Vliv těhotenství a pohybové aktivity na úroveň statické rovnováhy u vybrané skupiny těhotných žen

Diplomová práce

Vedoucí diplomové práce: Doc. Martin Zvonař Ph.D.

Vypracovala: Bc. Barbora Cidlíková

Brno 2015
Poděkování

Dále bych ráda poděkovala všem probandkám, které se účastnily vědeckých měření, bez kterých by vypracování této práce nebylo možné.
Prohlášení

Prohlašuji, že jsem diplomovou práci vypracovala samostatně pod vedením doc. Martina Zvonaře Ph.D. a použila jsem jen literaturu uvedenou v seznamu literatury.
Souhlasím, aby práce byla uložena na Masarykově univerzitě v Brně v knihovně Sportovní fakulty a zpřístupněna ke studijním účelům.

Brno, duben 2015
Bc. Barbora Cidlíková
Obsah

Úvod .. 6

1 Východiska zkoumané problematiky ... 8

1.1 Těhotenství a fyziologické projevy ... 8

1.1.1 Hmotnost .. 9

1.1.2 Změny v pohybovém aparátu při těhotenství .. 12

1.1.3 Přesouvání těžiště při těhotenství .. 15

1.2 Motorické schopnosti ... 17

1.2.1 Koordinační schopnosti ... 18

1.3 Úpoly .. 21

1.3.1 Vývoj bojových sportů a vlivy na člověka ... 22

1.3.2 Jiu-jitsu a Judo ... 23

1.3.3 Aikido .. 27

1.3.4 Biomechanika úpolů .. 28

1.3.5 Rizikové faktory úpolových sportů .. 35

2 Cíle, Hypotézy, Úkoly ... 37

2.1 Cíle .. 37

2.2 Výzkumné otázky .. 37

2.3 Úkoly .. 38

3 Metodika .. 40

3.1 Strategie výzkumu .. 40

3.2 Harmonogram a průběh měření ... 40

3.3 Dotazníkové šetření ... 41

3.4 Výzkumný soubor ... 41

3.4.1 Výzkumný soubor – Rozdělení do skupin .. 42

3.5 Charakteristiky použitého měřičího přístroje .. 43
3.6 Statistické zpracování dat ... 45

4 Výsledky ... 47
 4.1 Výsledky měření statické rovnováhy těhotných žen 47
 4.2 Vyhodnocení dotazníkového šetření .. 58

5 Diskuze ... 64

6 Závěr ... 70

Seznam литературы а прamenů ... 72
Seznam obrázků ... 76
Seznam tabulek ... 78
Seznam příloh .. 79
Resumé ... 80
Summary .. 81
Úvod

Pro ženu bylo mateřství vždy nejpřirozenější věcí na světě. I když velké množství fyziologických a hormonálních změn doslova tělo ženy „poblázni“, jsou to právě ženy, které se dokáží velice rychle změnám přizpůsobit, aniž by si to byly schopny uvědomit. Tělo ženy je uzpůsobeno k tomu stát se matkou.

Slavný zpěvák skupiny U2, Bono Vox (lupusinky.cz, 2015), řekl: „Když se dívám na své dítě a jeho matku a vidím, jak se rodi ten vzájemný vztah, připadám si jako závozník. Mohu děti někam zavézt, ale nemohu se k nim nikdy přiblížit tak jako jejich matka. Ať už jste jakkoliv velký malíř, zpěvák, filmař nebo básník, všechno je to bezvýznamné ve srovnání se stvořením a se vším, co dokážou ženy.“

Těhotenství již nemusí znamenat odmítnutí všech pohybových aktivit. Na sportování při těhotenství se dnes nahlíží zcela jiným způsobem s tím, že je nutné striktně dodržovat lékařská doporučení a neméně důležité je umění naslouchat svému tělu. Toto téma jsem si zvolila z důvodu, že sport je neodmyslitelnou součástí mého života a předpokládám, že mateřství se jí v budoucnu stane také. Proto mě zajímalo, jaké změny těhotenství přináší, jak lze sklobit těhotenství s pohybovými aktivitami, jaké jsou subjektivní pocity pohybově aktivních těhotných žen.

Cílem práce byl popis a vysvětlení sledovaných vlivů (těhotenství a pohybové aktivity) na statickou rovnováhu žen v průběhu těhotenství.

Práce byla složena z části teoretické a části praktické. Teoretická část zahrnovala popis zkoumané problematiky těhotenství a motorických schopností. Jedna kapitola teoretického rozboru byla věnována úpolovým aktivitám. Stalo se tak proto, že studuji na oboru zabývajícím se úpolovými aktivitami. Tato skupinu úpolově sportujících byla porovnána v dalších částech práce (v rámci vybraných proměnných) s nesportujícími, a jinak sportujícími těhotnými ženami. Hlavní výzkumný problém se tudiž vztahoval k vlivům těhotenství a pohybových aktivit na úroveň statické rovnováhy. K zodpovězení výzkumných otázek a splnění cíle práce, byla využita výzkumná metoda stabilometrie, u které byl použit dostupný program Fitro Sway. Fitro Sway zaznamenal výkyvy statické rovnováhy na stabilometrické plošině a tato data byla zpracována do konečné podoby v praktické části této práce. Další výzkumná metoda byla řešena dotazníkovým šetření. Hlavním cílem dotazníkového šetření bylo zjistit subjektivní pocity na míru fyziologických vlivů v těhotenství, zda těhotné vykonávaly v průběhu těhotenství nějaké
pohybové aktivity, a jak byla ovlivněna úroveň jejich koordinačních schopností. Vzhledem k možnosti srovnávat v měření tři skupiny zcela odlišných pohybových návyků, by se práce mohla stát přínosem nejen pro sportovní fakultu, ale také pro nastávající těhotné matky.
1 Východiska zkoumané problematiky

1.1 Těhotenství a fyziologické projevy

I dnes, kdy ženy čím dál častěji podrobuji svůj život své práci a kariernímu růstu, je třeba zdůraznit, že mateřství je nadále nezastupitelným posláním ženy. Ženy pro tento úkol mají specificky přizpůsobenou stavbu a funkci těla. V těle ženy dochází k mnoha složitým změnám a žena se s nimi musí vyrovnat. Zde je vhodné zdůraznit, že žena může být v mnohem nápomocná přírodě. Svým životním stylem, správnou vyváženou stravou, dobrým stavem kardiovaskulárního systému a vhodným množstvím pohybové aktivity může žena zásadně ovlivnit průběh těhotenství. Správné a uvážené dávkování pohybové aktivity působí na tělo ženy relaxačním i povzbuzujícím dojmem. Je důležité mít na paměti, že na začátku těhotenství mnoho žen trpí různými druhy nevolností a zažívacích problémů, a proto dávkování pohybové aktivity by mělo být vždy individuální. Při bezproblémovém těhotenství žen zvyklých pravidelně cvičit až do 4. měsíce těhotenství, je to však individuální, a vždy je důležitá konzultace se svým lékařem. (Adamírová, 2002)

Při pohlavním styku dochází k uvolnění mužských pohlavních buněk (spermií) a následným splnutím s ženskou pohlavní buňkou (vajíčkem) dochází k spojení obou jader. Vzniká tak zygota, což je buňka, která nese 46 chromozomů, po každém z rodičů polovinu. Při průběhu cesty z vejcovodů do dělohy se dále dělí (rýhuje). Těhotenství je dlouhé 280 dní, zhruba 38 - 42 týdnů a dále se dělí na tři trimestry, každý trimestr obsahuje zhruba 12 týdnů (Pařízek, 2009).

Čím se liší tělo ženy od těla muže?

Mezi morfologicko-funkční aspekty řadíme:

- Tělesné rozměry - Ženy jsou o 6-8% menší a o 18-22% lehčí než muži. Mají proporčně kratší končetiny ke své výšce, délka dolních
končetin je 51% k tělesné výšce, v tom můžeme rozpoznat vliv na větší rovnováhu, neboť ženy mají své těžiště mnohdy bližší k podložce než muži. (Lehnert, 2010)

- Svalstvo a svalová síla - Z tělesné hmotnosti naleží 32-36% svalové složce. Ženy nemají tak vysoký svalový tonus, nemají tolik svalových vláken a mají menší průřez svalových vláken zhruba o 20%, zároveň ale mají vyšší počet vláken pomalých zhruba o 15%. (Lehnert, 2010)

- Množství a distribuce tuku – Oproti mužům mají ženy více tělesného tuku o 18–26%, tento tuk se ukládá hlavně do oblastí hýždí, bederní páteře, vnitřní strany stehen, okolí pupku, kolen a oblastí prsou. Na vyšším procentu tukové složky se podílí produkce estrogenu v období dospívání. Dalším vlivem je tvorba a ukládání tuku v období těhotenství, kdy si tělo ženy dělá velké energetické zásoby, aby se tím přizpůsobilo nadcházejícím změnám. (Lehnert, 2010)

1.1.1 Hmotnost

Dle Zwingera (2004) je „zvýšení tělesné hmotnosti způsobeno růstem dělohy, placenty a plodu, zvětšením objemu prsů, krve a extravaskulární extracelulární tekutiny. V menší míře pak zvýšením objemu intracelulární vody, tuku a bílkovin.“

Průměrný přírůstek hmotnosti na konci těhotenství je 11-13 kg, v prvním trimestru je to zhruba 1-2 kg, v druhém i třetím je to přírůstek zhruba 5 kg. Dalším přírůstkem jsou bílkoviny, je to zhruba 1kg, z toho polovina je přivedena k plodu a do placenty, zbytek jsou bílkoviny obsaženy v prsních žlázách, plazmě, hemoglobinu a také bílkoviny, které se účastní kontrakcí dělohy. (Zwinger, 2004)

Při hmotnosti dítěte 3 300g po narození, se uvádějí tyto hodnoty přírůstku tělesné hmotnosti ženského těla, hmotnosti (m):

- tekutiny v tělesných tkáních 2000 g
- plodová voda 1000 g
- plod 3300 g
- objem krve 500 g
- prsa cca o 500 g
- plodové lůžko cca 500 g
- děloha cca o 1000 g

Celkový přírůstek hmotnosti pak bude 8800 g (Pařízek, 2009).

Ideálního hmotnostní přírůstek v těhotenství se zpravidla rozlišuje pro různá BMI, neboli „Body mass index“*. Je možné stanovit hodnoty pro vyšší hodnoty BMI, na začátku těhotenství by tomuto BMI odpovídala hodnota zhruba kolem 5 kg a u nižších BMI zhruba 18 kg. (Kolářová, 2013)

Body mass index

Je to hodnota závislá na tělesné výšce a tělesné váze. Čím vyšší hodnota BMI, tím vyšší sklon k obezitě a možným zdravotním problémům. Při vyšších hodnotách BMI- nad hodnotu 25 kg/m² to znamená, že tělo vzhledem ke své výšce má vysokou tělesnou hmotnost. Jednoduchým výpočtem lze zjistit, do jaké kategorie spadá jednotlivý měřený. (Obr. 1) (www.rehabilitace.info, 2013)

<table>
<thead>
<tr>
<th>BMI</th>
<th>Kategorie</th>
<th>Zdravotní rizika</th>
</tr>
</thead>
<tbody>
<tr>
<td>méně než 18,5</td>
<td>podváha</td>
<td>vysoká</td>
</tr>
<tr>
<td>18,5 - 24,9</td>
<td>norma</td>
<td>minimální</td>
</tr>
<tr>
<td>25,0 - 29,9</td>
<td>nadváha</td>
<td>nízká až lehce vyšší</td>
</tr>
<tr>
<td>30,0 - 34,9</td>
<td>obezita 1. stupně</td>
<td>zvýšená</td>
</tr>
<tr>
<td>35,0 - 39,9</td>
<td>obezita 2. stupně (závažná)</td>
<td>vysoká</td>
</tr>
<tr>
<td>40,0 a více</td>
<td>obezita 3. stupně (těžká)</td>
<td>velmi vysoká</td>
</tr>
</tbody>
</table>

Obrázek č. 1: Rozdělení do kategorií dle hodnoty BMI (www.rehabilitace.info, 2013)

Podváha – hodnoty pod 19 BMI
- vysoká zdravotní rizika
- nedostatečná funkce životně důležitých orgánů
- špatná imunita
- zhoršená schopnost regenerace a adaptability na denní zátěž

Ideální váha – hodnoty v intervalu od 19 do 24,9 BMI
- zdravotní rizika jsou omezená a minimální
- nedržet zbytečné diety, dojde ke zpomalení metabolismu

Nadváha – hodnoty v rozmezí 25 až 29,9 BMI
- zvyšuje zdravotní rizika a podporuje vrozené predispozice k chorobám
- sklon k bolesti zad
- zatěžuje pohybový aparát, krevní řečiště a srdce
- nerovnováha pohlavních hormonů, poruchy plodnosti, poškození plodu

Obezita vyšší než hodnota 30 BMI
1. stupeň – 30 až 35 BMI
- arteroskleróza, hypertenze, onemocnění kloubů, dna
- snížení váhy o 10% výrazně sníží rizika

2. stupeň – 35 až 40 BMI
- vysoká hladina cholesterolu
- vysoký krevní tlak
- onemocnění srdce, cév a cukrovka

3. stupeň – 40 až 45 BMI
• onemocnění žaludku
• dušnost
• diabetes mellitus II. stupně (www.rehabilitace.info, 2013)

1.1.2 Změny v pohybovém aparátu při těhotenství

V těle těhotné ženy nastávají velké změny. Vlivem působení hormonů dochází taktéž ke zcela přirozeným změnám v pohybovém aparátu ženy tak, aby bylo vytvořeno optimální prostředí pro vývoj plodu. Kvůli zvětšující se tělesné hmotnosti se přizpůsobuje páteř, a to prohnutím v oblasti bederní a hrudní, které může s bližícím se porodem vyvolat u těhotných žen zhoršenou koordinaci a větší bolest v těchto partiích. Působí zde výrazně větší tlak na pohybový aparát než v období před otěhotněním. Proto může být velkým přínosem pohybová aktivity před nebo při těhotenství, zaleží na vhodném dávkování a výběru sportu. Dalším problémem je působení hormonů na pánevní dno, hormony mohou uvolňovat vazivo v pánevní oblasti. Této změně spolu se zatížením zmíněné zvýšené hmotnosti se může projevovat houpavou chůzi a bolesti v kyčelní oblasti. (Bejdáková, 2006)

1.1.2.1 Kosterní soustava

Pánev

Rozdíly mezi mužskou a ženskou pánví můžeme pozorovat dále na obrázku. (Obr.2), kde vidíme, jak je ženské tělo již přirozeně připraveno k mateřství. Ženská pánev je širší a nižší, její sklon je také rozdílný (u žen je 30° od svislé osy) a bývá příčinou většího prohnutí v bederní pateři ještě před otěhotněním. Muži na rozdíl od žen mají pánev užší a vyšší (Adamírová, 2002).
Obrázek č.2: Rozdíl mužské a ženské pánve (wikiskripta.eu/index.php/Pančev, 2001)

Klenba nohy

Klenba nohy je vystavěná mediálním a laterálním sloupcem nožních kostí, napětím svalů, přítomnosti vazů a kosti bérce, jsme pomocí ní schopni udržovat celou váhu těla (Obr.3). Rozlišujeme nožní klenbu příčnou a podélnou. Velké zatížení v podobě velkého přírůstku vysoké hmotnosti může vyvolat padání a pokles klenby, což může vyvolávat větší bolesti (Vařeka, 2009).
1.1.2.2 Svalstvo ženy a jeho změny

Děloha

Spadá do oblasti pohlavních orgánů a je součástí vnitřních rodidel. Pro potřeby této práce nebudeme rozebírat všechny organy, ale pouze ty, které v těhotenství prodělávají výraznější změny a jsou důležité pro svou svalovou funkci. Děloha je svalovým orgánem, který je schopen se přizpůsobit změnám plodu a zvětšovat se či zmenšovat dle potřeby. Děloha by se dala nazvat „svalovým vakem“ (Adamírová, 2002).

