and Trypsin, 1×10^6 cell were stained in 100 µl of antibody/antibodies cocktail solution for 20 min at 4°C. Then, cells were stained with LIVE/DEAD Fixable Dead Cell Stain kit according to the Manufacturer’s
recommendation to discriminate dead cells from analysis. Antibodies and probes used for flow cytometric analysis are enlisted in Table 3.3.

Table 3.3 List of the antibodies used for flow cytometry

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Fluorochrome</th>
<th>Supplier</th>
<th>Source</th>
<th>Cat. No</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD19</td>
<td>Brilliant Blue 515</td>
<td>BD Horizon</td>
<td>BD Horizon</td>
<td>564456</td>
<td>1:20</td>
</tr>
<tr>
<td>CD20</td>
<td>APC/Cy7</td>
<td>Mouse</td>
<td>BioLegend</td>
<td>302314</td>
<td>1:20</td>
</tr>
<tr>
<td>CD24</td>
<td>Alexa Fluor 488</td>
<td>Mouse</td>
<td>Sony</td>
<td>2155540</td>
<td>1:20</td>
</tr>
<tr>
<td>CD24</td>
<td>Brilliant Violet 421</td>
<td>Mouse</td>
<td>BioLegend</td>
<td>311122</td>
<td>1:20</td>
</tr>
<tr>
<td>CD24</td>
<td>PE/Cy7</td>
<td>Mouse</td>
<td>BioLegend</td>
<td>311122</td>
<td>1:20</td>
</tr>
<tr>
<td>CD44</td>
<td>APC/Cy7</td>
<td>Rat</td>
<td>BioLegend</td>
<td>103 028</td>
<td>1:100</td>
</tr>
<tr>
<td>Prominin-1</td>
<td>APC</td>
<td>Rat</td>
<td>Miltenyi Biotec</td>
<td>130-102-197</td>
<td>1:11</td>
</tr>
<tr>
<td>Trop-2</td>
<td>-</td>
<td>Mouse</td>
<td>R&D</td>
<td>MAB650</td>
<td>1:50</td>
</tr>
<tr>
<td>Trop-2 biotin</td>
<td>-</td>
<td>Mouse</td>
<td>R&D</td>
<td>BAF1122</td>
<td>1:50</td>
</tr>
<tr>
<td>Intracellular markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaved Caspase 3</td>
<td>-</td>
<td>Rabbit</td>
<td>Cell Signalling</td>
<td>9661S</td>
<td>1:800</td>
</tr>
<tr>
<td>Cleaved PARP</td>
<td>-</td>
<td>Rabbit</td>
<td>Cell Signalling</td>
<td>9544</td>
<td>1:25</td>
</tr>
<tr>
<td>γH2A.X</td>
<td>PE</td>
<td>Rabbit</td>
<td>Cell Signalling</td>
<td>5763</td>
<td>1:50</td>
</tr>
<tr>
<td>Skp2</td>
<td>-</td>
<td>Rabbit</td>
<td>Cell Signalling</td>
<td>4313</td>
<td>1:100</td>
</tr>
<tr>
<td>Secondary antibodies and Isotype controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-Rabbit</td>
<td>Alexa Fluor 488</td>
<td>Donkey</td>
<td>TFS</td>
<td>A21202</td>
<td>1:1500</td>
</tr>
<tr>
<td>anti-Rabbit</td>
<td>Alexa Fluor 594</td>
<td>Donkey</td>
<td>TFS</td>
<td>A-21207</td>
<td>1:500</td>
</tr>
<tr>
<td>anti-Rabbit</td>
<td>PerCP</td>
<td>Donkey</td>
<td>Jackson ImmunoResearch</td>
<td>711-126-152</td>
<td>1:25</td>
</tr>
<tr>
<td>IgG1</td>
<td>Brilliant Blue 515</td>
<td>Mouse</td>
<td>BD Horizon</td>
<td>564416</td>
<td>1:20</td>
</tr>
<tr>
<td>IgG1</td>
<td>APC</td>
<td>Rat</td>
<td>Miltenyi Biotec</td>
<td>130-102-646</td>
<td>1:11</td>
</tr>
<tr>
<td>IgG2a</td>
<td>Alexa Fluor 488</td>
<td>Mouse</td>
<td>Sony</td>
<td>2601165</td>
<td>1:20</td>
</tr>
<tr>
<td>IgG2a</td>
<td>Brilliant Violet 650</td>
<td>Mouse</td>
<td>BioLegend</td>
<td>711-126-152</td>
<td>1:25</td>
</tr>
<tr>
<td>IgG2a</td>
<td>PE/Cy7</td>
<td>Mouse</td>
<td>BioLegend</td>
<td>405 226</td>
<td>1:1500</td>
</tr>
<tr>
<td>IgG2b</td>
<td>APC/Cy7</td>
<td>Rat</td>
<td>BioLegend</td>
<td>405 231</td>
<td>1:1500</td>
</tr>
<tr>
<td>IgG XP®</td>
<td>PE</td>
<td>Rabbit</td>
<td>Cell Signaling</td>
<td>5742S</td>
<td>1:100</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>Brilliant Violet 421</td>
<td>-</td>
<td>BioLegend</td>
<td>405 226</td>
<td>1:1500</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>Brilliant Violet 650</td>
<td>-</td>
<td>BioLegend</td>
<td>405 231</td>
<td>1:1500</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>PE</td>
<td>-</td>
<td>eBioscience</td>
<td>12-4317</td>
<td>1:2000</td>
</tr>
</tbody>
</table>
Table 3.3 continued

VIABILITY

<table>
<thead>
<tr>
<th></th>
<th>Far Red</th>
<th>Green</th>
<th>Violet</th>
<th>Yellow</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVE/DEAD®</td>
<td>Fixable Dead Cell Stain Kit</td>
<td>TFS</td>
<td>1:1000</td>
<td></td>
<td>L10120</td>
<td>1:1000</td>
</tr>
<tr>
<td>LIVE/DEAD®</td>
<td>Fixable Dead Cell Stain Kit</td>
<td>TFS</td>
<td>1:1000</td>
<td></td>
<td>L23101</td>
<td>1:1000</td>
</tr>
<tr>
<td>LIVE/DEAD®</td>
<td>Fixable Dead Cell Stain Kit</td>
<td>TFS</td>
<td>1:1000</td>
<td></td>
<td>L34955</td>
<td>1:1000</td>
</tr>
<tr>
<td>LIVE/DEAD®</td>
<td>Fixable Dead Cell Stain Kit</td>
<td>TFS</td>
<td>1:1000</td>
<td></td>
<td>L34959</td>
<td>1:1000</td>
</tr>
</tbody>
</table>

