Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

Disertační práce

Mgr. Barbora Žaloudíková

Brno 2011
Poděkování

Ráda bych na tomto místě poděkovala svému školiteli MUDr. Tomáši Freibergerovi, PhD. za odborné vedení, cenné diskuse a kritické poznámky k této práci, jakož i příležitosti získání zkušeností v oblasti rutinní molekulárně-mikrobiologické diagnostiky patogenů a jejich interpretace v klinickém kontextu. Za cenné podněty k práci a příležitost podílet se na výuce lékařské mikrobiologie při LF MU děkuji Prof. MUDr. Miroslavu Votavovi, CSc.

Za poskytnutí mikrobiologického materiálu, odborné konzultace a kritické poznámky k této práci děkuji Ing. Veronice Holé, Ph.D. a doc. MUDr. Filipu Růžičkovi, PhD. Za kritické poznámky k této práci rovněž děkuji MUDr. Janě Juránkové, PhD.

Ráda bych těž poděkovala za spolupráci při sběru klinických dat MUDr. Jiřímu Polovi z Centra kardiovaskulární a transplantační chirurgie (CKTCH) v Brně, MUDr. Zdeňku Šormovi z Kardiochirurgické kliniky ve Fakultní nemocnici v Hradci Králové a MUDr. Karolině Novotné a MUDr. Šárce Wurmové z Institutu Klinické a experimentální medicíny v Praze. Za statistické zpracování velmi děkuji doc. RNDr. Ladislavu Duškovi, PhD.

Mé velké díky patří mým kolegyním z Genetické laboratoře CKTCH za příjemné pracovní prostředí a dobrou spolupráci. Za velkou osobní i technickou podporu a podnětné diskuse v průběhu přípravy této práce velmi děkuji příteli Michalu Mališovi.
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou
<table>
<thead>
<tr>
<th>OBSAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SEZNAM POUŽÍVANÝCH ZKRATEK ... 7</td>
</tr>
<tr>
<td>2 ÚVOD ... 8</td>
</tr>
<tr>
<td>2.1 Patofyziologie IE ... 10</td>
</tr>
<tr>
<td>2.1.1 Patogeneze IE nativních chlopní ... 10</td>
</tr>
<tr>
<td>2.1.2 Patogeneze IE prostetických chlopní 11</td>
</tr>
<tr>
<td>2.2 Incidence a epidemiologie IE ... 11</td>
</tr>
<tr>
<td>2.3 Etiologie IE .. 12</td>
</tr>
<tr>
<td>2.4 Faktory virulence grampozitivních bakterií 14</td>
</tr>
<tr>
<td>2.5 Antibiotická rezistence u stafylokoků ... 14</td>
</tr>
<tr>
<td>2.5.1 Epidemiologie kmenů MRSA .. 16</td>
</tr>
<tr>
<td>2.5.2 Epidemiologie kmenů KNS rezistentních k oxacilinu (MRKNS) ... 18</td>
</tr>
<tr>
<td>2.6 Predisponující faktory IE ... 19</td>
</tr>
<tr>
<td>2.7 Klinické projevy IE .. 20</td>
</tr>
<tr>
<td>2.8 Kritéria pro diagnostiku IE .. 22</td>
</tr>
<tr>
<td>2.9 Léčba IE .. 26</td>
</tr>
<tr>
<td>2.9.1 Konzervativní léčba ... 26</td>
</tr>
<tr>
<td>2.9.2 Chirurgická léčba .. 27</td>
</tr>
<tr>
<td>2.10 Současné metody diagnostiky IE .. 28</td>
</tr>
<tr>
<td>2.10.1 Echokardiografie .. 28</td>
</tr>
<tr>
<td>2.10.2 Standardní mikrobiologická diagnostika 29</td>
</tr>
<tr>
<td>2.10.2.1 Odlišení stafylokoků od ostatních bakterií způsobujících IE 30</td>
</tr>
<tr>
<td>2.10.2.2 Rozlišení kmenů S. aureus a KNS ... 30</td>
</tr>
<tr>
<td>2.10.2.3 Stanovení citlivosti stafylokoků k antibiotikům 31</td>
</tr>
<tr>
<td>2.10.3 Histologie .. 32</td>
</tr>
<tr>
<td>2.10.4 Alternativní metody detekce patogenů 32</td>
</tr>
<tr>
<td>2.10.4.1 Serologie .. 32</td>
</tr>
<tr>
<td>2.10.4.2 Molekulárně-biologická detekce .. 33</td>
</tr>
<tr>
<td>2.10.4.2.1 Detekce patogenů pomocí širokospektré PCR 33</td>
</tr>
<tr>
<td>2.10.4.2.2 Detekce patogenů pomocí specifické PCR 34</td>
</tr>
<tr>
<td>3 CÍLE STUDIE ... 36</td>
</tr>
<tr>
<td>4 MATERIÁL A METODY .. 37</td>
</tr>
<tr>
<td>4.1 Optimalizace PCR pro průkaz stafylokoků 37</td>
</tr>
<tr>
<td>4.1.1 Testované kmeny .. 37</td>
</tr>
<tr>
<td>4.1.1.1 Stanovení antibiotické citlivosti ... 37</td>
</tr>
<tr>
<td>4.2 Analyzovaná skupina .. 39</td>
</tr>
</tbody>
</table>
4.3 Kontrolní skupina .. 39
4.4 Sběr klinických dat .. 39
4.5 Metody průkazu patogenů .. 40
 4.5.1 Hemokultury .. 40
 4.5.2 Kultivace z chirurgického materiálu 40
 4.5.3 Molekulárně-biologická detekce 40
 4.5.3.1 Izolace DNA z bakteriální / houbové suspenze 40
 4.5.3.2 Izolace DNA z chirurgického materiálu 41
 4.5.3.3 Specifická PCR pro průkaz stafylokoků 41
 4.5.3.4 Širokospektrá PCR a sekvencování 42
4.6 Statistika .. 44
5 VÝSLEDKY .. 45
 5.1 Přínos širokospektré detekce bakterií pro klinickou praxi 45
 5.2 Optimalizace podmínek PCR specifické pro stafylokoky 46
 5.2.1 Analytická sensitivita PCR pro stafylokoky 46
 5.2.2 Analytická specificita PCR pro stafylokoky 47
 5.2.3 PCR pro intranasální screening MRSA 49
 5.3 Detekce stafylokoků u chirurgicky léčených pacientů s IE 50
 5.3.1 Srovnání specifické a širokospektré PCR 52
 5.3.2 Srovnání PCR se standardní kultivací u pacientů s IE 53
 5.3.3 Stanovení etiologie IE u jednotlivých pacientů 54
 5.3.4 Stanovení úlohy PCR v diagnostice IE 57
 5.3.5 Etiologie a klinické projevy IE 58
6 DISKUSE ... 60
 6.1 Využití širokospektré PCR a sekvencování v diagnostické praxi 60
 6.2 Výsledky testování PCR specifické pro stafylokoky 60
 6.3 Využití specifické PCR pro intranasální screening MRSA 63
 6.4 Využití specifické PCR pro detekci stafylokoků v krvi 63
 6.4.1 Sensitivita specifické PCR v krvi 63
 6.4.2 Komerční soupravy pro detekci patogenů v krvi 63
 6.4.2.1 Soupravy závislé na předchozí kultivaci patogena 63
 6.4.2.2 Soupravy pro přímou detekci patogenů v krvi 64
 6.5 Efektivita PCR pro průkaz stafylokoků v chirurgickém materiálu 66
 6.6 Srovnání PCR se standardními metodami průkazu etiologie 66
 6.7 Etiologie IE v našem souboru 68
 6.8 Role PCR v diagnostice IE .. 69
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

6.9 Klinické projevy IE způsobené stafylokoky... 69
6.10 International Collaboration on Endocarditis (ICE) .. 70
7 ZÁVĚR .. 71
8 LITERATURA ... 73
9 SEZNAM PŘÍLOH.. 81
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

1 SEZNAM POUŽÍVÁNÝCH ZKRATEK

CA-MRSA komunitní kmen S. aureus rezistentní k meticilinu (oxacilinu)

CKTCH Centrum kardiovaskulární a transplantační chirurgie

NCCLS National Committee for Clinical Laboratory Standards

EUCAST European Committee on Antibiotic Susceptibility Testing

HACEK *Haemophilus* sp., *Actinobacillus* sp., *Cardiobacterium* sp., *Eikenella* sp., *Kingella* sp.

HA-MRSA nemocniční kmen S. aureus rezistentní k meticilinu (oxacilinu)

HK hemokultura

ICE International Collaboration on Endocarditis

ICD intrakardiálně uložené těleso

IE infekční endokarditida

KT kultivace z chirurgického materiálu (tkáně)

CFU kolonie tvořící jednotka (kolonie vzniklé dělením jedné buňky)

MIC minimální inhibiční koncentrace

mecA gen kódující rezistenci k meticilinu (oxacilinu)

NIE nativní infekční endokarditida

NRL ATB Národní referenční laboratoř pro antibiotika

MRKNS koaguláza negativní stafylokoky rezistentní k meticilinu (oxacilinu)

MRSA *S. aureus* rezistentní k meticilinu (oxacilinu)

MSSA *S. aureus* citlivý k meticilinu (oxacilinu)

MSKNS koaguláza negativní stafylokoky citlivé k meticilinu (oxacilinu)

PBP-2A alternativní transpeptidáza, která zabraňuje působení betalaktamových antibiotik (je kódovaná genem *mecA*)

PCR polymerážová řetězová reakce

PIE prostetická infekční endokarditida

TEE transesofageální echokardiografie

TTE transtorakální echokardiografie

16S rRNA malá ribozomální podjednotka 16S
2 ÚVOD

Kulturní svět si letos připomíná 150. výročí narození světoznámého hudebního skladatele, Gustava Mahlera (1860-1911), který 18. května 1911 podlehl následkům infekční endokarditidy (IE):

(Prendergast 2006, Christy, Christy a Wood 1971) & Muzeum G. Mahlera v Jihlavě

Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

probíhají stafylokokové endokarditidy agresivněji, s vyšším rizikem mortality (Miro et al., 2005; Murdoch et al., 2009). Výběr antibiotik pro terapii stafylokokové IE je omezen rezistencí k isoxazolylovým semisyntetickým penicilinům (meticilin, oxacilin atd.) a všem betalaktamům, často včetně jejich kombinace s inhibitory betalaktamáz.

Standardní kultivační metody průkazu stafylokoků mohou selhat především u pacientů, kteří již podstoupili konzervativní léčbu vysokými dávkami antibiotik. Alternativní molekulárně-biologické metody rychlého průkazu stafylokoků a jejich rezistence k oxacilinu a ostatním betalaktamům nejsou závislé na růstu mikrobů a mohou pomoci při rychlé detekci etiologického agens a stanovení jeho citlivosti k oxacilinu u pacientů pod antibiotickou clonou.
2.1 Patofyziologie IE

Většina patogenů přednostně napadá mechanicky nebo zánětlivě poškozené nativní chlopně a umělé srdeční materiály. V místě poškození dochází ke vzniku trombů, v nichž se zachytí infekční agens kolující v krvi. Infikovaná vegetace tvořená trombocyty, infekčním agens a granulocyty se působením monocytů, cytokinů a tkáňového faktoru zvětšuje a narušuje správnou funkci chlopně. Část vegetace (infekční embolus) se může uvolnit do krevního řečiště a diseminovat do tenkých periferních kapilár v mozku, slezině, ledvinách aj.

2.1.1 Patogeneze IE nativních chlopní

V důsledku hemodynamických nebo mechanických změn na srdečních chlopních a v jejich okolí vzniká v krevním řečiště turbulentní proudění, které vede k vytvoření mechanických lézí na chlopních. Z místa poškozené tkáně (léze) poté dochází k uvolnění tkáňového faktoru, který je v průběhu standardního procesu hojení signálem k následné reparaci fibrinem a krevními destičkami. V rámci tohoto procesu na endotelu vznikají drobné tromby, které se stávají základem pro vznik nebakteriální trombotické vegetace měnící povrchové vlastnosti endotelu chlopní a jejich šlašinek. Tyto tromby slouží jako záchytné místo pro infekční agens, která v krvi cirkulují při bakteriémii. Krevní destičky mají zásadní vliv na to, zda se infekční agens na chlopeň přichytí a začne infekční proces nebo se odplaví zpět do krevního řečiště.

Druhou možností vzniku primární infekce chlopně je zánětlivý proces probíhající na endotelu, který vede endotelialní buňky k produkci transmembránových proteinů, tzv. integrinů. Tyto proteiny váží na povrch endotelií (resp. chlopní) cirkulující fibronektin. Aktivované endotelové buňky se tak stanou ideálním adhezivním povrchem pro cirkulující mikroby s proteiny vázajícími fibronektin na povrchu (FBP), především *Staphylococcus aureus* nebo některé intracelulární patogeny způsobující IE. Stafylokoky a intracelulární bakterie jsou na rozdíl od většiny ostatních typických agens IE buňkami endotelu pohlceny. Intracelulárně umístěné stafylokoky chráněné před účinkem antibiotik pak produkují toxiny...
poškozující celou chlopní a okolní tkáně se vznikajícími opouzdřenými abscesy (Que et al. 2005, Seifert et al. 2003).

2.1.2 Patogeneze IE prostetických chlopní

Povrch mechanické chlopně nebo bioprotézy se bezprostředně po jeho umístění v těle potahuje fibrinem, jenž může atrahovat fibrin-vázající mikroby kolující v krvi při bakteriémii (Fitzgerald et al. 2006). Pro infekci prostetického materiálu stačí nižší bakteriální nálož než v případě nativní IE (Senining et al. 2001). Infekce bývá lokalizována nejčastěji v místě přišití implantátu a vede k jeho uvolnění (Piper, Körfer a Horstkotte 2001, Mahesh et al. 2005).

Časná prostetická endokarditida (PIE) vzniká pravděpodobně díky kontaminaci materiálu již při implantaci umělé chlopně a to do několika měsíců od chirurgické výměny. Oproti tomu pozdější PIE vzniká endogenně, nejčastěji jako následek předchozí bakteriémie, např. po Zubním zákroku nebo při infekci jiné části těla, a to nejdříve po jednom roce od implantace (Habib et al. 2009).

2.2 Incidence a epidemiologie IE

Incidence nativní IE se mezi jednotlivými zeměmi liší, leč v průměru se pohybuje přibližně mezi 3-10 případy na 100 000 obyvatel/rok (Beneš 2010). PIE je diagnostikována u 10-30 % všech pacientů s infekční endokarditidou, mezi pacienty s prostetickým materiálem je to přibližně 1-6 % (Wang et al. 2007, Habib et al. 2009). U pacientů nad 50 let věku se incidence zvyšuje na 15 případů na 100 000 obyvatel/rok. U intravenózních narkomanů je incidence IE až 100x vyšší než v běžné populaci. U mužů je onemocnění dvakrát častější než u žen, což není zatím spolehlivě vysvětleno (Beneš et al. 2007, Habib et al. 2009).

Z hlediska epidemiologie rozlišujeme endokarditidu získanou v komunitě od endokarditidy nozokomiální, která bývá spojena s intravenózními zákroky. Ve vyspělých zemích představuje nozokomiální IE 5-29 % z celkového počtu případů IE (Habib et al. 2009).

Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

aureus rezistentní k meticilinu (oxacilinu) (MRSA), vankomycin rezistentními enterokoky aj.) dosahuje 40-56 % (Beneš et al. 2007).

Mortalita mykotických endokarditid přesahuje 80 %, ale na rozdíl od stafylokokově endokarditidy je IE vyvolaná houbami poměrně vzácná (Beneš et al. 2007).

2.3 Etiologie IE

KNS (s výjimkou S. ludgeunensis a některých kmenů S. capitis) mají více protrahovaný průběh (Piette a Verschraegen 2009).

Na rozdíl od sepsí mohou infekční endokarditidu vzácně vyvolávat i náročné G-bakterie, jako např. bakterie skupiny HACEK (u přibližně 5 % případů): Haemophilus influenzae, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella sp. a Kingella sp., které bývají spojovány s infekcí respiračního ústrojí.

S rozvojem alternativních metod detekce mikrobů se rozšířilo spektrum známých původců o tzv. atypické mikroorganismy (viz dále). Stále častěji, nyní především u pacientů s chlopenní náhradou, pacemakery nebo u imunokompromitovaných, bývají zachycovány intracelulární bakterie (Bartonella quintana, Brucella sp., Coxiella burnetii) nebo atypické aktinomycety, např. Tropheryma whipplei (Brouqui a Raoult 2001, Escher et al. 2010).

V následující kapitole se budu dále blíže věnovat faktorům virulence a patogenity stafylokoků, nejčastějším etiologickým agens popisovaným v souvislosti s IE.
2.4 Faktory virulence grampozitivních bakterií

Díky zvýšené afinitě grampozitivních (G+) bakterií (především stafylokoků a viridujících streptokoků) k endokardu chloupně, vzbuzuje jejich nález v hemokultuře vážné podezření na IE (Habib et al. 2009). Kromě schopnosti odolávat účinku mikrobicidních proteinů produkovaných krevními destičkami (PMP), jsou G+ bakterie navíc rezistentní vůči komplementu.

Zatímco některé streptokoky mají na svém povrchu dextrany, jimiž adhérovaní na trombotické vegetace, kmeny S. aureus disponují povrchovými adheziny, které jsou vázány v buněčné stěně (tzv. clumping factor nebo vázaná plasmakoaguláza), se schopností shlukovat krevní destičky a vytvářet tak základ infikované trombotické vegetace (Tak et al. 2002).