Svaly pánevního dna

Prsní svalstvo

V těhotenství se zvyšuje počet mléčných žláz a jejich sekrece, čímž dochází k přetěžování prsních svalů a tudíž k možnému poklesu prsou směrem k břišním svalům. (Kolářová, 2013)

Břišní svalstvo

V těhotenství se oblast břicha zvětšuje velice rychle a tak se přímé břišní svaly protahují a to způsobuje jejich protahování a ochabnutí.

Oba přímé břišní svaly jsou spojeny vazem – linea alba, který je schopen se napínat a rozestupovat. V místě vazu tak může v důsledku rychlého nárůstu dělohy dojít k rozestoupení přímých břišních svalů směrem od sebe v důsledku neudržení tohoto tlaku na vaz. (jogamasazemost.webnode.cz, 2011)

1.1.3 Přesouvání těžiště při těhotenství

Celkové těžiště lidského těla

Významně souvisí s celkovou stabilitou člověka v různých polohách, pohybu a v prostoru. Z biomechanického hlediska má význam jakéhosi myšlenkového bodu, na který působí síly prostředí (tihová síla). Dle dalších výpočtů vzhledem k tomuto bodu můžeme mluvit o stabilitě/nestabilitě lidského těla v prostředí. (biomech.ftvs.cuni.cz, 1976)

V základním anatomickém postoji v horizontální rovině prochází těžiště druhým křížovým obratlem. V poloze vleče se vždy přesouvá směrem k hlavě zhruba o 1%. Těžiště žen můžeme najít o 1 – 2 % níž než u mužů, díky rozdílným rozměrům pánve. U dětí v předškolním věku se nachází celkové těžiště výše než v dospělosti. (Karas, 1991)
Podle Karase (1991) „Těžiště těla určujeme na základě znalostí poloh dílčích těžišť jednotlivých segmentů a hmotnosti těchto segmentů.“ Existují dva způsoby jak toto těžiště určit:

1. Grafickou metodou
 V dnešní době zastaraly, nedostatečně přesný a velice pracný způsob zjištění.

2. Určení těžiště těla výpočtem
 Pomocí znalostí jednotlivých těžišť určíme jejich polohu na osách x, y, z.
 Dále postupujeme pomocí vzorce (Obr. 4):
 \[
 x_T = \frac{\sum_{i=1}^{n} x_i m_i}{\sum_{i=1}^{n} m_i}, \quad y_T = \frac{\sum_{i=1}^{n} y_i m_i}{\sum_{i=1}^{n} m_i}, \quad z_T = \frac{\sum_{i=1}^{n} z_i m_i}{\sum_{i=1}^{n} m_i}
 \]

 Obrázek č.4: Vzorce pro určení celkového těžiště (biomech.ftvs.cuni.cz, 1973)

Změny těžiště způsobené těhotenstvím

Tak jako na polohu těžiště má vliv hmotnost jednotlivých segmentů těla, tak má i hmotnost a rozložení hmotností jednotlivých částí lidského těla vliv na přesouvání tohoto těžiště. To znamená, že se zvětšujícím se plodem v oblasti ženské dělohy se přesouvá centrum těžiště ženy a mění se i její rovnováha. Tato změna centra těžiště směrem vpřed a dolů ke končetinám je vyrovávána právě prohnutím bederní páteře vpřed a dochází, tak k bederní hyperlordóze a přepětí svalů v této oblasti. Tuto změnu mnohdy doprovází i hrudní kyfóza, která naopak vyrovnává předchozí netradiční změny bederní páteře. Ve všech případech tímto dochází k celkovému dočasnému avšak minimálnímu pokřivení páteře. Největší problémy s těmito změnami nastávají mnohdy ve třetím trimestru při nejvyšším nárůstu hmotnosti plodu a celkové tělesné hmotnosti matky. (Roztočil, 2008)
1.2 Motorické schopnosti

Je zapotřebí si uvědomit, že nejde pouze o genetické predispozice, ale zároveň vlivy prostředí tyto schopnosti do značné míry rozvíjejí nebo utlumují. Princip rozvoje spočívá ve vzájemné integraci těchto dvou činitelů. Vědní disciplína zabývající se strukturou a vztahy mezi těmito vnitřními činiteli (předpoklady) a vnějšími pohybovými projevy, se nazývá antropomotorika. Vnitřními předpoklady jsou pohybové dispozice, schopnosti, vědomosti a vnější projevy jsou definovány, jako konkrétní tělesná cvičení. (Zvonař, Duvač a kol., 2011).

Rozdělení, strukturování a taxonomie motorických schopností se v mnoha odborných knihách liší. Zde však budeme motorické schopnosti dělit hierarchicky, a to na schopnosti kondiční a koordinační. Kondiční schopnosti jsou spojeny s energetickými procesy, neboť bez energetického krytí je nelze provést. Koordinační schopnosti jsou funkčními procesy řízené pohybovými činnostmi. Mezi tyto dva druhy schopností se řadí, schopnosti hybridní (kondičně-koordinační), které jsou jak řídícími, tak energeticky krytými pohybovými procesy. (Měkota, 2005).

Pro pochopení hierarchického uspořádání (Obr.5) je snaha rozčlenit schopnosti na soubor primárních schopností, uspořádaných do kondičních, koordinačních a hybridních schopností, jímž je nadřazena generální motorická schopnost (Měkota, 2005).
Další rozdělení podle charakteru pohybové činnosti je například dle (Čelikovský, 1979) na 5 skupin:

1. Základní motorika
2. Pracovní motorika
3. Bojová motorika
4. Kulturně- umělecká motorika
5. Tělovýchovná a sportovní motorika (Čelikovský, 1979)

1.2.1 Koordinační schopnosti

Teorie k tomuto tématu se vyvíjely, avšak nejprve byl pro toto odvětví používán pojem obratnost. Obratnost byla formulována jako schopnost koordinace složitých pohybů, s rychlým procesem učení schopným přizpůsobit se vnějším podmínkám. Tato teorie byla nicméně velice necelistvá, a proto byl přijat termín koordinační schopnost.
„V případě pohybové koordinace jsou uváděny do souladu především dílčí pohyby či pohybové fáze tak, aby vytvořily harmonický celek pohybového aktu. Při pohybové aktivitě také celé tělo člověka neustále mění svoji pozici v prostoru, v souladu s okolím, přičemž udržet či obnovit rovnováhu zejména při rychlých a prostorově rozsáhlých pohybech není snadné. I při běžné každodenní činnosti často musíme reagovat na přicházející signály, a to ve správném časovém okamžiku, naše pohyby musí být přesné, aby bylo dosaženo cíle,“ formuluje koordinaci Měkota a Novosad (2005).

Předpokladem pro koordinační schopnosti je vhodná míra zapojení centrální nervové soustavy, neboť jsou to pohybové vzorce fungující na principu regulace a řízení pohybu. Nervosvalové koordinační schopnosti, rozdělujeme na:

- Reakční,
- rovnováhové,
- rytmické,
- prostorově orientační,
- kinesteticko - diferenciační schopnosti. (Zvonař a kol., 2011).

1.2.1.1 Komplexní reakční schopnost

Schopnost v co nejkratším čase vhodně reagovat na dané podněty, více či méně složité. Může se jednat o taktilní, akustické, vizuální a kinestetické podněty, kde se jedinci snaží o minimalizaci prodlevy mezi tímto podnětem a pohybovou odpovědí. (Kohoutek, 2005).

1.2.1.2 Rovnováhová schopnost

Schopnost udržování v rovnovážném stavu a tento stav neustále obnovovat i při působení vnějších destabilizujících podmínek. Správná rovnováhová schopnost je použita včas, i při malých výkyvech a je schopna rychle tělo uvést zpět do rovnovážného stavu. Rovnováhovou schopnost dále dělíme na:

- Statickou rovnováhovou schopnost
- Dynamickou rovnováhovou schopnost
- Balancování předmětu (Měkota, Novosad, 2005).
Statická rovnováhová schopnost

Ta se využívá u měření těles, které jsou v klidu a skoro nedochází k změnám místa v prostoru. Jde o polohy jako stoj na pevné podložce, nebo na labilní podložce, ale i poloha převrácená či vleže (Měkota, Novosad, 2005).

Dynamická rovnováhová schopnost

Využívá se při pohybových činnostech u rychlých změn polohy a místa v prostoru, jako například: translační a lokomoční, rotační pohyby a letová fáze (Měkota, Novosad, 2005).

1.2.1.3 **Rytická schopnost**

Jedná se o motorické převedení rytmu do pohybové aktivity. Existují dva druhy pohledu.

Prvním je tedy přenesení rytmu do pohybové činnosti (krasobruslení a tanec) na podkladě vnímání akustických a vizuálních rytmů.

Druhým je rozpoznání rytmu určité pohybové aktivity a její následná interpretace v daném rytmu (Měkota, Novosad, 2005).

1.2.1.4 **Prostorově orientační schopnost**

Kohoutek, Hirtz a kol. (2005) definují prostorově orientační schopnost jako „schopnost rozlišení a změny polohy a pohybu těla jako celku v prostoru podle zadané úlohy a schopnost prostorově regulace pohybového jednání v rámci zobecněného pohybového vzorce.“ Pro motorické učení je velice důležitá správná funkce a vstřebávání optických informací. Tato schopnost je nejvíce důležitá v tzv. situacíčních sportech například, v úpolech a gymnastice.

1.2.1.5 **Kinesteticko-diferenciační schopnost**

Jde o pohybovou schopnost ovlivňovat silový, prostorový a časový charakter pohybu a lze ji vyjádřit jako přesný a ekonomický pohyb, přizpůsobený vhodné kinestetické informaci. Tyto pohyby se mohou uskutečňovat i bez zrakové kontroly (Kohoutek, 2005).
1.3 Úply

Definice úpolů

Jsou v mnoha odborných publikacích odlišné, zde si však uvedeme definici podle Reguliho: „Úply jsou pohybové aktivity zacílené na kontaktní fyzické překonání partnera. Do úpolů zařazujeme i specifická cvičení, které jsou přímou průpravou na kontaktní překonání partnera.“ Jedním z důležitých znaků je, že vždy jde o kontakt minimálně dvou osob a ke kontaktu dochází záměrně, je to cílem. Naopak u jiných sportů je to dopomoc k jinému sportovnímu cíli.

Systematika úpolů je složena ze tří úrovní, a to:

- Úroveň úpolových předpokladů
- Úroveň úpolových systémů
- Úroveň úpolových aplikací

Každá z úrovní na sebe navazuje a není možné předpokládat naučení se další úrovně bez zvládnutí té předcházející. K jednotlivým úrovním jsou hierarchicky přiřazeny jejich systémy, a to:

- Průpravné úply
- Úpolové sporty
- Sebeobrana (reálné bojové úply) (Reguli, 2005)

Úpolové sporty

1.3.1 Vývoj bojových sportů a vlivy na člověka

Tak jako každé odvětví, tak i bojové sporty prochází značnými změnami v čase. Mnohé tyto změny souvisejí s vývojem zbraní či dostupností nových zbraní, a tak se staly některé bojové sporty zastarálymi, např. šerm a lukostřelba. Tyto změny se netýkaly pouze bojových sportů se zbraněmi, ale i úpolových sportů beze zbraně, kde bylo zapotřebí rozvíjet nové sebeobranné techniky, které by byly dostávající jako odpověď na útok. Protože se však došlo k poznání, že staré bojové sporty obsahují cenné výchovné hodnoty, došlo u mnohých bojových sportů k „renesanci“ těchto hodnot se změnou taktiky boje. Při bojových uměních bez použití zbraně byla snaha zachovat co největší efektivitu boje, a to pro sebeobranné účely, ale také z důvodů bezpečnější aplikace v bojových sportech pomocí striktně dodržovaných pravidel a ochranných prostředků. Bojový sport už není výsadou pouze mužské populace, ale také ženy se této sportovní oblasti věnují mnohem více než v minulosti. Vzhledem k možnostem bojových sportů a jejich přizpůsobení se bezpečnějším nácvikům technik, se dnes mohou těmto aktivitám věnovat se vši vážnosti a respektem také ženy.(Weinmann, 2010)

U předchůdců džuda můžeme inovaci spatřit ve vytvoření tatami, žíněnek z rýžové slámy, které mají za úkol tlumit množství nárazu o zem, charakteristických pro džudo. Dále to mohou být pádové techniky tlumení nárazu, bez nichž hrozí i na tatami riziko přerušení úrazu. Zavedení pravidla o přerušení chvatu při „odklepání“, kterým se aktivní v soutěžní formě vzdává, pomohlo k možným efektivním nácvikům těchto méně bezpečných technik. Sportovní džudo si zakládá na myšlence, dle Weinmanna (2010): „Porazit protivníka, aniž by byl tělesně poškozen, současně však umožňuje boj ve vážných případech rozhodně ukončit.“

Hodnotou bojových sportů je zcela jistě jeho výchovný charakter. Pro bezchybná provedení v bojových sportech je důležitá vysoká míra sebeovládání, fyzická síla, schopnost rychlých rozhodnutí a reakcí, vnitřní klid, sociální percepcie, a to vše ve stresových situacích. Podstatou bojového sportu je přivlastnění si tělesných dovedností, ale i zvnitřní se s duchovními hodnotami jednotlivých systémů. (Weinmann, 2010)
1.3.2 Jiu-jitsu a Judo

Historie a vývoj

Bojová umění beze zbraně mají v Japonsku kořeny až v dávné mytologii. Mnohé pověsti vyprávějí o založení těchto bojových umění. Jednou takovou je verze o původu džudžucu, z něhož se později vyvinulo džudo. Hovoří o Japonci Jošito z Nagasaki, který si povšimnul, jak slabé vrbové pruty shazují sníh ze stromu, kdežto silné větve se lámou. Díky tomuto poznání vytvořil systém sebeobrany, kde obránce dosahuje vítězství pomocí ustupování. Ale podle všech možných faktů přisuzujeme vznik japonského džudžucu, spíše dané době a s ní spojenými válečnými střety a nutností se bránit neustálým útokům (Weinman, 2010).