PROBES

<table>
<thead>
<tr>
<th></th>
<th>FITC</th>
<th>Propidium iodide</th>
<th>Exbio</th>
<th></th>
<th>ED7044</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AnnexinV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehyde dehydrogenase-based cell detection kit</td>
<td></td>
<td></td>
<td>StemCell</td>
<td>01700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAPI</td>
<td>-</td>
<td>-</td>
<td>AppliChem</td>
<td>A4099</td>
<td>1:2000</td>
<td></td>
</tr>
<tr>
<td>PO-PRO-1</td>
<td></td>
<td>TFS</td>
<td>StemCell</td>
<td>01700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Click-iT® EdU</td>
<td>Alexa Fluor® 488</td>
<td>-</td>
<td>TFS</td>
<td>C10420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Click-iT® EdU</td>
<td>Alexa Fluor® 647</td>
<td>-</td>
<td>TFS</td>
<td>C10424</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.9.5. INTRACELLULAR DETECTION OF SKP2

Cells were harvested and stained with CD24 surface antibody and with LIVE/DEAD Fixable Dead Cell Stain kit as described in 3.4.9.4. Subsequently, cells were fixed with 4% PFA for 15 min at RT, and permeabilised with 0.25% Triton X-100 solution for another 15 min at RT. Then, cells were incubated with Skp2 antibody over night at 4°C. The next day, cells were stained with secondary antibody for 1 hour at RT and analysed by flow cytometry.

3.4.9.6. MULTIPARAMETRIC ANALYSIS

This assay is described in details in (281). Briefly, cells treated as described in 3.3.2., were incubated with 10 µM EdU (ethyl deoxyuridine) one hour prior to
harvesting. Cells were harvested and stained for surface markers and with LIVE/DEAD Fixable Dead Cell Stain kit as described in 3.4.9.4. Then, cells were fixed in 4% PFA for 15 min at RT and permeabilised for another 15 min with 0.25% Triton X-100 solution at RT. Cells were subsequently stained with probes and antibodies detecting proliferation (EdU click-iT reaction), and intracellular markers such as cleaved caspase-3 (over-night at 4°C) followed by incubation with secondary antibody for 1 hour at RT. Then, cells were stained with γH2A.X antibody for 1 hour at RT to detect DNA damage and with PO-PRO-1 for analysis of the cell cycle (45 min, RT).

3.4.9.7. Instrumentation and data analysis

The sorting of the cells and multiparametric analyses were performed on a BD FACS Aria II Sorp system (BD Biosciences) equipped with five lasers (excitation wavelengths: 355, 405, 488, 561, and 639 nm). Cytometric data were recorded using FACSDiva software (Version 6.1.3; BD Biosciences). Other experiments and optimization experiments for establishment of multiparametric assay were performed using a BD FACSVerse (BD Biosciences) equipped with three lasers (excitation wavelengths: 405, 488, and 640 nm) where cytometric data were recorded using FACSuite software (Version 1.0.5.3841 and 1.0.6; BD Biosciences). The quality of the instrument was regularly tested using BD FACSuite CS&T Research Beads (BD Biosciences) before each measurement. Data analysis was performed using FlowJo software (Version 10.0.7, Tree Star, Ashland, OR, USA). Gating strategy for selection of viable (Live/Dead low) single cells (FSC-A vs. FSC-H) without debris (FSC-A vs. SSC-A) was applied to all samples that were analysed by flow cytometry. List mode data from the publication "Multiparametric analysis of complex cellular response" were uploaded into the FlowRepository database of flow cytometry experiments (http://flowrepository.org/id/FR-FCM-ZZS3).

3.4.9.8. Compensation controls

For compensation setup, single colour controls (beads or cells) were recorded on a BD FACS Aria II Sorp system and compensation matrix was calculated by
FACSDiva software. Compensation beads or cells (positive controls) were stained with appropriate antibodies and probes. Anti-rat and anti-hamster Igκ/negative control, anti-mouse Igκ/negative control compensation beads (BD Biosciences), Sphero™ Goat anti-Rabbit and Sphero™ Biotin Polystyrene Particles (Spherotech, Lake Forest, IL, USA) labelled with specific antibodies in the appropriate dilutions were used. Arc™ Amine Reactive Compensation Bead Kit beads (TFS) were stained using the LIVE/DEAD® Fixable fluorescent reactive dye kit according to manufacturer’s recommendation. As compensation control for DNA staining, fixed and permeabilised cells with and without the appropriately diluted DNA probe were used. As a compensation control for DNA proliferation, cells pretreated with EdU were stained with Click-iT reaction cocktail. Cells were stained under the same conditions (time, temperature) as samples in protocol. Compensation beads were stained with primary antibodies for 20 min at 4°C. In case of secondary detection, beads were stained with primary antibodies (20 min, 4°C) followed by secondary detection (20 min, 4°C). Isotype controls (ISO) were prepared and recorded for all samples. Gates were set according to the isotype controls or untreated cells (for γH2A.X and cleaved caspase-3).

3.4.10. IMMUNOHISTOCHEMISTRY OF CLINICAL SAMPLES

Retrospective analysis of tissue samples was performed in three independent sets of patients with prostate carcinoma. The main set included 187 tissue samples (33 samples of BPH, 101 samples of PCa, 35 samples of cancer outgrowths into seminal vesicles and 18 cancer positive lymph nodes). Samples were examined for expression of Skp2, E-Cadherin and Slug. Samples were obtained from patients who signed written informed consent, in the University Hospital Olomouc, and the study was approved by the Ethics Committee of the University Hospital and Medical Faculty of Palacký University in Olomouc. The specimens were assessed semi-quantitatively using the histoscore (H-score), considering percentage of positive cells (0–100%) multiplied by staining intensity (0–3), which results in a final H-score between 0 and
300. Immunostaining was performed using routine immunostaining procedures with validated antibodies specified in Table 3.4.

Table 3.4 List of antibodies used for immunohistochemistry

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Supplier</th>
<th>Source</th>
<th>Clone</th>
<th>Cat. No.</th>
<th>Dilution</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skp2</td>
<td>Invitrogen</td>
<td>Mouse</td>
<td>2C8D9</td>
<td>18-7334</td>
<td>1:75</td>
<td>Ventana</td>
</tr>
<tr>
<td>Slug</td>
<td>Cell Signaling</td>
<td>Rabbit</td>
<td>C19G7</td>
<td>9585</td>
<td>1:100</td>
<td>MW, citrate, pH 6.0</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>Dako</td>
<td>Mouse</td>
<td>NCH-38</td>
<td>IR05961-2</td>
<td>1:50</td>
<td>MW, citrate, pH 6.0</td>
</tr>
<tr>
<td>vimentin</td>
<td>Dako</td>
<td>Mouse</td>
<td>V9</td>
<td>IR63061-2</td>
<td>1:10</td>
<td>MW, citrate, pH 6.0</td>
</tr>
</tbody>
</table>

3.4.11. **SURVIVAL ANALYSIS**

Data were retrieved from (282). Data were plotted and re-analysed in Prism (v6, GraphPad, La Jolla, California, United States) using logrank Mantel-Cox test. Threshold for CD24 and CD44 was set to ‘low 25%’.