U kmenů S. epidermidis byl popsán kapsulární polysacharid-adhesin (PS/A), fibrinogen-vázající protein (Fbe) a polysacharidový intercelulární antigen (PIA), které se podílejí na chloupnosti S. epidermidis a některých KNS vázat fibrin a tvořit především na umělém materiálu tzv. biofilm. Jedná se o vrstvu stafylokoků obalenou extracelulární polysacharidovou matrix neboli bakteriálním slizem. Stafylokokový sliz účinkuje především na polymorfonukleáry, které atrahuje, vyvolá jejich degranulaci a potlačí jejich schopnost pohlcovat a zabíjet samotné stafylokoky. Bakterie v biofilmu jsou tak 10-1000x rezistentnější k antibiotikům než jejich planktonické formy (Que et al. 2005, Neut et al. 2007). Biofilm může fungovat jako mechanická bariéra pro průnik antibiotik. Uvnitř biofilmu může také vzniknout subpopulace buněk, které velmi pomalu rostou a jsou tak odolné k antibiotikům působícím na buněčnou stěnu. Toto malé procento rezistentních buněk, tzv. perzistorů, se může po ukončení antibiotické terapie stát základem nové rezistentní populace (Stewart a Costerton 2001).

2.5 Antibiotická rezistence u stafylokoků

V současné době je přibližně 98 % kmenů KNS a S. aureus rezistentní k penicilinu. Za rezistenci k jednoduchým betalaktamům (benzylpenicilinu aj.) je zodpovědný gen blaZ, který kóduje betalaktamázu štěpící betalaktamový kruh. Tyto kmeny jsou citlivé k betalaktamům s inhibitorem betalaktamáz.

Téměř bezprostředně po uvedení isoaxazolylových semisyntetických penicilinů (oxacilinu) odolných k źečinkům betalaktamázy (i s inhibitorem betalaktamázy), byly

2.5.1 Epidemiologie kmenů MRSA

Vzhledem k rozdílům v antibiotické politice v jednotlivých zemích, je výskyt nemocničních kmenů MRSA nerovnoměrný: Podle údajů EARSS sleduje výskyt MRSA v Evropě tzv. severojižní gradient s nejnižším výskytem v Nizozemí (< 1 %) a nejvyšším v Portugalsku (> 50 %), viz Obr. 2. V USA je přibližně 60 % nozokomiálních kmenů S. aureus rezistentních k oxacilinu, v Japonsku je to dokonce 70 % kmenů (Habib et al. 2009). V České republice byl za posledních sedm let podle údajů Národní referenční laboratoře pro antibiotika (NRL ATB) zaznamenán vzestupný trend ve výskytu kmenů MRSA, tj. ze 4,3 % v roce 2000 na 15 % v roce 2009 (Hrabák, 2010, osobní komunikace). Zvýšil se také počet nemocnic, kde byl zaznamenán výskyt invazivní infekce vyvolané MRSA (z 11 kmenů v roce 2000 na 51
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

V posledních letech se kromě nozokomiálních MRSA infekcí, především v USA a některých evropských zemích, objevují infekce MRSA i u ambulantních pacientů způsobené tzv. komunitními kmeny MRSA (tzv. CA-MRSA neboli community-aquired MRSA) (Melter 2008). Tyto kmeny jsou většinou dobře citlivé k ostatním antibiotikům, svými faktory virulence (Pantenův Valentinův leukocidin, PVL) jsou však obávanými původci infekcí měkkých tkání s rozsáhлou destrukcí, akutních pneumonií, ale i IE a to u pacientů bez rizikových faktorů, častěji však u intravenózních narkomanů, případně pacientů s furunkly nebo celulitidou (Garau et al. 2009, Melter 2008).

Pro monitoring epidemiologicky závažných kmenů MRSA lze využít celou chromozomální kazetu SCCmecA. V současné době existuje ve světě přibližně 5 klonálních typů MRSA (tříděných podle SCCmecA). V ČR je nejčastějším klonálním komplexem CC5, tzn. klon s kazetou SCCmecA typu IV s častou přidruženou rezistencí k makrolidům nebo aminoglykosidům (Hrabák, 2010, osobní komunikace).

Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

IE způsobená kmeny MRSA má horší prognózu (vyšší procento relapsů, srdečního selhání, selhání léčby a mortality) než IE způsobená citlivými kmeny S. aureus a to především u pacientů s prostetickou endokarditidou (Garau et al. 2009, Hill et al. 2008). Citlivé kmeny S. aureus stejně jako komunitní kmeny MRSA jsou nalézány u ambulantních pacientů, zatímco multirezistentní kmeny MRSA jako následek nozokomiální IE. Mortalita IE vyvolaná komunitními kmeny MRSA je srovnatelná mortalitou IE způsobenou citlivými kmeny S. aureus (Hill et al. 2008). Oproti tomu mortalita pacientů s IE vyvolanou nozokomiálními kmeny MRSA, především těch na dlouhodobé hemodialýze, může být 90-100 % (Kuo et al. 2007).

2.5.2 Epidemiologie kmenů KNS rezistentních k oxacilinu (MRKNS)

2.6 Predisponující faktory IE

Hlavními predisponujícími faktory IE je bakteriémie a současně hemodynamické postižení (vrozené nebo získané) srdečních chlopní.

Revmatické postižení chlopní jako hlavní predispozice IE je ve vyspělých zemích, kde jsou streptokokové infekce vesměs přeléčeny antibiotiky, na ústupu. V těchto zemích existuje výšší riziko rozvoje IE u pacientů s vrozenou srdeční vadou (koarktace / ductus arteriosus / defekt komorového septa / bikuspidní aortální chlopeň aj.) nebo narušenou funkci chlopní (sklerotické změny / mitrální prolaps aj.), které jsou zdrojem hemodynamické nestability a vzniku trombotických vegetací, jež mohou být infikovány (Habib et al. 2009). V rámci retrospektivní analýzy provedené u pacientů s IE hospitalizovaných na Mayo Clinic v Rochesteru (USA) a pacientů s IE hospitalizovaných ve Fakultní nemocnici Hradec Králové, byl u českých pacientů prokázán nižší věkový průměr s minimálním zastoupením intravenózních narkomanů, zato však častější revmatické onemocnění srdece a negativní výsledky kultivace etiologického agens (Pazdernik et al. 2009).

Rizikovou skupinou pro rozvoj IE jsou rovněž pacienti s intrakardiálně uloženým tělesem (umělé povrchy defibrilátorů / pacemakerů / intrakardiálních elektrod), která jsou v srdci dlouhodobě či trvale uložena, a mohou být přímo postižena infekčním procesem nebo být zdrojem bakteriémie, která se šíří až na chloppenní cípy a endokard. Ve většině případů je
příčinou infekce intrakardiálních těles a prostetických chlopní jejich kontaminace bakteriální flórou v průběhu implantace (Habib et al. 2009) nebo kontaminací cévních katetrů. Podle výsledků prospektivní multicentrické mezinárodní studie je až 37 % případů prostetické IE spojeno s nemocnění pěči (Nataloni et al. 2010).

2.7 Klinické projevy IE

Ve většině případů jsou počáteční klinické projevy IE velmi podobné projevům klasického virového onemocnění, tj. zvýšená teplota (nad 38 °C), popř. zimnice a pocení, nechutenství, bolesti svalů a kloubů. Může se rovněž vyskytovat srdeční šelest (až 85 % případů) nebo splenomegalie. Přibližně u 30 % pacientů vznikají mozkové (u levostranného postižení srdce) nebo plnicí (u pravostranného postižení srdce) embolizace, které vedou k podezření na IE. Periferní embolizace není již celosvětově typickým projevem IE, neboť stanovení diagnózy zpravidla předchází těmto klinickým projevům. Oproti tomu cévní a imunologické projevy jako glomerulonefritida, Rothovy skvrny (hemoragické léze s bledým středem), Janewayovy léze (drobné, nebolestivé hemoragie na dlaních a ploských noh) nebo Oslerovy uzlíky (podkožní hemoragie na špičkách prstů ruky, nebo palci na noze) zůstávají poměrně častým projevem (Habib et al. 2009), viz Tab. 1.

<table>
<thead>
<tr>
<th>Tabulka 1. Klinické projevy IE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nové vzniklá regurgitace (srdeční šelest)</td>
</tr>
<tr>
<td>2. Embolizace neznámého původu</td>
</tr>
<tr>
<td>3. Sepse neznámého původu (obzvláště je-li spojená s typickým kauzálním agens IE)</td>
</tr>
<tr>
<td>4. Horčka (nejcastější projev IE) spojená s:</td>
</tr>
<tr>
<td>a. Intrakardiálně uložený umělý materiál (např. umělá chlopně, pacemaker, defibrilátor, konduita)</td>
</tr>
<tr>
<td>b. Historie IE v anamnéze</td>
</tr>
<tr>
<td>c. Vrozená srdeční nebo chlopní vada</td>
</tr>
<tr>
<td>d. Imunokompromitovaný pacient či intravenózně užívané drogy</td>
</tr>
<tr>
<td>e. Předispozice spojená s nedávným zátkorem dprovázeným bakteriemií</td>
</tr>
<tr>
<td>f. Příznaky vrozeného srdečního selhání</td>
</tr>
<tr>
<td>g. Nově porucha vodivosti srdečního svalu</td>
</tr>
<tr>
<td>h. Pozitivní hemokultury se záchytem typického kauzálního agens IE nebo pozitivní serologie chronické Q-horečky (mikrobiologické nálezy mohou předcházet srdečním projevům)</td>
</tr>
<tr>
<td>i. Cévní nebo imunologické projevy: embolická příhoda, Rothovy skvrny, třískovité hemoragie pod nehty, Janewayovy léze, Oslerovy uzlíky</td>
</tr>
<tr>
<td>j. Ohniskové nebo nespecifické neurologické příznaky</td>
</tr>
<tr>
<td>k. Prokázaná plicní embolizace/infiltrace (pravostranná IE)</td>
</tr>
<tr>
<td>l. Výskyt zánětlivého ložiska v ledvinách, slezině, mozku nebo páteři bez vysvětlitelné příčiny</td>
</tr>
</tbody>
</table>

Pozn.: Objevou-li se některé z těchto klinických projevů, mělo by být pojato podezření na IE. U pacientů s febrilními mohou diagnostice IE a pomocí další nespecifické projevy infekce, jako je zvýšená hladina C-reaktivního proteinu/ prokalcitoninu či zvýšená sedimentace (převzato z (Habib et al. 2009).
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

Přítomnost a intenzita klinických projevů IE vždy závisí především na typu kauzálního agens a rozsahu postižení chlopně.

Průběh akutní IE je definován krátkou inkubační dobou, tj. rychlým nástupem klinických projevů (v řádu dnů – max 6 týdnů). Typickým projevem je vysoká horečka a rychlé a rozsáhlé pravostranné (u intravenózních narkomanů) nebo levostranné poškození srce. U levostranného poškození je navíc vysoká pravděpodobnost rozvoje extrakardiálních (především mozkových) embolizací, což značně zhoršuje prognózu akutní formy IE.

Subakutní IE (forma „lenta”) je nejčastěji způsobena méně virulentními streptokoky, první klinické projevy nastupují nejčastěji po 6-ti týdnech. Horečka je mírná nebo se nevyvíjí. Je zde velmi malá pravděpodobnost vzniku embolizací a tudíž i lepší prognóza onemocnění.

Projevy IE mohou v důsledku započetí antibiotické terapie přejít od akutního onemocnění až k subakutnímu / chronickému průběhu. Naopak u imunodeficientních pacientů může subakutní forma probíhat jako akutní (Habib et al. 2009).

Jelikož může být podezřená na IE vyslovena na základě velmi rozdílných klinických projevů, zůstává diagnostika IE pro lékaře stále velkou výzvou. V závislosti na klinických
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

projevech IE mohou být pacienti vyšetřeni několika specialisty s podezřením na celou řadu alternativních diagnóz. K určení správné diagnózy a léčby tohoto onemocnění je optimální spolupráce kardiologa či kardiochirurga s infektologem a mikrobiologem.

2.8 Kritéria pro diagnostiku IE

Po zavedení dvourozměrné Dopplerovské echokardiografie (1981), jeţ umoţnuje neinvazivní záchyt vegetací nebo abscesu nativních i umělých chlopní a jiných materiálů byla vytvořena tzv. Duke (neboli Durackova) kritéria, kterými se řídí diagnostika IE dodnes (Durack, Lukes a Bright 1994). Tato kritéria popisují diagnózu IE v kategoriích „prokázaná“, „moţná“ a „vyloučená“ IE. Hlavními kritérii je průkaz etiologického agens v hemokultuře/chirurgickém materiálu a pozitivní nález při echokardiografii. Dalšími kritérii jsou rovněţ horečka, cévní příznaky nebo předchozí onemocnění srdeční intravenózní narkomanie (viz Tab. 2). Při zachované vysoké specificitě (87-99 %) předchozích von Reyn kritérií došlo k výraznému zvýšení jejich sensitivity (aţ na 75-100 %).

1 William Osler (1849-1919) kladl důraz na správnou komunikaci s pacientem a odebrání správné diagnózy s důrazem na historii klinických projevů: "Listen to your patient, he is telling you the diagnosis".

Zánětlivé markery, leukocytóza, příp. anemie postrádají potřebnou specificitu a proto zatím nebyly do Duke diagnostických kritérií zavzaty. Mohou však ve sporných případech pomoci potvrdit/vyvrátit podezření na IE (Baddour et al. 2005).

Přestože byla sensitivita a specificita Duke kritérií modifikacemi Li a kol (2000) podstatně zvýšena, stále je citlivost a specificita nedostatečná, především díky falešně negativním/positivním výsledkům transeophageální a transtorakální echokardiografie a kultivace. Riziko poddiagnostikování choroby i s využitím modifikovaných Duke kritérií je vysoké především u pacientů s prostetickou IE (Sohail et al. 2008).
Tabulka 2. Srovnání diagnostických kritérií pro infekční endokarditidu dle Von Reyn a Duke (Tissières et al. 2003).

|----------------|--|---|
| „Prokázaná“ IE | Etiologické agens prokázáno z vegetace nebo periferní embolu pomocí bakteriologie nebo histologie | *Některá z patologických kritérií nebo*
| | | *Klinická kritéria: 2 hlavní nebo 1 hlavní + 3 vedlejší nebo 5 vedlejších kritérií (viz níže)* |
| „Pravděpodobná“ IE | *2 nebo více pozitivních hemokultur spojených s jedním z těchto faktorů: ➢ nově vzniklá regurgitace spojená se šelestem ➢ získaná nebo vrozená srdeční vada nebo ➢ *Méně než 2 pozitivní hemokultury nebo negativní hemokultury spojené s: ➢ horečkou ➢ nově vzniklou regurgitací spojenou se šelestem ➢ patologickými cévními projevy* | *1 hlavní + 1 vedlejší kritérium nebo 3 vedlejší kritéria* |
| „Možná“ IE | *2 nebo více pozitivních hemokultur spojených s jedním z těchto faktorů*: ➢ Získaná nebo vrozená srdeční vada ➢ Patologické cévní projevy nebo ➢ *Méně než 2 pozitivní hemokultury nebo negativní hemokultury spojené s: ➢ horečkou ➢ nově vzniklou regurgitací/šelestem ➢ jiným vaskulárním fenoménem nebo ➢ **V případě viridujících streptokoků stačí pro splnění kritérií „možná“/„pravděpodobná“ IE pouze 2 a více pozitivních hemokultur bez dalších klinických projevů.*** | *Jiná prokázaná diagnóza vysvětluje příznaky daného onemocnění nebo*
| „Vyloučená“ IE | *Stanovení alternativní diagnózy, IE je nepravděpodobná nebo* ➢ *IE je pravděpodobná, pacient je zajištěn empirickou antibiotickou terapií nebo*
| | *Klinicky diagnostikovaná, leč kultivačně negativní IE* | *Vymizení příznaků nemoci během < 4 dnů antibiotické léčby nebo*
| | *Nepřítomnost peroperačního nebo sekundního nálezu odpovídajícího IE poté, co byl pacient léčen antibiotiky < 4 dny nebo*
| | *Nespíše kritéria pro „možnou“ IE* |
Tabulka 3. Duke kritéria a jejich modifikace (viz tučně) (Li et al. 2000).

Patologická kritéria:
- Průkaz mikroorganismů kultivačně nebo histologicky ve vegetaci nebo ve vegetaci, která embolizovala nebo v nitrosrdečním abscesu
- Průkaz patologických útvarů, jako např. vegetace nebo nitrosrdeční absces, přičemž histologické vyšetření potvrdí aktivní endokarditidu

Klinická kritéria:

Hlavní kritéria:
- Pozitivní hemokultury**, tj ve dvou různých hemokulturách zjištěn typický mikroorganismus vyvolávající IE (viridující streptokoky*, Streptococcus bovis, mikroorganismy skupiny HACEK, S. aureus nebo enterokoky (nejedná-li se o nozokomiální infekci a není-li znám primární zdroj infekce)
- stejný nález alespoň ve 3 ze 4 odebraných hemokultur anebo ve většině se čtyři a více odebraných hemokultur (= alespoň 3 ze 4 či 5, alespoň 4 z 6 apod.) – ve všech případech časový rozdíl mezi prvním a posledním odběrem musí být větší než 1 hodina
- stejný nález v alespoň dvou hemokulturách odebraných v časovém rozpatří 12h a více
- izolace Coxiella burnetii z jedné hemokultury nebo průkaz IgG proti agens (ve fázi I) v titru > 1:800.