JU-JUTSU (ju-jitsu, jiu-jitsu, džudžucu)

Moderní jujutsu (ju-jitsu) dvacátého století se přesouvalo nejprve do Ameriky (USA, Brazílie a na Havaj) až poté do Evropy. Dnes je velice populární ona brazilská forma jujutsu. Jujutsu v ČR na začátku dvacátého století bylo chápáno jako sebeobrana, oproti ostatním známým sportovním formám úpolových sportů (box, zápas atd.). Bylo vnímáno jako boj bez pravidel s velkým množstvím různorodých technik z jiných úpolových sportů. Principy jujutsu jsou založeny na
prvcích juda (hody, páky, škrčení, boj na zemi), karate (údery) a aikida. (Novák, 2007)

Dnes v ČR existuje velké množství druhů jujutsu, které prezentují nové školy a styly jujutsu, ty se dělí na:

- **Esteticko-kombinační**
- **Sportovní**
- **Jujutsu jako sebeobraný systém** (Novák, 2007)

Esteticko-kombinační forma

Základy byly položeny v Japonsku, již v období Meiji (2. polovina 19. století), kdy se z feudálního Japonska stala konstituční monarchie a došlo k nabytí účinnosti nových zákonů a změně postavení samurajů ve společnosti. Změnilo se provedení z bojové formy na formu estetickou. Dnes jde o perfektní souhrnu mezi obráncem a útočníkem, jeho sportovní formou je tzv. Duo Systém, kdy hlavním přínosem není sportovní výkonnost ani sebeobrana, nýbrž radost z pohybu. (Novák, 2007)

Sportovní jujutsu

Duo systém je také formou sportovního jujutsu, stejně tak, jako „Self defense system“, „Grappling“ a „Fighting system“. Ten je složen ze tří samostatných fází, které na sebe navzájem navazují. Dvě fáze jsou v postoji a jedna v boji na zemi. (Novák, 2007)

Jujutsu jako sebeobraný systém

Velká výhoda tohoto sebeobraného systému se nachází v možnosti rychlé a přiměřené sebeobraně vůči různým typům útoku. Také v možnosti zvítězit, aniž ovládáte velkou sílu či pružnost. Tento sebeobraný systém využívá v současné době německá a slovinská policie. (Novák, 2007)
Džudo (Judo)

Moderní džudo je pro mnoho sportovců hlavně zábavou, která přináší fyzickou i duševní kondici. Aplikace džuda do sebeobrané složky s sebou nese správnou míru důvěry ve vlastní sílu. Je možné džudo cvičit bez omezení na věk či pohlaví, jen musí být správně přizpůsobeno možnostem cvičícího. (Březina, 1990)

Jedná se o úpolový sport, jehož smyslem je zvítězit nad protivníkem, soutěží povolenými chvaty, před koncem časového limitu či množstvím získaných bodů. Souboj začínají judisté v postoji. Jejich snažou je hodit soupeře na záda některou z povolených technik. Pokud tímto hodou judista nedosáhne celého bodu, pak souboj pokračuje na zemi, kde se užívají další techniky držení, škrcení či páčení. (Březina, 1990)

Systematika chvatů

At’ mluvíme o judu, jujutsu či aikidu pro všechna bojová umění jsou charakteristické tyto body jednotlivých technik:

- Vstup do útoku,
- vychýlení,
• nástup do techniky,
• pád nebo držení ukeho (obránce). (Reguli, Šenkýř, 2013)

Systematika džúdó se skládá ze tří rovnocenných částí, které rozdělujeme na:
• nage waza
• katame waza
• atemi waza

Atemi waza neboli techniky úderů a kopů jsou dlouhodobě vyřazeny ze soutěžní formy džuda. Pro džudo v soutěži jsou nejdůležitější efektivní techniky nage waza. Nage waza můžeme dělit na tači waza, což je technika judisty, který při hodu soupeřem zůstává stát a sutemi waza (strhy), kdy při hodu využívá vlastní pád. Do tači waza řadíme techniky rozdělené dle toho, jak je soupeř hozen, kterou část těla k hodu využívá. Sutemi waza je rozděleno na dva druhy strhů, a to dle směru strhů. Na stejném stupni z hlediska hierarchického uspořádání technik jsou: katame waza (techniky znehybnění), které se dál dělí na asaekomi waza (techniky držení), šime waza (techniky škrcení) a kansecu waza (techniky páčení). Hierarchické rozdělení můžeme lépe prostudovat na následujícím obrázku (Obr. č. 6) (Reguli, Šenkýř, 2013)
1.3.3 Aikido

„Aikidó je komunikace. Cvičit aikido znamená ztvrdit vůli komunikovat, a to dokonce i v tom nejhorším případě, kdy se nás partner snaží zničit popíráním naší existence. Ale co říct a jak? Jaký jazyk máme zvolit a co chceme říct? Cvičení aikidó není nicím jiným než dialogem, který se snaží tyto dvě neznámé odstranit.“

Takto popisuje fragment neznámého v aikidu, držitel sedmého danu, Franck Noel (2013).

Jejím zakladatelem je Morihei Uešiba neboli Ósensei (Velký učitel), jenž díky svému osobitěmu způsobu provádění technik, dal vzniknout samostatnému nesoutěžnímu, komplexně rozvíjejícímu úpolovému sportu, který byl nejprve nazýván jako aikibudó. Roku 1942 byla tato jeho interpretace nazvána aikidem. Oproti předchozím zmiňovaným úpolovým sportům se liší mnohem větším soustředěním se na životní filozofii a cestu učení sloužící především k rozvoji duše a těla. Pro aikido je zcela nezbytný nácvik obrany i útoku, proto v mnohých cvičeních je potřeba cvičit ve dvojicích, jako uke a tori, ale lze cvičit i samostatně. Jsou zde důležité fragmenty prolínající se všech technikách, jako trojúhelník v oblasti paží, který je nezbytný k správné aplikaci technik aikida. (Reguli, 2005)
Technické prostředky (Obr.7) využívá v technikách hodů, úderů, znehybnění a v technikách s použitím zbraně jako: meč, nůž a tyč. (Reguli, 2005)

„Aikido je založeno na principu rozvíjení duše a zlepšení života lidí, a tím možnosti tvořit lepší svět. Je založeno za tímto účelem, nikoli na způsobu pohybu a technických detailech, jejichž prostřednictvím je vyučováno. Pokud je přítomen princip a účel, pak může existovat jakákoli technika aikidó.“ Podle spisů Micugy Saotoma, učně Ósenseie (Saotome, 2004).

Obrázek č.7: Technické prostředky „ukeho“(obránce) a „toriho“(útočníka) (Reguli, 2005)

1.3.4 Biomechanika úpolů

Zkoumá hlavně fyzikální příčiny pohybu, jak z vnějšího tak z vnitřního pohledu. Hledá nejefektivnější a optimální pohybový vzorec k překonání úkolu
z mechanického hlediska. Na základě určení optimálních pohybových vzorců pro různé sportovní oblasti můžeme snáze rozpoznat talenty pro specifickou sportovní činnost nebo naopak jsme schopni vyvarovat se omezujících chyb při specifických pohybech. Zminěno bylo pouze několik důležitých fyzikálních veličin vhodných pro tuto práci. (Bělař, 1964)

Vztažná soustava

Poloha tělesa a jeho pohyb závisí na bodech, ke kterým měřené těleso vztahujeme. V mnohých případech za vztažnou soustavu volíme zemský povrch, ale pro tuto práci budeme potřebovat určit vztažnou soustavou těžiště těla měřeného tělesa (probanda), kde budeme měřit odchýlení jednotlivých částí těla, vzhledem k vztažné soustavě. (Bělař, 1964)

Newtonovy pohybové zákony (Kalichová, 2013) znějí:

První pohybový zákon

,,Těleso zůstává v klidu nebo rovnoměrném přímočarém pohybu, není-li nuceno vnějšími silami tento stav změnit.“ Jinak lze tento stav popsat tak, že výslednice sil proti sobě navzájem působících, je nulová.

Druhý pohybový zákon

,,Veliost zrychlení tělesa je přímo úměrná velikosti výslednice sil F působících na těleso a nepřímo úměrná hmotnosti m tělesa.“

\[
F = m \cdot a \quad \text{a} = \frac{F}{m}
\]

Zde záleží na směru působení sily, pokud bude opačný, pak se jedná o zpomalení a ne o zrychlení.

Třetí pohybový zákon- Akce a reakce

,,Síly, kterými na sebe působí dvě tělesa, jsou stejně velké, navzájem opačného směru a současně vznikají a zanikají.“
Sčítat a odčítat síly lze pouze při působení jednotlivých sil na stejné těleso, proto není možné říci, že dané síly jsou vždy rovny nule. Příkladem může být úder útočníka vedený směrem k obránci. Protí útočníkovi působí síla obránce (odpor těla). U tohoto zákona nezáleží, zda jsou předtím tělesa v klidu či v pohybu, platí vždy. Odlišné budou tehdy, kolikrát bude útočník větší, tolikrát bude větší i jeho zrychlení, kterým se bude pohybovat oproti soupeři. (Kalichová, 2013)

Vztlaková síla

Jde popsat takto: Těleso vždy působí na podložku tíhovou silou a proti ní jako reakce působí síla vztlaková, kterou působí podložka na těleso, díky tomuto zákonu jsme schopni pohybu. V bojových umění je tento mechanismus velice důležitý tzv. „uzemnění se“ sílou, kterou bude bojovník působit do podložky se mu ve formě stability bude vracet zpět. (Kalichová, 2013)

Biomechanické principy v Judo

Judo je velice dynamickým sportem. Je náročné na technickou a fyzickou složku přípravy, judisté by měli mít rozvinutou schopnost zaměřené na sílu a rychlost ve vytrvalostním režimu. Navíc důležitou součástí judisty je správná psychika a sebedůvěra tak, jako v každém sportu, hlavně v úpolovém. Je třeba judisty připravovat nejen na technické odpovědi na různé typy útoků, ale psychologický trénink je v tomto ohledu nesmírně důležitý.

Typickým somatotypem pro judistu je mezomorfní typologie, pro kterou je charakteristická dobře stavěná muskulatura. Boxeři či zápasníci mají obvykle více vyvinuté svalstvo. Pro mnoho judistů jsou typické šlachovité svaly v oblasti svalů dolních končetin. (Arus, 2013)

Principy

- Judista není nikdy v úplném klidovém pohybu, všechny pozice jsou dynamické. Nejprve se judista snaží odhadnout a zachytit nejlepší držení pro jeho další konání a hledání jak přemoci.
protivníka. Při chycení dobrého držení se snaží rozhodit soupeře z jeho koncentrace a rovnováhy, dochází tak k neustálému souboji, nabývání a ztrácení rovnováhy. Na obrázku můžeme vidět celý přechod do techniky „armbar“, kterou na světě dostala do povědomí bývalá bronzová medailistka z olympijských her v Pekingu Ronda Rousey, dnes zápasnice MMA (mixed martial arts), která na tomto obrázku figuruje. (Obr.8)

Obrázek č.8: Technika ARMBAR (http://search.espn.go.com/ronda-rousey/)

- Ve volném nebo soutěžním souboji, dochází k permanentnímu používání sily při aplikaci technik, ve formě tlaků a tahů. Judisté proto mají velice dobře rozvinutou horní část těla, oblasti biceps, triceps, předloktí a svaly ruky. Podrobněji jsou to: svaly předloktí - dlouhý sval dlaně (pomocná flexe loketního kloubu a zápěstí), sval vřetenový (supinace předloktí a flexe v loketním kloubu), většina flexorů, dlouhý odtahovač, krátký i dlouhý natahovač palce (abdukcí a extenze palce) a natahovač ukazováčku, svaly paže - celá přední a zadní tricepsová skupina, svaly ramenní a lopatkové – deltový sval (funkce upažení, předpažení), sval nadřezenový (vnitřní rotace paže) a sval podřezenový (zevní rotace paže), sval trapézový (záklon, úklon hlavy, mediální tah
lopatky), velký sval zádový (zapažení), velký sval prsní (pomocná funkce při předpažení a vdechování, vnitřní rotace).

- Judistická chůze je náročná na koordinaci pohybů a propojení chůze s technickým provedením a vhodným načasováním. Pohyby nohou jsou vedeny většinou v přímém či diagonálním směru a jsou vedeny synchronně se soupeřem.
- Oba bojovníci se snaží o vyvodení z rovnováhy u oponenta, každý k tomu může využívat jinou techniku. Judista vyššího vzrůstu bude volit spíše techniky s využitím nohou a judista nižšího vzrůstu zvolí techniky s použitím boků.
- Výpočty útočníkovy energie, práce, sily, impulsů a kolizí jsou většinou počítány pomocí přímočarého pohybu. U obránce, který bude hozen útočníkem o zem, jsou aplikovány výpočty pomocí rovníc úhlového pohybu.
- Využití rovnice úhlového pohybu je možné aplikovat tehdy, pokud najdeme jednoznačný moment osy rotace v rameni.
- V judo začíná souboj vždy z lineárního pohybu a pokračuje v pohybu úhlovém. Časový moment mezi přechodem mezi těmito pohyby v judistickém provedení je přibližně menší než 1,5s. Pokud budeme potřebovat časovou jednotku házecí techniky, pak její délka provedení od základní pozice ve stoji, bude u judistů trvat 2s. U většiny judistů se bude jednat přibližně o 75% - 85% z celkové techniky hodu.(Arus, 2013)

Biomechanické principy Jujutsu

Jujutsu je matkou Juda. Moderní jujutsu dnes můžeme nazvat „brazilským jujutsem“, které vytvořil Helio Gracie. Helio Gracie se snažil o vytvoření sportovní formy jujutsu, což se mu také podařilo. Před touto myšlenkou bylo jujutsu praktikováno pouze na jujutsu gymnáziu (Dojo). Helio Gracie znovu
zavedl útočení na soupeřovy nohy a následnou imobilizaci soupeře, což je stěžením prvky dnešní sportovní formy jujutsu. (Arus, 2013)

Principy

- Jujutsu bojovník preferující hody bude zaujímat vysoký postoj. Ten kdo preferuje nižší postoj, bude útočit častěji na soupeřovy nohy, dopomáhá si bude nakloněním své horní poloviny těla vpřed směrem k útočníkovi, tak bude schopen přemoci útočníka.
- Výpočty síly, energie, práce a výkonu se většinou provádějí na základě lineárních pohybů, které jsou podobné pro útočníka i obránce.
- V pravidlech brazilského jujutsu. Útočník neobdrží body za házení. Ty získá, až po zaklepání soupeře o zem.
- Každý účastník hledá nejlepší pozici k nasazení páky. To znamená nejlepší úchyt sportovního obleku (kimona). (Arus, 2013)

Biomechanické principy aikido

U aikida se obránce snaží zachytit soupeřovo zápěstí a provádět techniku právě na něm. V aikidu není povoleno mířit na vitální zóny těla, nasazovat tvrdé údery do oblasti obličeje, věst údery na ledviny játra a oblast krku. Vše se děje z pozice postoje a pomocí chůze a vhodně nasazených technik pomocí paží. (Arus, 2013)

- Všechny činnosti jsou dynamické včetně metodologie učení. Například v Judu, aby se člověk naučil techniku házení bokem, obránce zůstává ve statické pozici a pouze útočník používá dynamickou činnost, aby se mu podařilo obránce hodit.
- Obránce (nezáleží na druhu zvolené techniky) musí ztratit rovnováhu, příkladem může být samotný přesun do techniky, nejprve zahájením vychýlení, aby navedl svého oponenta a poté opět rovnováhu najít, aby dokončil celou techniku.
Pozice „AIKIDOKA“ (aikidista) je vždy vysoká, aby bylo docíleno lepších pohybových činností. (Obr.9)

Chytání kimona při útoku není časté a chytání kimona při obraně se nepoužívá vůbec.