3.4.12. **STATISTICAL ANALYSIS**

Statistical analysis was performed using STATISTICA for Windows (StatSoft, Prague, Czech Republic) or in Prism (v6, GraphPad, La Jolla, CA, United States) using Student’s t-test. P values were calculated using paired t test (two-tailed) or multiple comparison t test with Holm-Sidak correction.
4. RESULTS

4.1. HIGH SKP2 EXPRESSION ASSOCIATES WITH A MESENCHYMAL PHENOTYPE AND INCREASES TUMOURIGENIC POTENTIAL OF PROSTATE CANCER CELLS

Content hidden

(Pages 62-87)
4.2. Establishment of a tool for analysis of cellular response to experimental drug treatment in heterogeneous samples (in CSC-like cells)

Multicolour flow cytometry is an advanced methodological approach that can provide detailed information about the phenotype of the cells at the single-cell level, and elucidate the functions of identified cell populations through analysis of a variety of parameters. Nevertheless, design and optimization challenges remain in multiparametric flow cytometry protocols to detect markers present in various cellular compartments such as surface, cytoplasm and/or nucleus. For these protocols, it is critical to not only acquire good compensation control data, but also to consider the selection of appropriate markers and probes that are technically and biologically compatible with the staining procedure. Further, the fixation and permeabilisation agents need to be gentle to the labelled surface markers, and simultaneously sufficient to provide access to intracellular antigens (285).

4.2.1. Protocol workflow and optimization

A comprehensive description of the cellular response to a drug treatment is important to better understand the mechanisms of action of anticancer drugs. In this respect, flow cytometry is acknowledged as an irreplaceable methodology, not only in experimental biology but also in clinical and diagnostic applications. The advantage of flow cytometry over many other methods is the capability to perform multiparametric analysis at the single-cell level in a single tube/assay. Patient tumour samples as well as in vitro cultured cells are heterogeneous in terms of surface markers expression (286). Moreover, small subpopulations such as CSCs, defined by expression of distinct surface markers, can be identified within the heterogeneous samples.
Therefore, we introduced a multiparametric protocol for the assessment of complex cellular responses to experimental treatments, with the potential of distinguishing the response of the cells from distinct subpopulations in the heterogeneous samples. We established an assay for simultaneous detection of fluorescence parameters including surface markers for immunophenotyping, proliferation based on the cell cycle and measurement of DNA synthesis, DNA damage, and cell death determination using viability and apoptosis markers. Using various cell lines (mouse and human, suspension and adherent) and experimental treatments, the feasibility and robustness of the protocol was demonstrated. An overview of the assay workflow is depicted in Figure 4.22.
Figure 4.22 Scheme of experimental design and procedure. Cells were seeded and treated with experimental drugs as described in the Material and Methods. Before harvesting, all cells were treated with EdU. Harvested cells were split and stained with isotype controls or specific antibodies detecting surface markers, followed by viability stain. Next, cells were fixed, permeabilised, and the Click-iT® reaction was performed. Subsequently, cells were stained with cleaved caspase-3 (CC3) antibody, to detect apoptosis and γH2A.X antibody for the detection of DNA damage. Last, cells were stained with DNA-binding dye PO-PRO-1 with RNase and analysed by flow cytometry. Figure from (281).
4.2.1.1. Surface Marker Selection

Multiple optimization steps were performed before the above described final workflow and protocol was reached. The initial step in our design was the selection of fluorescently labelled antibodies for surface marker detection that are compatible with the subsequent azide-alkyne coupling (Click-iT® EdU) reaction. During our optimization procedure, we realized that the performance of Click-iT® EdU compatible antibody conjugates (e.g., allophycocyanin [APC]) might be significantly affected upon permeabilisation followed by the Click-iT® EdU reaction. For example, when we detected the surface marker Prominin-1 in cE2 cells using APC-labeled anti-Prominin-1 antibody, a visible drop in both the number of positive cells and MFI after the permeabilisation and Click-iT® EdU reaction steps was observed (Figure 4.23 A-B).

Figure 4.23 Stability of surface marker Prominin-1 in particular steps during the procedure decreases. (A) The signal stability of the Prominin-1 APC antibody during the procedure was analysed by flow cytometry. Graphs are in logarithmic scale. (B) The decrease of Prominin-1 APC signal in cE2 cells during the procedure was confirmed by MFI that was calculated as a ratio of a fluorescent intensity signal from samples stained with specific antibody and isotype control. Figure adapted from (281).

4.2.1.2. Optimization of Permeabilisation

Effect of permeabilisation on surface markers detection

Fixation and permeabilisation are crucial steps during sample processing that are necessary for successful detection of intracellular markers (287, 288). Here, we tested several permeabilising agents, such as 0.25% Triton X-100, digitonin (300 µg/ml), and saponin-based reagents from two different commercial kits (Mouse
Pluripotent Stem Cell Transcription Factor Analysis Kit, BD 560585 and Click-iT® detection kit). In case of saponin permeabilisation, we followed the manufacturer's recommendation (dilution, incubation time). Because we aimed to analyse intracellular markers simultaneously with surface markers, we also examined how the tested agents affect the detection of a surface marker Trop-2 (10) in cE2 cells. Cells treated with all permeabilisation reagents exhibited 100% positivity for Trop-2, however, based on MFI, the most gentle permeabilisation reagent was 0.25% Triton X-100 (Figure 4.24).

Figure 4.24 MFI but not the percentage of Trop-2 positive cells decreases after permeabilisation. The cE2 cells were stained with Trop-2 antibody and viability stain, fixed with 4% PFA and permeabilised with 0.25% Triton X-100, digitonin [300 µg/ml], or saponin-based reagents from the Mouse Pluripotent Stem Cell Transcription Factor Analysis Kit [BD Biosciences 560585; kit 1] or the Click-iT® detection kit [TFS 405231]). The positivity for Trop-2 was assessed by flow cytometry. The MFI was calculated as a ratio of a fluorescent intensity signal from samples stained with specific antibody and isotype control. Graphs are in logarithmic scale. Figure from (281).

