LÉČEBNĚ - REHABILITAČNÍ PLÁN A POSTUP U PACIENTA S CÉVNÍ MOZKOVOU PŘÍHODOU

Bakalářská práce v oboru fyzioterapie

Vedoucí bakalářské práce: Mgr. Pavla Kulinská
Autor: Iva Kalužíková

Brno, březen 2015
Jméno a příjmení autora: Iva Kalužíková
Název bakalářské práce: Léčebně - rehabilitační plán a postup u pacienta s cévní mozkovou příhodou
Title of bachelor´s thesis: Medical - rehabilitation plan and procedure for a patient after stroke
Pracoviště: Katedra fyzioterapie LF MU
Vedoucí bakalářské práce: Mgr. Pavla Kulinská
Rok obhajoby: 2015

Souhrn: Tato bakalářská práce se snaží poodhalit problematiku cévní mozkové příhody, její léčby, prevence a v neposlední řadě fyzioterapie. Obsah práce je rozdělen do tří částí. První, obecná část pojednává o vzniku cévní mozkové příhody, o jejím průběhu, možnostech léčby, diagnostice, etiologii a prevenci. Druhá, speciální část shrnuje možnosti užití prvků komplexní rehabilitace, od léčebné tělesné výchovy přes speciální metodiky až po fyzikální terapii a moderní fyzioterapeutické přístupy. Třetí a poslední částí je kazuistika, která popisuje působení samotného autora při léčbě konkrétního pacienta.

Summary: This bachelor thesis tries to uncover the problems of stroke, its treatment, prevention, and not least of physiotherapy. The work is divided into three parts. First, the general section discusses the origin of stroke, its course, treatment options, diagnosis, etiology and prevention. Second, a special section summarizes the use of elements of a comprehensive rehabilitation, from treatment of physical education through a special methodology to physical therapy, and modern physiotherapy approaches. The third and last part is a casuistic that describes the effect of the author in the treatment of a particular patient.

Klíčová slova: cévní mozková příhoda, iktus, ischemie, hemoragie, rehabilitace, fyzioterapie
Key words: stroke, iktus, ischemia, haemorrhage, rehabilitation, physiotherapy
Prohlašuji, že jsem bakalářskou práci vypracovala samostatně pod vedení Mrg. Pavly Kulinské a uvedla jsem v seznamu literatury všechny použité literární a odborné zdroje.

Souhlasím, aby práce byla půjčována ke studijním účelům a byla citována dle platných norem.

V Brně dne 31. 3. 2015

..
OBSAH

1 PŘEHLED TEORETICKÝCH POZNATKŮ ... 10
1.1 Obecná část .. 10
 1.1.1 Definice onemocnění .. 10
 1.1.2 Anatomie CNS .. 11
 1.1.2.1 Stavba mozku ... 11
 1.1.2.2 Cévní zásobení mozku ... 12
 1.1.2.3 Řízení krevního průtoku mozku .. 15
 1.1.2.4 Patofyziologie průtoku krve mozkem .. 16
 1.1.3 Dělení cévních mozkových příhod .. 17
 1.1.3.1 Ischemické cévní mozkové příhody .. 17
 1.1.3.2 Hemoragické cévní mozkové příhody 21
 1.1.4 Obecné klinické příznaky CMP .. 22
 1.1.5 Klinické obrazy vznikající při zasažení příslušných oblastí 22
 1.1.6 Průběh onemocnění .. 23
 1.1.7 Diagnostika cévní mozkové příhody .. 23
 1.1.8 Léčba cévní mozkové příhody .. 25
 1.1.8.1 Léčba ischemické CMP ... 25
 1.1.8.2 Léčba hemoragické CMP .. 27
 1.1.9 Prevence cévní mozkové příhody ... 27
 1.1.9.1 Primární prevence ... 27
 1.1.9.2 Sekundární prevence ... 27
 1.1.10 Rizikové faktory vzniku CMP .. 28
 1.1.11 Incidence a etiologie .. 29
 1.1.11.1 Situace ve světě ... 29
 1.1.11.2 Situace v České republice .. 29
1.2 speciální část .. 30

1.2.1 Komplexní rehabilitace .. 30

1.1.2.1 Léčebná rehabilitace .. 30

1.2.1.1.2 Testování ... 31

1.1.2.2 Sociální rehabilitace .. 33

1.1.2.3 Pracovní rehabilitace .. 33

1.1.2.4 Pedagogická rehabilitace .. 34

1.1.2.5 Psychologická rehabilitace .. 34

1.2.2 Léčebná tělesná výchova .. 35

1.2.2.1. Rozdělení LTV podle stádia CMP .. 35

1.2.2.2 Polohování .. 36

1.2.2.3 Respirační fyzioterapie .. 38

1.2.2.4 Pasivní pohyby .. 39

1.2.2.5 Péče o rameno ... 40

1.2.2.6 Péče o kyčel ... 40

1.2.2.7 Orofaciální terapie ... 41

1.2.2.8 Nácvik rovnováhy ... 41

1.2.2.9 Nácvik sedu ... 41

1.2.2.10 Nácvik stoje ... 41

1.2.2.11 Nácvik chůze ... 42

1.2.2.12 Metody založené na neurofyziologickém podkladě 42

1.2.2.12.1 Vojtova metoda - metoda reflexní lokomoce 42

1.2.2.12.2 Kabatova metoda - metoda PNF .. 44

1.2.2.12.3 Bobath koncept .. 48

1.2.2.12.4 Metoda odemykání dle Faye ... 48

1.2.2.12.5 Metoda neurofunkční reorganizace - Padovan 49

1.2.2.12.6 Koncept Brunnström .. 49
1.2.2.12.7 Koncept Johnstone ... 50
1.2.2.12.8 Koncept Carr a Shepherd ... 50
1.2.2.12.9 Metoda Rood .. 51
1.2.2.12.10 Koncept vzpěrných cvičení - Brunkow 51
1.2.2.12.11 Frenkelova metoda .. 52
1.2.3 Fyzikální terapie ... 52
1.2.4 Ergoterapie .. 53
1.2.4.1 Vynucené používání paretické končetiny (CI Therapy) 55
1.2.5 Protetika ... 55
1.2.6 Logopedická péče ... 55
1.2.6.1 Druhy logopedické péče .. 56
1.2.7 Roboticky asistovaná rehabilitace .. 56

2 KAZUISTIKA ... 58
2.1 Základní údaje ... 58
2.2 Lékařské vyšetření ... 58
2.2.1 Objektivní nález při přijetí ... 58
2.2.2 Další vyšetření ... 59
2.2.3 Terapie ... 59
2.2.4 Ordinace léčebné rehabilitace .. 59
2.3 Zapojení autora do procesu léčebné rehabilitace 60
2.3.1 Anamnéza ... 60
2.3.2 Vstupní vyšetření ... 61
2.3.3 Krátkodobý rehabilitační plán .. 64
2.3.4 Průběh rehabilitace ... 65
2.4 Dlouhodobý rehabilitační plán .. 77
2.5 Závěr ... 78

3 SEZNAM POUŽITÉ LITERATURY ... 79
3.1 Knižní zdroje ..79
3.2 Internetové zdroje ..80
4 PŘÍLOHY ...83
Příloha 1. Barthel Index pana S. K. ze dne 4. 3. a 17. 3. 2015 ...84
Příloha 2. FIM pana S. K. ze dne 4. 3. 2015 a 17. 3. 2015 ..85
Příloha 3. MMSE pana S. K. ze dne 4. 3. 2015 a 17. 3. 2015 ...86
Seznam používaných symbolů a zkratek

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Znění</th>
</tr>
</thead>
<tbody>
<tr>
<td>a./ aa.</td>
<td>arteria/ arteriae</td>
</tr>
<tr>
<td>ADL</td>
<td>activities of daily living</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>CMP</td>
<td>cévní mozková příhoda</td>
</tr>
<tr>
<td>CNS</td>
<td>centrální nervová soustava</td>
</tr>
<tr>
<td>CP</td>
<td>courtes périodes</td>
</tr>
<tr>
<td>CT</td>
<td>computerová tomografie</td>
</tr>
<tr>
<td>CTA</td>
<td>CT angiografie</td>
</tr>
<tr>
<td>DK/ DKK</td>
<td>dolní končetina/ končetiny</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>EKG</td>
<td>elektrokardiogram</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoproteins</td>
</tr>
<tr>
<td>HK/ HKK</td>
<td>horní končetina/ končetiny</td>
</tr>
<tr>
<td>ICHS</td>
<td>ischemická choroba srdeční</td>
</tr>
<tr>
<td>IM</td>
<td>infarkt myokardu</td>
</tr>
<tr>
<td>i. m.</td>
<td>intramuskulárně</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenózně</td>
</tr>
<tr>
<td>JIP</td>
<td>jednotka intenzivní péče</td>
</tr>
<tr>
<td>LDK/ PDK</td>
<td>levá/ pravá horní končetina</td>
</tr>
<tr>
<td>LHK/ PHK</td>
<td>levá/ pravá horní končetina</td>
</tr>
<tr>
<td>LP</td>
<td>longues périodes</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoproteins</td>
</tr>
<tr>
<td>min.</td>
<td>minuta</td>
</tr>
<tr>
<td>mmHg</td>
<td>milimetry rtuťového sloupce</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini - Mental State Examination</td>
</tr>
<tr>
<td>n./ nn.</td>
<td>nervus/ nervi</td>
</tr>
<tr>
<td>PNF</td>
<td>proprioceptivní neuromuskulární facilitace</td>
</tr>
<tr>
<td>r./rr.</td>
<td>ramus/rami</td>
</tr>
<tr>
<td>RZP</td>
<td>rychlá zdravotnická pomoc</td>
</tr>
<tr>
<td>TEE</td>
<td>transezoageální echokardiograf</td>
</tr>
<tr>
<td>v./ vv.</td>
<td>vena/ venae</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
1 PŘEHLED TEORETICKÝCH POZNATKŮ

1.1 OBECNÁ ČÁST

Tato část bakalářské práce se bude zabývat cévní mozkovou příhodou (CMP) jako takovou, anatomií CNS, incidencí CMP, etiologií, patologickou fyziologií, klinickým rozdělením a příznaky. V neposlední řadě bude zmíněna také diagnostika a terapie cévní mozkové příhody.

1.1.1 Definice onemocnění

Cévní mozková příhoda, iktus, apoplexie, mozková mrtvice, mozkový infarkt, anglicky stroke může být definována jako náhle vzniklá mozková porucha především ložiskového charakteru.

WHO (Světová zdravotnická organizace) uvádí, že se jedná o rychle progresující poruchu mozkové funkce s lokálními nebo globálními příznaky trvající déle než 24 hodin, v závažných případech končící smrtí bez jiné další zjevné příčiny.

Dle Seidla, Obenbergera (2004) se jedná o: „Akutně vzniklé klinické fokální či globální příznaky poruchy funkce mozků trvající déle než 24 hodin (event. do smrtí) bez jiného zřejmé vaskulární příčiny.“

Cévní mozková příhoda může vznikat jako následek nedostatečného prokrvení (hypoperfúze) mozkového parenchymu, v toto případě se jedná o ischemickou formu. Na druhou stranu může dojít ke krvácení do mozkové tkáně, tedy k hemoragické CMP.

V dnešní době patří CMP mezi jednu z nejčastějších příčin úmrtí jak v rozvinutých zemích, a to i naproti stále se zlepšující zdravotní a medicínské péči, tak i zemích třetího světa (Ambler, 2011).
1.1.2 Anatomie CNS

Nervová soustava ve spolupráci s imunitním a endokrinním systémem zabezpečuje chod informací vnitř lidského těla, mezi vnitřním a vnějším prostředím a homeostázu.

Základní funkcí nervové soustavy je přijem, analýza a integrace informací získaných ze zevního i vnitřního prostředí a vytvoření odpovědí na tyto změny.

Nervový systém dělíme na centrální nervovou soustavu a periferní nervový systém. CNS se skládá z mozku a míchy (Druga - Grim - Dubový, 2011).

1.1.2.1 Stavba mozku

Lidský mozek je členěn na dvě hemisféry, z nichž každá je rozdělena na čtyři laloky - frontální, parietální, temporální a okcipitální. V hlubce nalézáme bazální ganglia, diencefalon, mozkový kmen (skládající se z mezencefala, pontu a prodloužené míchy) a mozeček. V klinice je mozek dělen na část supra - a infratentoriální. Supratentoriální díl je tvořen hemisférami a diencefalem, zatímco infratentoriální mozkovým kmenem a mozečkem.

Mozek je uložen v kostném obalu, lebce, která jej chrání před mechanickým poškozením. V craniu je obalen třemi vrstvami - tvrdou plenou, pavučnicí a měkkou plenou mozkovou.

Tvrďá plena mozková (dura mater) je první nejz vnější obal, který přirůstá ke kostné lebce v místě švů, bázi lební a k okrajům foramen magnum. Dura mater neúplně rozděluje interkraniaální prostor pomocí čtyř sept - falx cerebri (zasahuje mezi obě hemisféry), tentorium cerebelli (mezi týlním lalokem a mozečkem), falx cerebelli (rozděluje hemisféry mozečku) a diaphragma sellae (tvořící strop fossa hypophysalis).

Druhou vrstvu tvoří arachnoidea, pavučnice, tenká bezčévnatá blanka, zevně těsně naléhající na dura mater. Vytváří volný obal mozku a nevniká do jeho brázd.

1.1.2.2 Cévní zásobení mozku

Krevní zásobení CNS je důležitým aspektem pro optimální činnost nejen mozku ale i míchy. Cirkulace plní hlavní úlohu v zásobování mozku kyslíkem, glukózou a dalšími látkami, které jsou nepostradatelné pro správný metabolismus neuronů, glií, zachovávání a obnovu buněčných membrán, homeostázu a syntézu mediátorů nervového přenosu.

Lidskému mozku je dodáváno přibližně 20 % objemu arteriálního krve a je jím spotřebováno na 20 % celkového objemu kyslíku organismu (Ambler, 2011).

Mozkové tepny

Arteriální zásobení je zajišťováno dvěma páry arterií a to a. vertebralis dextra et sinistra a a. carotis interna dextra et sinistra, které svými větvemi vytváří karotický a vertebrobasilární systém, přičemž karotické tepny přivádí 700 ml krve/min a aa. vertebrales okolo 300 ml krve/min.

Oba systémy se v oblasti báze lební spojují a vytváří circulus arteriosus Willisi, jehož úkolem je vyrovnávat tlakové průtokové rozdíly v obou řečištích.