V aikidu, ve snaze použít páku, musí útočník nejdříve použít páčení daného kloubu. Na obrázku (Obr.10) můžeme vidět označenou kinematickou dráhu „ukeho“ předloktí.

Většina základních (Kyusho) útoků, jako jsou údery, tlaky a páčení se vykonávají pomocí předloktí, zejména pak zápěstí.

Jakmile je napaden základní úsek předloktí, pak je vždy zdviženo na úrovni ramene a to ze dvou důvodů:
a) Když je ruka zdvižená, má tendence padat dolů. Poté se může bránit proti určité útočné technice.
b) Když je ruka zdvižená výš než na úroveň ramene, musí nejdříve bojovat proti gravitaci a až posléze proti technice.

- Výpočty různých fyzických vlastností mohou být provedeny pomocí lineární nebo rotační kinematiky. Výpočty rychlosti, vzdálenosti a posunu pomocí lineární kinematiky nemohou být provedeny přesně, protože měření výše zmíněných fyzických vlastností je těžké.

1.3.5 Rizikové faktory úpolových sportů

Tlak

Biomechanika definuje tlak jako příčinný faktor zranění. Při popisu pádu těla na nůž, můžeme vysvětlit tuto definici takto: Jde o působení velké síly na velmi malé ploše (hrotu nože), proto je možné, aby došlo k bodnému zranění. Tlak hraje významnou roli u mnohých zranění v úpolových sportech u kopů, úderů, technik znehybnění a působí různě velkou deformační silou (\(P=F/S \)), (P)...tlak, (F)...působící síla, na plochu ...(S). (Bělař, 1964)

Extremní mechanická zátěž úderem

Z hlediska úpolových sportů to může být úder vedený do vitálních oblastí na tělo protivníka, z hlediska sebeobrany potom využít nějakého druhu zbraně (basebalová pálka, tyč, nůž). Nejčastěji tyto zneškodňující údery jsou vedeny na hlavu protivníka, které mohou být rychlou příčinou úplné pasivity ze strany obránce. Záleží na toleranci organismu proti mechanické zátěži. (Kalichová, 2013)
Zdravotní rizika v jednotlivých úpolových sportech

V aikidu se nesetkáme tak často s úrazy jako v jiných úpolových sportech. Úrazy se často vyskytnou při nepochopení a špatné aplikaci techniky. Bolestivé jsou techniky formou pák na klouby, ale nemusejí při správném pochopení dospět až do úrovně úrazu. (Kohlíková, 1996)

U jujutsu můžeme hovořit o velice podobných zraněních jako u juda, jen budou daleko častější, neboť je zde povoleno navíc atemi waza (techniky kopů a úderů), což může vyvolat větší počet zlomenin, ať už únavových či akutních. (Bernacíková, 2013)
2 Cíle, Hypotézy, Úkoly

2.1 Cíle

Hlavním cílem této diplomové práce bylo popsat a vysvětlit sledované vlivy (těhotenství a pohybových aktivit) na statickou rovnováhu žen v průběhu těhotenství. Tyto vlivy jsme byli schopni objektivně popsat a vysvětlit díky zvoleným metodám stabilometrického měření na přístroji Fitro Sway a doplněním důležitých informací o jednotlivých účastnicích tohoto měření.

Výzkumný problém jsme specifikovali dle cíle práce. Výzkumný problém se týkal vlivů těhotenství a pohybových aktivit na úroveň statické rovnováhy.

2.2 Výzkumné otázky

Výzkumné otázky:

VO1: Budou mít ženy (měřeného souboru), se zkušenostmi s úpolovými aktivitami, nejmenší průměrné amplitudy center tlaku (COP-centre of pressure) v průběhu těhotenství?

VO2: Budou průměrné amplitudy centra tlaku (COP-centre of pressure) skupiny A1 (nesportující ženy) věcně významnější než hodnoty COP skupiny A3 (úpolová skupina)?

VO3: Jaký vliv bude mít tělesná výška (h) a zvyšující se hmotnost na výkyvy hodnot COP v průběhu těhotenství?
2.3 Úkoly

Ú1: V teoretické části diplomové práce vytvořit souhrn jednotlivých fyziologických změn v průběhu těhotenství a analyzovat ovlivnění těhotenství těmito změnami.

Ú2: Před prvním stabilometrickým měřením musí být všechny účastnice změřeny (tělesná výška) a zváženy (tělesná hmotnost), v dalších trimestrech probíhá před každým stabilometrickým měřením, převáženě jednotlivých účastnic výzkumu.

Ú3: Zahrájit stabilometrické měření, u jednotlivých probandek shromáždit hodnoty COP (centre of pressure) pro každé ze tří měření v daných trimestrech (1., 2., 3.). V jednotlivém měření zaznamenat pět pokusů stabilometrického měření.

Ú4: Všem zúčastněným těhotným ženám měřených na stabilometrické plošině a změřených ve všech třech trimetech zaslat dotazníkový formulář pro doplnění informací o pohybových aktivitách.

Ú5: Zpracovat hodnoty COP (centre of pressure) do tabulky MS Excel a vypočítat hodnotu BMI ze zaznamenaných hodnot o výšce a velikosti 1. tělesné hmotnosti.

Ú6: Rozdělit výzkumný soubor na tři podskupiny A1, A2, a A3 dle výkonnostní úrovně pohybových aktivit či hodnot BMI.

Ú7: Zpracovat data příslušnými statistickými metodami a vhodně je interpretovat.

Ú8: Porovnat interindividuálně jednotlivé podskupiny výzkumného souboru (A1, A2, A3).
Ú9: Vyvodit závěry a vhodně je interpretovat. Doporučit možnosti zlepšení, smysluplného navázaní na práci nebo navrhnout další zpracování podobných témat.
3 Metodika

3.1 Strategie výzkumu

Výzkum byl proveden empirickou vědeckou procedurou. Snahou výzkumu bylo postupovat pomocí explanační metody, tedy od obecného k jednotlivému, a to vše v závislosti na zkoumaném problému. Zjistit, zda mohou různé výkonnostní stupně pohybových aktivit a změny hmotností v průběhu těhotenství ovlivňovat délku trajektorii centra tlaku měřených na stabilometrické plošině. Tento typ výzkumu je kvantitativním výzkumem, který je řešen pomocí technik experimentu, kde experimentálním činitelem byla pohybová aktivita a současně těhotenství. Data jsme získávali stabilometrickým měřením – stoj na plošině Fitro Sway a dotazníkovým šetřením, který pomohl objasnit stanovené výzkumné otázky. Zkoumán byl vztah mezi fyziologickými proměnami v těhotenství a stabilitou v průběhu těhotenství, a dále vztah mezi pohybovou aktivitou a úrovní statické rovnováhy v průběhu těhotenství. Tyto vztahy vyplývají ze statistických údajů o skupině těhotných, popsaných v dalších kapitolách a zároveň podpořena dotazníkovým šetřením pro dokreslení informací vyplývajících ze stabilometrických měření.

3.2 Harmonogram a průběh měření

Podmínkami byly: věkové omezení od 18 do 40 let, pohlaví a započaté těhotenství. Probandky se musely dostavit nejpozději před ukončením prvního trimestru těhotenství pro platné první měření. Termíny měření byly domluovány telefonicky. Měření bylo započato od roku 2013, protože šlo o velice náročné měření ve smyslu sběru dat. Měření probíhalo na fakultě sportovních studií v tamější laboratoři, vždy v pondělí v dopoledních hodinách, ovšem dály se domluvit i individuální schůzky. Při prvních měřeních došlo k zvážení tělesné hmotnosti, změření tělesné výšky, zaznamenání roku narození těhotných a zjištění kontaktních informací, pro komunikační účely.

Jednotlivá měření probíhala formou několika pokusů omezených časovým úsekem, a to 20ti vteřin. Šlo o nástup na stabilometrickou plošinu do stoj
rozkročmo a výdrže v přirozeném postoji, po stanovenou dobu. V jednotlivých měření vždy došlo k pěti obdobným pokusům u každé měřené. Z těchto pěti pokusů byly vyřazeny dva extrémní naměřené pokusy (maximální a minimální hodnoty COP), a z druhého, třetího a čtvrtého pokusu byl vytvořen aritmetický průměr těchto tři. Dále do aritmetických průměrů jednotlivých pokusů měření nebyla započítaná data naměřená v prvních pěti vteřinách a posledních pěti vteřinách. Díky těmto dvěma opatřením jsme se vyhnuli častějším extrémním hodnotám, plynoucím z rozhodnou nevyhovující při nástupu na stabilometrickou plošinu a z působení psychologických aspektů dlouhodobého nehybného postoj.

Celkově bylo zaznamenáno měření 47 probandek, ovšem nastal problém související s docházkou na všechna měření v jednotlivých trimestrech. Výzkumný soubor se zúžil na soubor o 22 probandkách, které absolvovaly všechna tři měření. Přičiny nedostavení byly různé, mnohdy šlo o předčasný porod probandky v třetím trimestru, kvůli kterému již nedošlo k změření stability v tomto období, a další.

3.3 Dotazníkové šetření

Respondenty dotazníkového šetření bylo právě 22 testovaných probandek, kterým byl předán dotazníkový formulář vytvořený v aplikaci Google Docs. Formulář byl zaslán na jednotlivé emailové adresy respondentek. Vzhledem k uzavřenosti skupiny a její specifikaci, byly respondentky kontaktovány s prosbou o vyplnění tohoto formuláře. Návratnost dotazníků, proto byla 100%. Dotazník byl sestaven ze 17 otázek, otevřených i uzavřených. Cílem dotazníkového šetření bylo získat informace o pohybových aktivitách zkoumaných žen, před i v průběhu těhotenství.

3.4 Výzkumný soubor

Mezi populaci těhotných žen byly rozdány letáky s pozvánkou k výzkumu Masarykovy univerzity, na fakultě sportovních studií a v ordinacích gynikologických lékařů Fakultní nemocnice Brno. Na letácích byla uvedena
kontaktní data s pověřenými osobami výzkumu. V případě souhlasu se zařazením do výzkumu byly ženy, splňující stanovené podmínky, zařazeny ke studiu. Šlo o ženy ve věku od 24 do 40 let, v mnohých případech dobrovolně ženy složené z bývalých studentek Masarykovy univerzity, z pedagogických pracovnic, příbuzných pedagogických pracovníků, ale i oslovených probandek formou letáků ve Fakultní nemocnici ve Brně. Některé z žen byly prvorozené a ostatní, již měly za sebou zkušenost s prvním těhotenstvím. U těhotných žen bylo velice důležité zachovat časový řád měření, které musel probíhat vždy v jednotlivých trimestrech těhotenství. Měření bylo individuální, podle daného týdne těhotenství, muselo vždy proběhnout nejpozději poslední týden v jednotlivém trimestru. Do této skupiny patřily ženy s minimální sportovní zálibou, před i v průběhu těhotenství, ženy aktivně sportující a ženy, které mají či měly zkušenost v různých úpolových sportech.

3.4.1 Výzkumný soubor – Rozdělení do skupin

Rozdělení do podskupin bylo následující:

- Nesportující [A1] - 7 žen
- Sportující rekreačně [A2] – 12 žen
- ženy se zkušenostmi v úpolovém sportu/ bojovém umění [A3] – 3 ženy

Nejprve byly zaznamenány hodnoty z jednotlivých měření probandek do tabulky Microsoft Excel, kde bylo každé měření zbaveno možných chyb měření.
(kap.3.2). Byla vytvořena aritmetická hodnota ze tří platných pokusů, zaznamenána do dalšího tabulkového souboru, tento postup byl realizován u ostatních těhotných probandek a v dalších měřeních. Po dokončení vznikl soubor průměrných amplitud centra tlaku jednotlivých testovaných, ke kterému byly přiřazeny změny hmotnosti v 1., 2., 3. trimestru, tělesná výška, věk, dále byl v prvním trimestru těhotenství vypočítán BMI index každé probandky.

Dalším krokem bylo rozdělení takto zpracovaného souboru a přiřazení k jednotlivým skupinám (A1, A2, A3). Pro jednotlivé skupiny platila různá kriteria:

A1

Podmínky: Vůbec nesportovaly před/při těhotenství nebo hodnoty BMI měly nad míru 25 Kg/m², alespoň jedna podmínka musela být platná pro zařazení do skupiny A1.

A2

Podmínky: Sportovaly rekreačně nebo výkonnostně před/při těhotenství, nebo hodnoty BMI měly do míry 25 Kg/m², alespoň jedna podmínka musela být platná pro zařazení do skupiny A2.

A3

Podmínky: Před/při těhotenství se zúčastňovaly tréninkových jednotek úpolových sportů /bojových umění.

3.5 Charakteristiky použitého měřicího přístroje

Měřící metoda - Stabilometrie

Testem zjistíme úroveň statické rovnováhy v jednotlivých trimestrech a jejich míru ovlivnění při praktikovaných pohybových aktivitách. O statické rovnovážce můžeme uvažovat jako o předpokladu rovnováhy dynamické. Statická stabilometrická plošina je schopna změřit rozložení váhy těla několika
snímači senzory tlaku, zabudovanými v plošině. Testovaný se snaží udržovat rovnováhu při měření, pomocí zapojování svalstva. (Vespalec, 2013)

Pomocí stabilometrické metody můžeme zjistit množství dat, mezi nejdůležitější řadíme:

- výkyvy centra tlaku (COP) do os x, y
- celková délka trajektorie pohybu COP během testování
- délka trajektorie pohybu centra tlaku do osy x, y
- poměr předozadní a pravolevé výchylky centra tlaku během testu
- průměrná rychlost pohybu centra tlaku během testu (Vespalec, 2012)

Měřicí zařízení

K měření byl použit stabilometrické systém Fitro Sway Check, kde byly naměřená data také zaznamenána. Dle Kalichové (2008) „Frekvence snímání je 100 Hz, systém je schopen zaznamenat výchylky COP (centre of pressure) s přesností na 0,1 mm.