Effect of permeabilisation on intracellular markers detection

Beside the surface markers, we compared detection of intracellular markers using similar permeabilisation agents. We observed that saponin was not sufficient for the detection of intracellular markers, such as cleaved caspase-3 (CC3) or γH2A.X (Figure 4.25 A-B). The best results in the detection of the intracellular markers γH2A.X and CC3 (i.e., a good separation of positive and negative populations) in cells treated with a high dose of the proteasome inhibitor MG-132 occurred when 0.25% Triton X-100 was used (Figure 4.25 A-B).
Figure 4.25 The best condition for detection of intracellular markers γH2A.X and CC3 provides permeabilisation with 0.25% Triton X-100. The cE2 cells were treated with DMSO (vehicle) or MG-132. Cells were stained with viability probe, fixed and permeabilised with indicated agents and stained with markers of DNA damage or apoptosis. (A) Detection of DNA damage by induction of γH2A.X was assessed by flow cytometry. Graphs are in a logarithmic scale (γH2A.X) or in a linear scale (FSC-A). (B) Detection of apoptosis in cE2 cells via induction of CC3 was assessed by flow cytometry. Graphs are in a logarithmic scale (CC3) or in a linear scale (FSC-A).
4.2.1.3. **INTRACELLULAR MARKERS SELECTION**

Establishing the optimal permeabilisation conditions was a prerequisite for successful implementation of detection of intracellular markers of apoptosis induction: cleaved PARP (C.PARP), a substrate of executive caspases, and cleaved caspase-3 (CC3), both of which are commonly used as indicators of ongoing apoptosis (289, 290). Positivity for both markers was detected in cells treated with MG-132; however, CC3 exhibited better separation of positive and negative populations (Figure 4.26). Therefore, we decided to use CC3 as a marker of ongoing apoptosis in the protocol.

Figure 4.26 Cleaved caspase-3 antibody provides better separation of positive and negative cells than cleaved PARP. cE2 cells were treated with DMSO (vehicle) or MG-132. Cells were fixed in 4% PFA and permeabilised by 0.25% Triton X-100. Next, the cells were stained with primary antibody to cleaved PARP or CC3 and analysed by flow cytometry. Graphs are in a logarithmic scale (C-PARP PerCP and CC3 PerCP) and in a linear scale (FSC-A). Figure from (281).

4.2.1.4. **OPTIMIZATION OF DNA STAIN**

One of the most challenging steps in the assay optimization was to find an appropriate DNA stain to use in combination with other selected parameters. Nowadays, a broad spectrum of DNA-binding fluorescent dyes is available. Commonly used dyes intercalate into the DNA (ethidium bromide, propidium iodide, 7AAD) or bind to the minor groove of the DNA. The latter group includes 4’,6-
diamidino-2-phenylindole (DAPI), which binds preferentially to the AT site of DNA (291), and Hoechst, which can be used to visualize DNA content in live cells. For this application, we found that the fluorescent signal of some DNA dyes is too strong, with high background, and impossible to compensate (e.g., FxCycle Far Red and APC/Cy7; data not shown). Next, we observed that DAPI, which is routinely used in single-parameter analysis of the cell cycle, was not suitable for our multiparametric assay due to its broad emission spectrum. Although the emission maximum of DAPI is around 450 nm, we found it impossible to use in combination with fluorochromes with an emission maximum around 650 nm (both excited by 405 nm laser) due to the high spillover of DAPI (Figure 4.27 A). When we analysed cE2 cells that are fully positive for the Trop-2 surface marker (Figure 4.27 B) in combination with DAPI, it increased background in isotype control (ISO) and the cells appeared as Trop-2 negative (gate set based on ISO with/without DAPI) (Figure 4.27 A). Therefore, we tested the dye PO-PRO-1, which is a bright and photostable cyanine monomer that intercalates nonspecifically into DNA (292). Implementation of PO-PRO-1 into our protocol was suitable for cell cycle analysis in a multiparametric assay (Figure 4.27 C).

Figure 4.27 DAPI is incompatible with the BV650 fluorochrome. (A) Cells were stained with Trop-2 antibody (SP) or isotype control (ISO), fixed with 4% PFA, permeabilised with 0.25% Triton X-100, and stained with DAPI. Indication of high spillover of DAPI into BV650 fluorochrome. (B) Uniform Trop-2 expression in cE2
cells detected by flow cytometry. (C) Cells were stained with Trop-2 antibody (SP) or isotype control (ISO), fixed with 4% PFA, permeabilised with 0.25% Triton-X, and stained with PO-PRO-1. Graphs are in logarithmic scale (Trop-2), in case of FSC-A in linear scale.

4.2.2. APPLICATION OF THE PROTOCOL TO VARIOUS MODELS OF CANCER CELL LINES

When all the crucial steps were optimized, we aimed to demonstrate the ability of our assay to examine the complex cellular response to the experimental treatment in cancer cell lines of various origin. We treated the cells with selected concentrations of well-established inducers of cell cycle arrest or apoptosis MLN-4924, MG-132, or TRAIL, and applied the complete staining procedure (Figure 4.22). Changes in cellular viability, expression of surface markers, cell cycle progression and markers of apoptosis induction are depicted in Figure 4.28 and described in Table 4.1.

Altogether, most effects were in accordance with expected outcomes of drug treatment, but our analysis revealed several interesting phenomena. An apparent lack of effect of TRAIL on cellular viability probably results from the sustained integrity of the cellular membrane in the early phases of apoptosis in DU 145 and HCT 116 cells (Figure 4.28 A and D, row a) (293). In terms of surface marker expression, we detected an effect of particular treatments on expression of surface markers in all studied cell lines (Figure 4.28 A-D, row b; and Table 4.1). Cell cycle analysis based on the DNA amount stained with probe PO-PRO-1 indicated changes in the cell cycle progression; however, the cell cycle profile showed relatively high coefficient of variation. Alternatively, cell cycle phases can be visualized and determined accurately in a dot plot showing a combination of DNA stain versus DNA synthesis (Click-it® EdU). Our analysis revealed different responses of selected cell lines to the MLN-4924 inhibitor, as depicted in Figures 4.28, row c, and Table 4.1. Proliferation was abolished in cE2 and SU-DHL-4 treated with MG-132 (Figure 4.28, row c, and summarized in Table 4.1). Interestingly, proliferation was not affected in DU 145 and
HCT 116 cells following TRAIL treatment, and these cells exhibited an unchanged cell cycle profile as seen in control (Figure 4.28 A and D, row c).