- **Arteria vertebralis** - je větví a. subclavia, vede kraniálně, prostupuje foramen processus transversi obratle C6, odtud dále přes tyto prostory všech cervikálních obratlů. Mezi atlasem a axisem vytváří vertikální oblouk a další horizontální mezi os occipitale a atlasem, který se vkládá do sulcus arteriae vertebralis atlasu a mediálně po massa lateralis, prochází přes membrana atlantooccipitalis posterior a duru mater do foramen magnum a na clivus. Na clivu se a. vertebralis dextra a sinistra spojí v a. basilaris.

- **Arteria basilaris** - prochází mezi pontem a clivem a dělí se na pravou a levou a. cerebri posterior. Zásobuje mozkový kmen, mozeček a část mezimozku.

- **Arteria cerebri posterior** - zásobuje část diencefala, mediální plochu týlního laloku a dolní a zadní díl temporálního laloku.
• **Arteria carotis interna** - vzniká rozdělením pravé a levé a. carotis communis ve výší C3 - C4 na a. carotis externa a interna, přičemž pravá společná krkavice je větví truncus brachiocephalicus a levá odstupuje přímo z aorty. Vnitřní karotida vstupuje na bázi lební do canalis caroticus a prochází karotickým sinem. Pro mozek vysílá následující větvě, které se rozestupují těsně při bázi mozku:

- **a. cerebri anterior** - prochází dopředu mezi hemisféry a kolem corpus callosum dozadu, zásobuje orbitální plochu frontálního, gyrus frontalis superior, gyrus praecentralis et postcentralis, gyrus cinguli.
- **a. communicans anterior** - je krátkou příčnou spojkou pravé a levé a. cerebri anterior.
- **a. cerebri media** - vede do postranní mozkové jámy a větví se k laterální ploše hemisféry, zásobuje zbývající část čelního, temenního a větší část temporálního laloku.
- **a. communicans posterior** - odstupuje přímo z kmene a. carotis interna nebo ze začátku a. cerebri media, následně dochází ke spojení s a. cerebri posterior.

Willisův okruh tedy konkrétně tvoří:

- aa. cerebri posteriores
- aa. communicantes posteriores
- a. cerebri media
- a. cerebri anterior
- a. communicans anterior

Z Willisova okruhu odstupují ještě drobné větvěky pro okrsek mozkového kmene, thalamus a bazální ganglia (viz Obrázek 1). (Čihák, 2004; Ambler, 2011).
Mozkové žíly

Mozkové žíly dělíme do systému povrchových a hlubokých žil.

a) **Povrchové mozkové žíly** - jsou viditelné na povrchu mozkových hemisfér a tvoří pleteně, ze kterých se sbírají žíly ústící do sinus durae matris a dále do vena jugularis interna.

Obrázek 1. Willisův okruh (http://www.wikiskripta.eu/index.php/Willis%C5%AFv_okruh)
• **Venae cerebri superiores** - odvádějí krev ze zevní horní stěny mozkové polokoule (vv. frontales, vv. parietales, vv. occipitales), krev z nich vtéká do sinus sagitales superior.

• **Venae cerebri inferiores** - svádějí krev z dolní části konventy a ze spodní strany hemisféry (vv. temporales), ústí do sinus petrosus superior et inferior a sinus transversus.

• **Vena cerebri media superficialis** - sbírá krev z vnější plochy polokoule a sbíhá se do sinus cavernosus a sinus sphenoparietalis.

• **Vena cerebri media profunda** - odvádí krev z operkul a insuly a krev z nich vtéká do v. basilaris.

b) **Hluboké mozkové žíly** - leží na horní ploše thalamu pod corpus callosum.

• **Venae cerebri internae** - nacházíme je na stropu III. komory mozkové a vznikají soutokem tří žil - v. septi pellucidi, v. choroidea, v. thalamostriata. Obě vv. cerebri internae se posléze spojují v nepárovou žílu, v. magna cerebri (Galení) a ústí do sinus rectus.

• **Sinus durae matris** - jedná se o široké žilní splavy nacházející se v řasách tvrdé pleny. Stěna sinů je tvořena durou mater a jejich lumen vystýlá vrstva endotelu. Siny můžeme rozdělit na párové a nepárové.

 - **Nepárové** jsou - sinus sagitales superior et inferior, sinus rectus, sinus occipitales, sinus petrosus superior et inferior.

 - **Párové** jsou - sinus transversus, sinus sigmoideus, sinus sphenoparietalis, sinus cavernosus, sinus intercavernosi (Druga - Grim - Dubový, 2011; Čihák, 2004).

1.1.2.3 Řízení krevního průtoku mozku

Správný chod mozkových funkcí je závislý na přívodu glukózy a kyslíku. Metabolická spotřeba kyslíku mozkem je 3,5 ml/100 g mozkové tkáně/min, což v souhrnu pro celý mozek činí 50 ml (15 - 20 % celkového objemu O_2 pro organismus). Potřebné množství glukózy představuje 5,5 mg/100 g mozkové tkáně/ min, přičemž pro celý mozek je dodávka 75 mg.
Trvalá dodávka glukózy a kyslíku je zajišťována stálým mozkovým průtokem (40 - 60 ml/100 g mozkové tkáně/min). Metabolismus mozku je převážně anaerobně glykolytický a jeho podíl roste čím větší je množství kyslíku.

Řízení průtoku a regulace mozkové cirkulace má mimořádnou důležitost ve fungování jak mozkové tkáně, tak člověka jako celku. Je řízen autoregulačními mechanismy, které zajišťují nároky tkáně na kyslík, například cévní stěny na úrovní arteriol, chemicky - metabolickými vlivy a jinými faktory (viskozita krve, hladina prostaglandinů, intrakraniální tlak).

Autoregulační mechanismy jsou fyziologickou adaptací mozkové tkáně k udržení stálého průtoku krve, kterou jsou nezávislé na změně perfuzního tlaku a jsou zajišťovány díky vazoaktivnímu tonu kapilár. Dojde-li k poklesu lokálního perfuzního tlaku a zároveň ke snížení tlaku systolického, objeví se v dané oblasti mozku vazodilatace. V opačném případě je přítomna vazokonstrikce.

Na úrovni arteriol se uplatňuje regulace na neurogenní a metabolické úrovni. Neurogenní regulaci zajišťuje sympatikus (vazokonstrikcí dojde k hypertenzi) a parasympatikus (vázodilatací dochází k hypotenzi). Metabolická regulace ve smyslu hyperkapnie, která způsobuje vazodilataci, a hypokapnie vazokonstrikci.

Do **chemo - metabolické regulace** průtoku krve mozkem jsou zařazeny vlivy acidobazické rovnováhy zejména na kapilární úrovni (pH, CO₂, O₂). Při acidóze cévní stěny a intersticia dojde k poklesu periferní rezistence a vazodilataci, což umožňuje zvýšení perfuze (Ambler, 2011).

1.1.2.4 Patofyziologie průtoku krve mozkem

Šedá hmota mozková je několikanásobně více prokrvená, než bílá a prokrvení se mění dle funkčních nároků různých oblastí mozku. V případě hypoxie je obě krve mozkem normální, jen přísun kyslíku je omezen, např. snížením obsahu O₂ v krvi, anémii, intoxikací, hypoventilací. Při ischemii jde o difúzní či fokální poruchu cirkulace.
Pokud by lokální průtok poklesl o polovinu oproti normálu (viz výše), k žádné klinické poruše nedochází (stav nouzové nebo kritické perfúze). Avšak při snížení na hodnoty okolo 20 ml/100 g mozkové tkáně/min dochází k reverzibilní dysfunkci (stav pravé ischemie), kdy jsou porušeny synaptické funkce neuronů, ale struktura nervové tkáně není poškozena a neurony přežívají. Průtok, který se pohybuje okolo 10 ml/100 g mozkové tkáně/min, vede již k ireverzibilním změnám ve strukturách neuronů a jejich zániku (jádro ischemie). V ischemickém jádru nalézáme velké tkáňové změny, poruchy autoregulace, vazoparalýzu, lokální acidózu, vstup iontů vápníku do buňky a tvorbu volných kyslíkových radikálů. Postupně se rozvíjí ischemická nekroza, kolikvace a nakonec postmalatická pseudocysta (Ambler, 2011; Seidl - Obenberger 2004).

1.1.3 Dělení cévních mozkových příhod

Cévní mozkové příhody jsou děleny dle příčiny jejich vzniku na ischemické, kde dochází k poruše cerebrální cirkulace v určitém úseku mozkové tkáně anebo difúzně (80 % případů), a na hemoragické, u kterých je přítomno krvácení (20 % případů), z toho připadá 17 % na intracerebrální a 3 % na subarachnoideální hemoragie (Seidl - Obenberger, 2004).

1.1.3.1 Ischemické cévní mozkové příhody

K ischemickým CMP dochází při uzávěru mozkové tepny, díky němuž se totálně či parciálně přeruší přívod krve do postižené oblasti nervové tkáně.

Ischemické mozkové příhody se mohou dělit podle různých kritérií:

a) **Dle mechanismu vzniku** (obstrukční - uzávěr tepny trombem, embolem; neobstrukční - nedostatečné prokrvení ze systémových či regionálních příčin)

Obstrukční:

- **Ateroskleróza velkých tepen** - je přítomno zúžení (více než 50 %) nebo uzávěr symptomatické cerebrální artérie. Nejčastěji se vyskytují v oblasti odstupu a. carotis interna nebo a. vertebralis. Dále bývají postiženy intrakraniální tepny jako je a. cerebri media, distální část a. vertebralis, či proximální úsek a. basilaris.
• **Kardoembolie** - v důsledku fibrilace síní (krev stagnuje a pomalu odchází ze síně, tvoří se trombus, který se uvolňuje a způsobuje blokádu mozkové tepny), chlopní vady, transplantace chlopní, infarktu myokardu, apod.…

• **Lakunární** - z Willisova okruhu odstupují drobné větvěky (perforátory) zásobující hlouběji uložené struktury mozku (bazální ganglia, thalamus, capsula interna), dále odstupují z a. basilaris a zásobují mozkový kmen. Bývají postiženy aterosklerotickým procesem v důsledku hypertenze, diabetu, hypercholesterolémie, kouření, obezity a alkoholismu.

Neobstrukční:
- parciální natrizení stěny tepny
- trauma
- vaskulitidy
- hyperkoagulace
- respirační selhání
- plicní embolizace
- asfyxie
- intoxikace CO
- srdeční selhání

b) Dle časového průběhu (TIA, PRIND, progredující CMP)

• **TIA (Transitorní Ischemická Ataka)** - jedná se o náhle vzniklý neurologický deficit, jehož příznaky se zcela upraví do 24 h od vzniku. Typický průběh TIA je několik minut, maximálně několik desítek minut. Základním znakem je přechodná porucha perfúze, která vede k funkčnímu deficitu ale ne k odumrtí tkáně a následné úplné restituci neurologických funkcí. Příčinou bývá nejčastěji dočasný uzávěr intrakraniální tepny trombem, exulcerovaným aterotrombotickým plátem v přívodné krční artérii, postižení perforátorů, embolus ze srdce anebo v menším procentu případů jde o hemodynamický původ. TIA má řadu příznaků, které můžeme rozdělit na ložiskové a neložiskové.

Ložiskové příznaky se mohou vyskytovat samostatně nebo se různě kombinovat:
- ➢ **Motorický deficit** - může být různého stupně, častěji se jedná o hemiparézu, méně často o monoparézu. Řadí se sem i ataxie a dysfagie.
Řečový deficit - vyskytují se různé typy afázií (motorická, expresivní, globální), dysarthrie, akalkulie a dysfagie.

Deficit čítí - hemihypestzie, hemiparestezie

Zrakový deficit - typicky se objevuje tranzitorní retinální deficit v důsledku poruchy perfúze v povodí a. centralis retinae, při němž dochází k monokulární slepotě. Vzáceně se vyskytne oboustranná kortikální slepota. Při TIA ve vertebrobazilárním řečišti vídáme často diplopie nebo zamlžené vidění.

Vestibulární deficit - závratě, nauzea, zvracení

Kognitivní deficit - neglect syndrom (opomíjení části prostoru či těla), apraxie

Neložiskové příznaky jsou méně časté a hůře diagnosticky diferencovatelné:

Celková slabost

Alterace vědomí, zmatenost

- **PRIND (Protahovaný Reverzibilní Ischemický Neurologický Deficit)** - pokud neurologický deficit trvá déle než 24 h a kompletně se upraví do 3 týdnů, hovoříme o PRIND. Častou příčinou jsou celkové hemodynamické vlivy nebo drobné emboly.

- **Progredující cévní mozková příhoda („stroke in evolution“)** - tento typ iktu má velice nestabilní a rychle se měnitící symptomatiku a může se projevit lehkým či těžkým nálezem, lehkou hemiparézou, hemiplegií s afázií. Postupem času (hodiny, dny) se rozvíjí příznaky, které mohou být způsobeny trombem nebo opakovanými embolizacemi.

c) **Dle vztahu k tepennému povodí** (teritoriální - v oblasti určité tepny, intrateritotiální - na pomezí povodí jednotlivých tepen, lakunární -postižení drobných perforujících artérií)

- **Teritoriální infarkty** - pro přehled je můžeme rozdělit na malácie v karotickém a vertebrobazilárním povodí.

Malácie v karotickém povodí

- **A. carotis interna (ACI)** - při náhlém uzávěru dochází k úmrtí postiženého, pokud pacient přežije, bývá těžce invalidní. Naopak v případě, že uzávěr vzniká
postupně, může být buď zcela asymptomatický anebo se objeví ložiskové příznaky, které jsou na kontralaterální straně těla (poruchy hybnosti, čití, hemianopsie). Při poškození nedominantní pravé hemisféry se objevuje dezorientace v prostoru, apraxie, neglect syndrom (opomíjení levé části prostoru i těla), postižení dominantní levé polokoule se pojí s afázií.

- **A. ophtalmica** - je větev ACI a zásobuje sítínci. Před úplným uzávěrem způsobí embolizace přechodnou ztrátu zraku - amaurosis fugax a následně trvalý výpadek cirkulace vede ke ztrácení zraku postiženého oka. Paréza se nachází kontralaterálně k očním projevům a ložisku.

- **A. cerebri anterior (ACA)** - hlavním příznakem je kontralaterální hemiparéza a hemihypestezie více vyjádřená na dolní končetině. Oboustranný defekt způsobuje paraparézu dolních končetin a psychické příznaky, a to z toho důvodu, že došlo k postižení frontálního mozkového laloků.