Hamar a Zemková (Kalichová, 2008) popisují Systém FITRO Sway Check takto: „Je to dynamometrická plošina se čtyřmi tenzometrickými snímači sil napojená na počítač se speciálním programem. Tento systém umožňuje monitorování pohybu působiště výsledné kontaktní síly v horizontální rovině na základě analýzy distribuce vertikální síly registrované tenzometrickými snímači síl s frekvencí 100 Hz. Systém je schopen zaznamenat výchylky COP (centre of pressure) s přesností na 0,1 mm.“

Provedení

Probandka před prvním měřením byla poučena, jak by mělo toto měření probíhat. Probandka se postaví na stabilometrickou plošinu bez obuvi, nohy rozkročmo zhruba na šíři ramen měřené, dlaně si opírá o přední stranu stehenn, snaží se stát přirozeně. Při testování nesmí mluvit a záměrně se pohybovat, měření probíhá po dobu 20 sekund v každém jednotlivém pokusu, pokusů v jednom měření bylo pět. Test provádějící osoba sdělila probandce zahájení měření a jeho ukončení.
Vyhodnocovány byly údaje o délkách trajektorií, kterou během měření urazilo centrum tlaku. (Kalichová, 2008)

3.6 Statistické zpracování dat

Data naměřená při stoji na stabilometrické plošině byla nejprve zaznamenána do systému Fitro Sway a převedena do tabulkového programu MS Excel. V dalším kroku byla data roztržílena a zařazena dle jednotlivých stanovených kritérií. Další zpracování také probíhalo v programu MS Excel, kde byla zaznamenána popisná statistika, věcná statistika a na základě těchto údajů taktéž vytvoření grafů. Věcná významnost byla vyhodnocena pomocí metody „Cohenova koeficientu účinku d“, který je vhodný pro kvantifikování velikosti účinku a tudíž i hodnocení této věcné významnosti. Metoda byla zvolena z důvodu nízkého počtu probandek ve výzkumném souboru, což taková metoda umožňuje (Sebera, 2012).

Dotazník byl vytvořen v aplikaci „Google Docs“. Nástroje tohoto formuláře umožňují, přímo po přijetí preferencí respondentů, vyhodnotit odpovědi do koláčových grafů, což bylo žádoucí.

Statistika a věcná významnost

U popisné statistiky jsme vyhodnotili průměry hodnot COP, hmotností, BMI indexy a průměrnou výšku probandek, směrodatné odchylky, hodnoty mediánu, to vše u jednotlivých měření i skupin (v MS Excel).

U věcné významnosti jsme postupovali obdobně jako u popisné statistiky a to v rámci skupin a jednotlivých měření. Sebera (2012) popisuje hodnoty, které jsou platné pro Cohenův koeficient účinku d takto: „Platí pro něj konvenční hodnoty, jež usnadňují rozhodnutí, kdy lze hovořit o velkém efektu. Pokud je d větší než 0,8, je efekt velký; pro d z intervalu 0,5 – 0,8 je efekt střední; efekt pod hodnotou 0,2 lze považovat za malý.“
4 Výsledky

Výsledky diplomové práce byly rozděleny na dva oddíly. Výsledky, které vyplynuly z výzkumného měření těhotných žen a výsledky dotazníkového šetření těhotných žen, snažil bylo co nejlépe odkrýt zkoumanou problematiku. Popsat a vysvětlit sledované vlivy těhotenství a pohybových aktivit na statickou rovnováhu měřených a dotazovaných žen v průběhu těhotenství.

4.1 Výsledky měření statické rovnováhy těhotných žen

Na začátku výzkumu a při zpracování dat do MS Excel jsme seřadili a zaznamenali data všech účastnic měření do jednotné tabulky (Tab.1), ta byla výchozí pro rozdělení žen do jednotlivých skupin v rámci pohybových aktivit a další statistické a věcné zpracování.

Tab. 1: Výsledky zjistěné ze stabilometrických měření a převedeny na průměrné hodnoty COP v jednotlivých měřeních a trimestrech

<table>
<thead>
<tr>
<th>věk</th>
<th>výška/cm</th>
<th>Proband</th>
<th>průměr COP1/mm</th>
<th>m1/kg</th>
<th>průměr COP2/mm</th>
<th>m2/kg</th>
<th>průměr COP3/mm</th>
<th>m3/kg</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>158</td>
<td>Proband 1</td>
<td>5,58</td>
<td>64</td>
<td>5,5</td>
<td>67,35</td>
<td>7,65</td>
<td>69,14</td>
<td>25,64</td>
</tr>
<tr>
<td>31</td>
<td>163</td>
<td>Proband 2</td>
<td>9,59</td>
<td>57</td>
<td>6,68</td>
<td>62,09</td>
<td>8,74</td>
<td>63,54</td>
<td>21,45</td>
</tr>
<tr>
<td>35</td>
<td>167</td>
<td>Proband 3</td>
<td>5,34</td>
<td>54,97</td>
<td>8,12</td>
<td>61,24</td>
<td>7,7</td>
<td>64,1</td>
<td>19,72</td>
</tr>
<tr>
<td>28</td>
<td>175</td>
<td>Proband 4</td>
<td>6,73</td>
<td>53,47</td>
<td>10,95</td>
<td>59,9</td>
<td>8,22</td>
<td>67,7</td>
<td>17,63</td>
</tr>
<tr>
<td>32</td>
<td>170</td>
<td>Proband 5</td>
<td>7,15</td>
<td>64,24</td>
<td>7,97</td>
<td>71,21</td>
<td>9,1</td>
<td>72,39</td>
<td>22,15</td>
</tr>
<tr>
<td>38</td>
<td>165</td>
<td>Proband 6</td>
<td>10,21</td>
<td>56,35</td>
<td>8,75</td>
<td>60,67</td>
<td>9,6</td>
<td>64,93</td>
<td>20,57</td>
</tr>
<tr>
<td>36</td>
<td>172</td>
<td>Proband 7</td>
<td>8,98</td>
<td>63,44</td>
<td>4,28</td>
<td>73,36</td>
<td>6,67</td>
<td>80,47</td>
<td>21,63</td>
</tr>
<tr>
<td>34</td>
<td>168</td>
<td>Proband 8</td>
<td>6,22</td>
<td>60,43</td>
<td>5,36</td>
<td>65,83</td>
<td>8,12</td>
<td>69,23</td>
<td>21,26</td>
</tr>
<tr>
<td>30</td>
<td>165</td>
<td>Proband 9</td>
<td>6,12</td>
<td>57,04</td>
<td>6,04</td>
<td>64,8</td>
<td>7,04</td>
<td>70,43</td>
<td>20,94</td>
</tr>
<tr>
<td>30</td>
<td>170</td>
<td>Proband 10</td>
<td>5,43</td>
<td>61,2</td>
<td>6,29</td>
<td>71,8</td>
<td>10,68</td>
<td>80,41</td>
<td>21,11</td>
</tr>
<tr>
<td>33</td>
<td>177</td>
<td>Proband 11</td>
<td>9,66</td>
<td>66,99</td>
<td>5,47</td>
<td>75,5</td>
<td>7,97</td>
<td>81,65</td>
<td>21,39</td>
</tr>
<tr>
<td>36</td>
<td>168</td>
<td>Proband 12</td>
<td>9,03</td>
<td>64,5</td>
<td>7,37</td>
<td>70,4</td>
<td>6,27</td>
<td>75,43</td>
<td>22,68</td>
</tr>
<tr>
<td>28</td>
<td>165</td>
<td>Proband 13</td>
<td>5,22</td>
<td>59,83</td>
<td>6,07</td>
<td>69,97</td>
<td>6,45</td>
<td>73,02</td>
<td>21,67</td>
</tr>
<tr>
<td>34</td>
<td>168</td>
<td>Proband 14</td>
<td>5,18</td>
<td>60,59</td>
<td>5,41</td>
<td>66,82</td>
<td>6,2</td>
<td>69,75</td>
<td>21,61</td>
</tr>
<tr>
<td>30</td>
<td>179</td>
<td>Proband 15</td>
<td>6,51</td>
<td>81,09</td>
<td>7,49</td>
<td>91,31</td>
<td>7,95</td>
<td>96,67</td>
<td>25,28</td>
</tr>
<tr>
<td>36</td>
<td>168</td>
<td>Proband 16</td>
<td>5,21</td>
<td>97,49</td>
<td>9,88</td>
<td>107,02</td>
<td>6,27</td>
<td>115,01</td>
<td>34,37</td>
</tr>
<tr>
<td>40</td>
<td>176</td>
<td>Proband 17</td>
<td>12,71</td>
<td>58,66</td>
<td>6,36</td>
<td>71,02</td>
<td>7,41</td>
<td>72,51</td>
<td>19,05</td>
</tr>
<tr>
<td>34</td>
<td>173</td>
<td>Proband 18</td>
<td>8,74</td>
<td>64,8</td>
<td>5,02</td>
<td>72,1</td>
<td>9,92</td>
<td>85,17</td>
<td>21,72</td>
</tr>
<tr>
<td>31</td>
<td>176</td>
<td>Proband 19</td>
<td>7,62</td>
<td>98,34</td>
<td>6</td>
<td>104,62</td>
<td>9,1</td>
<td>106,26</td>
<td>31,64</td>
</tr>
<tr>
<td>34</td>
<td>171</td>
<td>Proband 20</td>
<td>6,5</td>
<td>79,83</td>
<td>5,48</td>
<td>89,45</td>
<td>5,57</td>
<td>97,55</td>
<td>27,65</td>
</tr>
<tr>
<td>39</td>
<td>175</td>
<td>Proband 21</td>
<td>11,93</td>
<td>80,18</td>
<td>12,48</td>
<td>84,82</td>
<td>11,14</td>
<td>86,93</td>
<td>26,12</td>
</tr>
<tr>
<td>33</td>
<td>168</td>
<td>Proband 22</td>
<td>7,59</td>
<td>85,52</td>
<td>5,12</td>
<td>87,1</td>
<td>6,3</td>
<td>90,92</td>
<td>30,12</td>
</tr>
</tbody>
</table>

Každé těhotné ženě zapojené do výzkumu jsme pro další anonymní zpracování přidělily jednotné označení (Proband), s číselným rozlišením (X). Hodnota COPx/mm vyjadřuje délku trajektorii centra tlaku v milimetrových jednotkách v x-tém trimestru.
Dále jsme tuto tabulku rozdělili na tři nestejné početné části (Tab.2 až 4), skupiny A1, A2 a A3, dle předchozích kritérií (Kap. 3.4.1) a u jednotlivých skupin jsme vytvořili grafické zpracování dat (Obr.11 až 13) pro efektivnější názornost. Jednotlivý komentář byl proveden u grafického vyjádření statistických dat (Obr.14 – 19), pomocí „krabicových grafů“.

Tab.2: Data skupiny nesportujících těhotných žen – A1

<table>
<thead>
<tr>
<th>A1-Proband1</th>
<th>COP1/mm</th>
<th>m1/kg</th>
<th>COP2/mm</th>
<th>m2/kg</th>
<th>COP3/mm</th>
<th>m3/kg</th>
<th>věk</th>
<th>výška/cm</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-Proband2</td>
<td>5,21</td>
<td>97,49</td>
<td>9,88</td>
<td>107,02</td>
<td>6,27</td>
<td>115,01</td>
<td>36</td>
<td>168</td>
<td>34,37</td>
</tr>
<tr>
<td>A1-Proband3</td>
<td>12,71</td>
<td>58,66</td>
<td>6,36</td>
<td>71,02</td>
<td>7,41</td>
<td>72,51</td>
<td>40</td>
<td>176</td>
<td>19,05</td>
</tr>
<tr>
<td>A1-Proband4</td>
<td>8,74</td>
<td>64,8</td>
<td>5,02</td>
<td>72,1</td>
<td>9,92</td>
<td>85,17</td>
<td>34</td>
<td>173</td>
<td>21,72</td>
</tr>
<tr>
<td>A1-Proband5</td>
<td>7,62</td>
<td>98,34</td>
<td>6</td>
<td>104,62</td>
<td>9,1</td>
<td>106,26</td>
<td>31</td>
<td>176</td>
<td>31,64</td>
</tr>
<tr>
<td>A1-Proband6</td>
<td>6,5</td>
<td>79,83</td>
<td>5,48</td>
<td>89,45</td>
<td>5,57</td>
<td>97,55</td>
<td>34</td>
<td>171</td>
<td>27,65</td>
</tr>
<tr>
<td>A1-Proband7</td>
<td>11,93</td>
<td>80,18</td>
<td>12,48</td>
<td>84,82</td>
<td>11,14</td>
<td>86,93</td>
<td>39</td>
<td>175</td>
<td>26,12</td>
</tr>
<tr>
<td>Průměry sk. A1</td>
<td>8,61</td>
<td>80,69</td>
<td>7,19</td>
<td>88,02</td>
<td>7,96</td>
<td>93,48</td>
<td>35,29</td>
<td>172,43</td>
<td>27,24</td>
</tr>
</tbody>
</table>

Pro viditelnější trendy výkyvů u centra tlaku a hmotnosti v jednotlivých trimestrech jsme využili možnosti grafického zpracování (Obr.11 až 13).
<table>
<thead>
<tr>
<th>Tab.3: Data skupiny sportujících těhotných žen - A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-Ženy sportující</td>
</tr>
<tr>
<td>A2- Proband1</td>
</tr>
<tr>
<td>A2- Proband2</td>
</tr>
<tr>
<td>A2- Proband3</td>
</tr>
<tr>
<td>A2- Proband4</td>
</tr>
<tr>
<td>A2- Proband5</td>
</tr>
<tr>
<td>A2- Proband6</td>
</tr>
<tr>
<td>A2- Proband7</td>
</tr>
<tr>
<td>A2- Proband8</td>
</tr>
<tr>
<td>A2- Proband9</td>
</tr>
<tr>
<td>A2- Proband10</td>
</tr>
<tr>
<td>A2- Proband11</td>
</tr>
<tr>
<td>A2- Proband12</td>
</tr>
<tr>
<td>Průměry sk. A1</td>
</tr>
</tbody>
</table>

Obrázek č.12: Grafické znázornění skupiny sportujících
Tab.4: Data úpolové skupiny těhotných žen