Figure 4.28 The established assay provides complex analysis of cellular response to MLN-4924, TRAIL or MG-132 treatment. DU-145, cE2, SU-DHL-4, and HCT 116 cells we treated with DMSO (vehicle), MLN-4924, and MG-132 or TRAIL. Following parameters were examined by flow cytometry: the viability of the cells (row a in A-D), surface markers expression (row b in A-D), proliferation defined in dot plots with PO-PRO-1/Click-iT® EdU (row c in A-D), DNA damage denoted by...
γH2A.X positivity (row d, f in A-D) and apoptosis determined by CC3 (row e, f). Graphs are in logarithmic scale, FSC-A is in linear scale. Figure from (281).

Figure 4.28 (Continued)
Our analysis confirmed the ability of MLN-4924 to induce DNA damage in all studied cell lines (Figure 4.28 A-D, rows d, f and Table 4.1), and to induce apoptosis in SU-DHL-4 and HCT 116 cells (Figure 4.28 C-D, rows e, f). Both induction of DNA damage and apoptosis was observed in samples treated with MG-132 or TRAIL (Figure 4.28, rows d-f, Table 4.1) and confirmed also on protein level by western blot (Figure 4.29). These results demonstrated the robustness of our assay and its capability to describe a broad spectrum of cell responses using a complex set of different parameters at the single-cell level.
4.2.3. ANALYSIS OF RESPONSE TO EXPERIMENTAL TREATMENT IN A HETEROGENEOUS SAMPLE

To demonstrate the applicability of our protocol in the complex analysis of heterogeneous samples, we took advantage of the DU 145 cell line, where we observed a consistent presence of a subpopulation of cells expressing Trop-2 (Figure 4.28 A, row b). Therefore, we employed the established protocol to investigate the response of cells that differ in Trop-2 expression status to MLN-4924 or TRAIL treatment. We observed that the expression of Trop-2 itself did not change following MLN-4924 or TRAIL treatment (Figure 4.30 A, 4.31 A and Table 4.2), but we noted differences in cell cycle progression in Trop-2 negative and positive subpopulations (Figure 4.30 B, 4.31 B and Table 4.2). The induction of DNA damage was proportionate in Trop-2- and Trop-2+ cells following TRAIL and MLN-4924 treatment (Figure 4.30 C and E, 4.31 C and Table 4.2). Induction of apoptosis was significantly increased in Trop-2- cells compared to Trop-2+ cells following TRAIL treatment (Figure 4.30 D-E, 4.31 D and Table 4.2). Thus, these data demonstrate that our approach is useful in complex analysis of cellular responses in a heterogeneous sample.
sample, and has the potential to reveal differences in the responses of precisely defined phenotypic subpopulations.

Figure 4.30 Trop-2\(^+\) cells are less sensitive to apoptosis induction compared to Trop-2\(^-\) cells. Response to treatment was analysed separately in the Trop-2\(^-\) and Trop-2\(^+\) subpopulations in the DU 145 cell line (A). Differences in proliferation (B), DNA damage (C, E), and induction of apoptosis (D, E) were examined. Gates shown in Figure 4.28A were applied to Trop-2 subpopulations of DU 145 cells in Figure 4.30. Figure from (281).
Figure 4.31 Trop-2\(^-\) and Trop-2\(^+\) subpopulations in DU 145 respond differently to TRAIL treatment. (A) Quantification of Trop-2 distribution in DU 145 cells treated with DMSO (vehicle), MLN-4924 and TRAIL shown in Figure 4.30 A. Data is presented as the mean ± SD of the percentage of positive cells for the selected marker. Representative images are from three independent experiments. (B) Cell cycle analysis of Trop-2\(^-\) and Trop-2\(^+\) subpopulations after indicated treatments shown in Figure 4.30 B. (C) Quantification of DNA damage (shown in Figure 4.30 C) after MLN-4924 and TRAIL treatment. Data is presented as the mean ± SD of the percentage of positive cells for the selected marker. Representative images are from three independent experiments. (D) Quantification of apoptosis induction (shown in Figure 4.30 D) after MLN-4924 and TRAIL treatment. Data is presented as the mean ± SD of the percentage of positive cells for the selected marker. Representative images are from three independent experiments. Figure adapted from (281).
Table 4.2 Summarised biological effects of experimental treatments on defined cellular subpopulations shown in Figure 4.30 and 4.31.

<table>
<thead>
<tr>
<th></th>
<th>DU 145 Trop-2⁻</th>
<th>DU 145 Trop-2⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trop-2 expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>4.30 A, 4.31 A</td>
<td></td>
</tr>
<tr>
<td>MLN-2924</td>
<td>Unaffected</td>
<td>Unaffected</td>
</tr>
<tr>
<td>TRAIL</td>
<td>Unaffected</td>
<td>Unaffected</td>
</tr>
<tr>
<td>Cell cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>4.30 B, 4.31 B</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td>G2 accumulation</td>
</tr>
<tr>
<td>MLN-2924</td>
<td>Increased G2, decreased S</td>
<td></td>
</tr>
<tr>
<td>TRAIL</td>
<td>Increased G2, unchanged S</td>
<td></td>
</tr>
<tr>
<td>DNA damage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>4.30 C, E; 4.31C</td>
<td></td>
</tr>
<tr>
<td>MLN-2924</td>
<td>Proportionate</td>
<td>Proportionate</td>
</tr>
<tr>
<td>TRAIL</td>
<td>Proportionate</td>
<td>Proportionate</td>
</tr>
<tr>
<td>Apoptosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>4.30 D, E; 4.31D</td>
<td></td>
</tr>
<tr>
<td>MLN-2924</td>
<td>Not induced</td>
<td>Not induced</td>
</tr>
<tr>
<td>TRAIL</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
</tbody>
</table>
5. Discussion

The Role of Skp2 in Prostate Cancer Stem-like Cells

In our work, we have focused on describing the role of Skp2 in prostate cancer stem-like cells. Skp2 has been described as an oncogene and its overexpression was detected in various cancers including prostate cancer (216). We showed that Skp2 expression was increased in cancerous prostate tissue compared to benign prostate tissue. Specifically in tumours with a high Gleason score (≥ 7), nuclear but not cytoplasmic Skp2 expression was increased. As a crucial step of prostate cancer progression and metastasis, altered expression of EMT markers was described, indicating the ongoing process of EMT (112, 113). In our study, we observed increased incidence of low expression levels of E-cadherin and high levels of vimentin in the cohort of patients with high Gleason score (≥ 7), suggesting the ongoing EMT of prostate cancer cells. To our knowledge, we demonstrate for the first time the link between high Skp2 expression and mesenchymal phenotype in patients with advanced prostate cancer.