- **A. cerebri media (ACM)** - uzávěrem ACM se projeví kontralaterální hemiparéza, hemiplegie, hemihypestezie až hemianestezie, úklon hlavy a deviaci očí na stranu postižení, kontralaterální hemianopsie a dysartrie. Při poškození dominantní hemisféry pozorujeme expresivní, percepční anebo globální afázií, u postižení nedominantní polokoule se vyskytuje neglect syndrom.

- **Lakunární infarkty** - jedná se o teritoriální infarkty v oblasti rr. perforantes vznikající v důsledku jejich zúžení a uzávěru. Dochází u nich k rozvoji solitárních či vícečetných malých infarktů. V místě zúžení pak zůstává patrná malá dutinka, lakuna. Tyto infarkty se objevují nejčastěji v oblastech bazálních ganglií, Varolova mostu a bílé hmoty mozkových hemisfér. Solitární infarkt se projeví přechodnou hemihypestézií, hemiparézou, dysarthrii a ataxií. Postupně se tyto potíže opakují a rozvíjí se tzv. **status lacunaris**. Mezi jeho příznaky zařazujeme: smíšené pyramidové symptomy, extrapyramidové symptomy, parkinsonský syndrom, pseudobulbální syndrom, psychickou deterioraci s frontálním syndromem, frontální typ chůze, organický psychosyndrom až demenci = lakunární demence.
Malácie ve vertebrobazilárním povodí

- A. cerebri posterior (ACP) - projevuje se kontralaterální homonymní hemianopsií, u oboustranného defektu dochází až ke korové slepotě, hemihypestezií, hemiparézou a afázií (při postižení dominantní hemisféry). Při poškození větví ACP v sousedních korových polích je přítomna zraková agnozie, agnozie barev, thalamický syndrom a alexie.
- A. basilaris - při totálním uzávěru se projevuje manifestujícím a měnícím se obrazem kmenového syndromu společně s poruchou vědomí a kvadruplegií. U parciálního uzávěru se jeví jen alternujícím kmenovým syndromem.
- A. vertebralis - v určitých případech je uzávěr úplně asymptomatický (zajištěný kolaterální oběh z druhostranné vertebrální artérie), v opačném případě je klinický obraz shodný s a. basilaris (Ambler 2011; Bareš - Tyrlíková, 2012; Kalina a kol., 2008).

1.1.3.2 Hemoragické cévní mozkové příhody

Krvácení je způsobeno porušením stěny mozkové cévy. Může být parenchymové, subarachnoidální či intraventrikulární. Dělí se na typické, které destruují nervovou tkáň a atypické, které spíše roztláčejí či komprimují mozkový parenchym.

Hlavní příčinou jsou ze 40 - 50 % hypertenze, z 30 % aneurysmata, dále arteriovenózní malformace, krevní onemocnění, antikoagulační léčba, vaskulitidy a drogový abusus. Mezi další příčiny můžeme řadit traumata, krvácení do tumoru či metastázy, tepenné disekce, trombolytickou a antiagregační terapii, leukémii, trombocytopenii, alkohol a další.

Nejčastější lokalizací mozkového krvácení jsou bazální ganglia - putamen, capsula interna (35 - 50 %), nucleus caudatus (5 %); centrum semiovale - lobární krvácení (20 %); mozkový kmen - hlavně Varolův most (10 - 15 %), mozeček (10 - 20 %) a thalamus (10 - 20 %) (Kalina a kol., 2008; Seidl - Obenberger, 2004).
1.1.4 Obecné klinické příznaky CMP

Každá mozková hemisféra ovládá a kontroluje činnosti kontralaterální strany těla. Z toho plyne, že při poškození mozkové tkáně vlevo bude deficit patrný vpravo a opačně.

Po prodělané CMP mohou být patrné následující příznaky - poruchy motoriky jednostranných končetin ve smyslu hemiparézi či hemiplegie, poruchy senze tamtéž (hemihypestézie či anestézie), dysartrie, poruchy polykání, poruchy kognitivních, senzorických a symbolických funkcí, poruchy zorného pole, okulomotoriky a taxe (Šeclová, 2004)

1.1.5 Klinické obrazy vznikající při zasažení příslušných oblastí

- **Putaminální krvácení** - kontralaterální hemiparéza nebo hemiplegie, hemplegie s hemihypestézií s hlavou a bulby přivrácenými na postiženou stranu. Symptomatika je stejná jako při infarktu v oblasti ACM. U tříštivých krvácení lze pozorovat rychlou progresi ložiskového nálezu s poruchami vědomí.
- **Lobární krvácení** - obraz poškození odpovídá postiženému mozkovému laloku.
- **Pontinní krvácení** - u netříštivého typu krvácení se objevuje alternující kmenový syndrom, při tříštivém je patrná porucha vědomí, kvadruplegie s decerebračními projevy, většinou však končí smrtí.
- **Cerebelární krvácení** - je patrná náhlá bolest v týle, závratě, zvracení, méně závažné poruchy vědomí, neschopnost stoje a chůze (trupová ataxie), někdy homolaterální cerebelární symptomatologie, při kmenovém útlaku jsou bulby stočeny směrem od ložiska.
- **Thalamické krvácení** - je charakteristické trojicí příznaků - hemihypestézie, hemiataxie a hemiparéza s klinicky dominantním senzitivním hemi deficitem. Dále se často objevuje obrna vertikálního zrakového pole směrem vzhůru a samovolnou deviací bulbů kaudálním směrem (Ambler, 2011).
1.1.6 Průběh onemocnění

Průběh cévní mozkové příhody může být u každého pacienta individuální. Rozlišujeme 2 fáze onemocnění, do kterých se pacient postupně přechází.

a) **Období mozkového šoku** - toto období bývá různě dlouhé (několik dní až týdnů). U postiženého je patrný svalový hypotonus, na paretické straně je pohyb nemožný či velmi obtížný.

b) **Fáze zotavování** - jedná se o období 2. - 6. týdne po CMP. Fáze zotavování postupuje pozvolna ve 3 stádiích, která mohou být u každého jedince individuálně dlouhá. Nebývá náhodou, že každé místo na postižené straně může být v odlišném stádiu.

- **1. stádium = stádium ochablosti** - motorický deficit bývá doprovázen ztrátou senze. Paže je v hypotonu, pacient ji nedokáže udržet v prostoru.
- **2. stádium = stádium zotavování** - dochází k pozvolné restituci motorických funkcí končetin, od distálních částí (např. ruka, paže, posléze až rameno). Dříve se hybnost obnovuje na horní končetině.
- **3. stádium = spastické stádium** - často dojde k obnově hybné funkce s vývojem směrem ke spasticitě. Obnova pohybů končetin začíná v proximálních částech (rameno, kyčel). Dříve se spasticita objeví na dolní končetině, ta se rozvíjí podle typického spastického vzorce, až dojde ke klasickému Wernick - Mannovu držení (rameno taženo dozadu a dolů, paže ve vnitřní rotaci, flexe v loketním kloubu s rukou sevřenou v pěst a dlaní směřující dolů, pánev tažena dolů, dolní končetina ve vnitřní rotaci, kyčel a koleno v extenzi, chodidlo ve vnitřní rotaci směřuje dolů, trup laterálně zkrácen). Nejprve se hypertonus vedoucí ke spasticitě projevuje u antigravitacních svalů (Šeclová, 2004).

1.1.7 Diagnostika cévní mozkové příhody

Správné a rychlé stanovení diagnózy („time is brain“ = čas je mozek) hraje důležitou úlohu při léčbě a prevenci možných následků iktu.

První věcí při diagnostice by mělo být odebrání anamnézy, kde je hlavní se zaměřit na rizikové faktory CMP, jako je hypertenze, diabetes mellitus, hypercholesterolemie, fibrilace
síní apod…. Další podstatnou skutečností je přesná doba vzniku onemocnění, zjištění doby objevení příznaků a v neposlední řadě klinický obraz.

K upřesnění a potvrzení diagnózy jsou využívány následující vyšetření - počítačová tomografie (CT), magnetická rezonance (MRI), neurosonografické vyšetření, digitální subtrakční angiografie, pozitronová emisní tomografie (PET), SPECT, evokované potenciály a další diagnostické metody.

a) **Počítačová tomografie (CT)** - je schopna přesně rozlišit, zda se jedná o ischemickou či hemoragickou variantu CMP. Při ischemickém iktu *nativní CT* v prvních hodinách neprokáže žádnou patologii, avšak přibližně za 12 hodin se mozková mrtvice projeví. Nativní CT může potvrdit arteriální či žilní okluzi. Pozitiva klasické CT metody spočívají převážně v rychlosti, dostupnosti a relativní levnosti. Dále lze využít CT *angiografie* (popř. venografie), která nám zobrazí přesnou lokalizaci příčiny onemocnění, a tím napomůže při správné léčbě. **Perfuzní CT (PCT)** je dalším druhem počítačové tomografie a je při ní využívána jedová kontrastní látku aplikovaná do žíly. Dokáže zobrazit jednu nebo více vrstev mozku během průchodu kontrastní látky. Za pomoci PCT je možno zjistit perfúzi mozkové tkáně v dané oblasti.

b) **Magnetická rezonance (MRI)** - patří mezi metody, které jsou schopny zachytit časné fáze CMP. MRI je kontraindikována u neklidných pacientů, u nemocných s rizikem aspirace a u osob se zavedeným kardiostimulátorem.

c) **Neurosonografické vyšetření** - toto vyšetření spolehlivě prokáže zúžení popř. okluzi mozkových arterií pomocí stanovení rychlosti, vydatnosti a směru krevního toku. Tato metoda je velmi rychlá, bezpečná a snadno opakovatelná, aniž by došlo k ohrožení pacienta. Vyšetřovány jsou zejména karotidy a aa. vertebrales v krční oblasti a artérie Willisova okruhu, vertebrální a basilární tepny transkraniaálně (v oblasti spánku, záhlaví, přes oční bulbus).

d) **Digitální subtrakční angiografie (DSA)** - jedná se o invazivní metodu vyšetřování, která je schopna detailně zobrazit cévní řečiště mozku na základě počítačového zpracování daného angiografického nálezu. Používá se k potvrzení přítomnosti anomálií cév, aneurysmat, okluzí, stenóz a spasmů.

e) **Pozitronová emisní tomografie (PET)** - do žíly je aplikován izotop, a díky jeho rychlému poločasu rozpadu obdržíme informace o úrovni metabolismu mozkové tkáně, spotřebě kyslíku, glukózy a perfúzi mozku v jednotlivých regionech.
f) **SPECT (Single Photon Emission Computed Tomography)** - je neinvazivní nukleární metodou, která po intravenózní aplikaci kontrastní látky detekuje průtok krve mozkovou tkání a jeho případné odchylky od normálu.

h) **Další metody** - EKG, laboratorní vyšetření - biochemie, echokardiograf (zachycuje možné patologie, které mohou být zdrojem embolizace (Bareš - Tyrlíková, 2012; Ambler, 2011; Kalina a kol., 2008).

1.1.8 Léčba cévní mozkové příhody

Léčba iktu by měla být komplexní, zasahující několik směrů, z nichž každý jeden z nich má svůj velký význam. Výsledek terapie je pak založen na rychlosti jejího začátku a velikosti ložiska poškozené tkáně.

1.1.8.1 Léčba ischemické CMP

V případě ischemické CMP je efekt léčby závislý, jak bylo z části již zmíněno, na rozsahu ložiska zasažené tkáně a na možnostech kolaterální cirkulace. Velmi důležité je začít s terapií co nejdříve, kdy je ještě v mozkové tkání zachován metabolismus a nejsou zatím přítomny žádné strukturní změny.

Základem terapie akutní ischemické mozkové příhody je **neuroprotekce** (snažíme se o co nejoptimálnější nárůst odolnosti nervových buněk na ischemii a o zvýšení stability buněčných membrán), **krátké trvání cévní okluze** nebo **redukce perfúze** (je důležité pro zabránění vzniku tkáňové nekrózy), **dostatečné zásobení okolí ischemického ložiska** z kolaterál (je nezbytné k tomu, aby se zóna infarktu nerozšířovala dále než ze svého centra).

Léčba ischemického iktu je komplexní a zahrnuje jednak celkovou léčbu, antiagregační, antikoagulační, trombolytickou, antiedematózní, operační a rehabilitační terapii.
a) **Celková léčba** - u ní jsou zajišťovány základní životní funkce (respirace, krevní oběh, srdeční činnost), dále musí být pacient dostatečně hydratován, ventilován a oxygenován, je mu snímano EKG, monitorována iontová bilance a v neposlední řadě je zajišťována dostatečná nutrice pomocí nazogastrické sondy, pokud pacient není schopen přijímat stravu perorálně. Důležitým prvkem je udržení optimálního krevního tlaku k zachování dostatečné perfúze mozků, tzn., že v akutní fázi nesmíme podávat hypotenziva. To však neplatí v případě, kdy tlak krve stoupne na 220/120 - 130 mmHg. Pokud je pacient neklidný, volíme sedací vhodnými preparáty.

b) **Antiagregační léčba** - zabraňuje vzniku a následné embolizaci trombu na aterosklerotickém pláte, ovlivňuje agregaci trombocytů. Je nutné ji zahájit ihned po vzniku CMP. Hlavním prostředkem je Aspirin (kyselina acetylsalicylová) v dávce 100 - 400 mg/den.

c) **Antikoagulační léčba** - spočívá v podání nízkých dávek heparinu (5000 j, 2x denně) nebo nízkomolekulárního heparinu (fraxiparin 0,3 ml s. c./denně) jako prevenci žilní trombózy dolních končetin a trombembolické choroby.

d) **Trombolytická léčba** - cílem této terapie je rozpuštění trombotické zátky trombolytickými aktivními substancemi a následná obnova průtoku krve mozkovou tkání. Podmínkou pro úspěch je zahájení terapie do 3 h po vzniku iktu. Užívaným medikamentem je Actylise obsahující rekombinantní tkáňový aktivátor plazminogenu (rtPA) podávaný intravenózně či přímo do postižené arterie. Tato léčba je však nebezpečná rizikem vzniku krvácení.

e) **Antiedematózní léčba** - v důsledku toho, že otok mozků je vážnou komplikací CMP, je důležité zajistit protiedémovou terapii. Ta zahrnuje jednak polohování hlavy v mírně zvýšené pozici, oxygenaci, normalizaci tělesné teploty, odstranění bolestivých podnětů a v neposlední řadě podávání medikamentózní terapie v podobě hypertonického roztoku NaCl či Mannitolu.

f) **Operační léčba** - je dostupná pro pacienty s lehkým nálezem. Spočívá v endarterektomii u částečných trombóz se stenózou karotidy. Při úplném uzávěru se operační řešení musí provést do prvních několika hodin po vzniku CMP. Dalším možným operativním řešením sténóz je PTA (perkutální transluminální angioplastika) s event. využitím stentu. V případě vysokého intrakraniálního tlaku je indikována dekompresní kraniektomie.
g) **Rehabilitační léčba** - je nedílnou součástí a začíná se s ní ihned po odeznění alterace celkového stavu (Ambler, 2011; Pfieffer, 2007).