<table>
<thead>
<tr>
<th>A2-Úpolová skup.</th>
<th>COP1/mm</th>
<th>m1/kg</th>
<th>COP2/mm</th>
<th>m2/kg</th>
<th>COP3/mm</th>
<th>m3/kg</th>
<th>věk</th>
<th>výška/cm</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3- Proband1</td>
<td>5,22</td>
<td>59,83</td>
<td>6,07</td>
<td>69,97</td>
<td>6,45</td>
<td>73,02</td>
<td>28</td>
<td>165</td>
<td>21,67</td>
</tr>
<tr>
<td>A3- Proband2</td>
<td>5,18</td>
<td>60,59</td>
<td>5,41</td>
<td>66,82</td>
<td>6,2</td>
<td>69,75</td>
<td>34</td>
<td>168</td>
<td>21,61</td>
</tr>
<tr>
<td>A3- Proband3</td>
<td>6,51</td>
<td>81,09</td>
<td>7,49</td>
<td>91,31</td>
<td>7,95</td>
<td>96,67</td>
<td>30</td>
<td>179</td>
<td>25,28</td>
</tr>
<tr>
<td>Průměry sk. A3</td>
<td>5,64</td>
<td>67,2</td>
<td>6,32</td>
<td>76,03</td>
<td>6,87</td>
<td>79,81</td>
<td>30,67</td>
<td>170,67</td>
<td>22,85</td>
</tr>
</tbody>
</table>

Obrázek č.13: Grafické znázornění úpolové skupiny

Popisná a věcná statistika

Tab.5: Popisnou statistikou zpracovaná data jednotlivých skupin v daných trimestrech

<table>
<thead>
<tr>
<th>Proměnná</th>
<th>Skup. 1: Ženy sportující</th>
<th>Skup. 1: Nesportující ženy</th>
<th>Skup. 1: Úpolové sportovky ně</th>
<th>Sm. odch. (Ženy sportující)</th>
<th>Sm. odch. (Úpolové sportovky ně)</th>
<th>Medián (Nesportující ženy)</th>
<th>Medián (Sportující ženy)</th>
<th>Medián (Úpolové sportovky ně)</th>
</tr>
</thead>
<tbody>
<tr>
<td>věk/roky</td>
<td>35,29</td>
<td>33,50</td>
<td>30,67</td>
<td>3,251</td>
<td>3,425</td>
<td>3,055</td>
<td>34</td>
<td>33,5</td>
</tr>
<tr>
<td>výška/cm</td>
<td>172,43</td>
<td>168,17</td>
<td>170,67</td>
<td>3,505</td>
<td>5,202</td>
<td>7,371</td>
<td>173</td>
<td>168</td>
</tr>
<tr>
<td>COP 1/mm</td>
<td>8,61</td>
<td>7,53</td>
<td>5,64</td>
<td>2,765</td>
<td>1,887</td>
<td>0,757</td>
<td>7,62</td>
<td>6,94</td>
</tr>
<tr>
<td>M1/kg</td>
<td>80,69</td>
<td>60,30</td>
<td>67,17</td>
<td>15,033</td>
<td>4,416</td>
<td>12,061</td>
<td>80,18</td>
<td>60,82</td>
</tr>
<tr>
<td>COP 2/mm</td>
<td>7,19</td>
<td>6,90</td>
<td>6,32</td>
<td>2,865</td>
<td>1,836</td>
<td>1,063</td>
<td>6</td>
<td>6,49</td>
</tr>
<tr>
<td>M 2/kg</td>
<td>88,02</td>
<td>67,02</td>
<td>76,03</td>
<td>14,096</td>
<td>5,393</td>
<td>13,323</td>
<td>87,1</td>
<td>66,59</td>
</tr>
<tr>
<td>COP 3/mm</td>
<td>7,96</td>
<td>8,15</td>
<td>6,87</td>
<td>2,117</td>
<td>1,251</td>
<td>0,946</td>
<td>7,41</td>
<td>8,85</td>
</tr>
<tr>
<td>M 3/kg</td>
<td>93,48</td>
<td>71,62</td>
<td>79,81</td>
<td>14,152</td>
<td>6,512</td>
<td>14,690</td>
<td>90,92</td>
<td>69,83</td>
</tr>
<tr>
<td>BMI 1/(Kg/m²)</td>
<td>27,24</td>
<td>21,35</td>
<td>22,85</td>
<td>5,438</td>
<td>1,865</td>
<td>2,102</td>
<td>27,65</td>
<td>21,33</td>
</tr>
</tbody>
</table>
A1.... Skupina nesportujících žen a jejich průměrné hodnoty COP (centre of pressure), směrodatná odchylka a medián u jednotlivých měření.

A2.... Skupina rekreačně/výkonnostně sport. Žen a jejich průměrné hodnoty COP (centre of pressure), směrodatná odchylka a medián u jednotlivých měření.

A3.... Skupina úpolově aktivních žen a jejich průměrné hodnoty COP (centre of pressure), směrodatná odchylka a medián u jednotlivých měření.

Další proměnnou se stala průměrná výška (Obr.15). Nejvyšší skupinou byly nesportující ženy s výškou 172,43 cm, nejmenší byla skupina sportujících žen 168,17 cm a úpolářky byly průměrně vysoké 170,67 cm. Směrodatná odchylka u nesportující skupiny byla ±3,505 cm, ±5,202 cm takovou měly odchylku sportující ženy a ±7,371 cm byla vypočítaná hodnota úpolové skupiny. Výsledky mediánu znázorňovaly, že nejvyššími byly nesportující se 173cm a za nimi s hodnotou 168 cm byly obě zbývající skupiny.
Obrázek č.15: Krabicový graf proměnná- výška

V hodnotách BMI, měly nejnižší průměr sportující ženy - 21,35 (Kg/m²) a směrodatnou odchylku ±1,865, těsně za nimi byly úpolářky – 21,65 (Kg/m²) se směrodatnou odchylkou ±2,102 a nejhorší skupinou se staly nesportující - 27,24(Kg/m²) se směrodatnou odchylkou ±5,438, vše je zřetelné v dalším obrázku (Obr.16). Hodnoty mediánu vykazovaly podobné údaje, avšak skupiny A2 (21,33 Kg/m²) a A3 (21,67 Kg/m²) se více vyrovnaly.
Dále jsme porovnávali tyto skupiny, jak se liší v hodnotách centra tlaku (COP) v jednotlivých trimestrech. V prvním měření nejstabilnější skupinou byly úpolářky, s průměrnou amplitudou těžiště 5,64±0,757 mm, druhá skupina dosahovala výsledků průměrné amplitudy 7,53±1,887mm a průměrné hodnoty amplitudy (COP) v prvním trimestru byly u nesportujících vyšší než u ostatních skupin 8,61±2,765mm (Obr.17).
V druhém měření byly hodnoty průměrné amplitudy těžiště nejvyšší u nesportující skupiny 7,19±2,865 mm, skupina sportujících dosáhla hodnot 6,90±1,836 mm a úpolových sportovkyň 6,32±1,063 mm (Obr.18). Medián v těchto hodnotách byl jiný než průměrná hodnota. Medián u nesportujících byl 6 mm, u skupiny sportujících 6,49 mm a u úpolářek 6,07 mm.
V třetím měření byla zjištěna průměrná amplituda těžiště nejvyšší u sportující skupiny 8,15±1,251 mm, skupina nesportujících dosáhla hodnot 7,96±2,117 mm a úpolových sportovkyň 6,87±0,946 mm (Obr.19). Medián u nesportujících byl 7,41 mm, u skupiny sportujících 8,85 mm a u úpolářek 6,45 mm.
Důležitá proměnná je hmotnost těhotných žen, je zcela zřejmé že váha musí při dalších trimestrech stoupat, jen bylo zjištěno u koho rychleji. V prvním trimestru byla hmotnost u nesportujících 80,69±15,033 kg, u sportující skupiny 60,30±4,416 kg, úpolářky průměrně vážily 67,17±12,061. Hodnoty mediánu byly 80,18 kg pro nesportující, 60,82 kg pro sportující a 60,59 kg pro úpolovou skupinu. Nejmarkantnější nárůst byl u úpolové skupiny v jejich průměrných hodnotách 76,03±13,323 kg, pro sportující byla průměrná hodnota jejich váhy v druhém trimestru 67,02±5,393 kg a pro nesportující to byly hodnoty 88,02±14,096 kg. Medián v tomto trimestru neshoduje s průměrnými hodnotami právě díky tomu, že medián nepočítá s extrémními hodnotami ve svém souboru. Medián pro vzrůstající hmotnost v druhém trimestru u nesportujících byl 87,1 kg, v sportujících 66,59 kg a u úpolářek 69,97 kg.

Třetí nárůst hmotnosti byl největší u úpolové skupiny těhotných, a to na 79,81±14,690 kg, druhý největší nárůst hmotnosti u nesportujících na 93,48±14,152 kg, třetí a zároveň nejmeší nárůst ve skupině sportujících na

Obrázek č.19: Krabicový graf proměnná- COP3
71,62±6,512 kg. Medián dosáhl hodnot ve třetím měření na 73,02 kg u úpolářek, 90,92 u nesportujících a hodnota mediánu pro skupinu sportujících byla 69,83 kg. Krabicové grafy hmotnostních změn jsou k nalezení v přílohách práce (Příloha č.2).

4.2 Vyhodnocení dotazníkového šetření

Dotazník byl složen ze 17 strukturovaných i otevřených otázek a byl určen pouze těhotným ženám z výzkumného souboru. Struktura dotazníkového šetření byla rozvržena do tří částí. První část zjišťovala základní charakteristiku výzkumného souboru žen. Druhá část sloužila k zjišťení, zda se respondentky věnovaly nějaké pohybové aktivitě. Na jaké úrovni vykonávaly respondentky pohybové aktivity, v jakém časovém horizontu (v řádu let), zda mohly tuto pohybovou aktivitu vykonávat v průběhu těhotenství, do kterého trimestru těhotenství a v jakém rozsahu. V poslední třetí části dotazník zkoumal vyhodnocení míry vlivů těhotenství na tělesnou stavbu ženy a jejích subjektivní vnímání projevů na rovnováhu měřených těhotných žen v pohybových činnostech běžného života a v daných pohybových aktivitách. Pro lepší přehlednost byly tyto odpovědi zpracovány do koláčových grafů, celý záznam grafického vyjádření odpovědí, pro jeho velikost, byl vložen do seznamu příloh (Příloha č. 3) diplomové práce.

Vyhodnocení první části

Jako první bod dotazníku bylo přiřazeni respondentky k naměřeným hodnotám ze stabilometrické plošiny zaznamenáním svého jméno a příjmení.

První otázka se týkala věku těhotných žen, díky ní jsme mohli později rozdělit soubor, pro výpočet BMI hodnot. Bylo zjištěno že 77,3% zkoumaných žen se řadilo do skupiny 31 – 40 let, zbývající ženy spadaly do skupiny 21 – 29 let. U poloviny těhotných šlo o první těhotenství.
Vyhodnocení druhé části

Velice důležitým zjištěním bylo, zda byly těhotné ženy někdy pohybově aktivní nebo ne, pokud ano na jaké sportovní úrovni (Obr.20).

![Obrázek č.20: Rozdělení sportovní úrovně](image)

Celých 72,3% těhotných se věnovalo určité pohybově aktivitě rekreačně, 22,7% se nevěnovalo sportu před ani při těhotenství, 4,5% se věnovalo výkonnosti pohybové aktivitě a žádná z těhotných žen nesportovala na vrcholové úrovni. Z toho 36,4% praktikovalo tuto pohybovou aktivitu v rozmezí 5 – 15 let, druhou nejpočetnější odpovědí bylo rozmezí do 5 let a to 22,7%. 10 těhotných žen vykonávalo sportovní aktivitu během těhotenství s mírným omezením, 7 žen sportovalo do prvního trimestru, 6 do druhého trimestru a jedna žena do trimestru třetího (Obr.21).

![Obrázek č.21: Sportovní aktivity do I., II. a III. Trimestru](image)

Důležitou informací byla identifikace 3 úpolově zaměřených probandek ve výzkumu se zkušenostmi u různých úrovní úpolových aktivit. Součástí této
odpovědi bylo vypsat, jaký druh úpolových aktivit (úpolových sportů) respondentky vykonávaly. Odpovědi byly různé u každé z nich, byly to: Judo, Aikido a Jiu-jitsu. Také nás zajímal, pro případné vysvětlení možných nepředpokládaných hodnot v měření, zda mají respondentky nějaké zkušenosti s kompenzačním cvičením a jaký vliv na ně mělo. Pohýb 36,4% odpovědělo, že zkušenosti mají. Nejdůležitější otázka této části byla zaměřena na míru snížení celkové pohybové aktivity v každém trimestru. V prvním trimestru odpovědělo 59,1% žen výzkumného souboru, že nebyla vůbec nebo minimálně snížena jejich míra celkové pohybové aktivity, v druhém trimestru stejné množství žen odpovědělo, že míra celkové pohybové aktivity byla snížena o 25 – 50% a v třetím trimestru byla snížena u 86,4% žen o 50% a více.

Vyhodnocení třetí části

Otázka uvádějící třetí část zkoumala subjektivní pocit, jaké druhy koordinace jsou v důsledku ovlivnění těhotenství nejčastěji negativně ovlivněny (Obr.22).

![Obrázek č.22: Nejčastější ovlivnění koordinace při těhotenství](image)

Obrázek č.22: Nejčastější ovlivnění koordinace při těhotenství

Nejvíce respondendek (9) uvedlo, že pociťovaly největší zhoršení u koordinace při pohybových cvičeních a druhé největší zhoršení se objevilo v nejistotě při chůzi a při cvičení. Zeptali jsme se na míru vlivu pohybových aktivit na lepší zachování koordinačních schopností v těhotenství. 54,5% souhlasilo s ovlivněním koordinace a 9,1% nesouhlasilo, ostatní ženy nebyly schopny odpovědět, protože necvičily. 59,1% odpovědělo, že ztráta koordinace je
z části vyvolána, snížením celkové pohyblivosti při těhotenství, ostatní ženy nesouhlasily. Další otázkou jsme vyhodnotily stupeň bolesti na problematické partie ženského těla při těhotenství. Bylo to grafické vyjádření obrázků. (Obr.23 - 26):

Obrázek č.23: Vyjádření míry bolesti v kyčelním kloubu

Obrázek č.24: Vyjádření míry bolesti v křížové oblasti
Stupeň bolesti

Obrázek č.25: Vyjádření míry bolesti v oblasti kosti stydké

Stupeň bolesti

Obrázek č.26: Vyjádření míry bolesti svalů a jejich únavy

S předchozích 4 grafů dotazník zjišťuje preference odpovědí a volbu stupňů pro ženy nejbolšějších oblastí, při těhotenství. Ženy v této otázce mohly zvolit, z takových možností bolestivých příznaků, jaké se v jejich těhotenství projevovaly. Nejvíce žen odpovědělo, že je omezovala ve velké míře únava a bolest svalů, dalšími nejčastějšími odpověďmi byla bolest v oblasti kloubu kyčelího a křížové oblasti, díky prohnutí páteře. Navázat můžeme další otázkou, zda a do jaké míry kvůli této bolesti těhotné ženy omezily pohybovou aktivitu? Na tuto otázku 63,6% odpovědělo, ano a zbylých 36,4%, ne. Poslední
otázkou bylo, jestli ženy kvůli bolesti musely omezit jakýkoliv pohyb, dlouhou chůzi nebo sport (Obr.27).