Vedlejší kritéria
- Predispozice
- přítomnost onemocnění srdce, které je doprovázena vyšším výskytem IE (zejména: mechanická protéza chlopně nebo bioprotéza, IE v anamnéze, cyanotické vrozené vady, uměle vytvořené levo-pravé shunty nebo konduity, bikuspádání aortální chlopeň, významná mitrální nebo aortální regurgitace, aortální stenóza, defekt septa komor, ducta arteriosa patens, koarctace aorty, hypertrofická kardiomyopatie, stav po operaci srdce s přetrvávající hemodynamickou abnormalitou
- intravenousí narkomanie
- Horečka: 38 °C a více
- Čevní příznaky: velké arteriální embolizace, septicke plícní infarkty, myoktická aneurysmata, nitrolební krvácení, konjunktivální hemoragie a Janewayovy léze
- Imunologické příznaky: glomerulonefritida, Oslerovy uzlíky, Rothovy skvrny, pozitivní revmatoidní faktor
- Mikrobiologický nález: pozitivní hemokultivace nesplňující výše uvedená kritéria*** nebo serologický průkaz aktivní infekce připouštějící IE.
- Echokardiografický nález svědčící pro IE, který nesplňuje hlavní kritéria (v modifikované verzi kritérií bylo toto kritérium vypuštěno)

*Viridující streptokoky zahrnují rovněž nutriční varianty streptokoků: např. Abiotrophia sp. a Gemella sp.
**Jedna hemokultura odpovídá jednomu odběru krve, bez ohledu na to, do kolika nádobeck byla krev při tomto odběru rozdělena.
***S výjimkou koagulázanezávinných stafylokoků zachycených z jedné hemokultury, a rovněž organismů jako jsou mykobakterie, která vyvolávají IE.
****Nově vzniklá valvární regurgitace ve shodě s evropskými doporučenými postupy není považována za dostatečně spolehlivý a specifický projev IE.
2.9 Léčba IE

Diagnostika a léčba IE se v České republice řídí doporučenými postupy České Kardiologické Společnosti (ČKS) (Beneš et al. 2007), resp. souhrnem doporučení Evropské společnosti kardiologů (ESC) a Americké asociace kardiologů (AHA) (Baddour et al. 2005, Habib et al. 2009).

2.9.1 Konzervativní léčba

Pro empirickou léčbu IE byla navržena řada terapeutických schémat. Jako nejrationálnější se jeví postup, který vychází z kvalifikovaného odhadu pravděpodobné etiologie podle anamnestických a klinických dat. Léčba akutní IE u i.v. narkoman, kde je nejpravděpodobnějším agens S. aureus, se opírá o protistafylokoková antibiotika. Léčba subakutní NIE nebo pozdní PIE je namířena především proti streptokokům a enterokokům, ale měla být účinná i vůči stafylokokům a komunitním gramnegativním bakteriím (neissérie, enterobaktérie, mikroby skupiny HACEK). Léčba časné PIE směřuje proti nozokomiálním stafylokokům a gram-negativním nefermentujícím tyčkám. Takto terapie je účinná i proti běžným vyvolavatelům komunitní IE. V těchto případech se doporučuje podat kombinaci antibiotik, obvykle je však nutná i reoperace chlopně (Beneš et al. 2007).

být vysvětlen tím, že stafylokoky mohou in vivo přežívat uvnitř buněk endotelia (Watkin et al. 2003).

Problematické bývá započetí cílené antibiotické terapie u pacientů s negativními výsledky hemokultur, kde dochází k prodloužení mezi prvními klinickými projevy onemocnění a definitivní diagnózou IE. Včasné zahájení cílené antibiotické terapie je přitom klíčové nejen pro eradikaci lokální infekce, ale rovněž pro snížení rizika dalších komplikací, jakými jsou srdeční selhání nebo septická embolizace (Westphal et al. 2009).

2.9.2 Chirurgická léčba

Akutní endokarditida je řešena chirurgicky nejčastěji z následujících indikací: riziko embolizací, přítomnost houbového etiologického agens nebo multirezistentního infekčního agens, šíření infekce do paravalválních tkání, časná infekce protézy nebo dysfunkce protézy. Chirurgický zákrok je kontraindikován u pacientů s multiorgánovým selháním, závažnou mozkovou dysfunkcí či chronickým kardiálním selháváním (NYHA III-IV) a zvažován u osob starších 75-80 let, u nichž jsou funkční rezervy natolik sníženy, že je pravděpodobnost vyléčení i po chirurgickém zákroku nízká (Beneš et al. 2007).
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

2.10 Současné metody diagnostiky IE

Diagnostika a následná cílená antibiotická/chirurgická terapie IE se opírá především o rychlou a včasnou identifikaci etiologického agens a jeho citlivosti k antibiotikům z krve pacienta a zobrazení srdečních chlopní pomocí echokardiografie.

2.10.1 Echokardiografie

Tato základní zobrazovací metoda slouží pro průkaz mobilních chloppenních vegetací, abscesů, perforací cípů nebo ruptury závěsného aparátu chlopní a případně akutní infekce u pacientů s podezřením na IE nativních nebo prostetických chlopní. Přítomnost vegetací nativních chlopní se při echokardiografii projevuje nově vzniklou regurgitací či přítomností vlajících útvarů na chlopních způsobující paravalvální leak. Infekce umělých chlopní a intrakardiálně uloženého materiálu se při echokardiografii projevuje jeho uvolněním, vznikem perivalvulárního abscesu, pseudoaneurysmat nebo fistulí či nově vzniklou prostetickou regurgitací.

Při dobré vyšetřitelnosti a menší klinické naléhavosti postačuje transtorakální echokardiografie (TTE). Nálež však bývá při klinickém podezření prokázán pomocí TTE jen přibližně u 50 % případů. Oproti tomu jícenová echokardiografie (TEE) dosahuje při průkazu vegetací citlivost vyšší než 90 % a je indikována při podezření na možné komplikace IE. Vždy se TEE provádí při podezření na IE chloppenních protéz nebo při obtížné vyšetřitelnosti transtorakálním přístupem (Beneš et al. 2007).
Po třech týdnech až třech měsících po započaté terapii lze pomocí echokardiografie sledovat u části pacientů vymizení (30%) nebo alespoň zmenšení vegetací (18%). Pacienti, u nichž se velikost vegetací nemění (40%) či dochází ke jejich zvětšení (11%), jsou většinou následně indikováni k chirurgickému odstranění nálezu (Vuille et al. 1994). Pomocí echokardiografie nelze odlišit vegetace aktivní IE od vyléčené IE. Falešně pozitivní nálezy bývají spojeny s přítomností tumorů či neinfekčních vegetací např. u pacientů se systémovým lupus erythematodes mechanickým uvolněním umělé náhrady bez infekční souvislostí (Habib et al. 2009). Nově byl zaznamenán fatální případ neinfekční prostetické endokarditidy v souvislosti s alergií na umělou prasečí chlopeň (Fournier et al. 2011).

2.10.2 Standardní mikrobiologická diagnostika

Rychlá identifikace etiologického agens má klíčový význam pro léčbu IE. Metody standardní mikrobiologické diagnostiky zahrnují kultivaci infekčního agens z krve (hemokultivace), a v případě chirurgického zákroku i kultivaci agens z bakteriální vegetace.

Výsledek hemokultivace lze potvrdit kultivací agens např. z embolů získaných při embolektomii nebo hnisu odebraného punkcí z metastatických abscesů.

U chirurgicky léčených pacientů lze k potvrzení přítomnosti/identifikaci agens využít i excidované části nativních chlopní nebo mělého materiálu s bakteriálními vegetacemi (Beneš et al. 2007). Pro kultivaci agens z materiálu je využívaná stejná sada půd jako pro hemokultury, navíc se pro zvýšení citlivosti provádí subkultivace z bujónu. Dobře rostoucí agens (např. stafylokoky, streptokoky a enterokoky) je identifikováno včetně citlivosti k
antibiotikům do 48-72h od doručení materiálu do laboratoře. Inkubace po dobu pěti až šesti dnů by měla stačit i pro záchyt ostatních běžně rostoucích patogenů.

2.10.2.1.1 Odlišení stafylokoků od ostatních bakterií způsobujících IE

Z pozitivní hemokultury, která již po 6 h může signalizovat růst mikrobů, je proveden nátěr na sklíčko, Gramovo barvení a mikroskopie, kde pozorujeme grampozitivní koky. Pozitivní hemokultura (nebo chirurgický materiál) je inokulována na paletu běžných i selektivních půd. Po 24 h inkubaci odlišíme stafylokoky od streptokoků/enterokoků růstem na krevním agaru s 10% NaCl. Paletu půd můžeme doplnit rychlým biochemickým testem produkce katalázy, kterou mají stafylokoky na rozdíl od streptokoků pozitivní. Pro rychlé rozlišení IE způsobené S. aureus od IE způsobené jinými grampozitivními mikroby je možné využít detekci kapsulárních antigenů, peptidoglykanu nebo kyseliny teichoové pomocí ELISA (Tak et al. 2002).

2.10.2.1.2 Rozlišení kmenů S. aureus a KNS.

Na běžném krevním agaru rostou S. aureus v krémových koloniích se širokou zónou beta-hemolýzy, zatímco KNS v drobnějších bělavých koloniích, většinou bez hemolýzy. K odlišení S. aureus a KNS lze využít schopnosti S. aureus srázet plazmu (test vázané/volné plasmakoagulázy) nebo tvořit hyaluronidázu (Murray et al. 2003).

2.10.2.1.3 Stanovení citlivosti stafylokoků k antibiotikům

Dle výsledků bakteriologické identifikace je provedeno testování citlivosti k antibiotikům pomocí mikrodiľučního a diskového difuzního testu se sadou antibiotiků působících proti stafylokokům, viz Tab. 4.

Tabulka 4. Příklad antibiotik působících proti stafylokokům.

<table>
<thead>
<tr>
<th>Název antibiotika</th>
<th>Zkratka</th>
<th>Skupina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxacilin</td>
<td>OXA</td>
<td>isoxalilové peniciliny stabilní vůči betalaktamázy</td>
</tr>
<tr>
<td>Erytromycin</td>
<td>E</td>
<td>makrolidy</td>
</tr>
<tr>
<td>Klindamycin</td>
<td>DA</td>
<td>linkosamidy</td>
</tr>
<tr>
<td>Sulfomethoxazol/trimetorpim</td>
<td>SXT</td>
<td>sulfonamidy</td>
</tr>
<tr>
<td>Amoxicilin/klavulanát*</td>
<td>AMC</td>
<td>betalaktamidy s inhibitorem betalaktamázy</td>
</tr>
<tr>
<td>Doxycyklin</td>
<td>DO</td>
<td>tetracykliny</td>
</tr>
<tr>
<td>Cefoxitin**</td>
<td>CXT</td>
<td>cefalosporiny II. generace</td>
</tr>
<tr>
<td>Chloramfenikol</td>
<td>C</td>
<td>amfenikoly</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>CN</td>
<td>aminoglykosidy</td>
</tr>
<tr>
<td>Vankomycin</td>
<td>VA</td>
<td>glykopeptidy</td>
</tr>
<tr>
<td>Teikoplanin</td>
<td>TEC</td>
<td>glykopeptidy</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>RD</td>
<td>ansamyciny</td>
</tr>
<tr>
<td>Linezolid</td>
<td>LIN</td>
<td>oxazolidinony</td>
</tr>
<tr>
<td>Tigecyklin</td>
<td>TIG</td>
<td>glycylykliny</td>
</tr>
</tbody>
</table>

Pozn. * Alternativně lze použít ampicilin-sulbaktam. ** Cefoxitin je dobrým induktorem exprese genu mecA, proto se využívá pro in vitro testování citlivosti izolátů k betalaktamáza - stabilním antibiotikům, např. oxacilinu (viz Tab. 5). Pro léčbu se cefoxitin nevyužívá, neboť je silným induktorem betalaktamáž.

Jelikož byl cefoxitin prokázán jako lepší induktor exprese genu mecA a tvorby PBP-2A než oxacilin (Swenson, Tenover a Grp 2005), používá se ke stanovení citlivosti stafylokoků ke všem antibiotikům působícím na buněčnou stěnu (tj. betalaktamy a karbapenemy) společně s oxacilinou. Zpravidla se mikrodiľuční metodou testuje citlivost k oxacilinu a diskovým difuzním testem citlivost k cefoxitinu (30 µg) a oxacilinu (1 µg). Kmeny citlivé k cefoxitínů i augmentinu (betalaktamu potencovanému inhibitorem betalaktamázy) jsou hodnoceny jako citlivé k účinku betalaktamů. Kmeny rezistentní k augmentinu a citlivé k cefoxitinu jsou hodnoceny jako citlivé k oxacilinu, ale rezistentní ke všem betalaktamům s inhibitory betalaktamáž. Kmeny rezistentní k augmentinu i cefoxitinu jsou hodnoceny jako rezistentní ke všem betalaktamům včetně karbapenemů, s výjimkou antibiotik s prokázanou aktivitou nebo vyššími klinickými breakpointy proti MRSA (Juránková, 2011, osobní komunikace).
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

Pro citlivější a rychlejší záchyt rezistentních kmenů S. aureus se doporučuje vzorky kultivovat na selektivní půdě pro MRSA (půda s NaCl obsahující antibiotikum o koncentraci inhibující citlivé kmeny S. aureus nebo chromogenní půda) a zároveň i na půdě neselektivní, neboť MRSA s extrémně nízkou koncentraci buněk rezistentních k oxacilinu se mohou jevit na selektivních půdách jako kmeny citlivé. Je rovněž možné využít latexovou aglutinaci pro průkaz proteinu PBP-2A. U kmenů s hranicí citlivosti je doporučováno konfirmovat výsledek standardních fenotypových testů metodou PCR (přítomnost genu mecA)².

2.10.3 Histologie

2.10.4 Alternativní metody detekce patogenů

2.10.4.1 Serologie

² Doporučený postup pro kontrolu výskytu kmenů S. aureus rezistentních k oxacilinu a s jinou nebezpečnou antibiotickou rezistencí v nemocničních zařízeních, Zpráva CEM (SZÚ Praha) 2006, ročník 15, příloha 1.
2.10.4.2 Molekulárně-biologická detekce

Vývoj molekulárních metod v posledních 20 letech započal novou éru v diagnostice infekčních nemocí. Z možností molekulární detekce patogena se v klinické mikrobiologické praxi v současné době nejvíce využívá polymerážová řetězová reakce (PCR). Opakovanými cykly denaturace dvoušroubovice DNA, připojení primerů a syntézy nového vlákna dochází na základě komplementarity k tvorbě až biliónu kopií daného úseku DNA. V závislosti na počtu cyklů a efektivitě PCR tak během 2-3 hodin vznikne in vitro replikaci až jedna miliarda kopií cíleného úseku DNA patogena (Mullis 1990). Molekulární detekce DNA patogena může být provedena s menší či větší úspěšností z různého klinického materiálu. U pacientů s IE se nejčastěji jedná buď o krev (Moore et al. 2001), vegetaci z peroperačně odstraněné chlopně (Grijalva et al. 2003) nebo embolus (Tak a Shukla 2004). Kritickým krokem pro analýzu nukleových kyselin patogenů pomocí molekulárně-biologických metod je efektivní izolace DNA patogena.

2.10.4.2.1 Detekce patogenů pomocí širokospektré PCR

Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

Možnost využít širokospektrou PCR a sekvencování genu 16S rDNA pro průkaz infekčního agens v chlopních u pacientů s infekční endokarditidou prokázal poprvé Goldenberger a kol. (1997). Výsledky PCR byly srovnány se standardními kultivačními metodami pro záchyt patogena a ukázaly vysoké procento shody. V následujících letech několik autorů větších studií prokázalo přínos širokospektré PCR a sekvencování pro záchyt etiologického agens IE, zejména u pacientů s kultivačně negativním výsledkem (viz Tab. 5).

2.10.4.2.2 Detekce patogenů pomocí specifické PCR

Pro specifickou PCR je cílovým místem amplifikace gen, který kóduje specifický protein, např. receptor na povrchu mikroorganismu nebo enzym specifický pro určitý druh mikroba nebo skupinu mikrobů. Přítomnost/nepřítomnost produktu specifické PCR potom svědčí pro přítomnost/nepřítomnost konkrétního mikroba, na něhož je v analyzovaném materiálu podezření. Lze také využít specifické detekční systémy, které jsou pro časovou a finanční úsporu navrženy v uspořádání tzv. multiplex PCR. Jedna reakce je navržena na několik specifických cílových míst a produkty amplifikace je možné od sebe oddělit na základě rozdílných délek gelovou elektroforézou nebo použitím odlišných fluorescenčních sond.

Kromě záchytu kultivačně náročných patogenů lze specifickou PCR také využít pro stanovení antibiotické rezistence (Moore et al. 2001). Cílovým místem amplifikace může být např. gen mecA, kódující rezistenci k oxacilinu a ostatním beta-laktamům u stafylokoků (Kobayashi et al. 1994), gen van A, B nebo C, kódující rezistenci k vankomycinu u enterokoků (Free a Sahm 1995) nebo PBP1a/PBP2b kódující rezistenci k penicilinu u streptokoků (Coffey et al. 1995).
Tabulka 5. Přehled studií, které provedly širokospektrou PCR a sekvencování pro detekci patogenů u chirurgicky léčených pacientů s IE.