1.1.8.2 Léčba hemoragické CMP

1.1.9 Prevence cévní mozkové příhody

1.1.9.1 Primární prevence

V předcházení vzniku CMP se uplatňuje léčba a kompenzace hypertenze, diabetu mellitu, hypercholesterolémie, hyperlipidémie. Dále úplné nekuřáctví, úprava životního stylu, redukce nadváhy, omezení nadměrné konzumace alkoholu, dostatečný pohyb (např. 30 minut svižné chůze denně). Je prospěšné zvýšit příjem ovoce a zeleniny, omezit nadměrné solení a konzumaci tučných jídel. Primární prevence též zahrnuje antikoagulační léčbu u pacientů s kardioembolickou etiologií při věku nad 75 let (warfarin, hodnota INR 2,0 - 3,0), antiagregační léčbu u pacientů s fibrilacemi síní či stenózou vnitřní karotidy nad 50 %, zúžení z 60 - 99 % je indikací k endarterektomii.

1.1.9.2 Sekundární prevence

Zabraňuje opakovanému výskytu u osob, které již mozkovou mrtvici prodělali. Řadíme do ní dlouhodobou antiagregační terapii např. pomocí kyseliny acetylsalicylové ráno (aspirin) nalačeno, při její nesnášenlivosti, kontraindikaci či selhání léčby aspirinem samotným nebo v kombinaci s dipyridamolem se podává clopidogrel. Trvalá antikoagulační léčba warfarinem a terapie hypolipidemiky (nejčastěji statiny – levostatin, prevstatin), která působí i na výstelku cév a stabilitu aterosklerotického plátu, je rovněž zařazena do sekundární prevence. Nutné je

1. 1. 10 Rizikové faktory vzniku CMP

Existuje řada vnitřních i vnějších rizikových faktorů, které dělíme na ovlivnitelné a neovlivnitelné.

Ovlivnitelné rizikové faktory:

- **hypertenze** - faktor způsobující ruptury mozkových cév a tím vznik hemoragických CMP, dobře kompenzovatelná medikací
- **fibrilace komor** - riziko trombembolie (stagnace krve ve změněné levé komoře), vznik ischemické CMP
- **hyperlipidémie** - riziková je hladina cholesterolu vyšší než 5,2, LDL 3,4 a HDL nižší než 0,9 mmol/l, důležitý je aterosklerotický index (cholesterol/HDL) nižší než 4
- **diabetes** - nekompenzovaná hyperglykemie způsobuje endoteliální dysfunkci, hypertrofii hladkého svalstva cévní stěny, poruchy kolagulace
- **ateroskleróza** - riziko uvolnění aterosklerotického plátu a následná neprůchodnost mozkové cévy
- **kouření** - způsobuje dysfunkce endotelu, změny koagulace, pokles HDL a vzestup LDL
- **alkoholismus, narkomanie** - riziko ruptury vyskytujících se aneurysmat
- **obezita** - BMI vyšší než 25
- **inaktivita**
- **stres** - zejména psychosomatický
- **hormonální antikoncepce** - riziko vzniku poruch koagulace

Neovlivnitelné rizikové faktory:

- **věk** - s věkem riziko vzniku CMP stoupá
- **pohlaví**
• **dědičnost** - přítomnost rizikových faktorů (hypertenze, diabetes, hyperlipidémie)
• **rasa** - afroameričané jsou mnohem susceptibilní k iktu
• **předchozí iktus** (http://www.stroke.org/site/PageServer?pagename=FMD).

1. 1. 11 Incidence a etiologie

1.1.11.1 Situace ve světě

Po kardiálních onemocněních a malignitách zaujímá iktus bronzovou příčku v příčině úmrtí ve světě. V akutním stádiu umírá okolo 10 - 15 %, do půl roku po prodělání zemře až 30 % pacientů.

Světová incidence onemocnění je odhadována přes 5 milionů případů za rok, (což tvoří 10 % všech úmrtí), z toho více než 500 000 v Evropě.

Jak bylo zmíněno, CMP představuje 3. místo v úmrtnosti, ale je také rovněž jednou z příčin invalidizace různého stupně, což představuje velkou sociální i ekonomickou zátěž pro daný stát. Proto vyžaduje neodkladnou diagnostiku a včasnou terapii (Bareš - Tyrliková, 2012).

1.1.11.2 Situace v České republice

Výskyt nových případů se udává okolo 250 - 300/100 000 obyvatel za rok, což ve srovnání s ostatními vyspělými zeměmi je považováno za velmi vysoký počet, který roste s věkem a po 55. roce se zdvojnásobuje. V ČR dochází k mozkové mrtvici u 75 % osob ve věku nad 65 let. Ženy se dožívají všeobecně vyššího věku než muži a méně jich též umírá na ischemickou chorobu srdeční (ICHS), z toho důvodu se u nich častěji vyskytuje CMP než u mužské populace. Je také nutno zmínit, že 1/4 všech CMP recidivuje, a to nejčastěji v prvních týdnech po prodělaném iktu. Odhaduje se, že v ČR již prodělalo CMP na 190 000 osob.

1.2 SPECIÁLNÍ ČÁST

Tato část bakalářské práce bude zahrnovat komplexní léčebnou rehabilitaci a její složky. Bude rozveden význam léčebné tělesné výchovy u iktu, dále využití fyzikální terapie, ergoterapie, protetických pomůcek, logopedické péče atd.

1.2.1 Komplexní rehabilitace

Rehabilitace (RHB) - z latinského *habilis* - způsobilý, vhodný; *re* - předpona ve smyslu návratu či opakování děje, je definována dle WHO (1981) takto: „RHB zahrnuje všechny prostředky, směřující ke zmírnění tíže omezujících a znevýhodňujících stavů a umožňuje zdravotně postiženým a handicapovaným osobám dosáhnout sociální integrace“ (Dvořák, 2003).

Po prodělané CMP je třeba mít na paměti veškeré její důsledky na život pacienta, jak fyzické, psychické, tak i sociální a pracovní. V tomto ohledu využíváme veškeré složky ucelené rehabilitace (léčebnou, sociální, pracovní, pedagogickou, psychologickou) k navrácení člověka do plnohodnotného života.

1.1.2.1 Léčebná rehabilitace

Dle Koláře (2009): „Je nedílnou součástí zdravotní péče a zahrnuje soubor rehabilitačních, diagnostických, terapeutických a organizačních opatření směřující k maximální funkční zdatnosti jedince a vytvoření podmínek pro její dosažení.“

Léčebná rehabilitace je prováděna v rámci ambulantní, nemocniční, lůžkové péče a péče v odborných léčebných ústavech a lázních a zahrnuje fyzioterapii, fyziatrii (fyzikální terapie, balneologie, balneoterapie), ergoterapii a rehabilitační inženýrství (zaměřuje se na vybavení pacienta adekvátní podmínkou).

V dnešní době se zahajuje včasná léčebná rehabilitace již v průběhu akutní lůžkové péče, což přispívá k rychlejší restituci ztracených či oslabených funkcí a brzkému návratu do původního života.

V léčebné rehabilitaci je vytvořen pacientovi na míru krátkodobý a dlouhodobý rehabilitační plán, na němž spolupracuje tým zdravotních i nezdravotních pracovníků -
rehabilitační lékaři, fyzioterapeuti, zdravotní sestry, ergoterapeuti, psychologové, sociální pracovníci, logopedové, popř. speciální pedagogové

V krátkodobém rehabilitačním plánu v trvání maximálně 3 - 6 měsíců je stanoveno použití konkrétních léčebně - rehabilitačních postupů a jejich vzájemné propojení v určitém časovém úseku, který je závislý na zdravotním stavu pacienta, průběhu a rozvoji onemocnění.

Dlouhodobý rehabilitační plán určuje využití dalších medicínských prostředků a postupů k dosažení cílů léčby a možného přechodu k dalším složkám komplexní rehabilitace. V rámci léčby iktu se na sestavení podílí ošetřující lékař, fyzioterapeut, ergoterapeut, popř. logoped a v určitých případech i psycholog, sociální pracovník či protetik (Kolář 2009).

1.2.1.1.2 Testování

Při sestavování krátkodobého i dlouhodobého rehabilitačního plánu musíme vycházet z aktuálního stavu pacienta. Tento stav nám pomáhá ozřejmit testy zaměřené na různé oblasti např. pohybové schopnosti, spasticitu, koordinaci, výkonnost, spolupráci pacienta a typ jeho osobnosti. Díky těmto zjištěním může být navržena nejvýhodnější terapie.

Testování je nutno provést jak před zahájením léčby tak po ní, čímž je umožněno zhodnocení efektivity terapie.

Hlavním cílem testování je popis postižení, hodnocení klinických změn a predikce.

a) popis postižení - měl by být přehledný, srozumitelný. Zaznamenává míru funkční zdatnosti, nutné pomoci a soběstačnosti.

b) hodnocení klinických změn - má zásadní význam pro vyhodnocení efektivity léčby. Zlepšuje kvalitu práce s pacientem, srovnává kvalitu postupů.

c) predikce - umožňuje identifikaci nemocných s vysokým rizikem (s malou možností zátiže) a nemocných vhodných pro speciální způsob léčby (Kalita, 2007).

Testování deficitu

Testy pro hodnocení motoriky

Základním vstupním vyšetřením pacienta je klasický kineziologický rozbor.

K určení skutečných motorických dovedností je vhodný test Chedock - McMaster stroke assessment, který vypracovalo pracoviště Chedock McMaster Rehabilitation Centre, Hamilton, Kanada. Každé postižení má 7 - bodové skóre s popisem funkce, zjišťujeme tedy: citlivost (povrchová i hluboká), stav vědomí, postižení paže a bolesti ramene, postižení ruky, dolní končetiny, nohy, celkovou hybnost, chůzi a kontrolu rovnováhy.

Testy aktivity (disability), testy funkční soběstačnosti

Při těchto testech zjišťujeme míru omezení při běžných denních činnostech v životě postiženého jedince. Hodnotíme mobilitu, nasycení, oblékání, koupání, osobní hygienu, péči o zevnější, močovou kontinenci a kontinenci stolice.

Základní využívané testy:

a) Barthelové test - jedná se o test základní soběstačnosti. Je spolehlivý, validní a jednoduchý pro použití v klinické praxi. Hodnotí schopnost sebenasycení, napití, oblékání, osobní hygienu, koupání, kontinenci stolice a moči, použití WC, přesun z lůžka na židli, chůzi po rovině a schodech. Využívá se tříbodové stupnice.

b) Test funkční soběstačnosti (FIM = Functional Independence Measure) - vychází z testu Barthelové. Společně hodnotí kognitivní funkce, schopnost lokomoce a aktivity denního života. Využívá sedmibodovou škálu, která tento test činí mnohem citlivější.

c) PULSES - název obsahuje zkratky hodnocených funkcí: Physical condition (fyzická kondice), Upper limb functions (funkce horní končetiny), Lower limb functions (funkce dolní končetiny), Sensory components (senzorika), Excretory function (vylučovací funkce), Support factors (sociální podpůrné faktory).

Dotazníky kvality života

Z hodnocení kvality života by mělo proběhnout na počátku léčby jako ukazatel změn kvality života v čase.
Testy kvality života

a) CHART (Craig Handicap Assessment Reporting Technique) - probíhá v podobě rozhovoru s pacientem, u něhož se užívá protokol pro hodnocení handicapu dle WHO.

b) Short Form - 36 (SF - 36) - pacient sám dle svého aktuálního zdravotního stavu a fyzického omezení hodnotí orientaci, mobilitu, fyzickou závislost, zaměstnání, sociální zařazení a ekonomickou soběstačnost.

c) SIP (Sickness Impact Profile) = Profil vlivu nemoci - v navzájem oddělených kategoriích jsou pacienti hodnoceni z hlediska životní nezávislosti, fyzických schopností a okruhů psychosociální integrace.

d) Rankin Scale - celkový stručný test handicapu po CMP (Kalita, 2007).

1.1.2.2 Sociální rehabilitace

Dle Koláře (2009): „Sociální rehabilitace je proces, ve kterém pacient s dlouhodobým či trvalým zdravotním postižením absolvuje nácvik potřebných dovedností směřujících k dosažení samostatnosti a soběstačnosti v maximální možné míře s ohledem na jeho zdravotní postižení, a to za účelem co nejvyšší úrovně jeho sociálního začlenění.“

Konkrétně u cévní mozkové příhody s fatickým postižením využíváme nácviku řeči či využití různých kompenzačních pomůcek sloužící ke komunikaci s okolím. Dále nácvik úchopů, chůze, popř. přesunu na mechanický či elektrický vozík k zajištění mobility a tím i kontaktu s okolním prostředím a v neposlední řadě výcvik každodenních aktivit - ADL (activities of daily living) - osobní hygiena, oblékání, nasycení apod.… Neméně důležitou věcí je úprava bytu tak, aby sloužil změněné situaci a také aby bylo zamezeno možným úrazům.

1.1.2.3 Pracovní rehabilitace

Pracovní rehabilitace zajišťuje osobám se zdravotním postižením získání a udržení vhodného zaměstnání. Vychází z posouzení o zdravotním stavu, pracovní způsobilosti, dosaženého vzdělání, získaných dovedností a situaci na trhu práce. Toto vše mají v kompetenci úřady práce.
Důležitým aspektem ke stanovení pracovní rehabilitace je posouzení možností začlenění osob se zdravotním postižením (ZP). Pro uplatnění osoby se ZP je důležitá poradenská činnost (vybrat to správné povolání), teoretická i praktická příprava pro zaměstnání a vytváření vhodných podmínek pro výkon zaměstnání (Kolář, 2009).