The process of EMT contributes to cell state plasticity and intra-tumoural heterogeneity (294). In our laboratory, we observed heterogeneity of metastatic DU 145 cells based on expression of Trop-2, a surface molecule from EpCAM family (295). Thus, we established epithelial and mesenchymal sublines from the parental cell line based on the Trop-2 positivity or negativity, as described previously (71). We showed that Skp2 expression was increased in the mesenchymal DU 145 subline. Moreover, this phenomenon was confirmed in two other mesenchymal human and mouse prostate cancer cell lines, where the EMT status resulted from resistance to docetaxel or castration, respectively. Accordingly, the acquisition of the mesenchymal phenotype was associated with increased Skp2 expression in paclitaxel-resistant breast cancer cells (296) and TGF-β1-induced EMT in melanoma cells (297). Importantly, Ruan et al. revealed that Skp2 regulates castration-resistant prostate cancer through
Twist-mediated oncogenic functions including EMT and acquisitions of CSC-like properties (262).

Since EMT was confirmed to be associated with cancer stem cells, we questioned whether the mesenchymal DU 145 subline exhibits CSC-like properties. We have successfully detected CSC-like properties such as decreased expression levels of CD24, increased ability to form spheroids, and high ALDH1 activity in mesenchymal DU 145 cells. These results are consistent with the acquisition of the CD44+CD24- CSC-like phenotype, which correlates with the mesenchymal state of the cancer cells. The CD44+CD24- phenotype has been associated with CSCs and the mesenchymal phenotype in several cancers, including breast cancer (298, 299), ovarian cancer (300), and oral squamous carcinoma (301). Similarly, prostate cancer cells with the CD44+CD24- phenotype have been described as mesenchymal (302). These results are in agreement with the work of Cremers et al. who showed that CD24 was not required for tumour initiation and growth in murine models of breast cancer and prostate cancer (303). The mesenchymal state resulting from docetaxel resistance in DU 145 and PC3 cells was also linked to the acquisition of the CD44+CD24- phenotype (122, 123). Further, it was shown that the overexpression of the mesenchymal-related genes ZEB1 and VIM correlated with shorter radiologic progression, whereas low expression levels of CD24 correlated with shorter biochemical recurrence-free survival of patients with prostate cancer (123).

As our previous results showed that high Skp2 level correlates with the mesenchymal state of cancer cells and acquisition of CSC-like properties, we next aimed to downregulate Skp2 to ascertain whether it would affect CSC-like properties of cancer cells. Knock-down of SKP2 significantly reduced the ability of these cells to form spheroids in vitro and decreased tumourigenic potential in vivo. Our findings are in agreement with the work of Lu et al. who found that Skp2 deficiency led to the suppression of prostate tumourigenesis. These authors showed that Skp2 was involved in tumourigenesis via the repression of H3K4-specific demethylase JARID1B (304). Another study showed that Skp2 deficiency blocked tumourigenesis in the pRb/p53 double-deficient prostate tissue, suggesting that Skp2 was a promising target for drug
treatment in pRb/p53-deficient tumours (305). In addition to the decreased tumourigenicity of SKP2 KD cells, we observed the upregulation of CD24 expression and the decreased activity of ALDH1. These findings are in line with those of Zhao et al., where Skp2 downregulation or its pharmacological inhibition decreased the activity of ALDH1 (305).

Since we observed that the CSC-like phenotype CD44+CD24− correlated with mesenchymal phenotype of prostate cancer cells and their increased tumourigenicity, we aimed to validate the CD44 and CD24 expression in clinical samples. An analysis of biochemical recurrence-free survival revealed that high expression levels of CD24 and CD44 were associated with a better prognosis for patients. These findings are in line with the work of Marin-Aguilera et al. who showed that low mRNA levels of CD24 correlated with shorter biochemical recurrence-free survival of patients with prostate cancer (123). A decreased number of CD24-positive cells was also associated with the mesenchymal phenotype and DU 145 cell chemoresistance (123, 306). Furthermore, prostate cancer cells with low CD24 expression levels displayed high tumourigenic potential (307), which is in line with our findings. In conclusion, our results suggest that CSCs in prostate cancer can be targeted via modulation of Skp2.

As we showed that down-regulation of Skp2 expression affects CSC-like properties in vitro, we questioned whether pharmacological targeting of the neddylation pathway, that is crucial for Skp2 activity, would exhibit comparable effects. For this purpose, we used MLN-4924 inhibitor, that blocks SCF^Skp2 assembly, and is currently in the third phase of clinical trials (reviewed in chapter).

Interestingly, MLN-4924 was shown to decrease the viability selectively in leukemic cells but not in the normal blood cells (248). The decreased viability was shown also in vitro in lymphoma cells (241, 244) and in prostate cancer cells (243). Even though we used similar concentrations of the MLN-4924 inhibitor and the final post treatment time point (96 hours) as Wang et al., (243), we did not observe a drop of the viability under 50 % in our experimental set up. This discrepancy could be explained by different cell seeding density, as higher seeding density in our
experimental setup may enhance cell survival after MLN-4924 treatment. Moreover, different timing of experimental treatment may be responsible for the outcome. Rather than reduction of cellular viability, we noted decreased cell counts caused by the cell cycle arrest, resulting from accumulation of the cell cycle inhibitors. However, we did not observe accumulation of another Skp2 substrate, the replication licensing factor Cdt1 (200, 201), that would result in induction of re-replication. The Cdt1 accumulation after MLN-4924 was previously shown in prostate cancer cell lines (243), colon, glioblastoma, lung cancer cells (242) or lymphoma cells (241). Yet, our preliminary flow cytometric data confirmed Cdt1 accumulation in HeLa FUCCI cells after treatment with MLN-4924 (data not shown), suggesting a cell type specific context of Cdt1 accumulation.

The pleiotropic effect caused by inhibition of neddylation has been described in many cancer cells (summarized in chapter 1.2.3.1.). In our model, we further observed induction of DNA damage and cell death in a time and concentration-dependent manner. Even though some works describe cleavage of caspases after MLN-4924, indicating ongoing apoptosis, we did not observe caspase-3 cleavage in prostate cancer cells, suggesting either that another mechanism of cell death is involved, or that the programmed cell death is caspase-3 independent (308).