<table>
<thead>
<tr>
<th>Počet pacientů s „prokázanou“ IE / kontrolní pacienti</th>
<th>Cílové místo</th>
<th>Sensitivita a specificita PCR</th>
<th>Sensitivita a specificita kultivace</th>
<th>Literatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/0</td>
<td>16S rDNA</td>
<td>N</td>
<td>N</td>
<td>(Goldenberger et al. 1997)</td>
</tr>
<tr>
<td>49/14</td>
<td>16S rDNA</td>
<td>82.6 % / 100 %<sup>a</sup></td>
<td>17.6 % / 88.9 %<sup>b</sup></td>
<td>(Bosshard et al. 2003)</td>
</tr>
<tr>
<td>17/13</td>
<td>16S rDNA</td>
<td>93 % sensitivita</td>
<td>N</td>
<td>(Grijalva et al. 2003)*</td>
</tr>
<tr>
<td>28/61</td>
<td>16S rDNA</td>
<td>N</td>
<td>N</td>
<td>(Lang et al. 2004)</td>
</tr>
<tr>
<td>52/16</td>
<td>16S rDNA</td>
<td>41.2 % / 100 %</td>
<td>77.8 % / 93 %</td>
<td>(Breitkopf et al. 2005)</td>
</tr>
<tr>
<td>127/118</td>
<td>16S rDNA</td>
<td>61 % sensitivita</td>
<td>13 % sensitivita</td>
<td>(Greub et al. 2005)</td>
</tr>
<tr>
<td>156/0</td>
<td>16S rDNA</td>
<td>N</td>
<td>N</td>
<td>(Roverey et al. 2005)</td>
</tr>
<tr>
<td>35/120</td>
<td>16S rDNA</td>
<td>96 % / 95.3 %</td>
<td>N</td>
<td>(Marin et al. 2006)</td>
</tr>
<tr>
<td>74/16</td>
<td>16S rDNA</td>
<td>72 % / 100 %</td>
<td>26 % / 62 %</td>
<td>(Voldstedlund et al. 2008)</td>
</tr>
<tr>
<td>241/0</td>
<td>23S rDNA</td>
<td>96.4 % / 100 %</td>
<td>33.4 % / 96.6 %</td>
<td>(Vollmer et al. 2010)</td>
</tr>
<tr>
<td>549<sup>c</sup></td>
<td>16S rDNA</td>
<td>N</td>
<td>N</td>
<td>(Fournier et al. 2010)</td>
</tr>
</tbody>
</table>

V rámci této studie byla testována širokospektrá PCR a sekvencování pro diagnostiku IE u chirurgicky ošetřených pacientů v CKTCH, Brno.
3 CÍLE STUDIE

a) popsat využití širokospektré PCR a sekvencování pro rutinní mikrobiologickou diagnostiku
b) zavést multiplex PCR pro specifickou detekci stafylokoků a jejich rezistence k oxacilinu (resp. beta-laktamům) a stanovit její analytickou sensitivitu a specificitu
c) stanovit využitelnost metody specifické PCR pro detekci stafylokoků z krve a intranasálních výtěrů při screeningu MRSA
d) srovnat výsledky specifické PCR a širokospektré PCR se sekvencováním
e) provést klinickou validaci PCR u pacientů s „prokázanou“ diagnózou IE stafylokokové etiologie a chirurgicky ošetřených pacientů s jinou, neinfekční diagnózou
f) objasnit přínos/diagnostický význam PCR pro detekci stafylokoků u pacientů s „možnou“ diagnózou IE nebo negativními výsledky standardní kultivace
4 MATERIÁL A METODY

4.1 Optimalizace PCR pro průkaz stafylokoků

4.1.1 Testované kmeny

Po účely optimalizace této PCR bylo použito celkem 14 referenčních kmenů stafylokoků a 173 kmenů patogenních bakterií a hub izolovaných z klinického materiálu (viz Tab. 6 a 7).

<table>
<thead>
<tr>
<th>Koaguláza-позитivní kmeny</th>
<th>Číslo kmene (CCM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus intermedius</td>
<td>CCM4710</td>
</tr>
<tr>
<td>Staphylococcus aureus – rezistentní k oxacilinu</td>
<td>CCM 7111</td>
</tr>
<tr>
<td>Koagulázанегативní kmeny</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus haemolyticus</td>
<td>CCM2729</td>
</tr>
<tr>
<td>Staphylococcus hominis sbsp.hominis</td>
<td>CCM2732</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>CCM2124</td>
</tr>
<tr>
<td>Staphylococcus lugdunensis</td>
<td>CCM4068</td>
</tr>
<tr>
<td>Staphylococcus caprae</td>
<td>CCM4546</td>
</tr>
<tr>
<td>Staphylococcus schleiferi</td>
<td>CCM4070</td>
</tr>
<tr>
<td>Staphylococcus sciuri sbsp.sciuri – rezistentní k oxacilinu</td>
<td>CCM7040</td>
</tr>
<tr>
<td>Staphylococcus saprophyticus</td>
<td>CCM2727</td>
</tr>
<tr>
<td>Staphylococcus simulans</td>
<td>CCM2724</td>
</tr>
<tr>
<td>Staphylococcus xylosus</td>
<td>CCM2725</td>
</tr>
<tr>
<td>Staphylococcus warneri</td>
<td>CCM2731</td>
</tr>
<tr>
<td>Staphylococcus capitis</td>
<td>CCM2735</td>
</tr>
</tbody>
</table>

*Kmeny dodala Česká sbírka mikroorganismů (Brno).

4.1.1.1 Stanovení antibiotické citlivosti

Pro testování citlivosti klinických izolátů stafylokoků k oxacilinu byl použit diskový difuzní test a mikrodiluční test. Pro tuto práci byly využity breakpointové hodnoty antibiotik podle doporučení Mezinárodní společnosti pro klinické standardy (NCCLS). Minimální inhibiční koncentrace (MIC) oxacilinu u jednotlivých izolátů byla stanovena pomocí mikrodilučního testu. Breakpoint pro oxacilin byl stanoven 2 µg/ml u S. aureus a 0.5 µg/ml u KNS. Mikrodiluční test byl potvrzen diskovým difuzním testem s oxacilinem (1 µg, Oxoid, UK) a cefoxitinem (30 µg, Oxoid, UK), který je lepším induktorem rezistence, resp. expresí genu mecA. Breakpoint oxacilinu byl pro S. aureus > 13 mm, pro KNS > 18 mm, breakpoint cefoxitinu byl pro S. aureus > 20 mm a pro KNS > 25 mm. Dle doporučení NCCLS byly všechny kmeny citlivé k cefoxitinu (CXT) hodnoceny jako citlivé k oxacilinu a ke všem beta-laktamovým antibiotikům.
Tabulka 7. Klinické kmeny použité pro testování PCR specifické pro stafylokoky.

<table>
<thead>
<tr>
<th>S. aureus (n=64)</th>
<th>Počet izolátů</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>29<sup>a</sup></td>
</tr>
<tr>
<td>MRSA + Gram-negativní tyčinky</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>MRSA + Pseudomonas aeruginosa</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>MSSA</td>
<td>29<sup>b</sup></td>
</tr>
<tr>
<td>MSSA + Candida albicans</td>
<td>1<sup>b</sup></td>
</tr>
<tr>
<td>MSSA + Klebsiella pneumoniae</td>
<td>1<sup>b</sup></td>
</tr>
<tr>
<td>MSSA + Escherichia coli</td>
<td>2<sup>b</sup></td>
</tr>
</tbody>
</table>

Koagulázanegativní stafylokoky (n=53)

<table>
<thead>
<tr>
<th>Koagulázanegativní stafylokoky</th>
<th>Počet izolátů</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRKNS</td>
<td>22<sup>a</sup></td>
</tr>
<tr>
<td>MRKNS + K.pneumoniae + Proteus mirabilis</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>MRKNS + P. mirabilis</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>MRKNS + P. aeruginosa</td>
<td>2<sup>a</sup></td>
</tr>
<tr>
<td>MRKNS + C. albicans</td>
<td>2<sup>a</sup></td>
</tr>
<tr>
<td>MRKNS + Enterococcus faecalis</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>MRKNS + Branhamella catarrhalis</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>MRKNS + kvasinky (bez bližší specifikace)</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>MSKNS</td>
<td>20<sup>c</sup></td>
</tr>
<tr>
<td>MSKNS + Streptococcus pneumoniae</td>
<td>1<sup>c</sup></td>
</tr>
<tr>
<td>MSKNS + Gram-negativní bakterie (bez bližší specifikace)</td>
<td>1<sup>c</sup></td>
</tr>
</tbody>
</table>

Smíšené izoláty stafylokoků (n=7)

<table>
<thead>
<tr>
<th>Smíšené izoláty stafylokoků</th>
<th>Počet izolátů</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA + MSSA</td>
<td>1</td>
</tr>
<tr>
<td>MRSA + MSKNS</td>
<td>1</td>
</tr>
<tr>
<td>MSSA + MRKNS</td>
<td>3</td>
</tr>
<tr>
<td>MSSA + MSKNS</td>
<td>1</td>
</tr>
<tr>
<td>MSKNS + MRKNS</td>
<td>1</td>
</tr>
</tbody>
</table>

Izoláty jiných bakterií a hub (n=49)

<table>
<thead>
<tr>
<th>Izoláty jiných bakterií a hub</th>
<th>Počet izolátů</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. faecalis</td>
<td>2</td>
</tr>
<tr>
<td>E. coli</td>
<td>12</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>3</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>13</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella sp.</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter sp.</td>
<td>1</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>3</td>
</tr>
<tr>
<td>Gram-negativní nefermentující tyčinky (bez bližší specifikace)</td>
<td>3</td>
</tr>
<tr>
<td>Gramnegativní tyčinky (bez bližší specifikace)</td>
<td>3</td>
</tr>
<tr>
<td>Kvasinky (bez bližší specifikace)</td>
<td>3</td>
</tr>
<tr>
<td>P. aeruginosa + P. mirabilis</td>
<td>1</td>
</tr>
<tr>
<td>P. aeruginosa + C. albicans + Candida tropicalis</td>
<td>1</td>
</tr>
<tr>
<td>E. coli + E. faecalis</td>
<td>1</td>
</tr>
<tr>
<td>C. albicans + C. tropicalis</td>
<td>1</td>
</tr>
</tbody>
</table>

CELKEM 173

^a Všechny kmeny MRKNS (n=31) a MRSA (n=31) rezistentní k oxacilinu byly rezistentní i k cefoxitinu.
^b Všechny kmeny MSSA (n=33) byly citlivé k oxacilinu i cefoxitinu.
^c Sedm z 22 kmenů MSKNS bylo rezistentní k oxacilinu, ale citlivých k cefoxitinu. Kmeny poskytl MÚ FNuSA v Brně.
4.2 Analyzovaná skupina

V letech 2004-2008 byl v naší laboratoři zpracován chirurgický materiál (nativní a prostetický) u 161 chirurgicky ošetřených pacientů s IE ze tři specializovaných kardiochirurgických center: Centrum kardiovaskulární a transplantační chirurgie (CKTCH) v Brně, Kardiocentrum Institutu Klinické a Experimentální Medicíny (IKEM) v Praze a Kardiochirurgická klinika Karlovy Univerzity v Hradci Králové. Do analyzovaného souboru bylo zahrnuto 60 pacientů, u nichž byl pomocí molekulární metody a/nebo standardní mikrobiologické metody nalezen v krvi a/nebo v peroperačním materiálu KNS nebo S. aureus. Nebyli zahrnuti pacienti s jedním pozitivním záchytem KNS nebo pacienti, u nichž byl nalezen kromě KNS i jiný patogen způsobující IE.

4.3 Kontrolní skupina

Do kontrolní skupiny bylo zahrnuto 59 pacientů, kteří podstoupili kardiochirurgický zákrok pro jinou, neinfekční diagnózu. Při echokardiografii ani v průběhu operace nebylo podezření na akutní nebo již proběhlou infekci. Peroperačně odstraněná chlopeň (ve většině případů aortální) byla vyšetřena na přítomnost DNA patogena pomocí širokospektré PCR a sekvencování a specifické PCR pro záchyt stafylokoků. Hemokultury ani odběr peroperačního materiálu pro standardní kultivační vyšetření nebyly provedeny.

4.4 Sběr klinických dat

Pro každého pacienta s podezřením na IE byl retrospektivně vyplněn formulář s následujícími údaji:

1) demografické údaje (pohlaví / věk / datum hospitalizace)
2) vstupní klinický obraz (fébrilie / nové šelesty / známky arteriální embolizace / Oslerovy nodozity / NYHA / srdeční selhávání / edém plic / glomerulonefritida / kardiogenní šok / septický stav / multiorgánové selhání aj.)
3) vstupní laboratorní obraz (CRP / počet leukocytů / prokalcitonin/FW / RF aj.)
4) výsledek transtorakální / transezofageální echokardiografie (typ postižené chlopně/stupeň poruchy chlopně / dehiscence prostetické chlopně nebo jiného intrakardiálně uloženého materiálu/přítomnost vlajících vegetací nebo perianulárního abscesu)
5) predispozice (intravenózní narkomanie/revmatická horečka / vrozená srdeční vada/prostetická chlopeň / dlouhodobá intravenózní terapie) a předchozí operace srdce
6) výsledky hemokultur (včetně počtu vpichů, časový odstup mezi odběry) před přijetím do specializovaného kardiochirurgického centra
7) výsledek kultivace a PCR z pooperačního materiálu
8) typ a délka konzervativní antibiotické léčby před operací
9) stav pacienta po 1 roce od chirurgického zákroku

4.5 Metody průkazu patogenů

4.5.1 Hemokultury

Standardní hemokultivace (≥ 3 odběry) byla provedena v mikrobiologických laboratořích nemocničních zařízení, na kterých byli pacienti hospitalizováni před přijetím na specializovaná pracoviště a/nebo v laboratořích specializovaných kardiochirurgických pracovišť bezprostředně před operací. Nález KNS byl interpretován jako pozitivní pouze pokud byl prokázán v nejméně třech hemokulturách nebo ve dvou hemokulturách odebraných s minimálně 12h intervalem. Pacienti, u nichž byl nález KNS doprovázen přítomností jiného agens typicky IE, nebyli zahrnuti do této studie.

4.5.2 Kultivace z chirurgického materiálu

Chirurgický materiál byl odebrán do sterilní nádobky a zaslán do lokální klinické mikrobiologické laboratoře při příslušném specializovaném kardiochirurgickém centru. Nativní chlopeň byla mechanicky rozdrcena a homogenizována. Materiál z prostetické chlopně nebo část elektrody byl(a) sonikován(a) v bujónu. Podle standardního postupu dané mikrobiologické laboratoře byl bujón inokulován na sadu pevných kultivačních médií.

Pro testování antibiotické citlivosti byl použit diskový difuzní test a/nebo mikrodiluční metoda pro přesné stanovení MIC, opět podle standardního operačního postupu dané mikrobiologické laboratoře.

4.5.3 Molekulárně-biologická detekce

4.5.3.1 Izolace DNA z bakteriální / houbové suspenze

Bakteriální suspenze (500 µl) byla centrifugována 10 min. při 7500 rpm. Supernatant byl odstraněn a k sedimentu byl přidán pufr AE (QIAamp Blood Mini Kit, Qiagen,
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

Německo). Suspenze byla promíchána (15 s) a inkubována 15 min. při 95 °C. Na závěr byla provedena centrifugace při 7500 rpm po dobu 15 min. a supernatant byl použit jako templát pro širokospektrou PCR, která obsahuje interní kontrolu amplifikace (IKA) a pro specifickou multiplex PCR (viz dále).

4.5.3.2 Izolace DNA z chirurgického materiálu

Chirurgický materiál pacientů s IE a pacientů kontrolní skupiny byl ve sterilních nádobkách bez transportního média doručen do Genetické laboratoře CKTCH. Materiál o velikosti cca 3x3 mm byl sterilními nástroji (pinzeta, skalpel) rozdrcen a vložen do sterilní zkumavky (2 ml). Elektroda/umělá náhrada chlopně, na niž nebyly viditelně vegetace, byla umístěna do zkumavky se sterilní vodou. Zkumavka byla vložena do ultrazvukové lázně při 95 °C. Na závěr byla provedena centrifugace při 7500 rpm po dobu 15 min. a supernatant byl použit jako templát pro širokospektrou PCR, která obsahuje interní kontrolu amplifikace (IKA) a pro specifickou multiplex PCR (viz dále).

4.5.3.3 Specifická PCR pro průkaz stafylokoků

Byla navržena cílová místa a délka amplifikovaných fragmentů pro detekci S. aureus, KNS a rezistence k oxacilinu. Pomocí softwarového programu (http://eu.idtdna.com/analyzier/applications/oligoanalyzet/default.aspx, 1.7.2011) bylo provedeno testování možných interakcí mezi primery v multiplexovém uspořádání. Po optimalizaci s referenčními a klinickými kmeny byly zvoleny optimální podmínky amplifikace a složení PCR. Byly použity 3 páry primerů pro: 1) oblast genu pro 16S rRNA specifická pro stafylokoky, 2) gen femB specifický pro S. aureus a 3) gen mecA pro rezistenci k meticilinu/oxacilinu (viz Tab. 9). Příprava PCR proběhla následovně: 5 µl templátní DNA bylo přidáno k 35 µl PCR mixu o výsledném složení: 1x HotStartTaq MasterMix s 1.5 mM MgCl2 (Qiagen, Německo), 1 µM přímého a zpětného primeru femB, 0.35 µM přímého a
zpětného priméru meCA, 0.125 µM přímého a zpětného priméru pro sekvenci 16S rDNA specifickou pro stafylokoky.

Po počáteční denaturaci při 94 °C 15 min., následovalo 10 cyklů při 94 °C 45 s, 59 °C 40 s, 68 °C 1 min. a 25 cyklů při 94 °C 1 min., 54 °C 50 s, 68 °C 2 min. (T3000 Thermocycler, Biometra, Německo). Elektroforéza byla provedena na 2 % agarózovém gelu (Serva, Německo) s EtBr (0.5 mg/ml) při 90V po dobu 45 min. S každým vzorkem byl navíc analyzován vzorek pozitivní amplifikační kontroly (genomová DNA referenčního kmene MRSA) a negativní kontroly (sterilní voda), viz Obr. 4.

Obrázek 4. Kontrolní panel metody multiplex PCR specifické pro průkaz stafylokoků. Legenda: IC izolační kontrola, NC negativní kontrola, PC pozitivní kontrola, M100 molekulární žebříček 100-1000 bp. Interní amplifikační kontrola (IAC) není v reakci zahrnuta.

4.5.3.4 Širokospektrá PCR a sekvencování

Primery byly navrženy do konzervativní oblasti 16S rDNA (1243-1294bp, 1435-1465 bp) tak, aby uvnitř amplikonu zůstaly hypervariabilní oblasti V8-V9 (viz Tab. 8). Složení PCR bylo následující: 1x HotStartTaq Master Mix, jehož součástí je 1.5 mM MgCl₂ (Qiagen, Německo), 0.5 µM přímého a zpětného priméru pro širokospektrý záchyt bakterií (UNB1 a a UNB2b), 0.5 mM MgCl₂, 0.02 mM dUTP a 0.025 mg/ml 8-methoxypsoralen (Sigma-Aldrich, Německo). Dekontaminace zahrnovala inkubaci PCR mixu při 4 °C po dobu 90 min. s následnou inkubací v UV linkeru (Bio-link BLX-365, Vilber Lourmat, Francie) při 30J po dobu 7 min.