1.1.2.4 Pedagogická rehabilitace

Bohužel již v dnešní době se můžeme setkat s dětmi, pubescenty a adolescenty, kteří díky vrozeným vadám cévního řešitě mozku nebo jiným vážným onemocněním či úrazům prodělali cévní mozkovou přírodu. Tyto jedinci mohou mít trvalé následky, které jim brání ve vzdělávání klasickým způsobem.

Pedagogická rehabilitace je prováděna pomocí podpůrných opatření, která jsou poskytována nad rámec organizačních a pedagogických možností v běžném vzdělávacím systému. Tato podpůrná opatření umožňují odstranit dané znevýhodnění ve vzdělávání.

Cílem pedagogické rehabilitace je dosažení co nejvyššího stupně vzdělání s přihlédnutím k individuálním potřebám a možnostem těchto jedinců. V rámci pedagogické rehabilitace jsou zřizovány speciální mateřské školky, základní, střední a vyšší odborné školy, díky nimž se mohou posléze začlenit do společnosti. Dnes je trendem začleňování těchto dětí do klasických tříd. (Kolář, 2009)

1.1.2.5 Psychologická rehabilitace

Psychologická rehabilitace se zaměřuje na zvládnutí psychických krizí, které se mohou vyskytnout při náhlé změně zdravotního stavu. Zahrnuje též podporu rozvoje sebopojití, sebehodnocení, tvorbu životní perspektivy jedince.

Psychorehabilitace obsahuje individuální nebo skupinovou psychoterapii, ale také psychoterapii v podobě muzikoterapie, arteterapie, ergoterapie, kinezioterapie a hippoterapie. (Kolář, 2009)
1.2.2 Léčebná tělesná výchova

Léčebná tělesná výchova (LTV) hraje důležitou roli nejen v léčbě CMP ale i u ostatních onemocnění.

1.2.2.1. Rozdělení LTV podle stádií CMP

Různá stádia CMP si žádají odlišně vedenou LTV. V každém fázi se zaměřujeme na jiné aspekty onemocnění.

a) **LTV v akutní fázi CMP** - v tomto stádiu CMP je přítomna svalová slabost, hypotonus, ztráta stability, paréza stejnostranných končetin, pacient s nimi nemůže pohybovat a neudrží je proti gravitaci. V této fázi je nutné dbát na trofiku, prevenci dekubitů a řešit poruchy svěračů. Do LTV v akutním stádiu tedy zařazujeme: polohování, výcvik posturálních reflexních mechanismů pomocí Vojtovy metody (ovlivnění abnormalit svalového tonu, rozvoj stereognostických funkcí), otáčení na postiženou stranu, poté na zdravou, bridging, rotace pánve, pasivní cvičení a dechovou gymnastiku.

b) **LTV v subakutní fázi** - v tomto období se začíná rozvíjet spasticita. Do LTV řadíme: nácvik aktivní hybnosti, vertikalizace, nácvik rovnováhy, nácvik chůze a relaxace.

1.2.2.2 Polohování

Po CMP zastává důležitou roli správné polohování, které nám napomáhá v prevenci muskuloskeletálních deformit, dekubitů, problémů s krevním i lymfatickým oběhem a umožňuje přenos fyziologických povelů do mozku oproti přechodné absenci senzorických povelů způsobené CMP. Podporuje rozpoznávání a uvědomování postižené strany těla.

U CMP by se poloha měla měnit každých 40 minut, tím budou do mozku vysílány různé stimuly. Pacient může být polohován do 4 základních poloh (Šeclová, 2004).

a) **Poloha na zádech** (viz Obrázek 2)

- hlava mírně natočená k postižené straně, v lehkém předklonu
- horní končetina položena na polštáři v zevní rotaci s extenzí v loketním kloubu
- zápěstí v extenzi a supinaci s rukou otevřenou na polštáři a palcem v abdukci
- pánev podložena polštářem, aby nepřepadávala v zad
- dolní končetina v neutrální poloze, koleno v mírné flexi podloženo polštářem
- chodidlo podepřeno polštářem, aby nepřepadávalo do plantární flexe

![Obrázek 2. Poloha na zádech](http://medicabaze.cz/index.php?sec=term_detail&categId=27&cname=Rehabilita%C4%8Dn%C3%AD+a+fyzik%C3%A1ln%C3%AD+medic%C3%ADna&termId=1392&tname=C%C3%A9vn%C3%AD+mozkov%C3%AD+p%C5%99%C3%ADhody+-+rehabilitace&h=empty#jump)
b) **Poloha na zdravé straně** (viz Obrázek 3) - tato poloha příznivě působí proti vzniku dekubitů na postižené straně a ulehčuje dýchání paretické části hrudníku
 - hlava podepřena, nesmí být v úklonu k postižené straně
 - postižené rameno je položeno na polštáři
 - loketní kloub, zápěstí a prsty jsou v extenzi
 - postižená dolní končetina je ve flexi a vzhledem k rotaci v neutrální pozici

![Obrázek 3. Poloha na zdravé straně](http://medicabaze.cz/index.php?sec=term_detail&categId=27&cname=Rehabilita%C4%8Dn%C3%A1+fyzikáln%C3%A1+medic%C3%ADna&termId=1392&tname=C%C3%A9vn%C3%AD+mozkov%C3%AD+p%C5%99%C3%ADhody+-+rehabilitace&h=empty#jump)

c) **Poloha na postižené straně** (viz Obrázek 4)
 - hlava podepřena, nesmí být v úklonu
 - trup je podložen polštářem a je mírně rotován vzad
 - paretická paže je ve flexi do 90°
 - lopatka v protrakci
 - předloktí v supinaci
 - zápěstí v mírné dorziflexi
Obrázek 4. Poloha na postižené straně

(http://medicabaze.cz/index.php?sec=term_detail&categId=27&cname=Rehabilita%C4%8Dn%C3%AD+a+fyzik%C3%A1ln%C3%AD+medic%C3%ADna&termId=1392&tname=C%C3%A9vn%C3%A9+mozkov%C5%99í+p%C5%99%C3%ADhody+-rehabilitace&h=empty#jump)

d) **Poloha na břiši** - tuto polohu využíváme, pokud se u pacienta objevil dekubitus např. na os sacrum, kontraindikací této polohy je např. respirační insuficience, kardiální dekompenzace apod…

- hlava je rotována ke zdravé straně
- paže je natažena ve všech kloubech
- dolní končetina rovněž celá v extenzi
- noha je podepřená polštářem, aby se nevyvolalo ekvinózní postavení
- zdravá končetina je v mírné flexi v koleni (Pfeiffer, 2007).

1.2.2.3 Respirační fyzioterapie

Vychází z neurofyziologických a fylogenetických zákonitostí vývoje člověka a dýchání.

U hemiparetických pacientů dochází k typickému snížení klidových ventilačních objemů a převaze břišního dýchání nad hrudním. V důsledku CMP je porušena mechanika dýchání, jejíž příčinou je snížení svalové síly hrudního a břišního svalstva. Proto jsou používány prostředky respirační fyzioterapie, jako je dechová gymnastika a drenážní techniky (např. technika usilovného výdechu, huffing) ke zlepšení ventilačních parametrů, průchodnosti dýchacích cest, evakuace hlenu a prevenci respiračních onemocnění.
Dechová gymnastika

Dechovou gymnastiku (DG) dělíme na statickou, dynamickou, mobilizační a kondiční.
V našem případě se však zaměřujeme na statickou, dynamickou DG a mobilizační.

a) **Statická dechová gymnastika** - pacient samostatně dýchá a nevyužívá se souhybů končetin. Do statické DG můžeme dále řadit lokalizované a kontaktní dýchání.

b) **Dynamická dechová gymnastika** - u tohoto druhu DG je využíváno souhybu končetin.

U naší diagnózy horních končetin, kdy prsty zdravé horní končetiny jsou propleteny s prsty paretické a celá horní končetina je elevována, pokud to stav dovolí, až nad hlavu.

c) **Mobilizační dechová gymnastika** - mobilizace hrudní stěny pomocí měkkých míčků (tzv. míčkování), měkkých technik zaměřených na protažení hrudní fascie apod.…

U terapie CMP se také často používá tzv. reflexně modifikované dýchání vycházející z Vojtova principu reflexní lokomoce. Při tomto typu dýchání dochází k aktivaci bránice v její respirační i posturální funkci (Dvořák, 2003; Kolář, 2009).

1.2.2.4 Pasivní pohyby

Čím dříve se začne s rehabilitací po mozkové mrtvicí, tím dříve dojde k znovuobnovení pohyblivosti. K tomu využíváme v časných stádiích CMP pasivních pohybů. Postupem času bude pacient stále aktivnější a jeho pohyb se bude zlepšovat.
a) **Mobilizace kloubů** - napomáhá udržovat rozsah pohybů v kloubech, zachovává pružnost vazů a svalů. Snížuje riziko vzniku kontrakтур, deformit atd.

b) **Pasivní pohyby** - všechny klouby na postižené straně musí být procvičovány ve všech směrech a v jejich fyziologickém rozsahu.

c) **Centrace kloubů** - kloub je uveden do postavení, kde dochází k maximálnímu kontaktu kloubních ploch = centrované postavení, které je ekvivalentem střední polohy, ta umožňuje ideální statické zatižení kloubu. Síla vyvíjená na kloub je mezi kloubními plochami rovnoměrně rozložena. Pouzdro a kloubní vazy jsou v minimálním napětí. Toto postavení je vázáno na celý průběh pohybu.

1.2.2.5 Péče o rameno

Ramennímu kloubu je nutné se věnovat ihned na začátku terapie, poněvadž se může následně rozvinout syndrom bolestivého ramene. V časném stádiu pohyb vede fyzioterapeut, později jej provádí pacient sám pomocí zdravé končetiny.

Cviky provádíme vleže na zádech a na zdravém boku.

Vleže na zádech - celá paže jde přes předpažení až do vzpažení, poté se rozevírá dlaň, extendují se prsty a palec je abdukován.

Vleže na zdravém boku - celá paže se zvedá a zároveň je ramenní kloub zevně rotován.

Do péče o rameno zařazujeme i mobilizaci lopatky (Šeclová, 2004).

1.2.2.6 Péče o kyčel

Tak jako s péčí o rameno tak i péči o kyčel zahajujeme ihned po proběhnutí CMP. Do péče o kyčel zahrnujeme správné polohování (mírná flexe a vnitřní rotace), rotaci pánevního pletence, flexi, extenzi a rotaci kyče a bridging za předpokladu alespoň částečně aktivního trupového svalstva (Šeclová, 2004).
1.2.2.7 Orofaciální terapie

U některých pacientů po CMP se může vyskytnout ztráta motoriky svalů obličeje a snížení senzorických vjemů z dutiny ústní.

Orofaciální terapie zahrnuje vibrační stimulaci a pasivní pohyby přirozených funkcí mimických svalů, intraorální taktílní stimulaci, masáž dásní, pasivní pohybování svaloviny dutiny ústní a termickou stimulaci.

V některých případech intraorální podněty vyvolají kousací reflex, který vzniká na základě nedostatku senzorických impulsů, a můžeme mu zabránit včasným zahájením terapie. Pokud ovšem nelze tento reflex nijak utlumit, aplikuje se botulotoxin (Kolář, 2009).

1.2.2.8 Nácvik rovnováhy

Nacvičování udržení rovnováhy je důležitou součástí terapie CMP. Správná balance je předpokladem ke stabilnímu sedu, posléze stoji a chůzi.

Zpočátku začínáme z lehčí polohy vsedě, později ve stoji přenášením váhy (Šeclová, 2004).

1.2.2.9 Nácvik sedu

Jedinec, který prodělal CMP, by se měl naučit vstávat přes postiženou stranu. Je zřejmé, že zpočátku bude při posazování potřebovat nemalou asistenci (pasivní asistence pacienta), později se bude zapojet aktivněji (aktivní asistence pacienta), až terapeutova pomoc nebude zapotřebí (Šeclová, 2004).

1.2.2.10 Nácvik stoje

Přenášením váhy ze strany na stranu a schopnost pohybovat kyčlemi vpřed a vzad v sedu patří mezi přípravná cvičení na stoj. Základem je však stabilní sed pacienta.
Pohyb kyčlemi vpřed a vzad nacvičujeme tak, že se celá kyčel nadzvedne z lůžka a provede pohyb dopředu, přičemž chodidlo spočívá na podložce. Pohyb opakuje tak dlouho, dokud nedosáhne okraje postele. Poté se vrací zpět do výchozí pozice.

Vstávání

1.2.2.11 Nácvik chůze

Po CMP dochází k přerušení automatického vzoru chůze a právě proto je důležité docílit jeho znovuobnovení.

Základem správné a bezpečné chůze je stabilita v určité poloze, fázi kroku. Při tom však hraje důležitou úlohu strach. Pacient se obává, že nebude schopen pohybu. Lze mu pomoci tím, že bude držet určitou pozici proti mírnému tlaku.

Při nácviku chůze je nutno asistovat nemocnému vždy z postižené strany.

K chůzi lze využít řady pomůcek, od pultového chodítka, přes francouzské, kanadské, vícebodové berle, až k vycházkové holi (Šeclová, 2004).

1.2.2.12 Metody založené na neurofyziologickém podkladě

1.2.2.12.1 Vojtova metoda - metoda reflexní lokomoc

Zakladatelem metody byl v 50. letech 20. století český lékař, neurolog Václav Vojta, který na základě svých pozorování sestavil diagnosticko-terapeutický princip.

Podstata

Vojtova metoda vychází z lidské ontogeneze a jejím hlavním cílem je dosažení znovuobnovení fyziologických pohybových vzorců, které jsou díky poškození mozku narušeny až ztraceny. Dle Orthové 2009: „Pohybovým vzorem rozumíme společně a doplňující se
funkce různých svalových skupin, které tělo drží a s nimiž se tělo vzpíná proti zemské přitažlivosti, pohybuje se vpřed a provádí cílené pohyby. Tyto vzorce jsou nezbytné i pro vyjadrovací možnosti člověka, neboť chování osoby je vždy spojeno s pohybem.“ Vojta vycházel ze dvou vzorů - reflexní otáčení a reflexní plazení.

Pacient je uložen do výchozí polohy, která je sama o sobě facilitační, a pomocí aktivace spoušťových bodů (= nakupení proprioreceptorů) lze vyvolat celkovou motorickou odpověď.