Obrázek č.27: Grafické vyjádření omezení druhu pohybové aktivity

9 respondentek odpovědělo, že musely omezit nebo opustit od jakékoliv pohybové činnosti, 7 respondentek přestalo nebo omezilo dlouhé procházky a 6 z nich skončilo s pohybovou aktivitou.
5 Diskuze

Cílem práce bylo popsát a vysvětlit vlivy (těhotenství a pohybové aktivity) na statickou rovnováhu žen v průběhu těhotenství. Jako podklad pro vysvětlení zjištěných skutečností jsme zvolili grafické vyobrazení, kdy s podporou krabicových grafů všech měření, vysvětlujeme jednotlivé změny a vlivy na statickou rovnováhu ženy v těhotenství. Krabicové grafy vyjadřují průměrné amplitudy centra tlaku (COP) a jeho deriváty s použitím směrodatné odchylky (Obr.28).

![Obrázek č 28: Hodnoty průměrné amplitudy centra tlaku (COP/mm) v 1., 2. a 3. trimestru](image)

V prvním měření je u skupiny A1 (nesportující) na první pohled patrné, že všechna výsledná měření mají mnohem větší míru variability (rozptylení dat ve výzkumném souboru), než ostatní sledované skupiny. O tom vypovídá hodnota průměrné amplitudy v měření číslo jedna mezi všemi skupinami. U skupiny A2 (sport.) je průměrná amplituda centra tlaku 7,53±1,887 mm, je to tedy nižší odchylka než u skupiny A1 8,61±2,765 mm. To znamenalo, že skupina A1 má podstatně výše položen interval a zároveň její hodnoty dosahovaly nejvyššího

V druhém trimestru bylo zajímavé sledovat projevy u skupiny A1 a A2, u obou došlo k snížení průměrné amplitudy centra tlaku jen u skupiny A3 došlo k nárůstu této hodnoty, oproti předchozímu prvnímu trimestru. Rozptylení dat u každé skupiny zůstalo zhruba stejně velké. Skupina A1 vykazovala neustále nejvyšší změny průměrné amplitudy centra tlaku, i v tomto trimestru s hodnotou centra tlaku (7,19±2,865 mm). Další nejvyšší hodnoty průměrné amplitudy vykazovala skupina A2 s hodnotou COP (6,90±1,836 mm) a nejnižší hodnoty průměrné amplitudy byly naměřeny u skupiny A3 s hodnotou (6,32±1,063 mm). Došlo ovšem k poměrně výraznému srovnání hodnot COP všech skupin, které spočívalo zejména v nárůstu COP u skupiny A3, pravděpodobně díky výraznému hmotnostnímu přírůstku u této skupiny.. U všech skupin došlo k vyššímu nárůstu hmotnosti zhruba od 9% do 15% jejich předchozí tělesné váhy. Hodnotami mediánu hmotnosti bylo zjištěno, že u úpolově skupiny došlo k největšímu procentuálnímu přírůstku hmotnosti (o 15%) oproti předchozímu trimestru, což
byl největší procentuální přírůstek. V ostatních skupinách byl přírůstek hmotnosti u mediánu (9%). (Obr.29). Vzrůstající hmotnost v oblasti břišní dutiny pravděpodobně omezovala těhotné ženy v udržení předchozích hodnot průměrných amplitud COP, z důvodu ztráty vizuální kontroly s povrchem a místem došlapu.

Obrázek č 29: Přírůstky hmotnosti u jednotlivých skupin v I až III. Trimestru

Nejzajímavějším zjištěním v třetím trimestru jsou výrazné změny ve skupině A2, kde došlo k největšímu zhoršení průměrné amplitudy centra tlaku a naopak zlepšení u skupiny A1. První byla jako u všech měření v jednotlivých trimestrech skupina A3, druhou nejstabilnější skupinou se stala skupina A1 a skupinou s největšími výkyvy byla sk. A2. Úpolová skupina ve 3. trimestru byla schopna se lépe vyrovnat s fyziologickými změnami, i přesto že nárůst hmotnosti byl v této skupině nejvyšší 20%, oproti 1. trimestru. Naproti tomu skupina A2 se nebyla schopna přizpůsobit stále se zvětšující hmotnosti, která pro střední hodnotu hmotnosti vzrostla z 9% na 15%. Projev této změny byl ve skupině velice znatelný na úrovni statické rovnováhy. Je možné, že se tak stalo také z důvodu
přerušení sportovní aktivity (58%), přestalo sportovat úplně nebo v 1. trimestru. 42% žen skupiny A2 pokračovalo ve sportu do 2. trimestru, dle výsledků dotazníkového šetření. Subjektivními pocitmi ženy této skupiny hodnotily pozitivně vliv sportovní aktivity na úroveň koordinačních schopností v těhotenství, a to celých 83% skupiny A2. Data průměrné výšky probandek nepotvrzovala předpoklad, že mají vliv na hodnoty průměrné amplitudy. Skupina A2 byla menšího vzrůstu než skupina A1, ale co se týče jejich hodnot hmotnosti, tak zde byly data, která podporovala teorie o působení hmotnosti na statickou rovnováhu. Ve skupině A2 došlo k přírůstku na 20% jejich celkové tělesné váhy a u sk. A1 šlo o 17%. Míra ovlivnění, v důsledku zvyšující se hmotnosti, při působení na hodnotu COP3 byla vyšší než u skupiny A1.

Výsledky Cohenova d

Byly uvedeny pouze tabulky vypočítaných hodnot d v absolutní hodnotě a srovnávány ve všech skupinách výzkumu.

Tab.6: Srovnání Cohenova D(effect size) ve skupinách nesportujících a úpolově sportujících

<table>
<thead>
<tr>
<th>A1 x A3</th>
<th>věk</th>
<th>výška</th>
<th>COP1</th>
<th>m1</th>
<th>COP2</th>
<th>m2</th>
<th>COP3</th>
<th>m3</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,43</td>
<td>0,41</td>
<td>1,16</td>
<td>0,92</td>
<td>0,33</td>
<td>0,86</td>
<td>0,55</td>
<td>0,96</td>
<td>0,86</td>
</tr>
</tbody>
</table>

Tab.7: Srovnání Cohenova D(effect size) ve skupinách sportujících a úpolově sportujících těhotných

<table>
<thead>
<tr>
<th>A2 x A3</th>
<th>věk</th>
<th>výška</th>
<th>COP1</th>
<th>m1</th>
<th>COP2</th>
<th>m2</th>
<th>COP3</th>
<th>m3</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,84</td>
<td>0,45</td>
<td>1,07</td>
<td>1,1</td>
<td>0,33</td>
<td>1,25</td>
<td>1,06</td>
<td>0,99</td>
<td>0,79</td>
</tr>
</tbody>
</table>

Tab.8: Srovnání Cohenova D(effect size) ve skupinách sportujících a nesportujících těhotných

<table>
<thead>
<tr>
<th>A1 x A2</th>
<th>věk</th>
<th>výška</th>
<th>COP1</th>
<th>m1</th>
<th>COP2</th>
<th>m2</th>
<th>COP3</th>
<th>m3</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,53</td>
<td>1,12</td>
<td>0,41</td>
<td>1,46</td>
<td>0,11</td>
<td>1,6</td>
<td>0,09</td>
<td>1,65</td>
<td>1,17</td>
</tr>
</tbody>
</table>
Při hodnocení věcné významnosti pomocí Cohenova d, byla zjištěna velice vysoká míra efektu u skupin A1 a A3 na průměrné amplitudy center tlaku v prvním trimestru (d=1,18), tudíž zde se potvrdil předpoklad vyšší úrovně statické rovnováhy, vzhledem k úpolové aktivitě. U hmotnosti se dá také hovořit o vysokém efektu u prvního, druhého a třetího trimestru těchto dvou skupin a hodnotou nad (d≥0,8). Při druhého trimestru tato věcná významnost hodnoty COP klesla na hodnotu nízké míry efektu. Díky velkému přírůstku hmotnosti skupiny A3 a zároveň výrazné ztrátě vizuální kontroly s povrchem země, nebyla úpolová skupina schopna se přizpůsobit, tak vysoké míře vzrůstající se hmotnosti. V třetím měření vzrostl rozdíl průměrné amplitudy COP na hladinu střední míry efektu v rámci skupin A1 a A3. Díky prodloužení délky trvání nárůstu tělesné hmotnosti na dva trimestry, skupina A3 již byla schopná se přizpůsobit vlivům zvyšujícím se hmotnosti.

U skupin sportujících a nesportujících se jednalo v jednotlivých měřeních o stále se snižující hodnoty nízkého efektu Cohenova d. To znamená, že rozdíl v rámci pohybové aktivity těchto dvou skupin nebyl významně velký a pohybová aktivita nehrozila, tak významnou roli v ovlivnění úrovně statické rovnováhy. Naopak u hmotnosti šlo o zvyšující se hodnotu Cohenova d s vysokým efektem na skupiny.

Porovnání míry efektu úpolové a sportující skupiny v prvním měření dosáhlo hodnot vysokého efektu, v dalším měření míra efektu klesla na hodnotu nízkého efektu a v posledním měření byla míra efektu vysoká. A tudíž hrálo významnou roli, zda v prvním a třetím trimestru byly těhotné ženy úpolářky či jen rekreačně sportující. Hmotnost měla vysoký efekt v průběhu celého těhotenství těchto dvou skupin.

Vyhodnocení výzkumných otázek

VO1: Budou mít ženy (měřeného souboru), se zkušenostmi s úpolovými aktivitami, nejmenší průměrné amplitudy center tlaku (COP-centre of pressure) v průběhu těhotenství?
Na tuto výzkumnou otázku se nám podařilo odpovědět, že ano skupina s úpolově zaměřenými aktivitami měla po celou dobu menší průměrné amplitudy center tlaku COP v průběhu celého těhotenství a proto ji můžeme považovat za skupinu s nejrozvinutější úrovní statické rovnováhy.

VO2: Budou průměrné amplitudy centra tlaku (COP-centre of pressure) skupiny A1 (nesportující ženy) věcně významnější než hodnoty COP skupiny A3 (úpolová skupina)?

Ano, v porovnání těchto dvou skupin jsme zjistili, že Cohenův účinek d při porovnávání COP v průběhu těhotenství, u skupiny A3 byl vždy věcně významnější než v případech skupiny A1.

VO3: Jaký vliv bude mít tělesná výška (h) a zvyšující se hmotnost na výkyvy hodnot COP v průběhu těhotenství?

Vzhledem k tělesné výšce se nám nepodařilo potvrdit souvislost mezi tělesnou výškou a úrovní statické rovnováhy, neboť skupina celého výzkumného souboru mezi sebou neměla dostatečně velké výškové rozdíly. Tyto rozdíly byly v řádově rozmezí 10cm. Hmotnost jsme potvrdili, ve výsledcích Cohenova d. Ve všech trimestrech a u všech skupin byla zjištěna vysoká míra efektu dopadu na průměrné amplitudy COP.
6 Závěr

Stanoveného cíle, popsat a vysvětlit vlivy těhotenství a pohybových aktivit na úroveň statické rovnováhy v průběhu těhotenství, bylo dosaženo pomocí stabilometrického měření v 1., 2., a 3. trimestru, vyhodnocením dotazníku o úrovni pohybových aktivit zkoumaných žen v průběhu těhotenství a dále teoretickým sběrem dat dané problematiky.

Nejprve byly shromážděny dostupné teoretické zdroje zabývající se problematikou těhotenství, pohybových aktivit, koordinačních schopností a blíže byly zpracovány úpolové aktivity. Výběr správných výzkumných metod a určení za jakých podmínek lze provádět měření, byl zcela zásadní pro vhodné objasnění pozdější interpretace výzkumných otázek. Po vhodném stanovení výzkumných otázek a harmonogramu úkolů práce mohl být výzkum realizován. Bylo možné zodpovědět výzkumné otázky díky dotazníkovému šetření, z něj získaných informací o subjektivním hodnocení pohybové aktivity v těhotenství a naměřeným hodnotám výzkumného souboru. Potvrzeno bylo, že fyziologické projevy a změny těhotenství mají vliv na úroveň statické rovnováhy, přičemž pohybové aktivity mají zásluhu na udržení míry této schopnosti v těhotenství.

Měření a dotazníkové šetření se zúčastnilo 22 těhotných žen, které splnily určené podmínky pro zahrnutí do výzkumného souboru. Výzkumný soubor byl v rámci vyhodnoceného dotazníku pohybových aktivit, naměřené výšky a změn hmotností rozdělen na 3 skupiny. Ty byly seřazeny vzestupně podle úrovně pohybově aktivních a neaktivních, od nesportujících po úpolově sportující.

Závěry pro teorii i praxi

Nejdůležitější hodnotou pro zjištění úrovňi statické rovnováhy byla průměrná amplituda centra tlaku měřená systémem Fitro Sway, který je vhodný pro měření výkyvů a změn poloh těžiště. V rámci pohybově aktivních žen byla nejúspěšnější skupinou v měření, skupina úpolově aktivních sportovkyň, s nejnižšími průměrnými amplitudami COP ve všech měřeních. Pro porovnání vyhodnocení významnosti rozdílů jednotlivých skupin bylo použito Cohenovo d. V prvním trimestru měly úpolové sportovní aktivity v porovnání s ostatními
skupinami vysoký efekt na míru ovlivnění statické rovnováhy. V druhém trimestru v rámci všech tří skupin vyšla míra efektu nízká, tudíž pohybová aktivita tolik neovlivňovala úroveň statické rovnováhy. Mohlo to být způsobeno opravdu velkým přírůstkem tělesné váhy mezi těmito trimestry a nedostatečnou rychlostí procesu přizpůsobení se novým změnám v těhotenství. V třetím trimestru byla střední míra efektu ve skupinách A1 a A3, kdy se začal znovu projevovat efekt úpolové aktivity, a to právě rychlejším přizpůsobením na vysokou tělesnou hmotnost. Důležitým faktorem se stala zvyšující se hmotnost. Byla velice významným činitelem, neboť při zvýšení hmotnosti vzrůstala i průměrná amplituda centra tlaku těhotných žen. Ty pociťovaly tyto vlivy různě, 4 nepociťovaly žádné změny, 9 z nich pociťovalo sníženou obratnost při cvičení, 6 nejistotu při chůzi a 3 dokonce ztrátu rovnováhy. S nárůstem hmotnosti v těhotenství a přesunutím této tělesné hmoty na jedno místo, souvisí bolestivost a přetížení jednotlivých oblastí ženského těla. Otázkou v dotazníku položenou právě na úroveň bolesti v těhotenství, jsme dokázali potvrdit teoreticky sesbíraná data v první kapitole, a dále je rozšířit o subjektivní pocity zkoumaného souboru této práce.