Do každé reakční směsi bylo poté přidáno 5 µl DNA templátové DNA. Byla provedena amplifikace ve 35 cyklech při 96 °C 15 min., 96 °C 10 s, 57 °C 10 s, 72 °C 30 s (Peltier Thermocycler, MJ research, USA). Elektroforéza byla provedena na 2 % agarózovém gelu (Serva, Německo) při 90V po dobu 35 min. Produkt PCR byl přečištěn z gelu pomocí Gel
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

S každou sadou vzorků byl proveden kontrolní panel (viz Obr. 5). Jako pozitivní kontrola (PC) sloužila plazmidová DNA o konečné koncentraci 10^4 kopií/µl (variabilní oblast V8 a V9 16S rDNA Streptococcus pyogenes). Pro negativní kontrolu (NC) byla místo templátové DNA použita sterilní voda. K oběma kontrolám byla přidána interní kontrola amplifikace (IKA) pro odhalení případných falešně negativních výsledků v důsledku přítomnosti inhibitorů Taq polymerázy. Totálně negativní kontrola (TNC) sloužila pro kontrolu přípravy a dekontaminace reakční směsi PCR a neobsovala IKA ani templátovou DNA.

Obrázek 5. Kontrolní panel br-PCR. Legenda: IC izolační kontrola, NC negativní kontrola, PC pozitivní kontrola, C4 koncentrace plazmidové DNA: 10^4 k/µl, C3 koncentrace plazmidové DNA: 10^3 k/µl, C2 koncentrace plazmidové DNA: 10^2 k/µl, TNC totálně negativní kontrola, M100 molekulární žebříček 100-1000bp. Interní amplifikace kontrola (IKA) má délku 519 bp, produkt 16S rDNA (oblasti V8-V9) má délku 372 bp.
Tabulka 8. Primery použité pro specifickou a širokospektrou PCR.

<table>
<thead>
<tr>
<th>Cílové místo</th>
<th>Přímé (5´-3´)</th>
<th>Zpětné (5´-3´)</th>
<th>Délka produktu</th>
<th>Literatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>16SrDNA Stafylokoky</td>
<td>CCTATAAGACTGGGATAACTTCGGG</td>
<td>CTTTGAGTTTCAACCTTGGTGGC</td>
<td>791 bp</td>
<td>(Mason et al. 2001)</td>
</tr>
<tr>
<td>femB</td>
<td>TTACAGGTTACTGTTACC</td>
<td>ATACAAATCCAGACGCTCT</td>
<td>651 bp</td>
<td>(Jonas et al. 2002)</td>
</tr>
<tr>
<td>mecA</td>
<td>GTAGAATGACTGAAGTCGATAAA</td>
<td>CCAATTGCACATTGTTGCAGCTA</td>
<td>310 bp</td>
<td>(Jonas et al. 2002)</td>
</tr>
<tr>
<td>16SrDNA Panbakteriální</td>
<td>AACTGGGAGGAGGTGGGAGGAT</td>
<td>AGGAGGTGATCCAGCGCA</td>
<td>372 bp</td>
<td>(Grijalva et al. 2003)</td>
</tr>
</tbody>
</table>

4.6 Statistika

Hladina významnosti demografických rozdílů mezi analyzovanou a kontrolní skupinou byla vypočítána pomocí neparametrického Mann-Whitney testu (věk) a χ² testu. Pomocí AUC (Area Under the Curve) a MedCalc 11.1.0.0 (MedCalc Software 1993-2009) byl proveden výpočet intervalů spolehlivosti sensitivity a specificity PCR. Výpočet vycházel z binormálního modelu. Diagnostická síla PCR byla potvrzena pomocí ROC (Receiver Operating Characteristics) SPSS Inc. web calculator (Eng, 2006), verze SPSS 17.02 (SPSS Inc., 2009) (http://www.jrocfit.org, 1.7.2011). Pro párové srovnání obou PCR metod u pacientů prokázanou diagnózou IE a kontrolní skupiny byl použit Mc Nemarův test. Párové srovnání výsledků hemokultur s kultivací nebo PCR z chirurgického materiálu u pacientů s „možnou“ nebo „prokázanou“ diagnózou IE bylo provedeno pomocí Mc Nemarova testu. Pro stanovení významnosti rozdílů klinických parametrů mezi pacienty s IE způsobenými S. aureus a KNS byl použit Fisherův test shody dvou relativních četností s obostranným rozdělením. Rozdíly mezi srovnávanými skupinami byly považovány za statisticky významné při p < 0.05.
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

5 VÝSLEDKY

5.1 Přínos širokospektré detekce bakterií pro klinickou praxi

V rámci doktorského studia jsem se v Genetické laboratoři CKTCH podílela na rutinním molekulárně-biologickém vyšetření klinických vzorků od pacientů s infekčním onemocněním.

Výhodou molekulárně-biologické metody založené na širokospektré PCR a sekvencování je její nezávislost na viabilitě bakterií a možnost záchytu DNA jakéhokoliv bakteriálního agens, které se v materiálu vyskytuje bez nutnosti předchozí kultivace. Uplatňuje se zejména v případech nekultivovatelných, obtížně kultivovatelných nebo na transport náročných patogenů, případně u vzorků odebraných při současné antibiotické terapii.

V letech 2007-2010 jsem se podílela na přípravě publikací čtyř zajímavých kazuistik, kde se širokospektrá PCR ukázala jako velmi potřebná pro diagnostiku infekčních onemocnění u pacientů v závažném stavu. Ve spolupráci s Klinikou infekčních chorob v Brně je popisována sepse vyvolaná bakterií Capnocytophaga canimorsus (viz Příloha 1), ve spolupráci s Kardiochirurgickým centrem FN Ostrava je prezentována kazuistika kultivačně negativní IE aortální a mitrální chlopně způsobená Tropheryma whipplei (viz Příloha 2), ve spolupráci s Úrazovou nemocnicí v Brně uvádím kazuistiku těžké rekurrentní infekce umělého kolenního kloubu s nesouhlasnými výsledky standardní kultivace a PCR (viz Příloha 3).

V roce 2010 byla publikována kazuistika pacienta chirurgicky ošetřeného v CKTCH s diagnostizovanou IE aortální chlopně způsobenou Cardiobacterium valvarum, kterou nebylo možné identifikovat pomocí běžných biochemických testů (viz Příloha 4).

Ve studií, která uvádí výsledky chirurgické léčby IE na CKTCH, bylo etiologické agens stanoveno podle výsledků hemokultur, PCR a kultivace agens z peroperačního materiálu. Nejčastějším etiologickým agensy byly S. aureus a KNS. Vzhledem k již nízké či nulové životnosti infekčního agens v době chirurgického výkonu se ukázala metoda širokospektré PCR chirurgického materiálu být v mnoha případech jedinou možností identifikace mikrobiálního nebo mykotického původu endokarditidy (viz Příloha 5).

Z důvodu častého záchytu stafylokoků pomocí širokospektré PCR a sekvencování v klinických vzorcích jsem tuto metodu doplnila o méně časově i finančně náročnou specifickou PCR pro záchyt těchto bakterií, s možností stanovení rezistence k oxacilinu (viz dále).
5.2 Optimalizace podmínek PCR specifické pro stafylokoky

Pro optimalizaci specifické PCR byla použita templátová DNA kmene *S. aureus* rezistentního k oxacilinu (MRSA). Empiricky byla stanovena optimální koncentrace hořčnatých iontů v reakční směsi a teplota připojení jednotlivých primerových párů. Každý primerový pár byl testován v oddělené reakční zkumavce s cílem získat silný produkt PCR. Díky rozdílné teplotě tání jednotlivých párů primerů bylo nutné po přidání do jedné reakce optimalizovat podmínky amplifikace. Výsledkem optimalizace podmínek PCR byly tři fragmenty přibližně stejné intenzity a definované délky (viz Obr. 6).

Obrázek 6. Postupná optimalizace multiplex PCR specifické pro průkaz stafylokoků. Cílovými místy amplifikace byl 1) gen specifický pro stafylokoky (*16S rDNA-sta*, 791bp), 2) gen specifický pro *S. aureus* (*femB*, 651bp) a 3) gen kódující rezistenci k oxacilinu, resp. všem beta-laktamovým antibiotikům (*mecA*, 310bp). Byly nalezeny optimální podmínky reakce s použitím všech primerových párů v jedné reakci. **M100** molekulární žebříček (1000 - 100bp).

5.2.1 Analytická sensitivita PCR pro stafylokoky

Plná zdravá krev byla očkována postupně ředěnou suspenzi MRSA, se vstupní koncentrací 4×10^6 CFU/ml až 4 CFU/ml. DNA byla izolována z 500 µl plné krve. Mez detekce MRSA byla opakovaně stanovena na 4 CFU/ml plné krve (viz Obr. 7).
Obrázek 7. Analytická sensitivita PCR specifické pro stafylokoky. Koncentrace suspenzí jsou uvedeny v řádech (tzn. např. $10^6=4.10^6$). Každé ředění bylo provedeno v duplikátu, experiment byl několikrát opakován včetně očkování krve suspenzí MRSA, izolace DNA a PCR. Zkoušky: CI kontrola izolace, NC negativní kontrola, PC pozitivní kontrola PCR, M100 molekulární žebříček (1000 - 100bp).

5.2.2 Analytická specificita PCR pro stafylokoky

Ke stanovení analytické specificity PCR bylo použito 14 referenčních a 173 klinických kmenů stafylokoků a jiných bakterií. Kmeny stafylokoků rezistentních/citlivých k oxacilinu poskytly typické vzory produktů PCR (viz Obr. 8). Výsledek testování specifické PCR byl porovnán se standardní kultivací a stanovením antibiotické citlivosti pomocí mikrodislučního a diskového difuzního testu (viz Tab. 9).

Obrázek 8. Přehled typických vzorů produktů specifické PCR u jednotlivých druhů stafylokoků. Legenda: MSSA kmen S. aureus citlivý k oxacilinu; MRSA kmen S. aureus rezistentní k oxacilinu, MSKNS koagulázanegativní stafylokok citlivý k oxacilinu; MRKNS koagulázanegativní stafylokok rezistentní k oxacilinu, M100 molekulární žebříček (1000 - 100 bp).
Tabulka 9. Výsledky identifikace klinických kmenů stafylokoků pomocí specifické PCR a standardní kultivace.

<table>
<thead>
<tr>
<th>Fenotypová identifikace*</th>
<th>Shoda s PCR</th>
<th>Neshoda s PCR</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>28</td>
<td>1*a</td>
<td>29</td>
</tr>
<tr>
<td>MRSA + jiný kmen</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MSSA</td>
<td>29</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>MSSA + jiný kmen</td>
<td>3</td>
<td>1*b</td>
<td>4</td>
</tr>
<tr>
<td>Celkem</td>
<td>62</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>MRKNS</td>
<td>22</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>MRKNS + jiný kmen</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>MSKNS</td>
<td>11</td>
<td>9*c</td>
<td>20</td>
</tr>
<tr>
<td>MSKNS + jiný kmen</td>
<td>1</td>
<td>1*d</td>
<td>2</td>
</tr>
<tr>
<td>Celkem</td>
<td>43</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>Smišené kmeny stafylokoků</td>
<td>0</td>
<td>7*e</td>
<td>7</td>
</tr>
<tr>
<td>Ostatní bakterie</td>
<td>49</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Celkem</td>
<td>154</td>
<td>19</td>
<td>173</td>
</tr>
</tbody>
</table>

*a U kmene nebyla prokázána přítomnost genu mecA. b U smíšeného kmene MRSA a E. coli byla prokázána pouze E. coli.
c U sedmi kmenů citlivých k cefoxitinu a rezistentních k oxacilinu byla prokázána přítomnost genu mecA. Dva kmeny citlivé k oxacilinu a cefoxitinu (jeden dubiozní) prokázaly přítomnost genu mecA. d Tento kmen byl citlivý k oxacilinu a cefoxitinu a prokázal gen mecA. e U smíšených kmenů nebylo možné odlišit jednotlivé kmeny (viz Tab. 11).

Pomocí specifické PCR byly u 63/64 (98 %) čistých a smíšených kmenů S. aureus prokázány geny 16rRNA-sta a femB. U jednoho smíšeného kmene S. aureus a E. coli nebyl při PCR specifické pro stafylokoky nalezen žádný produkt. Pomocí sekvencování genu pro 16S rRNA byla s 99 % shodou prokázána E. coli (nebyl sledován polymikrobální signál). Pravděpodobně se jednalo o chybný odběr kolonií S. aureus. U 30/31 (97 %) čistých i smíšených kmenů S. aureus rezistentních k oxacilinu a cefoxitinu byl prokázán gen mecA. Žádný z 31 kmenů S. aureus citlivých k oxacilinu i cefoxitinu neprokázal gen mecA (viz Tab. 10).

U třinácti referenčních kmenů KNS byl zachycen gen pro 16S rRNA, sekvence specifická pro stafylokoky (sta). Z celkem 13 kmenů KNS byla jen u kmene S. sciuri rezistentního k oxacilinu prokázána přítomnost genu mecA. U všech 53 čistých i smíšených klinických kmenů KNS byl prokázán gen 16S rRNA-sta (viz Tab. 9). Gen mecA byl nalezen u všech 31 kmenů KNS rezistentních k oxacilinu i cefoxitinu, u všech 8 kmenů rezistentních k oxacilinu a citlivých k cefoxitinu a u 2/12 kmenů citlivých k oxacilinu i cefoxitinu (viz Tab. 10).

U žádného ze 49 kontrolních kmenů jiných G+ nebo gramnegativních (G-) bakterií nebyly pozorovány produkty PCR specifické pro stafylokoky. Pro kontrolu přítomnosti
bakteriální DNA u těchto kmenů byla provedena širokospektrální PCR s interní amplifikační kontrolou, která ve všech 49 případech poskytla pozitivní výsledek (data nejsou ukázána).

Všechny smíšené kmeny MRKNS a MSSA nebo MRKNS a MSKNS prokázaly obrazec produktů PCR identický s MRSA nebo MRKNS (viz Tab. 11).

Tabulka 10. Srovnání PCR a diskového difuzního testu klinických kmenů stafylokoků.

<table>
<thead>
<tr>
<th></th>
<th>KNS (n=53)</th>
<th>S. aureus (n=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oxa R cxt R (n=31)</td>
<td>oxa R cxt C (n=8)</td>
</tr>
<tr>
<td>meCA+</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>meCA-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Pozn. Tabulka zahrnuje 63/64 čistých/smíšených kmenů S. aureus. Dle doporučení NCCLS byly všechny kmeny citlivé k cefoxitinu hodnoceny jako citlivé ke všem beta-laktamovým antibiotikům. **Legenda**: Oxa oxacilin (Oxoid, 1 µg), Cxt cefoxitin (Oxoid, 30 µg).

Tabulka 11. Výsledky PCR a standardní kultivace u smíšených klinických kmenů stafylokoků.

<table>
<thead>
<tr>
<th>Standardní kultivace</th>
<th>16S rDNA- sta</th>
<th>Výsledky multiplex PCR</th>
<th>Výsledek</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRKNS + MSSA</td>
<td>+</td>
<td>+ mecA</td>
<td>MRSA</td>
</tr>
<tr>
<td>MRKNS + MSKNS</td>
<td>+</td>
<td>- mecA</td>
<td>MRKNS</td>
</tr>
<tr>
<td>MRSA + MSSA</td>
<td>+</td>
<td>+ mecA</td>
<td>MRSA</td>
</tr>
</tbody>
</table>

Pozn. Smíšené kmeny MRKNS a MSSA poskytovaly falešně pozitivní profil MRSA.

5.2.3 **PCR pro intranasální screening MRSA**

Pro případné využití našeho systému pro specifickou detekci stafylokoků pro intranasální screening byla testována účinnost flokovaných a běžných typů tampónů bez transportního média. Tampóny byly ponořeny do suspenze MRSA o klesající koncentraci a DNA byla izolována z takto vzniklé suspenze pomocí standardní izolační metodiky zavedené v Genetické laboratoři CKTCH. Flokované tampóny při tomto testu neukázaly vyšší citlivost záchytu agens než standardně používané tampóny.

Vyšetření pomocí specifické PCR pro stafylokoky bylo pilotně provedeno u několika pacientů s prokázaným nosičstvím MRSA. Díky tomu, že metoda využívá jako cílový gen
mecA, který se vyskytuje u KNS i S. aureus, nebylo možné smíšenou kolonizaci MRKNS a MSSA odlišit od kolonizace MRSA.

5.3 Detekce stafylokoků u chirurgicky léčených pacientů s IE

V období od 04/2004 do 03/2008 jsme v Genetické laboratoři CKTCH vyšetřili chirurgický materiál od 161 pacientů se suspézní IE, u 60 (37 %) pacientů bylo podezření na IE stafylokokové etiologie. Diagnóza IE stanovená podle Duke kritérií na základě klinického obrazu, echokardiografického vyšetření a výsledků hemokultur byla hodnocena jako „prokázaná“ u 35 (58 %) pacientů, jako „možná“ pak v 25 (42 %) případech. Do kontrolní skupiny bylo zařazeno 59 pacientů s neinfekční kardiologickou diagnózou.

Byly srovnány klinické parametry u pacientů s IE a pacientů s jinou diagnózou (viz Tab. 12). V souboru pacientů s IE bylo 44 (73 %) mužů, průměrný věk všech pacientů s IE byl nižší než v kontrolní skupině (57 vs. 64, p < 0.001). U pacientů s „prokázanou“ IE byla sledována vyšší mortalita než u pacientů s „možnou“ diagnózou IE (29 % vs. 8 %, p < 0.05). Nejčastěji byla infekcí postižena náhradní aortální chlopně. Nativní chlopně byla častěji spojená s „prokázanou“ diagnózou než umělá chlopně (77 % vs. 48 %, p < 0.05). V souboru bylo 7 (12 %) narkomanů, u všech byla před operací „prokázaná“ diagnóza IE. Do jednoho roku od chirurgického výkonu zemřelo 14 (28 %) pacientů s podezřením na IE.