Výchozí polohy

- **reflexní plazení** - je aktivováno z polohy na břiše. Hlava je ve 30° rotace k horní končetině, která je v tzv. nakročení s protilehlou dolní končetinou.
- **reflexní otáčení 1. fáze** - začíná v poloze vleže na zádech s hlavou ve 30° rotaci k jedné straně, horní končetiny v nulovém postavení podél těla, dolní končetiny nataženy a v mírné abdukci.
- **reflexní otáčení 2. fáze** - výchozí polohou je poloha na boku, hlava je otočena k podložce, srchní horní končetina je položena v mírné extenzi a vnitřní rotaci na těle, spodní horní končetina je v 90° v loketním kloubu u těla, obě dolní končetiny jsou flektovány ve 40° jak v kyčelích, tak v kolenech.
- **poloha na bercích a předloktí tzv. první pozice** - jedná se o polohu v kleku na okraji cvičebního stole v sedu na patách.

Spoušťové body

- mediální epikondyl humeru (loketní zóna)
- mediální hrana lopatky
- anterolaterální plocha acromionu
- procccessus styloideus radii
- spina iliaca anterior superior
- mediální kondyl femuru
- zadní hrana m. gluteus medius
- proccessus lateralis tuberis calcanei
- 6. - 8. mezižebří (trupová zóna)
- mezižeberní prostory v okolí 6. žebra (hrudní zóna)
Cíl Vojtovy metody

- zavedení fyziologického průběhu pohybu dříve než dojde k rozvoji patologických vzorců
- aktivace svalů ve fyziologických pohybových vzorcích, které fungovaly patologicky nebo nepracovaly vůbec
- ovlivnění dýchání a vegetativních funkcí
- celková změna v držení těla - zlepšování v přesunu těžiště, vzpřímnování, řízení rovnováhy a koordinace (Kolář, 2009; Orthová, 2009; Pavlů 2003).

1.2.2 Kabatova metoda - metoda PNF

Tato metodika byla vypracována v letech 1946 - 1951 americkým lékařem a neurofyziologem doktorem Hermanem Kabatem. Na jejím rozvoji se rovněž podílela již od samého začátku fyzioterapeutka Margaret Knottová a její spolupracovnice Dorothy Vossová.

Podstata

Jedná se o cílené ovlivňování aktivity motorických neuronů v cornu anterior míchy pomocí vzestupných impulzů z kloubních, šlachových a svalových proprioceptorů. Míšní motorické neurony jsou rovněž ovlivňovány prostřednictvím sestupných impulzů z mozkových center, které reagují na aferentní impulzy ze zrakových, sluhových a taktílních exteroceptorů.

K dostatečné stimulaci proprioceptorů je potřeba použití různých hmatů, pasivních i aktivních pohybů a statické práce proti odporu.

V rámci PNF byly vypracovány pohybové vzorce. Jedná se o účelně kombinované a odstupňované sledy svalových stahů a relaxací, které jsou vybavovány nebo facilitovány pomocí exteroceptivní a proprioceptivní stimulace. Tyto pohybové vzorce obsahují vždy složku flekční či extenční, abdukční či addukční, zevně či vnitřně rotační, a to díky spirálovitému a diagonálnímu průběhu pohybu.

Při provádění PNF terapeut manuálně vede pohyb a přizpůsobuje ho reakcím pacienta a aktuální situaci. Využíváme tedy - pasivní pohyb, pohyb s částečnou dopomocí, aktivní pohyb a pohyb proti odporu, který může být kladen v celém rozsahu pohybu nebo jen v
některé jeho složce. Při vedení pohybu terapeutem je důležité dbát na správný úchop ruky pacienta, tzv. lumbrikální úchop, kde je flexe v metakarpofalangových kloubech a extenze v ostatních kloubech prstů.

Dle Pavlů (2003) se v PNF často využívá fenomén iradiace (overflow): „Fenomén iradiace (overflow) umožňuje vyzařování (přetékání) svalové aktivity ze svalů silnějších na svaly oslabené příp. rozšíření aktivity na celý svalový řetězec. Děje se tak prostřednictvím sumace účinných impulzů (např. stretch impulz + verbální výzva + zrakové sledování cviku + manuální kontakt + svalová práce proti maximálnímu odporu).“

Existují tři základní principy využívané v proprioceptivní stimulaci:

• stimulace pomocí svalového protažení
• stimulace kloubních receptorů - pomocí trakce či komprese
• adekvátní odpor - přizpůsobuje se k maximálnímu možné síle, kterou je pacient schopen vynaložit

A tři principy využívané v exteroceptivní stimulaci:

• taktilní stimulace - dotyk, tlak terapeutovy ruky
• zraková stimulace - pacient sleduje své pohyby
• sluchová stimulace - slovní pokyny terapeuta (Pavlů, 2003)

Pohybové diagonály - mezi základní diagonály řadíme diagonály pro horní a dolní končetinu, lopatku a pánev.

• **Horní končetina** - u obou diagonál je pacient v poloze vleže na zádech.
 ➢ **I. diagonála** - před provedením diagonálního pohybu je východí postavení končetiny následující: lopatka v abdukci a vnitřní rotaci, ramenní kloub extenzi, abdukci a vnitřní rotaci, loket extendovaný, předloktí se nachází v pronaci, zápěstí v dorzální flexi a ulnární dukci, metakarpofalangové klouby a prstce v extenzi, abdukci a ulnární dukci, palec v extenzi a abdukci. Po provedení diagonálního pohybu je končetina uvedena do konečného postavení, kdy: lopatka je v abdukci a zevní rotaci, rameno ve flexi, addukci a zevní rotaci, loket zůstává v extenzi, předloktí je uvedeno do supinace, zápěstí je v palmární flexi a radiální dukci, MP klouby a prstce jdou do flexe, addukce
a radiální dukce, PIP i DIP jsou ve flexi potažmo v semiflexi, palec je ve flexi, addukci a opozici.

- **II. diagonála** - výchozí postavení pro druhou diagonálou je: lopatka v abdukci a vnitřní rotaci, ramenní kloub extendovaný, addukovaný a vnitřně rotovaný, loket v extenzi, předloktí v pronaci, zapěstí uloženo do palmární flexe a ulnární dukce, MP klouby a prstce ve flexi, addukci a ulnární dukci, PIP i DIP flektovány, palec leží ve flexi, addukci a opozici. Po provedení diagonály je konečné postavení takovéto: lopatka v addukci a zevní rotaci, rameno ve flexi a zevní rotaci, loket zaujímá stejnou pozici jako při výchozím postavení, předloktí supinováno, zápěstí v dorzální flexi a radiální dukci, MP klouby a prstce v extenzi, abdukci a radiální dukci, PIP i DIP v extenzi a palec abdukován a extendován.

- **Dolní končetina** - u provádění obou diagonál pacient zaujímá polohu vleže na zádech.
 - **I. diagonála** - před provedením diagonály se končetina nachází v tomto výchozím postavení: kyčelní kloub v extenzi, abdukci a vnitřní rotaci, kolenní kloub v extenzi, hlezno v plantární flexi a everzi, prstce ve flexi a fibulární dukci. Po dokončení diagonály je dolní končetina v následujícím konečném postavení: kyčel ve flexi, addukci a zevní rotaci, kolenní kloub v extenzi, hlezenní kloub v dorzální flexi a inverzi a prstce v extenzi, abdukcí a tibiální dukci.
 - **II. diagonála** - pro II. diagonálou je výchozí postavení toto: kyčelní kloub v extenzi, addukci a zevní rotaci, koleno extendováno, hlezenní kloub v inverzi a plantární flexi, prstce jsou ve flexi a tibiální dukci. Po diagonálním pohybu se končetina nachází v tomto konečném postavení: kyčelní kloub je flektován, abdukován a vnitřně rotován, koleno je v extenzi, hlezno v dorziflexi a everzi, prstce jsou v extenzi, abdukcí a fibulární dukci.

- **Lopatka** - výchozí polohou pro všechny pohyby je leh na zdravém boku se spodní horní končetinou složenou pod hlavou.
 - **I. diagonála** - anteriorní elevace a posteriorní deprese lopatky
 - **II. diagonála** - anteriorní deprese a posteriorní elevace lopatky (viz Obrázek 5)
Pánev - při provádění diagonálních pohybů pánve je výchozí polohou leh na zdravém boku s pokrčenými DKK a spodní rukou složenou pod hlavou.

- **I. diagonála** - anteriorní elevace a posteriorní deprese
- **II. diagonála** - anteriorní deprese a posteriorní elevace (viz Obrázek 6)
1.2.2.12.3 Bobath koncept

Tuto metodu vypracovali v polovině 20. století manželé Bobathovi a v současné době patří mezi hojně využívanou fyzioterapeutickou techniku.

Podstata

Vycházíme z pozorování, že centrálně vyvolané postižení hybnosti se projeví různými patologickými známkami - např. hyper-, hypotonus, spasticita, přítomnost ontogenicky nižších tonických reflexů a patologických pobyrových vzorců, poruchy reciproční inervace nebo nežádoucí synchronní pohyby i ve vzdálenějších regionech. Tyto jevy lze pozitivně ovlivnit pomocí inhibice patologických motorických i posturálních vzorců, spasticity, facilitace fyziologických posturálních vzorců a stimulace ke zlepšení vnímání polohy žádoucího zvýšeného svalového tonu.

U terapie CMP s využitím Bobath konceptu se zaměřujeme na tyto aspekty:

- **systematické zlepšování funkcí paretických končetin** - věnujeme pozornost tomu, aby pacient nekompenzoval ve větší míře motorické funkce paretické končetiny zdravou končetinou
- **odstraňování spasticity pomocí vhodných změn poloh určitých částí těla**
- **podpora převedení chybných posturálních vzorců** (Pavlů, 2003)

1.2.2.12.4 Metoda odemykání dle Faye

Tato metodika byla publikována americkým lékařem, neurochirurgem Temple Fayem na konci 40. a začátku 50. let 20. století. Metodu odemykání lze využít k redukci svalového hypertonu, který se může u CMP rozvinout. Vhodné je opakování následujících manévrů nejméně 30x denně.

Odemykání sevřené ruky - pacient leží na břiše a hřbet jeho ruky, při současné addukci a vnitřní rotaci v paži, přiložíme na hýždě.

Odemykání flektovaného lokte - paži uvedeme do abdukce a ruční kloub táhneme kaudálně a laterálně.
Odemykání extendované dolní končetiny - využíváme únikových reflexů, kdy prstce stlačujeme do plantární flexe a mediálně, což vyvolá flexi v kolenním kloubu se současnou zevní rotací končetiny (Pavlů, 2003).

1.2.2.12.5 Metoda neurofunkční reorganizace - Padovan

Zakladatelkou je Beatrix A. E. Padovan, brazilská logopedka a antroposofická pedagožka.

Podstata

Tato metoda vychází z postupného opakování a nového zpracování pohybových vzorců lidského vývoje od narození až po bipedální chůzi, včetně sání, žvýkání, polykání, dýchání, válení, plazení atd.

Při terapii se navozují určitá vývojová stádia, která předcházela problému a tím zlepšují celkovou i orofaciální motoriku (Pavlů, 2003)

1.2.2.12.6 Koncept Brunnström

Tato metodika byla vypracována švédskou fyzioterapeutkou Signe Brunnströmovou v 50. letech 20. století.

Podstata

Podstatou tohoto konceptu je co nejdokonalejší motorická reedukace paretických oblastí. Principem je postupná aplikace různých facilitačních technik, které jsou pak využívány v těchto čtyřech fázích:

a) **vypracování velkých synergií pomocí tonických reflexů a asociovaných reakcí** -
 tonické reflexy - symetrický tonický šíjový reflex, asymetrický šíjový reflex, tonický labyrintový reflex, tonický bederní reflex,

b) **vypracování volného ovládání reflexních synergií**

c) **odstraňování synergií flexorů a extenzorů** - pomocí kombinace vybraných složek těchto synergií

d) **vypracování volného řízení koordinovaných pohybů** (Pavlů, 2003)
1.2.2.12.7 Koncept Johnstone

Tento koncept je dílem skotské fyzioterapeutky Margaret Johnstoneové. Byl vypracován v období 60 - 80. let 20. století. Jedná se o metodiku zahrnující komplexní rehabilitační péči pacientů s hemiplegií po CMP.

Podstata

Hlavní metou je dosažení co možná nejdokonalejší restituce motorických, senzorických, posturálních funkcí a znovuobnovení duševní kompetence a sociálního začlenění. K dosažení těchto cílů jsou používány tyto reedukační opatření - neustálé polohování, pasivní pohyby končetin a celého těla závislé na momentálním rozložení svalového tonu, neustálá stimulace pacienta na obecné úrovni, neustálá motorická reedukace pohybu vycházející z ontogeneze, počínaje od hrubé motoriky v proximálních kloubech až k jemné motorice na periferii.

Mimo výše zmíněného je u této metodiky používáno speciálního terapeutické vybavení - nafukovací dlahy (splinty) na různé části končetin a houpací židle poskytující pacientovi anterio - posteriorní vestibulární stimulaci, snížení zvýšeného svalového tonu a celkové uklidnění (Pavlů, 2003).

1.2.2.12.8 Koncept Carr a Shepherd

V 80. letech 20. století spatřil světlo světa koncept australských fyzioterapeutek Janet Carrové a Roberty Shepherdové s názvem: Motor relearning programe.

Podstata

Tato metodika vychází z toho, že obnova globálních funkčních schopností organismu je dána ovládáním motorických funkcí.

Hlavními zásadami jejich konceptu je potlačení zbytečné svalové aktivity, zpětná vazba o zvládnutí pohybového úkolu a časté procvičování.

Cílem tohoto konceptu je diferencované ovládání svalové aktivity, její adaptaci vlivům zemské tísni a udržování vyváženosti a směrování pohybů. Reedukace běžných denních činností probíhá tak, že si pacient vybavuje určité pohybové programy, které měl před
poškozením uloženy v CNS. Nejprve v této reedukaci využíváme kognitivních funkcí, následně pro procvičování se uplatňuje automatické provádění.

Program opětovného učení se zaměřuje na sedm nejdůležitějších činností v běžném životě - funkce horních končetin, orofacíální funkce, posazování, vstávání, posazování ze stoj, přecházení a chůze (Pavlů, 2003).

1.2.2.12.9 Metoda Rood

Ve 40. letech 20. století vznikla metoda americké fyzioterapeutky a ergoterapeutky Margaret Roodové.

Podstata

Podstata tohoto konceptu spočívá v propojení senzorických stimulů a motorických reakcí. Je v ní řada vhodně vybraných stimulů k facilitaci, aktivaci a inhibici určitých motorických dějů a funkcí.