Díky úpolovému zaměření a měření z hlediska ovlivnění sportovních aktivit se tento výzkum stal jedinečným. Výsledky práce jsou samy o sobě tématem k rozvoji dalších pojetí ve spojení těhotenství a sportu, dokonce těhotenství a úpolových aktivit. V tomto vidím velké možnosti nejen pro katedru kinantrtopologie, kde jsou výsledky podnětem k dalšímu zkoumání této oblasti, ale také pro katedru gymnastiky a úpolů. Doporučení pro katedru gymnastiky a úpolů by mohlo být další bližší výzkum v oblasti úpolově aktivních těhotných žen a následná tvorba plánů pohybových aktivit pro takto sportovně založené ženy. Plány by měly být vytvořeny dle možností v různých trimestrech těhotenství. Tato práce se může stát podkladem a možným východiskem pro vytvoření takto zaměřeného sportovního plánu.
Seznam literatury a pramenů

72

Brázdová, Z., Výživa těhotných a kojících žen, Ústav preventivního lékařství, Lékařská fakulta Masarykovy univerzity v Brně, 1999

Bejdáková, J. (2006). Cvičení a sport v těhotenství: sporty vhodné i nevhodné, zásady cvičení, speciální tělocvik pro těhotné, základy výživy, tanec, gravidjóga. (Vyd. 1., 133 s.) Praha: Grada

Výběrová bibliografie prací učitelů a pracovníků Fakulty tělesné výchovy a sportu a Výzkumného ustavu FTVS University Karlovy: Geometrie těžiště. Kompendium. FTVS: Biomechanika [online]. Retrieved from:

Seznam obrázků

Obrázek č.1: Rozdělení do kategorií dle hodnoty BMI
Obrázek č.2: Rozdíl mužské a ženské pánve
Obrázek č.3: Klenba nohy, pohled na laterální stranu
Obrázek č.4: Vzorce pro určení celkového těžiště
Obrázek č.5: Dělení motorických schopností
Obrázek č.6: Systematika technik v džudó
Obrázek č.7: Technické prostředky „ukeho“(obránce) a „toriho“(útočníka)
Obrázek č.8: Technika ARMBAR
Obrázek č.9: Pozice AIKIDOKA
Obrázek č.10: Trajektorie pohybů předloktí
Obrázek č.11: Grafické znázornění skupiny nesportujících
Obrázek č.12: Grafické znázornění skupiny sportujících
Obrázek č.13: Grafické znázornění úpolové skupiny
Obrázek č.14: Krabicový graf proměnná- věk
Obrázek č.15: Krabicový graf proměnná- výška
Obrázek č.16: Krabicový graf proměnná- BMI
Obrázek č.17: Krabicový graf proměnná- COP1
Obrázek č.18: Krabicový graf proměnná- COP2
Obrázek č.19: Krabicový graf proměnná- COP3
Obrázek č.20: Rozdělení sportovní úrovně
Obrázek č.21: Sportovní aktivity do I., II. a III. trimestru

Obrázek č.22: Nejčastější ovlivnění koordinace při těhotenství

Obrázek č.23: Vyjádření míry bolesti v kyčelním kloubu

Obrázek č.24: Vyjádření míry bolesti v křížové oblasti

Obrázek č.25: Vyjádření míry bolesti v oblasti kostí stydké

Obrázek č.26: Vyjádření míry bolesti svalů a jejich únavy

Obrázek č.27: Grafické vyjádření omezení druhu pohybové aktivity

Obrázek č.28: Hodnoty průměrné amplitudy centra tlaku (COP/mm) v 1., 2. a 3. trimestru

Obrázek č.29: Přírůstky hmotnosti u jednotlivých skupin v I až III. Trimestru
Seznam tabulek

Tabulka 1: Výsledky zjištěné ze stabilometrického měření a převedeny na průměrné amplitudy COP u jednotlivých měření v I., II. a III. Trimestru

Tabulka 2: Data skupiny nesportujících těhotných žen – A1

Tabulka 3: Data skupiny sportujících těhotných žen- A2

Tabulka 4: Data úpolové skupiny těhotných žen

Tabulka 5: Popisnou statistikou zpracovaná data jednotlivých skupin v daných trimestrech

Tabulka 6: Srovnání Cohenova D(effect size) ve skupinách nesportujících a úpolově sportujících

Tabulka 7: Srovnání Cohenova D(effect size) ve skupinách sportujících a úpolově sportujících těhotných

Tabulka 8: Srovnání Cohenova D(effect size) ve skupinách sportujících a nesportujících těhotných
Seznam příloh

Příloha č.1: Techniky aikida – hody

Příloha č. 2: Krabicové grafy hmotností

Příloha č.3: Dotazníkové vyhodnocení
Resumé

Téma diplomové práce je „Vliv těhotenství a pohybové aktivity na úroveň statické rovnováhy u vybrané skupiny těhotných žen.“ Cílem práce byl popis a vysvětlení sledovaných faktorů, které ovlivňují úroveň statické rovnováhy zkoumaných těhotných žen. Mezi faktory úrovně statické rovnováhy byly zahrnuty fyziologické změny doprovázející těhotenství, jako zvýšení tělesné hmotnosti a přesouvání polohy těžiště. Dalším zkoumaným faktorem byla míra ovlivnění statické rovnováhy, vzhledem k vykonávání různé sportovní aktivity nebo žádné sportovní aktivity. Výzkumu byl založen na měření úrovně statické rovnováhy v jednotlivých trimestrech těhotenství na přístroji Fitro Sway, který zaznamenává výkyvy těžiště v anterio-posteriálním a medio-laterálním směru. Data z měření byla vyhodnocena pomocí popisné statistiky a v rámci pohybové rozdělených skupin, pomocí Cohenova d byla určena míra efektu (účinků) pohybové aktivity na úroveň statické rovnováhy v těhotenství. Subjektivní názory těhotných žen byly zjištěny dotazníkovým šetřením, který zkoumal, jak pohybové aktivity subjektivně ovlivnili každou jednotlivou respondentku.

Úroveň statické rovnováhy v těhotenství může být zlepšena, i přes vysokou míru ovlivnění, vzhledem k nárůstu hmotnosti, zvýšením nároku na koordinačně náročné pohybové aktivity. Přínos práce je spatřen v možnosti ovlivnění úrovně statické rovnováhy pohybovou aktivitou, pro možné rozšíření o aktivity rozvíjející tuto rovnováhu v těhotenství.
Summary

The topic of the diploma thesis is „Influence of pregnancy and motional activities on static balance of a selected group of pregnant women.“ The aim of the thesis was to describe and explain the monitored factors which affect static balance of the examined pregnant women. The factors of static balance also included physiologic changes which go together with pregnancy, such as body weight increase and shift of gravity centre. Another examined factor was the extent of influence on static balance with regard to performance of various sports or no sport. The examination was based on measurement of static balance level in each pregnancy trimester with Fitro Sway device, which records swings of gravity centre in anterior-posterior direction and in medial-lateral direction. The measured data was evaluated by descriptive statistics and the extent of influence (effects) of the motional activity on static balance in pregnancy was determined with Cohen’s d within the motion-defined groups. Subjective opinions of pregnant women were obtained through questionnaire survey which examined how the motional activities affected each respondent.

The elementary result of the thesis was the finding that the group of combat sporting women always showed the values of average gravity centre amplitude which was the lowest one when being compared to the results of other groups. This argument was proven by the Cohen’s d. It was revealed that the combat port activities have crucial effect in the first trimester, when compared to the other groups, on the influence of static balance. The results of the second trimester in all the three groups showed low effect. i.e. the motional activity does not affect static balance so much. The third trimester showed medium effect in the groups A1 and A3.

Static balance in pregnancy may be improved by increase in engagement in coordination exercise in pregnancy, despite the high level of the Cohen’s effect of weight increase related to pregnancy. The thesis can be helpful for possible improvement of static balance through motional activity as well as for possible extension of studies of motional activities developing static balance in pregnancy.
Příloha č.1: Techniky aikida – hody z (http://www.aikidotn.sk/hody/)

Znehybnění

Ikkyo – Ude osae – První forma znehybnění (znehybnění paže)
Nikkyo – Kote mawashi – Druhá forma znehybnění (výkrut zápästí)
Sankyo – Kote hineri – Tretí forma znehybnění (vytočení zápästí)
Yonkyo – Tekubi osae – Čtvrtá forma znehybnění
Gokyo – Piata forma znehybnění

Hody

Irimi nage – Hod vstupom
Juji nage – Hod s prekříženými rukami
Kaiten nage – Hod veterného mlynu (rotační hod)
Kokyu nage – Hod dychom
Koshi nage – Hod bokmi
Shiho nage – Hod štyroch smerov
Tenchi nage – Hod neba a zeme
Kote gaeshi – Hod vytočením zápästí
Sumi otoshi – Rohový hod
Ude kime nage – Hod pákou na lakeť
Ushiro kiri otoshi – Hod strhnutím brady vzad
Aikiotoshi – Hod vytiahnutím súperových kolien
Sokumen irimi nage

Obrázek č.1: Techniky v aikidu
Příloha č. 2: Krabicové grafy hmotností

Obrázek č.1: Krabicový graf - M1
Příloha č.3: Dotazníkové vyhodnocení

1. Kolik let vám je/bylo při účasti ve výzkumu?

![Grafické vyjádření věku těhotných žen](image1)

Obrázek 1: Grafické vyjádření věku těhotných žen

2. Jedná se o Vaše první těhotenství?

![Grafické vyjádření počtu těhotenství](image2)

Obrázek 2: Grafické vyjádření počtu těhotenství

3. Sportovala jste před otěhotněním?

![Grafické vyjádření sportovních zkušeností](image3)

Obrázek 3: Grafické vyjádření sportovních zkušeností
4. Jak dlouho jste se danému sportu věnovala?

Obrázek 4: Grafické vyjádření sportovních zkušeností v řádu let

- do 5 let: 5 (22.7 %)
- 5 až 15 let: 8 (36.4 %)
- více než 15 let: 4 (18.2 %)

5. Pokračovala jste se sportem i v těhotenství?

Obrázek 5: Grafické vyjádření sportovních zkušeností v těhotenství

- Ano: 2 (9.1 %)
- Ano, do určité doby bez omezení: 10 (45.5 %)
- Ne: 10 (45.5 %)
- Začala jsem cvičit (zdravotní cvičení atd.): 0 (0 %)
Pokud ano, do kterého trimestru jste byla schopná cvičit bez velkých změn ve vašem tréninku?

Obrázek 6: Grafické vyjádření sportování do trimestru

<table>
<thead>
<tr>
<th>Trimestr</th>
<th>Počet</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do 1. trimestru</td>
<td>7</td>
<td>31.8 %</td>
</tr>
<tr>
<td>Do 2. trimestru</td>
<td>6</td>
<td>27.3 %</td>
</tr>
<tr>
<td>Do 3. trimestru</td>
<td>1</td>
<td>4.5 %</td>
</tr>
</tbody>
</table>

6. Patří mezi pohybové aktivity, kterým jste se věnovala některý z úpolových sportů (bojová umění jako judo, karate, aikido a další)?

Obrázek 7: Grafické vyjádření sportovních zkušeností z úpolových sportů

<table>
<thead>
<tr>
<th>Způsob</th>
<th>Počet</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
<td>3</td>
<td>13.6 %</td>
</tr>
<tr>
<td>Ne</td>
<td>19</td>
<td>86.4 %</td>
</tr>
</tbody>
</table>

Pokud ano, jaký úpolový sport a na jaké úrovni (vrcholově, výkonnostně, pouhým koníčkem)?
Ju jitsu
Judo
Aikido

8. Pociťovala jste v těhotenství velké změny koordinace při chůzi či při cvičení?

Obrázek 8: Grafické vyjádření změn v koordinaci

- Ztráty rovnováhy: 3 (13.6 %)
- Nejistota při chůzi a při pohybových cvičeních: 6 (27.3 %)
- Nedostatečná obratnost při jednoduchých cvičení: 9 (40.9 %)
- Nepociťovala jsem výraznější změny: 4 (18.2 %)

Obrázek 9: Grafické vyjádření zkušeností s kompenzačním cvičením

- Ne: 13
- Ano: 8

10. Myslíte si, že Vám cvičení v těhotenství pomáhalo udržet si v rámci možností dobrou koordinaci a obratnost?
Obrázek 10: Grafické vyjádření účinků sportování v těhotenství na koordinaci

- Ano, vliv cvičení jsem pociťovala 12 54.5 %
- Ne, cvičení mi v tomto směru nepomohlo 2 9.1 %
- Nevím, necvičila jsem 8 36.4 %

11. Myslíte si, že ztráta koordinace mohla být vyvolána nejen standardními fyziologickými změnami v těhotenství, ale i snížením pohybu a celkové pohyblivosti?

Obrázek 11: Grafické vyjádření hodnocení ztráty koordinace

- Ano [13]
- Ne [9]

12. O kolik se snížila Vaše celková pohybová aktivita v průběhu těhotenství (vždy ve srovnání se stavem před těhotenstvím)?

Obrázek 12: Grafické vyjádření snížení pohybové aktivity v 1. trimestru

- 25 - 50 % [7]
- 50 - 75 % [1]
- více než 75 % [1]
- Vůbec nebo m [13]
13. O kolik se snížila Vaše celková pohybová aktivita v průběhu těhotenství v druhém trimestru?

![Grafické vyjádření snížení pohybové aktivity v II.trimestru](image)

14. O kolik se snížila Vaše celková pohybová aktivita v průběhu těhotenství v třetím trimestru?

![Grafické vyjádření snížení pohybové aktivity v III.trimestru](image)

15. Vzhledem k bolestivosti zatěžovaných částí těla, oproti předchozím měsícům, představoval třetí trimestr její razantnější nástup?

![Grafické vyjádření míry bolesti v kyčelním kloubu](image)
16. Omezovala Vás tato bolestivost v pohybové aktivitě
natolik, že jste onu aktivitu v tomto trimestru musela zcela či výrazně omezit?

Obrázek 18: Grafické vyjádření zanechání sportovní aktivity

17. O jakou aktivitu se jednalo?

Obrázek 19: Grafické vyjádření omezené aktivity