Výsledky standardních kultivačních i molekulárních metod u pacientů s podezřením na IE a pacientů kontrolní skupiny jsou uvedeny v Tabulce 13.

| Tabulka 12. Klinické parametry u pacientů s IE a pacientů s jinou diagnózou (kontrolní skupina). |
|---|---|---|---|---|
| Kontrolní skupina (n=59) | Pacienti s IE (n=60) | P | Diagnóza IE „Prokázaná“ (n=35) | „Možná“ (n=25) | P |
| Věk 1 | 64 (33;84) | 57 (18;84) | < 0.001 | 56 (18;78) | 58 (32;84) | 0.185 |
| Muži | 34 (58 %) | 44 (73 %) | 0.074 | 24 (69 %) | 20 (80 %) | 0.323 |
| NIE | 56 (95 %) | 39 (65 %) | < 0.001 | 27 (77 %) | 12 (48 %) | 0.042 |
| PIE 2 | 3 (5 %) | 21 (35 %) | | 8 (23 %) | 13 (52 %) | |
| Typ chlopně | | | | | | |
| Ao | 52 (88 %) | 28 (47 %) | | 14 (40 %) | 14 (56 %) | 0.154 |
| Mi | 2 (3 %) | 13 (22 %) | < 0.001 | 8 (23 %) | 5 (20 %) | |
| Tri | 1 (2 %) | 3 (5 %) | | 3 (9 %) | 0 (0 %) | |
| Jiné | 4 (7 %) | 16 (27 %) | 10 (29 %) | 6 (24 %) | |
| Narkomaní | N | 7 (12 %) | 7 (20 %) | 0 (0 %) | 0.017 |
| Úmrtnost 3 | N | 14 (28 %) | 10 (29 %) | 4 (8 %) | 0.046 |

1 Věkový median, v závorkách je uvedeno rozmezí hodnot mezi 5tým a 95tým percentilem. 2 Zahrnuje infekci náhradní chlopně a dalších intrakardiálně uložených těles. 3 Byli zařazeni pouze pacienti, kteří přišli na roční kontrolu (n=50). Hladiny významnosti byly vypočtány pomocí neparametrického testu Mann-Whitney (věk) a χ² testu. Legendy: P hladina významnosti, NIE nátní infekční endokarditida, PIE prostetická infekční endokarditida, Ao aortální chlopně, Mi mitrální chlopně, Tri trikuspidální chlopně, Jiné elektrody nebo elektrody + chlopně nebo více než jedna chlopně, N data nebyla dostupná.
Fenotypové stanovení citlivosti k antibiotikům bylo provedeno pomocí mikrodilučního testu a diagnostického různosektrálního PCR. Fenotypové stanovení bylo založeno na průkazu genu mecaA. ** Zahrnuje výsledek pro menší frekvenci genotypového stanovení. ** Zahrnuje výsledek pro menší frekvenci genotypového stanovení.

<table>
<thead>
<tr>
<th>Provedené testy</th>
<th>Pacienti s IE</th>
<th>Kontrolní skupina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemokultury (n=60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pozitivní</td>
<td>44 (73 %)</td>
<td>35 (100 %)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>32 (73 %)</td>
<td>1</td>
</tr>
<tr>
<td>KNS</td>
<td>8 (18 %)</td>
<td>1</td>
</tr>
<tr>
<td>S. aureus + KNS</td>
<td>3 (7 %)</td>
<td>1b</td>
</tr>
<tr>
<td>Jiné</td>
<td>1 (2 %)</td>
<td>N</td>
</tr>
<tr>
<td>negativní</td>
<td>16 (27 %)</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>Kultivace materiálu (n=58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pozitivní</td>
<td>22 (38 %)</td>
<td>9 (27 %)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>9 (41 %)</td>
<td>0</td>
</tr>
<tr>
<td>KNS</td>
<td>10 (45 %)</td>
<td>3</td>
</tr>
<tr>
<td>Jiné</td>
<td>3 (14 %)</td>
<td>N</td>
</tr>
<tr>
<td>negativní</td>
<td>36 (62 %)</td>
<td>24 (73 %)</td>
</tr>
<tr>
<td>Širokospektrální PCR (n=60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pozitivní</td>
<td>51 (85 %)</td>
<td>31 (89 %)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>33 (65 %)</td>
<td>N</td>
</tr>
<tr>
<td>KNS</td>
<td>13 (25 %)</td>
<td>N</td>
</tr>
<tr>
<td>Staphylococcus sp.</td>
<td>3 (6 %)</td>
<td>N</td>
</tr>
<tr>
<td>Jiné</td>
<td>2 (4 %)</td>
<td>N</td>
</tr>
<tr>
<td>negativní</td>
<td>9 (15 %)</td>
<td>N</td>
</tr>
<tr>
<td>Specifická PCR (n=53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pozitivní</td>
<td>48 (91 %)</td>
<td>30 (88 %)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>33 (69 %)</td>
<td>0</td>
</tr>
<tr>
<td>KNS</td>
<td>15 (31 %)</td>
<td>8</td>
</tr>
<tr>
<td>negativní</td>
<td>5 (9 %)</td>
<td>4 (12 %)</td>
</tr>
<tr>
<td>PCR (n=60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pozitivní</td>
<td>52 (87 %)</td>
<td>31 (89 %)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>34 (65 %)</td>
<td>0</td>
</tr>
<tr>
<td>KNS</td>
<td>16 (31 %)</td>
<td>8</td>
</tr>
<tr>
<td>Staphylococcus sp.</td>
<td>2 (4 %)</td>
<td>N</td>
</tr>
<tr>
<td>Jiné</td>
<td>0 (0 %)</td>
<td>N</td>
</tr>
<tr>
<td>negativní</td>
<td>8 (13 %)</td>
<td>4 (11 %)</td>
</tr>
</tbody>
</table>

*a S. epidermidis (5), S. capitis (1), KNS bez bližšího určení (2). b KNS rezistentní k oxacilinu. c U jednoho pacienta byl v čtyřech vzorcích odebraných v časovém intervalu delším než 12h nalezeno Corynebacterium sp. d S. epidermidis (5), KNS bez bližšího určení (5). e Micrococcus luteus (1), Propionibacterium acnes (1) a mikroskopický anaerobní G+ koky, které nebyly bližší identifikovány (1). f S. epidermidis (12) a Haemophilus (1). g Širokospektrální PCR velmi slabě pozitivní; u tří pacientů byl pomocí sekvencování zachycen Staphylococcus sp., který nebyl možné bližší identifikovat, u dalších dvou pacientů s IE a tří pacientů z kontrolní skupiny nebylo agens pomocí sekvencování identifikováno. h Agens nemohlo být bližší identifikováno díky slabé pozitivitě. i S. epidermidis (12), S. haemolyticus (1), KNS bez bližšího určení (3). Legenda: N neprovedeno, KNS koagulázanegativní stafylokoky, oxaz-rez. oxacilin rezistentní.
5.3.1 Srovnání specifické a širokospektré PCR

Byla provedena validace metod PCR včetně stanovení analytické a klinické specificity a sensitivity. Výsledky širokospektré a specifické PCR se u pacientů s „prokázanou“ diagnózou IE a kontrolní skupinou významně nelišily (98 % vs. 97 %, \(p=0.734\), viz Tab. 14). Pro další analýzu proto byly jejich výsledky spojeny.

<table>
<thead>
<tr>
<th>Širokospektré PCR</th>
<th>Specifická PCR</th>
<th>Pacienti (n=112)</th>
<th>Kontrolní pacienti (n=59)</th>
<th>Pacienti s IE (n=53*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pozitivní</td>
<td>pozitivní</td>
<td>48</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>negativní</td>
<td>negativní</td>
<td>61</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>negativní</td>
<td>pozitivní</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>pozitivní</td>
<td>negativní</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Shoda</td>
<td></td>
<td>97 %</td>
<td>97 %</td>
<td>98 %</td>
</tr>
</tbody>
</table>

Hladina významnosti (\(p\)) 0.734

*Obě metody PCR byly provedeny u 53/60 pacientů s IE. Pro párové srovnání obou PCR metod u pacientů „prokázanou“ diagnózou IE a pacientů kontrolní skupiny byl použit Mc Nemarův test.

Klinickou sensitivitou a specificitu PCR jsme určili zhodnocením výsledků u pacientů s „prokázanou“ diagnózou IE (n=34) a u pacientů kontrolní skupiny (n=59). Jako pozitivní byl hodnocen výsledek alespoň jednou z metod PCR. Počet pozitivních výsledků byl podle očekávání signifikantně vyšší u pacientů s IE než u kontrolní skupiny (89 % vs. 5 %, \(p<0.001\)). *S. aureus* i KNS byly nalezeny významně častěji u pacientů s „prokázanou“ diagnózou IE než u pacientů kontrolní skupiny (80 % vs. 0 %, \(p<0.001\) u *S. aureus*, a 14 % vs. 2 %, \(p=0.022\) u KNS), viz Tab. 15.

<table>
<thead>
<tr>
<th>„Prokázaná“ IE (n=35)</th>
<th>Kontrolní skupina (n=59)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR +</td>
<td>31 (89 %)</td>
<td>3 (5 %)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>25 (80 %)</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>KNS</td>
<td>5 (14 %)</td>
<td>1 (2 %)</td>
</tr>
<tr>
<td>Ostatní (^1)</td>
<td>1 (3 %)</td>
<td>2 (3 %)</td>
</tr>
<tr>
<td>PCR -</td>
<td>4 (11 %)</td>
<td>56 (95 %)</td>
</tr>
</tbody>
</table>

Sensitivita 89 %, specificita 95 %, PPV 92 %, NPV 94 %, AUC: 0.884(0.803 – 0.943)

Výsledek obou metod PCR byl sloučen na základě vysoké shody v předchozí analýze. Výsledek byl považován za pozitivní pokud alespoň jeden z testů byl pozitivní. \(^1\) Agens nebylo možné identifikovat pomocí sekvencování díky slabé pozitivitě produktu širokospektré PCR, specifická PCR nebyla provedena. Diagnostická síla testu byla potvrzena pomocí ROC (Receiver Operating Characteristics) web calculator (Eng, 2006), verze SPSS 17.02 (SPSS Inc., 2009) a pomocí AUC (Area Under the Curve) a MedCalc 11.1.0.0 (MedCalc Software 1993-2009) byl proveden výpočet intervalů spolehlivosti sensitivity a specificity PCR. Výpočet vycházel z binormálního modelu.
5.3.2 Srovnání PCR se standardní kultivací u pacientů s IE

Za účelem stanovení úlohy PCR v diagnostice stafylokokové IE byla provedena retrospektivní analýza a srovnání s výsledky předoperačních hemokultur a peroperační kultivace z chirurgického materiálu. Výsledky PCR se shodovaly s výsledky hemokultur (včetně negativních výsledků) u 72 % případů. Oba testy se lépe shodovaly u pacientů s předoperačně „prokázanou“ diagnózou IE než u pacientů s předoperačně „možnou“ diagnózou IE (88 % vs. 48 %, \(p < 0.001 \)), viz Tab. 16. Kultivace agens z chirurgického materiálu se shodovala s hemokulturami u 31 % případů. Shoda byla nízká u pacientů s „prokázanou“ i „možnou“ diagnózou IE (27 % vs. 36 %, \(p= 0.463 \)), viz Tab. 17.

Tabulka 16. Korelace výsledků hemokultivace a PCR u pacientů s IE.

<table>
<thead>
<tr>
<th>Hemokultura</th>
<th>PCR</th>
<th>Diagnóza IE (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>„Prokázaná“ (n=35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>„Možná“ (n=25)</td>
</tr>
<tr>
<td>negativní</td>
<td>negativní</td>
<td>0</td>
</tr>
<tr>
<td>negativní</td>
<td>pozitivní</td>
<td>0</td>
</tr>
<tr>
<td>pozitivní</td>
<td>negativní</td>
<td>4</td>
</tr>
<tr>
<td>pozitivní</td>
<td>pozitivní</td>
<td>31</td>
</tr>
<tr>
<td>Shoda</td>
<td>88 %</td>
<td>72 %</td>
</tr>
</tbody>
</table>

Tabulka 17. Korelace výsledků hemokultivace a kultivace z chirurgického materiálu u pacientů s IE.

<table>
<thead>
<tr>
<th>Hemokultura</th>
<th>Kultivace z materiálu</th>
<th>Diagnóza IE (n=58*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>„Prokázaná“ (n=33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>„Možná“ (n=25)</td>
</tr>
<tr>
<td>negativní</td>
<td>negativní</td>
<td>0</td>
</tr>
<tr>
<td>negativní</td>
<td>pozitivní</td>
<td>0</td>
</tr>
<tr>
<td>pozitivní</td>
<td>negativní</td>
<td>24</td>
</tr>
<tr>
<td>pozitivní</td>
<td>pozitivní</td>
<td>9</td>
</tr>
<tr>
<td>Shoda</td>
<td>27 %</td>
<td>36 %</td>
</tr>
</tbody>
</table>

Pozn. Pro párové srovnání (pair-wise comparison) obou testů u pacientů s „možnou“ a „prokázanou“ diagnózou IE byl použit Mc Nemarův test.

Pozn. "Kultivace agens z peroperačního materiálu byla provedena u 58 /60 pacientů s IE. Pro párové srovnání obou testů u pacientů s „možnou“ a „prokázanou“ diagnózou IE byl použit Mc Nemarův test."
5.3.3 Stanovení etiologie IE u jednotlivých pacientů

Pro stanovení etiologie a pooperační diagnózy IE u každého pacienta, byly výsledky předoperačních hemokultur, kultivace a PCR z chirurgického materiálu interpretovány v kontextu s klinickým stavem pacientů před operací a operačním nálezem (viz Tab. 18). KNS v peroperačním materiálu byly považovány za etiologické agens IE pouze tehdy, byl-li pozitivní nález potvrzen alespoň dvěma provedenými metodami a výsledek souhlasil s echokardiografickým nálezem. Oproti tomu, S. aureus byl považován za etiologii, byl-li nalezen kteroukoliv metodou.

U 11/12 pacientů s pozitivním výsledkem hemokultur a PCR z chirurgického materiálu byl shodně zachycen S. aureus (7) nebo KNS (4). U zbylého jednoho pacienta s „prokázanou“ IE byl nalezen S. aureus v jedné a bliží neurčený KNS v dalších třech hemokulturách, zatímco z chirurgicky odstraněné vegetace na mitrální chlopně byl vypěstován Micrococcus luteus. V embolu dolní končetiny a poté i v chirurgicky odstraněné vegetaci na mitrální chlopně byl pomocí sekvencování variabilní oblasti V2-V9 genu 16S rDNA prokázán S. haemolyticus.

U celkem 27 pacientů byl zaznamenán pozitivní výsledek hemokultur a PCR, v 23 případech byl nalezen S. aureus, ve 4 případech byl prokázán S. epidermidis. Výsledek kultivace z chirurgicky odstraněného materiálu byl v 25 případech negativní a ve 2 případech nebyl chirurgem zaslán na kultivační vyšetření. Až 75 % těchto pacientů bylo před výkonem založeno antibiotiky v období delším než 5 dní, což velmi pravděpodobně přispělo k negativním výsledkům kultivace (viz Tab. 18). Ve třech případech nebyly výsledky PCR a hemokultivace v plné šodě. U dvou pacientů s „prokázanou“ IE byl nalezen v hemokulturách S. aureus a KNS: u jednoho pacienta byl nalezen S. aureus opakovaně v několika odběrech a KNS ve dvou odběrech, u druhého pacienta byl nalezen KNS i S. aureus ve třech po sobě jdoucích odběrech. Pomocí PCR byl u obou pacientů určen s 98 % shodou s referenční sekvencí S. aureus, který byl potvrzen detekcí dvou dalších specifických genů pro S. aureus.

U jednoho pacienta bylo ve 4/6 hemokultur odebraných více než 12 hodin po sobě prokázáno Corynebacterium sp., zatímco PCR zacílená na dva specifické geny a 16S rDNA doplněná sekvencováním prokázala S. aureus s 99 % shodou s referenční sekvencí v databázi. Tento pacient zemřel týden po operaci na následky rozsáhlých embolizací v mozku a jarkách, krvácení do mozku a pravostranné hemiparezy. Vzhledem ke klinickému průběhu IE u tohoto pacienta a k tomu, že Corynebacterium sp. je častěji popisováno jako součást přirozené
mikroflóry lidské kůže než etiologické agens IE, byl za etiologické agens IE považován *S. aureus*.

U pěti pacientů s negativním výsledkem hemokultur se shodoval výsledek kultivace a PCR z chirurgického materiálu. U dvou pacientů byl zachycen *S. aureus* a u třech *S. epidermidis*. U dvou dalších pacientů s negativním výsledkem hemokultur se výsledky kultivace a PCR z chirurgického materiálu lišily. U jednoho pacienta s „možnou“ diagnózou IE byl z chirurgického materiálu vypěstován *S. epidermidis*, zatímco širokospektrální PCR se sekvencováním zachytila s 99% shodou s referenční sekvencí čistý signál *S. aureus* a ten byl navíc potvrzen záchytem dvou dalších specifických genů. *S. epidermidis* byl proto považován za kontaminaci a případ uzavřen jako IE s etiologií *S. aureus*.

U pacienta s „možnou“ diagnózou IE bylo za anaerobních podmínek z chirurgického materiálu vypěstováno *Propionibacterium acnes* zatímco PCR specifická pro stafylokoky prokázala slabě pozitivní záchyt KNS. Histopatologická analýza nativní chlompně neprokázala přítomnost aktivní endokarditidy, oba pooperační testy byly pravděpodobně falešně pozitivní díky kontaminaci z prostředí (viz dále).