Za úspěch této metodiky je považováno zlepšení koordinace pohybů (Pavlů, 2003).

1.2.2.12.10 Koncept vzpěrných cvičení - Brunkow

Autorem tohoto konceptu je německá fyzioterapeutka Rositha Brunkovová. Pozorováním zjistila, že izometrickými stahy horních a dolních končetin se aktivační vlna postupně šíří do celého trupu až k hlavě.

Podstata

Tento koncept pracuje na základě cílené aktivace diagonálních svalových řetězců. Tato aktivace nám zprostředkovává zlepšení funkce osladeného svalstva, opětovné učení pohybů bez nežádoucích složek a stabilizační trénink pro končetiny a páteř bez nežádoucího zatížení kloubů.

Jako terapeutický prostředek jsou využívána vzpěrná cvičení, u kterých se uplatňuje maximální volní dorziflexe rukou a nohou. Této dorzální flexe je dosaženo vzpřímením na zápěstí, dlaních a patách v distálním směru proti podložce či pomyslnému odporu.
Díky dorziflexi rukou a nohou dochází k aktivaci svalového řetězce a aktivace postupuje na končetinách disto - proximálním směrem.

Při izometrickém vzpírání se rovněž aktivuje svalový řetězec, ale jeho fixní body jsou naproti výše zmíněnému v distálních částech končetin a tím se aktivace šíří proxi - distálně.

V obou případech se aktivační vlna šíří i na svalstvo trupu (Pavlů, 2003).

1.2.2.12.11 Frenkelova metoda

Autorem byl švýcarský neuropsychiatr Heinrich S. Frenkel, který zavedl cvičební jednotku pro pacienty s poruchou taxe a může být využita i pro pacienty po CMP s poruchou proprioceptivního čití (Pavlů, 2003).

Podstata

Dle Pavlů 2003: „Jde o racionální soustavu (opakovaných) cvičení k redukci normálních pohybů u pacientů s ataxií, s postupem od jednoduššího ke složitějšímu. Hlavním cílem je odstranění ataxie a pohybové inkoordinace, které jsou důsledkem výpadku aferentní propriocepčních informací ze svalů, šlach, kloubních pouzder a vazů při postižení mozečku či míchy.“

1.2.3 Fyzikální terapie

V rámci fyzikální terapie volíme u pacientů po CMP ty procedury, které potlačují bolest, zlepšují trofiku, zmírnějí spasticitu, redukují otok a přispívají k podpoře propriocepce. Fyzikální terapie je využíváno během hospitalizace, rekonvalescence i v doléčovací fázi.

Prvky fyzikální terapie používané u CMP:

a) Hydroterapie - vodoléčebné procedury v subakutním stádiu.

- hypotermní - lokální ledové zábaly, kryoterapie, ponoření do vody s ledem ke snížení spasticity
- hypertermní - paraffín, peloidy, termopack k ovlivnění svalových kontraktur
- celkové izotermní koupele
b) **Elektroterapie** - ovlivnění bolestivých oblastí, např. u častých bolestí ramene

- interference
- galvanický proud
- diadynamické proudy - převážně CP, LP s frekvencí 0 - 100 Hz
- ultrazvuk
- **funkční elektrostimulace** - facilitace agonistů a antagonistů, čímž dojde k postupnému obnovení svalové souhrny, motorické regulace a redukci deformit
- **spřažené impulzy dle Jantsche, Edela, Hufschmidta** - redukce spasticity

c) **Magnetoterapie**

- nízkofrekvenční pulzní magnetoterapie - zlepšení trofiky, zmírnění otoků

d) **Mechanoterapie** - aplikace prvků reflexní masáže, kloubní mobilizace, vakuum - kompresní terapie, pneumatické dlahy a lymfodrenáže k redukcii otoků (Poděbradský - Poděbradská, 2009; Poděbradský, Vařeka, 1998).

1.2.4 Ergoterapie

Iktus je jednou z nejčastějších diagnóz, u které se volí ergoterapeutický přístup. Cílem je nácvik sebeobsluhy, soběstačnosti, běžných denních činností (ADL), řeči, návrat k pracovním i zájmovým činnostem, dále se snaží ovlivnit poruchy čítí, poruchy prostorového vnímání, apraxie atd....Ergoterapeut zároveň vybavuje pacienta, pokud je třeba, kompenzačními pomůckami. Důležitou součástí ergoterapeutického procesu je úprava funkcí ruky, které bývají viditelně omezené. Jeví-li ruka známky nenávratného poškození, je nutné začít s tréninkem jen jednou rukou (s využitím pomůcek) a nácvikem nedominantní ruky i ke psaní (Votava, 2009; Kubínková, Křížová, 1997).

Lidské ruce jsou svou funkcí vyčleněny výhradně k aktivitám vyžadujícím souhrn jemných a precizních pohybů a k manipulačním činnostem.

Funkce ruky je silně kortikalisovaná, stranově diferencována a je důležitým nástrojem pozorovacím a uvědomovacím (kognitivním) i vizuo-spacijním (zrakově - prostorovým).
K vykonávání ADL, pracovních i zájmových činností je nezbytná manipulační schopnost ruky. Ta má dvě složky - transportní (zahrnuje napřáhnutí paže k předmětu) a manipulační (úchop a samotná manipulace s předmětem).

Aby k manipulaci vůbec došlo, je třeba splnit následující kritéria - lokalizace předmětu v prostoru, posturální kontrola (stabilizace těla při náprahu), přesun paže k předmětu a samotné uchopení předmětu.

Úchop je bazální formou a podmínkou manipulace. K obnovení funkce ruky nacvičujeme úchopy:

a) **Statické** - slouží k udržení předmětu v dané pozici v prostoru. Podle části ruky, která se do úchopu zapojuje, je dělíme na úchop prstový, dlaňový a symetrický.
 - **prstový úchop** - bidigitální (mezi palcem a ukazovákem), pluridigitální (mezi palcem a nejméně dvěma prsty)
 - **dlaňový** - mezi palcem a dlaní
 - digitopalmární (bez použití palce)
 - plný dlaňový (s užitím palce)
 - cylindrický dlaňový úchop - uchopení lahví, sklenice
 - sferický dlaňový úchop - např. uchopení míčku
 - **symetrický** - úchop v ose předloktí, např. držení příboru, šroubováku

b) **Dynamické** - při těchto úchopech dochází ke spojení manipulace prsty s držením předmětu, např. manipulace se zapalovačem či rozprašovačem.

Pokud úchop není z nějakého důvodu možný, je třeba využít úchopů náhradních - primárních, sekundárních a terciálních.

 - **Primární úchop** - úchopy rukou či prsty (pinzetový, špetkový, klíčový, kulový, válcový, háčkový).
 - **Sekundární úchop** - úchopy využitelné jako náhradní, které může patologicky změněná ruka provést (sekundární špetkový, bočný klešťový - mezi palcem a ukazováčkem, bočný stisk, bočný úchop.
 - **Terciální úchop** - úchopy pomocí ortéz či adjuvatika (Vyskotová, Macháčková, 2013; Krivošíková, 2011).
1.2.4.1 Vynucené používání paretické končetiny (CI Therapy)

CI Therapy neboli vynucené používání končetiny je metoda zabývající se překonáním zafixovaného nepoužívání končetiny postižené v důsledku CMP.

Při terapii se nemocnému nasadí speciální rukavice ke znehybnění zdravé HK a díky intenzivnímu, přesně stanovenému tréninku paretické končetiny dojde k jejímu vynucenému používání („forced use“). Ne však každý pacient je vhodný. Musí být splněna následující kritéria - pacient musí rozumět jednoduchým instrukcím, sedět bez pomoci, aktivně extendovat zapáští nejméně o 20º a pohybovat prsty v jednotlivých kloubech o 10º (http://www.sanatoria-klimkovice.cz/www/cz/ci-therapy-2/).

1.2.5 Protetika

Dle stavu pacienta je možno volit řadu pomůcek k ulehčení pohyblivosti, snížení bolestivosti či zamezení zhoršování současného postižení. U CMP využíváme chodítka (pultové, čtyřbodové, tříbodové (skládací), s kolečky, s pevnou oporou), berle (francouzské, kanadské), vícebodové hole, vycházkové hole, ramenní ortézy (brání dislokaci hlavice humera, stabilizuje paži v extenzi), závěsy na postiženou horní končetinu (odlehčuje, snižuje bolestivost), korekční ortézy zápěstí a ruky (prevence vzniku spastického držení a kontrakturn), ortézy na kolenní kloub s omezeným rozsahem pohybu (brání hyperextenzi, zajišťuje stabilitu kolene), peroneální dlahy či pásky (zabraňuje přepadávání chodidla) (Kolář, 2009; Votava 2009).

1.2.6 Logopedická péče

Ztráta schopnosti komunikovat s okolím je pro nemocného značně traumatizující. K ovlivnění tohoto problému jsou užívány různé stimulační programy, práce s dechem, reedukace dysatrie, dysfonie, dysfagie, afázie, různé druhy alternativní komunikace a další logopedické intervence, bez nichž by rehabilitace či ergoterapie nebyla možná. Kvalitní a intenzivní logopedická péče prováděna již na lůžkovém neurologickém nebo rehabilitačním oddělení je klíčovým prvkem v postupné reedukaci řečových funkcí. Nezbytností při logopedické péči je motivace, aktivní spolupráce pacienta a jeho okolí.
1.2.6.1 Druhy logopedické péče

V praxi je využíváno jak individuálních tak i skupinových forem terapie. Tím je zajištěn intenzivní individuální trénink a následné procvičování nabytých dovedností ve skupině.

b) **Skupinová terapie** - probíhá v malém okruhu 3 - 6 osob. V důsledku vzájemné interakce v navozené sociální situaci dochází k procvičování, uplatnění a upevnění nabytých schopností a k aktivaci osob s poškozenou komunikací s okolním prostředím. Následně se terapie zaměřuje na zlepšení pozornosti, psaní, čtení, vyjadřování a percepce.

c) **Komplexní logopedická terapie** - obsahuje mimo jazykové a řečové terapie také psychoterapii ovlivňující kognitivní funkce, a to zejména pozornost a verbální paměťové funkce. Psychoterapie je nutná především u afázií. (Škodová, Jedlička, 2003)

1.2.7 Roboticky asistovaná rehabilitace

Moderní technologie postupně zasahují do léčebně - rehabilitačních plánů mnoha chorob. Jednou takovou metodou je roboticky asistovaná rehabilitace.

Roboticky asistovaná rehabilitace napomáhá ulehčit práci fyzioterapeutů při nelehkém znovuobnovení pohybu u neurologických pacientů díky zakomponovaným terapeutickým a diagnostickým funkcím robotických systémů. Tyto systémy lze nastavit jako soustavu preventivních terapeutických a diagnostických opatření, které směřují k maximálně možné restituci postižených pohybových funkcí.

Z hlediska funkčního využití rozdělujeme robotické systémy zaměřené na:

a) **Funkční pohybovou terapii HKK** - např. Armeo (odhaluje a posiluje stávající pohybové funkce, lze nastavit rozsah pohybu), Amadeo (zaměření na pohybovou terapii ruky a prstů, diagnostika svalové síly)
b) **Reedukace chůze pomocí robotických systémů a biofeedbacku** - např. Lokomat (speciální automatická ortéza pro chůzi na pohyblivém pásu)

c) **Laboratoří chůze** - např. Rehawalk (spojení analýzy a nácviku chůze na pohyblivém pásu)

d) **Včasnou rehabilitaci** - např. Erigo (vertikalizační stůl využívající kombinaci roboticky řízené simulace chůze a cyklického zatěžování chodidel)

e) **Diagnostické systémy** - Amadeo, Rehawalk

f) **Asistovanou chůzi v prostoru** - např. Ekso (robotický systém vyvinutý k nošení pro pacienty s úbytkem svalové síly či paralýzou DKK, který jim umožní chůzi) (http://stargen-eu.cz/produkty/roboticky-asistovana-rehabilitace/).
2 KAZUISTIKA

2.1 Základní údaje

Jméno: S. K.
Věk: 51 let
Výška: 190 cm
Tělesná hmotnost: 120 kg
Pohlaví: muž
Místo hospitalizace: I. Neurologická klinika Fakultní nemocnice u sv. Anny v Brně
Diagnóza při přijetí: Mozkový infarkt NS

2.2 Lékařské vyšetření

Pacient byl 2. 3. 2015 odeslán svým praktickým lékařem na soukromou neurologii do IBC pro přetrvávající slabost pravé horní končetiny, po CT vyšetření mu byla podána medikace a byl poslán domů. V důsledku zhoršení chůze, řeči a motoriky vpravo byl 3. 3. 2015 přijat a vyšetřen na neurologickém oddělení Nemocnice u sv. Anny v Brně pro podezření na recidivující mozkový infarkt.

2.2.1 Objektivní nález při přijetí

- krevní tlak 150/90 mmHg, tepová frekvence 80/min
- pacient při vědomí, spolupracuje, orientován, bez fatické poruchy či dysartrie
- bez klidové dušnosti, dýchání alveolární čisté, srdeční akce pravidelná
- hlava poklepově nebolestivá, bez traumatických změn
- zornice izokorické, fotoreakce přimá +, nepřímá +, na konvergenci +, bulby ve středním postavení, pohledy volné do stran, bez nystagmu, bez diplopie, zorné pole orientačně v normě
- frontoorbikulární reflex +, masseterový reflex +
- minimální asymetrie koutku vpravo při cenění
- jazyk plazí středem
- měkké patro asymetrické, zvedá se symetricky
- břicho měkké, prohmatné, nebolestivé
- meningeální jevy negativní
- senze neporušena
- HKK: tonus symetrický, Mingazzini LHK stabilní, PHK pokles cca 10 cm, akrálně omezení flexe a extenze prstů těžšího stupně, reflexy C5-8 symetrické, Tromner negativní, PHK dystaxie pro parézu, LHK cílí
- DKK: tonus symetrický, Mingazzini LDK stabilní, PDK pokles o cca 5 cm, reflexy L2 - 4 symetrické, L5 - S2 symetricky nižší, taxe na PDK přesná, na LDK dystaxie pro parézu, Babinski oboustranně negativní, Laseque negativní

2.2.2 Další vyšetření

Po přijetí byl pacient odeslán na nativní CT mozku a CTA, kde bylo zjištěno následující: v zádní jámě lebeční a supratentoriálně nebyly zjištěny patologické ložiskové změny, struktura mozkové tkáně je v normě, komorový systém a likvorové prostory nejsou rozšířeny, útvary ve střední čáře bez dislokace. Na CTA byla prokázána stenóza kmene a. cerebri media vlevo o délce cca 4 cm, bez zřetelné ischemie v jejím povodí. Po kontrolním CT se objevily nově postischemické hypodenzity velikosti 2x1 cm v oblasti bazálních ganglií vlevo a 5 mm vlevo frontálně při rohu postranních komor.