Prostate CSCs contribute to the tumour heterogeneity and disease progression. Therefore, they represent a target of interest in cancer therapy (66, 67). Our data demonstrated that pharmacological inhibition of SCFSkp2 did not reduce CD44$^+$CD24$^-$ cells but resulted in a significant decrease of CD44$^+$CD24$^+$ cells after the treatment with MLN-4924 inhibitor. This effect was caused by induction of late apoptosis/necrosis in CD24$^+$ cells after the treatment. The preferential induction of late apoptosis/necrosis after MLN-4924 treatment has been recently described in lung adenocarcinoma cells (258) or oesophageal cancer cells (258, 309). Our findings showing the lower susceptibility of CD44$^+$CD24$^-$ cells to cell death are in line with data recently published by Jaworska and Szliszka, who observed increased apoptosis in CD44$^+$CD24$^-$ CSCs subpopulation in PC3 but not DU 145 cells after co-treatment of taxanes and TRAIL (93). Nevertheless, we were unable to confirm that the protein
level of Skp2 was a determining factor for the high sensitivity to the MLN-4924 treatment in the CD24+ subpopulation. However, our preliminary data indicate an increase in G1 phase of the cell cycle of CD24- cells compared to CD24+ cells, which could underlie the difference in sensitivity to the SCF$^{\text{Skp2}}$ assembly inhibitor. Still, further studies that would explain this phenomenon are needed.

The self-renewal of CSC-like cells is experimentally addressed by the ability of a single cell to form a colony in 2D conditions or a spheroid in 3D conditions. The decreased clonogenic potential after MLN-4924 was documented in prostate cancer cells in 2D (243). In our work, we aimed to investigate the effect of this inhibitor on the clonogenic capacity in both 2D and 3D conditions with emphasis on CSC-like cells. Despite the higher susceptibility of the CD24+ cells to apoptosis induction after short-time (48 hours) of MLN-4924 treatment, we observed that long term cultivation of sorted single cells in medium containing low concentration of MLN-4924 significantly decreased the clonogenic capacity of the cells with CSCs phenotype CD44+CD24- in 2D condition. MLN-4924 decreased the size of all spheroids regardless of their CD24 expression. This data is in line with former work by Chan et al. who described decreased size of spheroids formed by prostate cancer cells after pharmacological inhibition of Skp2 by the compound #25 that targets Skp2-Skp1 interaction (261), which was further corroborated by Twist overexpression (262). Importantly, it has been shown that inhibition of SCF$^{\text{Skp2}}$ with a compound #25 also resulted in restriction of tumour growth in vivo (261). Altogether, we observed that inhibition of SCF$^{\text{Skp2}}$ affects cytokinetic parameters of prostate cancer cells and decreases the clonogenic potential of CSC-like cells.

In summary, we propose a new connection between Skp2, EMT and CSCs in prostate cancer. In our study, we used a model of androgen-independent metastatic DU 145 cells, representing an advanced stage of prostate cancer. We discovered that the mesenchymal phenotype of the cells was accompanied by increased Skp2 level and CSCs phenotype, which was reverted by Skp2 downregulation. Moreover, pharmacological inhibition of SCF$^{\text{Skp2}}$ decreased the clonogenic capacity of the cells.
cultivated in 2D and spheroids size in 3D conditions. Therefore, we suggest Skp2 as a promising target in prostate cancer stem cells.

Multiparametric assay for detection of cytokinetics of small subpopulations after experimental treatment

The tumour cells *in vivo* as well as established cell cultures *in vitro* are heterogeneous in terms of molecules expressed on their surface, which reflects their state and function. Therefore, detection of specific markers on the surface of the cells is used to capture small subpopulations, *e.g.* CSCs within the sample. In our work, we observed heterogeneity in DU 145 cells in terms of expression of CSC markers CD24 and Trop-2, and a different sensitivity of the defined subpopulations to experimental treatments. A complex analysis of the cell fate following the experimental treatment is important not only for understanding the treatment effects but also for identification of sensitive or resistant cell types with a specific phenotype. Compared to conventional methodological approaches in experimental work (*e.g.* PCR or western blotting), multiparametric flow cytometry provides deep insight in the cytokinetics of the defined subpopulations in heterogeneous samples. Although flow cytometry is an irreplaceable approach for multiparametric single-cell analyses, it is not frequently used for “single-tube” analysis of complex cellular response to the experimental therapy. This type of analysis can be very useful in case of limited amount of biological material, such as clinical samples or end-point *in vivo* studies. Major obstacle for simple multiplex detection of different biomarkers of cellular functions is the necessity to perform several optimizing steps and verifications. In this study, we aimed to employ full advantage of the multicolor flow cytometry to establish a protocol for complex analysis of cellular response together with the immunophenotype and functional characteristics of the treated cells.

The crucial step is the selection of fluorescently labelled antibodies for surface marker detection that are compatible with subsequent azide-alkyne coupling (Click-iT® EdU) reaction. Azide-alkyne coupling (click chemistry) has become a powerful
coupling method for chemoselective ligation (310). However, copper and reactive oxygen species-mediated damage to fluorescent proteins prevents the simultaneous detection of EdU with GFP or R-phycoerythrin (R-PE) fluorescence. Moreover, here we showed that fluorescent intensity of Click-iT® EdU compatible APC conjugate is affected upon permeabilisation followed by the Click-iT® EdU reaction. This limitation might be overcome in second-generation Click-iT® Plus EdU kits with “copper-safe” catalysis of the click reaction (311). With respect to the compatibility with the Click-iT® chemistry, the protocol allows high degree of customization by the end user. For instance, other antibodies for apoptosis detection (such as cPARP) can be suitable for different experimental models.

Detergents such as saponin, Triton X-100, and Tween-20 are widely used to permeabilise cells in flow cytometry (312). Saponin has been described as a favourable permeabilisation reagent for simultaneous detection of surface antibodies and proliferation in T cells with no alteration of membrane antigens. In addition, saponin has been described as a sensitive reagent for the detection of intranuclear antigens (313). Seminal study comparing different cellular fixation and permeabilisation techniques for intracellular stainings published by Krutzik and Nolen is not systematically dealing with permeabilisation in combination with surface antigen detection (314). Therefore, we concentrated in our work on finding a condition which would preserve the surface antigen pattern and give optimal result of intracellular stainings not only in the intact cells, but also in drug treated groups. Triton X-100 in 0.25% concentration was gentle enough to the tested surface proteins and at the same time provided a good separation of positive and negative populations for the intracellular markers γH2A.X and CC3. This result is in line with a recent study, where Triton X-100 was shown to be a more convenient permeabilisation reagent compared to saponin in the immunocytochemical detection of phospho-specific antibodies (315).