U tří pacientů s „možnou“ diagnózou IE byl shodně prokázán negativní výsledek hemokultur a PCR, zatímco z chirurgického materiálu byl vypěstován blíže nespecifikovaný KNS. U prvního pacienta byl nález při echokardiografickém vyšetření hodnocen jako starší vegetace nebo fibroblastom. Tento nález však do týdne progresoval, přitom byl pozorován perikardiální výpotek (1cm) s paralelním nárůstem CRP z 90 až na 300 mg/l v průběhu 4 dní. Z důvodu opakované peritonitidy stafylokokového původu při peritoneální dialýze byl pacient zaléčen před operací antibiotiky. Peroperačně byly na cípech chlompně nalezeny křehké
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

vegetace a hnis. Materiál však nebyl zaslán na histologické vyšetření a tak nebylo možné diagnózu IE způsobenou KNS spolehlivě prokázat nebo vyloučit.

Druhý pacient byl dlouhodobě léčen pro mnohočetná ložiska S. aureus v defektu po popálení dolní končetiny. Před dvěma lety prodělal infekci na intrakardiální elektrodě. V důsledku progerese vegetací na elektrodě i přes konzervativní léčbu bylo nutné elektrody chirurgicky odstranit. Materiál (elektroda) nebylo možné zaslat na histopatologické vyšetření pro průkaz nebo vyloučení IE. U třetího pacienta bylo při echokardiografickém vyšetření zjištěno uvolnění mechanické aortální chlopně, CRP bylo mírně zvýšené (58 mg/ml). Peroperačně byla nalezena prázdná abscesová dutina a subvalvární lem kolem celého anulu. Histopatologické vyšetření nebylo provedeno a tak nebylo možné diagnózu IE prokázat ani vyloučit.

U šesti pacientů byly hemokultury a kultivace z chirurgického materiálu negativní zatímco PCR prokázala S. aureus (3) a KNS (3). U všech pacientů, u nichž byl pomocí obou PCR testů prokázán S. aureus, byl tento patogen nalezen v periferních kožních embolech (1) nebo byla zaznamenána horečka a příznaky meningitidy spojené se zvýšenými zánětlivými markery (2). Naproti tomu pacienti s nálezem KNS měli předoperačně jen mírně zvýšené zánětlivé markery a KNS byl prokázán u 2/3 pacientů, a to pouze jedním PCR testem. U 2 pacientů byly při echokardiografickém zobrazení patrné vegetace. Přestože byl u všech tří pacientů makroskopicky suspektní zánět nebo křehká vegetace, nebyl zaslán chirurgický materiál na histopatologické vyšetření, a tak nebylo možné infekční proces na endokardu spolehlivě prokázat nebo vyloučit.
Tabulka 18. Výsledky provedených metod u pacientů s IE.

| Předoperační Duke criteria | Výsledky jednotlivých testů | Počet pacientů | Etiologie | Antibiotická léčba před operací (n=59 a)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HK</td>
<td>KT</td>
<td>PCR</td>
<td>S. aureus</td>
</tr>
<tr>
<td>Prokázaná IE (n=35)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>9*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n=35)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>+</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Možná IE (n=25)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n=9)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n=16)</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Celkem</td>
<td>60</td>
<td>41</td>
<td>19</td>
<td>9</td>
</tr>
</tbody>
</table>

a U jednoho pacienta byl při specifické PCR nalezen KNS a při kultivaci z chirurgického materiálu *P. acnes* – oba nálezy byly interpretovány jako velmi pravděpodobná kontaminace. b Nález KNS byl u těchto pacientů posuzován vzhledem k výsledkům ostatních metod a klinickému projevu. Legenda: ATB antibiotika, HK hemokultura, KT kultivace z tkáně (chirurgického materiálu), N neprovedeno.

5.3.4 Stanovení úlohy PCR v diagnostice IE

Za účelem stanovení úlohy PCR pro diagnostiku IE bylo provedeno přehodnocení předoperačně stanovené diagnózy IE na základě kultivace a PCR z chirurgického materiálu (viz Obr. 9).

Zatímco pacienti s předoperačně „prokázanou“ diagnózou IE zůstali v této skupině i po operaci, počet pacientů s „možnou“ diagnózou IE se po operaci výrazně snížil. Byl-li brán v úvahu výsledek PCR, došlo k výraznějšímu snížení počtu pacientů s „možnou“ diagnózou IE (25 vs. 8 p < 0.011) ve srovnání se situací, kdy byl brán v úvahu výsledek kultivace agens z chirurgického materiálu (25 vs. 16, p < 0.048). U šesti pacientů s „možnou“ předoperační diagnózou IE, kde byl nalezen KNS pouze při kultivaci nebo PCR z chirurgického materiálu, a jednoho pacienta s pozitivním nálezem *S. aureus* pouze v 1/14 hemokultur, nebylo bez histologického vyšetření možné určit, zdali se jednalo o kontaminaci, přechodnou bakteriemi nebo aktivní endokarditidu. U těchto pacientů nebylo tedy možné diagnózu IE vyloučit ani potvrdit. U jednoho pacienta s falešně pozitivním výsledkem PCR i kultivace z chirurgicky odstraněného materiálu pomohla histopatologická analýza materiálu vyloučit předoperační podezření na aktivní endokarditidu.
Přehodnocení Duke kritérií na základě výsledků pooperačních testů

Obrázek 9. Schéma přehodnocení Duke kritérií na základě výsledku kultivace agens a/nebo PCR z chirurgického materiálu. PCR test zahrnuje ve většině případů širokospektrální a specifické PCR. Jelikož byly brány v potaz výsledky obou pooperačních testů, zůstalo 7/8 pacientů s diagnózou „možná“ IE, kterou nešlo bez histopatologické analýzy prokázat ani vyloučit. Tito pacienti měli pozitivní jen jeden z provedených testů: kultivaci z tkáně (3 případy KNS), PCR (3 případy KNS), hemokulturu (1 případ S. aureus 1/14 odběrů). 1/8 pacientů prokázal i PCR (P. acnes a KNS), ale nalezená agens se neshodovala a histopatologie zde nepotvrdila diagnózu IE. **Legenda:** \(n_d \) počet pacientů s „prokázanou“ diagnózou IE, \(n_p \) počet pacientů s „možnou“ diagnózou IE, \(n_r \) počet pacientů s „vyloučenou“ IE.

5.3.5 Etiologie a klinické projevy IE

Čtyřicet pacientů bylo po důkladné reevaluaci diagnostikováno s IE způsobenou S. aureus, jedenáct s IE způsobenou S. epidermidis a v jednom případě byla diagnostikována IE s původcem S. haemolyticus. Mortalita stafylokokové IE v našem souboru byla 31 %. Kromě významné souvislosti S. aureus s nativní IE, nebyl mezi uvedenými klinickými parametry a druhem etiologického agens prokázán žádný statisticky významný rozdíl (viz Tab. 19).

U kmenů KNS byl prokázán častěji výskyt genu mecA než u S. aureus (8/11 vs. 0/39, \(p < 0.001 \)). Fenotypové stanovení citlivosti k oxacilinu zcela korelovalo se záhytem genu mecA u kmenů S. aureus, zatímco u KNS docházelo k neshodám, když u 3 kmenů fenotypově citlivých k oxacilinu byl gen mecA zachycen.
Tabulka 19. Etiologie a demografické údaje u pacientů s „prokázanou“ diagnózou IE stafylokokového původu.

<table>
<thead>
<tr>
<th>Etiologie</th>
<th>Nativní IE</th>
<th>Aortální chlopeň</th>
<th>Vegetace</th>
<th>Absces</th>
<th>Embolizace</th>
<th>Narkomani</th>
<th>Úmrtnost po 1 roce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stafylokoky (n=52)</td>
<td>35 (67 %)</td>
<td>28 (54 %)</td>
<td>41 (79 %)</td>
<td>4 (8 %)</td>
<td>23 (44 %)</td>
<td>7 (13 %)</td>
<td>13 (31 %) a</td>
</tr>
<tr>
<td>S. aureus (n=40)</td>
<td>31 (78 %)</td>
<td>22 (55 %)</td>
<td>33 (83 %)</td>
<td>3 (8 %)</td>
<td>20 (50 %)</td>
<td>6 (15 %)</td>
<td>11 (34 %) b</td>
</tr>
<tr>
<td>KNS * (n=12)</td>
<td>4 (33 %)</td>
<td>6 (50 %)</td>
<td>8 (67 %)</td>
<td>1 (8 %)</td>
<td>3 (25 %)</td>
<td>1 (8 %)</td>
<td>2 (20 %) c</td>
</tr>
</tbody>
</table>

p value 0.011 1.000 0.253 1.000 0.188 1.000 0.466

V této tabulce nejsou zahrnuty údaje pacientů, kteří po operaci neprokázali jednoznačně diagnózu IE. *S. haemolyticus (1) and S. epidermidis (11). a Údaje o jednoročním sledování byly dostupné u 42/52, b u 32/40 pacientů a c u 10/12 pacientů. Ke zjištění významnosti rozdílů mezi pacienty s IE způsobenými S. aureus a KNS byl použit Fisher test o shodě dvou relativních četností s oboustranným rozdělením. Jako statisticky významný rozdíl byla stanovena hodnota p < 0.05.
6 DISKUSE

IE způsobená stafylokoky je závažná, život ohrožující infekce. Včasná diagnostika a zahájení odpovídající terapie jsou klíčové pro prognózu nemocných. V současné době je diagnostika IE založená na charakteru klinických příznaků, echokardiografickém nálezu a výsledcích hemokultur. I přes konzervativní antibiotickou léčbu dospěje přibližně třetina pacientů k chirurgickému řešení (Habib et al. 2009). V Genetické laboratoři CKTCH se využívá širokospektrá PCR a sekvencování pro rutinní molekulární diagnostiku patogenů z chirurgického materiálu pacientů s IE.

V této práci bylo uvedeno využití širokospektré PCR v klinické praxi a tato metoda byla doplněna o PCR pro specifický záchyt stafylokoků, kde v rámci jedné reakce, bez nutnosti sekvencování, rozlišíme kmeny *S. aureus* od KNS a stanovíme přítomnost genu rezistence k oxacilinu, nejčastěji používanému protistafylokokovému antibiotiku.

V druhé části práce byla stanovena úloha PCR v diagnostice stafylokokové IE srovnáním výsledků PCR se standardní kultivací a klinickými projevy IE.

6.1 Využití širokospektré PCR a sekvencování v diagnostické praxi

Na čtyřech kazuistikách pacientů s akutním infekčním onemocněním byly demonstrovány široké možnosti využití širokospektré PCR a sekvencování pro detekci mikroorganismů v různém klinickém materiálu. Metoda poskytuje výsledek do 24h a je vhodná pro záchyt atypických patogenů, které rostou jen za speciálních podmínek nebo jsou běžnými biochemickými panely obtížně identifikovatelné. U souboru pacientů s IE chirurgicky ošetřených na CKTCH v letech 2005–2009 prokázala širokospektrá PCR a sekvencování lepší schopnost identifikace kauzálního agens z chirurgického materiálu než standardní kultivace a to i u běžně kultivovatelných mikroorganismů. Přestože tato metoda neumožňuje stanovit aktuální citlivost nalezeného agens k antibiotikům, lze se při léčbě řídit alespoň primární rezistenci daného druhu mikroorganismu.

6.2 Výsledky testování PCR specifické pro stafylokoky

Výsledky specifické PCR se zcela shodovaly se standardní kultivací v záchytu *S. aureus* i KNS a neposkytovaly žádné zkřížené reakce s jinými druhy mikroorganismů. Stanovení rezistence bylo více ovlivněno nestejnou expresí genu *meca* u kmenů KNS než u kmenů *S. aureus* (viz Tab. 20).
Tabulka 20. Stanovení analytické sensitivity a specificity PCR.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivita</th>
<th>Specificita</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stafylokoky</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Rezistence k oxacilinu u stafylokoků</td>
<td>98 %</td>
<td>81 %</td>
<td>85 %</td>
<td>97 %</td>
</tr>
<tr>
<td>S. aureus</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Rezistence k oxacilinu u S. aureus</td>
<td>97 %</td>
<td>100 %</td>
<td>100 %</td>
<td>97 %</td>
</tr>
<tr>
<td>KNS</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Rezistence k oxacilinu u KNS</td>
<td>100 %</td>
<td>55 %</td>
<td>75 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Žádný z kmenů S. aureus fenotypově citlivých k oxacilinu i cefoxitinu (MSSA) neprokázal přítomnost genu mecA. U 1/32 (3 %) kmenů S. aureus fenotypově rezistentních k oxacilinu i cefoxitinu (MRSA) nebyla prokázána přítomnost genu mecA. Mohlo se jednat o tzv. hyperproducenta beta-laktamázy nebo kmen se špatnou funkcí normálního proteinu PBP. Kmen s nadprodukcí betalaktamázy by bylo možné prokázat např. diskovým difuzním testem s betalaktamem potencovaným inhibitem betalaktamázy (např. amoksiklav nebo augmentin) nebo průkazem genu bla Z (Jain, Agarwal a Verma 2008, Martineau et al. 2000).

U 10/22 (45 %) kmenů KNS citlivých k oxacilinu byl nalezen gen mecA. Sedm z deseti těchto kmenů bylo rezistentních k oxacilinu, ale citlivých k cefoxitinu. Diskrepanci mezi disky způsobenou kultivačními podmínkami, např. vyšší hustota inokula, odlišná kvalita používaných antibiotických disků (Souza Antunes et al. 2007), prodloužená doba inkubace (Ferreira et al. 2003) nebo zvýšená koncentrace soli nebo sacharózy (Graham et al. 2000, Chambers 1997) lze v tomto případě vyloučit, neboť tyto faktory by ovlivnily oxacilinový i cefoxitinový disk stejně. Jelikož je cefoxitinový disk lepším induktorem rezistence k oxacilinu, předpokládáme, že gen mecA nebyl u těchto kmenů exprimován (Hussain et al. 2000, Ferreira et al. 2003) nebo buňky rostly pomaleji a citlivost k cefoxitinu byla odečtena příliš brzy (Prère et al. 2006). Ze stejného důvodu mohlo dojít k diskrepanci mezi genotypovým a fenotypovým projevem u dalších dvou kmenů citlivých k oxacilinu i cefoxitinu, které prokázaly přítomnost genu mecA.

Jeden kmen KNS, u něhož byl zachycen gen mecA, vykazoval dubiózní citlivost k cefoxitinu. Pravděpodobně se jednalo o heterorezistentní kmen. Bylo prokázáno, že u KNS fenotypově citlivých k oxacilinu je subpopulace rezistentních buněk menší než u kmene S.
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

aureus. V důsledku toho je exprese rezistence k oxacilinu u KNS daleko více variabilní a proto může být stanovení pomocí standardního diskového testu falešně negativní (Rallapalli, Verghese a Verma 2008). Jelikož se hodnota MIC, resp. míra exprese genu pro rezistenci, může v průběhu terapie měnit, jak bylo prokázáno např. u pacientů s IE způsobenou KNS léčených teikoplaninem (Chomarat, Espinouse a Flandrois 1991), je vždy vhodné kliníka na toto riziko upozornit a rezistenci monitorovat. Podcenění přítomnosti dormantního genu rezistence by totiž mohlo mít za následek selhání antibiotik a dražší léčbu spojenou s prodlouženou hospitalizací.

3Doporučený postup pro kontrolu výskytu kmenů *S. aureus* rezistentních k oxacilinu a s jinou nebezpečnou antibiotickou rezistencí v nemocničních zařízeních, Zpráva CEM (SZÚ Praha) 2006, ročník 15, příloha 1.
6.3 Využití specifické PCR pro intranasální screening MRSA

6.4 Využití specifické PCR pro detekci stafylokoků v krvi

6.4.1 Sensitivita specifické PCR v krvi

U většiny pacientů se stafylokokovou endokarditidou (na rozdíl od pacientů se stafylokokovou sepsí) byla sledována velmi nízká hladina bakteriémie (1-10 CFU/ml) (Watkin et al. 2003). Zatímco mez detekce rutinně využívané širokospektrá PCR pro bakterie přímo z krve je přibližně 40 CFU/ml, mez detekce MRSA v krvi pomocí specifické PCR je přibližně 4 CFU/ml. Alternativně lze pro záchyt stafylokoků v krvi/positivních hemokulturách využít některé z následujících diagnostických souprav.

6.4.2 Komerční soupravy pro detekci patogenů v krvi

6.4.2.1 Soupravy závislé na předchozí kultivaci patogena

Tyto soupravy využívají jako vstupní materiál pozitivní hemokultury. StaphPlex (Qiagen, Německo) je založen na multiplexní technologii, jež umožňuje rozlišit mezi 5 druhy

IsoAmp Rapid Staph Detection Kit (*BioHelix*) je typickou „lab-on-chip technologií“, která využívá pro detekci *S. aureus* z pozitivní hemokultury izotermální amplifikaci dvou specifických míst na genomu pomocí helikázy a následně hybridizace specifické sondy, již je produkt reakce visualizovan v na testovacím proužku. **Prove-it Sepsis** (*Mobidiag*) je mikročipovou technologií, která umožňuje do 3 hodin záchyt až 27 druhů gramopozitivních a grammnegativních bakterií a genu *mecA* kódující rezistenci k oxacilinu u stafylokoků.

Všechny tyto systémy jsou však závislé na pozitivním výsledku kultivace a tak postrádají jednu z nejdůležitějších výhod molekulárně-biologických systémů a to je rychlý výsledek, který není ovlivněn antibiotickou léčbou.

6.4.2.2 Soupravy pro přímou detekci patogenů v krvi

Pro přímou detekci a identifikaci stafylokoků a dalších bakterií molekulárně biologickými metodami z krve jsou v současnosti nejvíce nabízeny následující tři komerční soupravy: **SeptiFast** (*Roche*) a **SepsiTest** (*Molzym*), **VYOO** (*SIRS Lab*).