Analysis of the cell cycle progression by flow cytometry is a frequently used technique. Nowadays, a broad spectrum of DNA-binding fluorescent dyes is available, including intercalating dyes (ethidium bromide, propidium iodide, 7AAD) and minor
groove binders (DAPI and Hoechst). In our case, the fluorescent signal of FxCycle Far Red stain was impossible to compensate with some other fluorochromes. Therefore, we searched for a dye suitable for our experimental setup. Next, we found that DAPI, which is routinely used in single-parameter analysis of the cell cycle, was not suitable for our multiparametric assay due its broad emission spectrum resulting in high spillover of DAPI into other channels. Therefore, we implemented the PO-PRO-1 dye (292, 316) into our protocol. It gave suitable results of cell cycle analysis when it was combined with EdU-Click-iT assay and overall it was functional in our multiparametric assay. However, we are aware of the existing scope for further improvement of DNA staining in this protocol.

In summary, we have established a multiparametric flow cytometric assay for the complex analysis of cellular phenotypes in response to experimental therapy. Using this assay, we are able to simultaneously detect changes in viability, cell cycle profile, DNA synthesis and damage, and apoptosis in cells characterized by the expression of two surface markers. Obviously, the main benefit of this approach is that various biological responses to a specific treatment can be evaluated in a single assay on a single-cell level. Furthermore, we demonstrate the possible application of this established procedure to analyse heterogeneous samples and to compare the effects of drugs on different subsets of cell lines. Moreover, the protocol can be applied to both human and mouse cells, and to adherent and non-adherent cells. This creates an opportunity to efficiently analyse mixed cell populations including infiltrating host cells in xenografts. Further benefit of this assay is that for the complex analysis of the cellular phenotype, a low number of cells is needed. Parallel examination of these parameters by different methods would require a much higher number of the cells. Thus, we suggest that this assay is useful for complex analysis of rare populations, e.g. CSCs or CTCs in patient samples.

In conclusion, we have established a useful protocol for complex phenotype analysis of specifically defined cell populations and for investigation of their responses to drug treatment in a single assay.
6. **Conclusions**

Conclusions related to the first aim of the Thesis: The Role of Skp2 in Prostate Cancer Stem-like Cells

- The nuclear expression of Skp2 was associated with a high Gleason score in prostate cancer patients. High Skp2 expression was further associated with the mesenchymal phenotype in prostate cancer patients.

- High expression of Skp2 was associated with the mesenchymal state and CSCs characteristics of prostate cancer cells \textit{in vitro}.

- Skp2 downregulation attenuated CSC-like properties of the cells \textit{in vitro}.

- Pharmacological inhibition of the SCF^{Skp2} complex resulted in cell cycle arrest and accumulation of p27^{Kip1} and p21^{Cip1} cell cycle inhibitors.

- MLN-4924 induced late apoptosis/necrosis in CD44^{+}CD24^{+} cells but not in CD44^{+}CD24^{-} CSC-like cells. Clonogenic capacity of the cells with CSC-like phenotype CD44^{+}CD24^{-} was significantly decreased when the cells were cultured in media with MLN-4924 inhibitor.
Conclusions related to the second aim of the Thesis: Establishment of a tool for analysis of cellular response to experimental drug treatment in heterogeneous samples (in CSC-like cells)

The results presented in this Thesis led us to the following conclusions:

- The critical steps necessary for assay establishment such as permeabilisation and probes or antibodies selection were optimized.

- A multiparametric flow cytometric assay for complex analysis of cellular phenotypes in response to experimental therapy was established. The main benefit of this approach is that various biological responses to a specific treatment can be evaluated in a single assay on a single-cell level.

- A possible application of this established procedure to analyse heterogeneous samples and to compare the effects of drugs on different subsets in heterogeneous samples was demonstrated.
7. REFERENCES

8. List of Publications and Meeting Contributions

8.1. Articles Published in Peer-Reviewed Journals with IF

8.1.1. First Author

 Personal contribution (70 %): Conception and Design, Collection of data, Data analysis and interpretation, Manuscript writing

8.1.2. Co-author

 Personal contribution (15 %): Conception and Design, Collection of data, Data analysis and interpretation
Personal contribution (10 %): Collection of data, Data analysis and interpretation

Personal contribution (5 %): Collection of data

Personal contribution (10 %): Collection of data, Data analysis

8.2. MANUSCRIPTS

8.2.1. MANUSCRIPTS FIRST AUTHOR

• Šimečková Šárka. Kahounová Zuzana, Fedr Radek, Remšík Ján, Slabáková Eva, Bouchal Jan, Kharaishvili Gvantsa, Král Milan, Souček Karel. **High**
Skp2 expression is associated with mesenchymal and cancer stem-like cells phenotype. *Manuscript submitted to Scientific Report, under review*

Personal contribution (70 %): conception and design, collection of data, data analysis and interpretation, manuscript writing

8.2.2. **MANUSCRIPTS CO-AUTHOR**

- Radek Fedr, Zuzana Kahounová, Ján Remšík, Šárka Šimečková, Karel Souček. Extent of autofluorescence, non-specific and specific immunofluorescence signals measured by flow cytometry associates with cell size and cell cycle progression. *manuscript in preparation*

 Personal contribution (5 %): collection of data, data analysis and interpretation

8.2.3. **MEETING CONTRIBUTIONS**

8.2.3.1. **POSTER PRESENTATIONS (FIRST AUTHOR ONLY)**

2017

2016

Šimečková Šárka, Fedr Radek, Pernicová Zuzana, Slabáková Eva, Bouchal Jan, Kharaiskhvili Gvantsa, Král Milan, Kozubík Alois, Souček Karel. Inhibition of SCFSkp2 affects characteristics of cancer stem-like cells. EMBO meeting: Cellular signaling and Cancer therapy, 27.-31.5.2016, Dubrovnik, Croatia, page 220

2015

Šimečková Šárka, Remšík Ján, Pernicová Zuzana, Fedr Radek, Smějová Monika, Kozubík Alois, Souček Karel. Trop-2 expression defines prostate cancer cells in different EMT state. 11th World Congress on Urological Research, 10.-12.9.2015, Nijmegen, Netherlands, page 146

Šimečková Šárka, Remšík Ján, Pernicová Zuzana, Fedr Radek, Smějová Monika, Kozubík Alois, Souček Karel. Loss of Trop-2 expression is associated with mesenchymal phenotype in prostate cancer cells. 30th Congress of the International Society for Advancement of Cytometry, 26.-30.5.2015, Glasgow, United Kingdom, page 236

2014

2013

8. 2.3.2. LECTURES

2015

Pros and Cons of multiparametric flow cytometry. V4 International Conference in Analytical Cytometry VIII, 3. – 6. 10. 2015, Olomouc, Czech Republic

2014

Pharmacological inhibition of SCFSkp2 complex activity affects characteristics of cancer stem-like cells

OrganoNET 2014 Conference, 19.-20.6. 2014, Brno, Czech Republic
APPENDICES

Content hidden

(pages 136-185)