SeptiFast kit (*Roche*) je určen pro detekci DNA 25 nejčastějších bakteriálních/houbových původců sepse. Cílovým místem pro PCR v reálném čase je intragenová oblast mezi geny pro *16S rRNA* a *23S rRNA*. Tato oblast se vyznačuje vysokou sensitivitou díky přítomnosti vícekopí operonů těchto genů. **SeptiFast mecA** umožňuje stanovit rezistenci k oxacilinu více kopií operonů těchto genů. **SeptiFast** prokázal ve srovnání s hemokultivací dobrý záchyt nejčastějších patogenů IE – *S. aureus*, streptokoky a enterokoky (Greub et al. 2005, Casalta et al. 2009). Přestože je souprava **SeptiFast** rychlejší než běžná hemokultivace, neuklidňuje nebo náročné mikroby způsobující IE (*Tropheryma whipplei*, HACEK aj.) nejsou systémem **SeptiFast** zachyceny (Ecker et al. 2010). Problematická je přítomnost humánní DNA, jejíž může obsahovat motivy komplementární k primerům specifickým pro detekci bakterií a tak může dojít k nespecifickému navázání a snížení citlivosti systému (Horz et al. 2010, Casalta et al. 2009). Pilotní studie s 15 pacienty s aktivní infekční endokarditidou prokázala vyšší citlivost soupravy **SeptiFast** oproti standardní kulturaci agens z chirurgického materiálu (Fernández et al. 2010).
Komerční souprava **SepsiTest** (*Molzym*) je založená na panbakteriální a panfungální detekci přímo z klinického materiálu. Souprava v rámci izolace bakteriální DNA ze vzorku odstraní i humánní DNA tzv. selektivní lyzi, kdy jsou nejdříve lyzovány humánní buňky a poté je degradována a odstaněna veškerá humánní DNA. Po následné lyzi patogenních buněk ve vzorku zůstává jen bakteriální DNA. Současně s touto komerční soupravou je nabízen i přístup ke kontrolované databázi sekvencí omezené jen na ty mikroorganismy, které byly prokázány v souvislosti s medicínsky významnými mikroby způsobujícími sepse, SepsiTest BLAST (http://www.sepsitest-blast.de/en/index.html). Výhodou tohoto systému oproti SeptiFast (Roche) je možnost detekovat kterékoli agens přítomné ve vzorku, nejen onéch 25 mikrobů spojených se sepsi (Horz et al. 2010).

Komerční souprava **VYOO** (*SIRS Lab*) využívá při izolaci DNA z materiálu protein, který váže méthylovanou DNA prokayot, zatímco až 90% humánní DNA je odstraněno ze vzorku. Na izolaci navazuje panbakteriální PCR se zaměřením na gen pro *16S rRNA*. Jedná se o multiplex PCR, která zachytí až 34 druhů klinicky významných bakterií, 7 druhů hub a 5 genů pro záchyt rezistence k antibiotikům.

Ačkoliv je většina těchto systémů založených na širokospektré detekci bakterií, může mít jejich vysoká citlivost na svědomí detekci kontaminující DNA bakterií z prostředí. Proto se systém neobejde bez pečlivé kontroly kontaminace v průběhu procesu a důsledné interpretace nálezu KNS.
6.5 Efektivita PCR pro průkaz stafylokoků v chirurgickém materiálu

Celkem jsme vyšetřili materiál od 60 pacientů s IE stafylokokového původu chirurgicky ošetřených ve třech kardiochirurgických centrech. Do kontrolní skupiny bylo zařazeno 59 pacientů operovaných pro jinou kardiologickou diagnózu. Kromě širokospektré PCR byla pro záchyt stafylokoků v chirurgickém materiálu použita i specifická PCR.

Z analýzy vyplývá, že obě metody PCR jsou velmi účinnými diagnostickými nástroji pro detekci DNA stafylokoků v chirurgicky odstraněném materiálu. Do osmi hodin od doručení materiálu do laboratoře bylo možné identifikovat a rozlišit mezi S. aureus a KNS, včetně rezistence k oxacilinu pomocí detekce genu mecA. Druhová identifikace KNS nebo identifikace jakéhokoliv jiného patogena pomocí sekvencování je následně možná do dalších 4 hodin.

U pacientů s „prokázanou“ diagnózou IE a pacientů kontrolní skupiny dosáhly obě metody PCR (pozitivita byla brána v úvahu, jestliže byl jeden z testů pozitivní) diagnostické sensitivit 89 % a specificity 95 %, PPV 92 % a NPV 94 %. Pokud by byl pozitivní výsledek brán v úvahu jen v případě současné pozitivity obou PCR testů, specifita by se zvýšila na 98 %, zatímco sensitivita by zůstala 89 %, PPV a NPV by byly 97 % a 94 %.

6.6 Srovnání PCR se standardními metodami průkazu etiologie

U tří z šesti kultivačně negativních případů PCR jako jediná z metod dokázala identifikovat etiologické agens (S. aureus). U jednoho pacienta, kde byly výsledky hemokultur a kultivace z tkáně falešně pozitivní, PCR pomohla určit etiologii IE jako S. haemolyticus.
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

PCR potvrdila výsledek hemokultur u 41/60 (67 %) pacientů s IE, včetně 3 negativních výsledků. U 2/41 případů pomohla PCR stanovit etiologii, v hemokultuře byly zachyceny S. aureus i KNS, zatímco PCR zachytí jen S. aureus. U jednoho pacienta s odlišným výsledkem hemokultur a PCR, kde Corynebacterium sp. zachycené v hemokulturách bylo považováno za kontaminaci a byl pomocí PCR zachycen S. aureus velmi pravděpodobně jako skutečné etiologické agens IE. Falešně pozitivní výsledky kultivace bývají v důsledku kontaminace při odběru nebo v průběhu zpracování pozorovány přibližně u 14-17 % kultivací z chlopně a až 30 % hemokultivací, nejčastěji nalézaným agens je KNS, dále také Micrococcus luteus nebo Corynebacterium sp. (Voldstedlund et al. 2008).

Výsledky kultivace a PCR z chirurgicky odstraněného materiálu se plně shodovaly jen u 19/58 (33 %) pacientů, včetně 5 negativních případů. U těchto pěti pacientů byla hemokultura jedinou metodou, která zachytí S. aureus. U jednoho z uvedených pěti pacientů s „možnou“ předoperační diagnózou IE byl S. aureus nalezen jen v 1/14 odběrů a nebylo možné rozhodnout, zda se jedná o přechodnou bakteriémii nebo skutečnou etiologii IE. Je možné, že u ostatních čtyř pacientů mohly záchyt agens v chirurgickém materiálu zatížen širokým pooperačním odběrem materiálu, který je problematický převážně u pacientů s prostetickými materiály (Roverly et al. 2005, Vollmer et al. 2010, Bosshard et al. 2003). Falešně negativní výsledky pooperačních testů mohly být rovněž způsobeny usmrcením mikroba a degradací DNA z vegetace předchozí antibiotickou léčbou, neboť samotná DNA stafylokoků (na rozdíl od bartonel nebo streptokoků) má schopnost v těle rychle degradovat (Roverly et al. 2005).

U tří pacientů s negativním výsledkem hemokultur a PCR z chirurgického materiálu byl při kultivaci chirurgického materiálu vypěstován KNS a u dalších tří pacientů s negativním výsledkem hemokultur a kultivace agens z chirurgického materiálu nalezen KNS pomocí PCR. Interpretace výskytu kmenů KNS u pacientů s „možnou“ diagnózou IE je obtížná, neboť je nutné odlišit kauzální kmeny od kontaminace, ke které může dojít při odběru, transportu nebo zpracování materiálu (Fredricks a Relman 1999). Ačkoliv se doporučuje provádět kontrolní odběry a testy sterility odběrových souprav (Greub et al. 2005, Qin a Urdahl 2001), v praxi je tento postup obtížně aplikovatelný. Výhodou detekce stafylokoků pomocí dvou přístupů PCR (širokospektrální a specifická) s různými cílovými geny je možnost vyloučit kontaminaci při zpracování, je-li agens zachyceno jen jednou z metod (Breitkopf et al. 2005, Moore et al. 2001). Přesto, tento přístup nebylo možné u dvou ze tří pacientů s nálezem KNS využít, neboť chirurgický materiál byl zpracován jen pomocí
specifické PCR. Bez výsledku histopatologické analýzy tak nebylo možné KNS považovat za etiologické agens a diagnózu IE tak jednoznačně potvrdit.

6.7 Etiologie IE v našem souboru

U 52/60 pacientů byla stanovena diagnóza stafylokokové IE. S. aureus byl jako etiologické agens nalezen ve 40 případech (70 %). U pacientů s IE způsobenou KNS byl nejčastěji nalezen S. epidermidis. Gen mecA nebyl zachycen u žádného kmene S. aureus, ale u 72 % kmenů KNS. Tři kmeny KNS, u nichž byl zachycen gen mecA byly fenotypově citlivé k oxacilinu. Mohlo se jednat o záchyt genu, který se fenotypově neprojevil. Srovnání záchytu genu mecA a fenotypového projevu je však u pacientů s IE problematické, neboť pacienti jsou často v závislosti na klinických projevech onemocnění vyšetřeni v několika nemocničních, resp. mikrobiologických zařízeních. Stanovení citlivosti k antibiotikům je závislé na standardním operačním postupu dané laboratoře, přípravě půdu pro testování antibiotik, hustotě i noku, kvalitě antibiotických disků, příp. kontaminaci i na zkušenostech odečítajícího mikrobiologa. Retrospektivně lze proto obtížně srovnávat fenotypový projev rezistence kmene vypěstovaného v hemokulturách v různých mikrobiologických laboratořích v průběhu hospitalizace pacienta v různých nemocničních zařízeních s průkazem genu mecA u kmene nalezeného v chirurgickém materiálu pacienta.
6.8 Role PCR v diagnostice IE

V této práci jsem prokázala význam PCR v diagnostice IE, především u pacientů s „možnou“ diagnózou IE. Přestože je kultivace z chirurgického materiálu součástí patologických Duke kritérií, u žádného z pacientů, kde byla provedena PCR, jsme neprokázali přínos kultivace ke zvýšení diagnostické síly Duke kritérií. Na základě této skutečnosti prokázané u pacientů s tak dobře rostoucím agens jako jsou stafylokoky, lze předpokládat, že o to více bude tento přínos zřejmý pro detekci obtížně kultivovatelných mikroorganismů (Fournier et al. 2010).

Faktem však zůstává, že PCR umožňuje záchyt DNA živých i mrtvých mikrobiálních buněk. Výsledkem PCR zaměřené na detekci bakteriální DNA se tak nelze spolehlivě řídit při stanovení aktivity onemocnění či monitorování úspěšnosti léčby infekce. Proto by měla být PCR prováděna vždy současně s histopatologickou analýzou chirurgického materiálu (Roverly et al. 2005). Jako alternativu histopatologického průkazu lze využít molekulární metody založené na detekci mRNA, jež je přítomna jen u životaschopných buněk (Keer a Birch 2003). Další možností je využít interkalačních fluorescenčních barviv, jako ethyldum monoazid (EMA) nebo propidium monoazid (PMA), které pronikají jen do mrtvých buněk s poškozenou buněčnou stěnou a po fotoaktivaci se kovalentně váží na dvoušroubovici DNA. Zabraňuje se tak oddálení řetězců při teplotní denaturaci a tudíž i syntéze komplementárního řetězce během PCR. Následná amplifikace pomocí PCR tak proběhne jen u DNA živých buněk (Nocker, Cheung a Camper 2006).

6.9 Klinické projevy IE způsobené stafylokoky

V souboru bylo zastoupeno 40 (77 %) pacientů s IE způsobenou S. aureus. Třetina pacientů v důsledku stafylokokové endokarditidy i přes chirurgickou a antibiotickou léčbu do roka od operace zemřela. Klinické projevy a důležité charakteristiky u pacientů s IE způsobené S. aureus a KNS se výrazně neliší, což zdůrazňuje rostoucí význam KNS jako etiologického agens IE. Tyto závěry však mohou být zkresleny poměrně malým statistickým souborem a také tím, že všichni pacienti zahrnutí do vyšetřovaného souboru byli ze specializovaných kardiochirurgických center s vyšším zastoupením pacientů s dalšími, závažnějšími diagnózami, komorbiditami nebo nozokomiálními infekcemi.
6.10 International Collaboration on Endocarditis (ICE)

Vzhledem k relativně nízké incidenci IE v populaci je poměrně obtížné provádět statisticky validní analýzy klinických dat u pacientů s IE. Pro účely získání rozsáhlé databáze prospektivně sbíraných klinických dat byla založena mezinárodní pracovní skupina pro výzkum IE (ICE), která sdružuje odborníky ze 70 výzkumných a klinických institucí 30 zemí. Cílem spolupráce je získat vhléd do epidemiologie a kliniky IE. Výstupy ze statistických analýz pak umožní lépe přizpůsobit terapeutické a diagnostické postupy IE s cílem snížit úmrtnost tohoto onemocnění.

Od roku 2009 se CKTCH společně s I. interní kardiologickou klinikou a Mikrobiologickým ústavem Fakultní nemocnice u svaté Anny a Interní klinikou a Oddělením klinické mikrobiologie Fakultní nemocnice v Brně podílí na několika projektech mezinárodní skupiny ICE.
7 ZÁVĚR

V první části disertační práce jsem provedla návrh specifických genetických markerů pro detekci *S. aureus*, KNS a rezistence k betalaktamům pro analýzu v jedné reakci. V rámci optimalizace s klinickými a sbírkovými kmeny různých mikroorganismů byla stanovena analytická specifita a sensitivita nové metody PCR pro identifikaci *S. aureus* nebo KNS a stanovení citlivosti k oxacilinu. Výsledky specifické PCR pro stafylokoky neukázaly žádnou zkříženou reaktivitu s jiným druhem mikroorganismu. Záchyt genu meca koreloval s fenotypovým projevem rezistence k oxacilinu a cefoxitinu u 97 % kmenů *S. aureus* a 55 % kmenů KNS. PCR (detekci genu meca) tak nelze k průkazu rezistence především u KNS vždy spolehlivě využít a je nutné se řídit především fenotypovým projevem. U kultivačně negativních pacientů může být však PCR vhodnou metodou detekce agens a orientačního stanovení rezistence.

V druhé části práce byly výsledky specifické PCR společně s širokospektrou PCR a sekvencováním, které se v laboratoři školitele používá pro rutinní diagnostiku, srovnány s výsledky standardní kultivace u pacientů se stafylokokovou IE. Metoda je vysoce citlivá pro detekci agens ze srdečních vegetací. V případě, že byl považován za pozitivní výsledek pozitivní záchyt v kterékoli z obou metod PCR, byla klinická sensitivita PCR 89 % a specifita 95 %. Pro zvýšení specificity PCR testování doporučuji hodnotit výsledky obou metod PCR jako pozitivní pouze v případě pozitivního záchytu pomocí obou metod.

Výsledek hemokultivace se shodoval s PCR u 72 % případů, zatímco s kultivací z chirurgického materiálu se výsledek hemokultury shodoval jen u 31 % případů. U většiny pacientů zahrnutých do tohoto souboru byl zjištěn falešně negativní výsledek kultivace z chirurgického materiálu v důsledku antibiotické léčby.

Výsledky PCR byly interpretovány u každého pacienta v kontextu s výsledky ostatních standardních diagnostických testů a klinickými projevy IE. PCR prokázala větší diagnostickou sílu než kultivace z chirurgického materiálu, především u pacientů s „možnou“ diagnózou IE před operací. U sedmi pacientů nebylo možné diagnózu aktivní IE potvrdit ani vyloučit bez výsledků histopatologické analýzy chirurgicky odstraněného materiálu. Naše výsledky ukázaly, že rutinní použití PCR pro diagnostiku IE není užitečné jen pro kultivačně negativní případy, ale také pro nesouhlasné výsledky kultivace z chirurgického materiálu a hemokultivace, dále u pacientů, kde je hemokultura pozitivní jen jednou nebo jsou-li v sérii hemokultur kmeny KNS s dvěma odlišnými antibioty. PCR lze rovněž použít v
případech, kdy výměna chlopně u pacienta po kardiochirurgickém zátkroku pro neinfekční příčinu prokázává pozitivní histopatologický nález.

V souboru bylo zastoupeno 40 pacientů s IE způsobenou *S. aureus* a 12 pacientů s IE způsobenou KNS. Třetina pacientů zahrnutých do souboru i přes chirurgickou a antibiotickou léčbu do roka od operace zemřela. Ve srovnání s jinými zeměmi byla IE způsobená MRSA u pacientů z center zahrnutých do studie vzácná.

Výsledky této práce ukazují, že širokospektrální a specifická PCR jsou velmi účinnými diagnostickými nástroji pro detekci DNA stafylokoků z chirurgicky odstraněného materiálu pacientů s IE. PCR je vhodná pro potvrzení předoperační diagnózy založené na echokardiografii a kultivaci patogena z krve. Do osmi hodin od doručení materiálu do laboratoře je možné identifikovat a rozlišit mezi *S. aureus* a KNS, včetně rezistence k oxacilinu pomocí detekce genu *mecA*. Druhová identifikace KNS nebo jiného (i obtížně kultivovatelného) patogena pomocí sekvencování je možná do dalších 4 hodin. Vzhledem ke zvyšující se incidenci IE a suboptimální senzitivitě a specificitě standardních kultivačních metod u pacientů pod antibiotickou léčbou doporučuji PCR zahrnout do diagnostických Duke kritérií.
Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

8 LITERATURA

version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J, 30, 2369-413.

Molekulárně-mikrobiologická diagnostika u pacientů s infekční endokarditidou

9 SEZNAM PŘÍLOH

P5 Pol J., Černý J., Ondrášek J., Žaloudíková B., Vršanský D., Freiberger T., Němec P. *Diagnostika a výsledky chirurgické léčby infekční endokarditidy.* Cor Vasa 2010, 52(5-6).