Pacient dále absolvoval Holterovo vyšetření EKG, echokardiograf a TEE k průkazu embolizace (negativní), a neurosonografické vyšetření. Z krevního vyšetření byla zjištěna hyperlipidémie.

2.2.3 Terapie

Pacientovi byla nasazena duální antiagregace a statin ke kompenzaci hyperlipidémie.

2.2.4 Ordinace léčebné rehabilitace

Dne 4. 3. 2015 byla panu S. K. ordinována léčebná rehabilitace po recidivujícím mozkovém infarktu v povodí ACM vlevo.
2.3 Zapojení autora do procesu léčebné rehabilitace

2.3.1 Anamnéza

- **Nynější onemocnění**: Pacient byl přijat na JIP neurologického oddělení 3. 3. 2015 pro recidivující mozkový infarkt NS. Potíže se objevily již 28.2, kdy pacient pociťoval slabost pravé horní končetiny, poté 2.3 pro přetrvávající obtíže navštívil svého ošetřujícího lékaře, kterým mu bylo doporučeno navštívit neurologii v IBC. Následně byl odeslán na CT mozku na soukromou kliniku Surgal. Tam mu byla podána medikace (Stacyl 100 mg 1 tableta) a odešel domů. Potíže se neupravily, ale naopak došlo ke zhoršení chůze a přechodně i řeči. Přítelkyně pacienta zavolala RZP, kterou byl transportován do nemocnice. Předchozí úraz hlavy pacient neguje.

- **Rodinná anamnéza**: V rodině se nevyskytlo žádné ze sledovaných chorob (hypertenze, DM, ICHS, IM). Tumory také přítomny nebyly.

- **Pracovní anamnéza**: Pracuje jako vedoucí malířské firmy, předtím byl těžce manuálně pracující (stavební dělník).

- **Sociální anamnéza**: Bydlí v rodinném domku s přítelkyní.

- **Sportovní anamnéza**: Nikdy nesportoval. Fyzická aktivita byla při předchozím zaměstnání.

- **Rehabilitační anamnéza**: Absolvoval rehabilitaci v roce 2013 v Úrazové nemocnici Brno po operaci šlach v levém rameni.
• **Abusus**: Kouří 10 cigaret denně, alkohol 1-2x týdně (pivo, příležitostně panák slivovice).

• **Alergie**: Neguje.

• **Farmakologická anamnéza**: Biofenac jednou denně.

• **Fyziologické funkce**: Tepová frekvence 62/min, tlak 110/60 mmHg. Močení a stolice bez potíží, nechutenstvím netrpí.

2.3.2 Vstupní vyšetření

Pacienta jsem převzala do péče 4. 3. 2015 na neurologické JIP I. Neurologické kliniky nemocnice u sv. Anny v Brně, druhý den po CMP. V tento den jsem provedla vstupní kineziologický rozbor, neurologické vyšetření, Barthel test, FIM a MMSE.

a) Kineziologický rozbor

• **Vědomí**: lucidní, orientován osobou, místem, časem, spolupracující

• **Celkový vzhled**: normostenik, pravák

• **Status praesens:**
 ➢ **Hlava** - normocefalická, bez traumatických změn, držená v ose. Obličej asymetrický z důvodu lehkého poklesu pravého ústního koutku, jinak mimika neporušena.
 ➢ **Krk** - pulsace na karotidách symetrická, štítná žláza nezvětšená, meningeální jevy nejsou přítomny.
 ➢ **Hrudník** - symetrický.
 ➢ **Břicho** - lehká hypotonie vpravo, převažuje břišní dýchání, dechová vlna fyziologická.
 ➢ **Pánev** - zřejmě symetrická (vyšetřovaný v poloze vleže na zádech)
 ➢ **Horní končetiny - LHK** bez deformit a otoků, konfigurace i držení v normě, leží volně podél těla. **PHK** leží podél těla, ramenní kloub ve vnitřní rotaci,
loket v mírné semiflexi, předloktí v pronaci, zápěstí a prsty v semiflexi. Otok ani bolest nejsou přítomny.

- **Dolní končetiny - LDK** v neutrální postavení, bez otoků a deformit. PDK v lehké zevní rotaci v kyčelním kloubu, koleno v extenzi, hlezno v lehké inverzi, prsty v extenzi. Nejsou patrné deformity ani otok. Bolest není přítomna. Bandáž celého bérce po prsty na obou DKK

- **Svalový tonus:** v normě, vpravo lehká hypertonie paže.

- **Trofika:** trofika kůže je v normě, turgor není snížen.

- **Změny polohy:** Pacient je schopen se vleže otocit na zdravou stranu s lehkou dopomocí, postiženou horní končetinu je schopen sám přesunout před tělo. Při otáčení na postiženou stranu není asistence potřebná. Při obou změnách polohy je stabilní. Sedu dosáhne s výraznějšíí pomocí. Sed je lehce nestabilní.

- **Hybnost:**

 - **Horní končetiny - LHK** aktivní pohyb bez omezení, pasivní pohyb nebolestivý, bez omezení v celém rozsahu, proti odporu rovněž. PHK v ramenním kloubu je aktivní pohyb bez omezení, elevace končetiny je nekoordinovaná (při pohybu vychyluje do stran), v loketním kloubu rovněž aktivní pohyb bez omezení, v zápěstí pohyb omezený, prsty jsou v aktivním pohybu plegické. Pasivní pohyby bez omezení a bolesti.

 - **Dolní končetiny - LDK** aktivní, pasivní pohyb a pohyb proti odporu bez omezení a bolesti. PDK aktivní, pasivní pohyb bez omezení, pacient zvládá i pohyb proti mírnému odporu.

- **Jemná motorika:** Na zdravé straně zcela bez omezení. Vlevo není jemná motorika přítomna z důvodu plegie pravé ruky.

- **Antropometrie:** Délky na obou horních končetinách jsou symetrické. V obvodových mích jsou lehké rozdíly v důsledku svalového hypotrofie z důvodu šetření pravé paže a plegie ruky. Dolní končetiny rovněž symetrické. Obvodové míry byly vpravo rovněž lehce odlišné z důvodu klidového režimu nemocného.

- **Svalová síla (orientačně):**

 - **PHK** - paže stupeň 3, předloktí stupeň 3, zápěstí stupeň 3, prsty stupeň 0.
 - **PDK** - stehno, běrce, hlezno, prsty stupeň 4.
 - **LHK** - svalová síla bez omezení.
 - **LDK** - svalová síla bez omezení.
b) **Neurologické vyšetření**

- **Hlavové nervy:**
 - I. n. oñfactorius - bez poruchy, čich normální.
 - II. n. opticus - zraková ostrost neporušena, zorné pole orientačně bez omezení.
 - III. n. oculomotorius, IV. n. trochlearis, VI. n. abducens - pohyby bulbů do všech stran bez omezení, ptóza víčka nepřítomna, dvojitě vidění není, zornice okrouhlé, izokorické.
 - VII. n. facialis - patrný pokles koutku vpravo při celení, úsměvu. Ostatní mimika bez omezení.
 - VIII. n. vestibulocochlearis - nystagmus nepřítomen, bez vertiga a poruchy sluchu, Hautantova zkouška negativní.
 - IX. n. glossopharyngeus, X. n. vagus, XII. n. hypoglossus - asymetrie měkkého patra vpravo, jazyk plazen středem a bez fascikulací, pacient udává poruchu polykání, patrná lehká dysatrie.
 - XI. n. accessorius - funkce m. trapezius a m. sternocleidomastoideus na obou stranách bez omezení.

- **Šlachově - okosticové reflexy:**
 - Horní končetina - bicipitový, tricipitový, styloradiální a reflex flexorů prstů jsou normálně výbavné, bez snížení či zvýšení oproti zdravé horní končetině.
 - Dolní končetina - adduktorový a patelární reflex na obou stranách symetrický, reflex Achillovy šlachy na obou stranách snížen.

- **Pyramidové jevy iritační:**
 - Horní končetina - Juster, Tromner, Hoffmann oboustranně negativní.
 - Dolní končetina - Babinski pozitivní vpravo, Chaddock, Oppenheim, Rossolimo, Žukovski - Kornilov oboustranně negativní.

- **Pyramidové jevy zánikové:**
 - Horní končetina - Mingazzini pozitivní vpravo (pokles cca 5 cm), Dufour pozitivní vpravo, Barré negativní.
Dolní končetina - Mingazzini pozitivní vpravo (pokles o 10 cm)

- Čtí:
 - Povrchové - bez poškození
 - Hluboké - vpravo lehce omezen pohybovit, jinak bez poškození
- Taxe a metrie: Vlevo taxe neporušena, vpravo na horní končetině ataxie, na pravé dolní končetině přestřelení o 5 cm.
- Neglect: nepřítomen
- Kognitivní funkce: pacient udává zhoršení paměti, zhoršení výbavnosti slov, patrná lehká dysatrie.

c) Barthel index - 40 bodů (viz Příloha č. 1)
d) FIM - 79 bodů (viz Příloha č. 2)
e) MMSE - 27 bodů (viz Příloha č. 3)

2.3.3 Krátkodobý rehabilitační plán

Dle provedeného vstupního vyšetření bych krátkodobý rehabilitační plán zaměřila zejména na obnovu funkce plegické pravé ruky, která je pro mého pacienta dominantní končetinou. Zvolila jsem proto míchování pro facilitaci pohybu, cvičení v představě, pasivní pohyby, mobilizace drobných kloubů ruky a zápěstí, metodu PNF, aproximaci, nácvik izolovaných pohybů prstů, popř. nácvik úchopů. Pacientovi je poskytnuta rovněž ergoterapeutická péče, která by měla mou snahu ještě podpořit.

Dále se zaměřím na prevenci vzniku paretického ramene, ke které využiji správné polohování končetiny, mobilizaci ramene a lopatky, metodu PNF, aproximaci a také aktivního pohybu s dopomocí zdravé horní končetiny. Protože nebyl u pacienta poškozen pohybový rozsah na postižené horní končetině, zaměřím se na obnovu svalové síly a koordinace pohybů pomocí pohybových diagonál bez i proti odporu a v oporových cvičeních.

Pacient je na lůžku samostatně mobilní, ale i v tomto případě bych chtěla nadále podporovat aktivizaci postižené pravé poloviny těla, aby nedošlo k výpadku z tělesného schématu, pomocí otáčení trupu a končetin na obě strany.

V důsledku hypotonie břišní stěny, která zároveň ovlivňuje nestabilitu sedu, zařadím do cvičební jednotky cviky aktivizující břišní svaly jako je elevace pánve, překládání dolních
končetin na obě strany, propojení pohybových diagonál pánve a lopatky proti odporu a dále pak balanční cviky v sedu, které také umožní zapojení trupového svalstva, a zároveň tím natreňujeme stabilitu potřebnou ke stoji a chůzi.

Díky zachovalé mobilitě postižené dolní končetiny mohu zařadit cviky k znovuzískání síly a stability dolní končetiny, která neodmyslitelně patří k základům stojí a chůze. Chci ji ovlivnit pomocí a odporových cvičení (odporová trojflexe vleže i sedu, diagonální pohyby pánve a dolní končetiny proti odporu).

Kvůli lehké dysartrii a poruše polykání doporučuji péči logopeda.

2.3.4 Průběh rehabilitace

První setkání 4. 3. 2015

Poté, co jsem se seznámila s pacientem, jsem odebrala anamnézu, provedla kineziologický rozbor, neurologické vyšetření a provedla tyto testy: hodnocení funkční nezávislosti (FIM) - skóre 79 bodů, MMSE - skóre 27 bodů a Barthel Index pro zhodnocení personálních ADL - 40 bodů (formuláře viz Příloha 1, 2, 3). Z Barthel Indexu vyplývá, že pan S. K. je vysoce závislý v každodenních běžných činnostech. Výsledek MMSE je velice dobrý a neudává postižení kognitivních funkcí.

Druhé setkání 5. 3. 2015

Pacient byl mírně unavený, špatně se mu spalo. Nicméně spolupráce byla bez problému. Naší cvičební jednotku jsme začali vleže na zádech. Provedla jsem takticky stimulací pravé horní končetiny pomocí molitanového míčku a následně gumového ježka. Po této přípravě jsme se dali do cvičení obou pohybových diagonál horní končetiny obou vzorů, zatím bez

Dále jsme přešli na cviky dolní končetiny, kde jsme prováděli pasivní a následně aktivní trojfleksi, rotace v kyčelním kloubu a zkrácenou diagonální pohyby končetiny zaměřenou na akrum, zatím bez odporu.

Pokračovala jsem dále s aktivací trupového svalstva překládáním flektovaných dolních končetin na obě strany, následně pacient elevoval pánev nad podložku a při pokládání nasedal na pravou hýždi, znovu elevoval pánev do osy a při pokládání nasedal na levou hýždi, což bylo pro pacienta náročné, proto jsem se rozhodla zatím tento cvik nezařazovat.

Dalším cvikem naší jednotky bylo přetáčení na jeden a následně na druhý bok s flektovanými dolními končetinami. Pohyb jsem rozfázovala tak, že pacient spojil před tělem své horní končetiny a nejprve s jejich pomocí otočil trup a následně dorotoval dolní končetiny. Pohyb zpět do výchozího postavení vleže na zádech začal dolními končetinami a poté dorotoval trup. Po několika zopakování jsem panu S. K. dala pokyn, aby zůstal ležet na boku.

Pokračovala jsem mobilizací lopatky a diagonálami lopatky, nyní ještě bez odporu. Tím jsem chtěla zamezit rozvoji bolestivosti, ztuhlosti postiženého ramene a zapojení mezilopatkových svalů a svalstva trupu. Této polohy jsem využila také pro provádění diagonální pánve, zatím rovněž bez odporu. Tyto diagonály nám imitují krokový mechanismus, který bychom chtěli dále rozvíjet ve vertikální poloze.

Jako poslední jsem s pacientem provedla sed, ke kterému potřeboval malou dopomoc. Dolní končetiny byly spuštěny z lůžka, chodidla se dotýkala podlahy, sed byl lehce nestabilní, hýždě nebyly zatíženy symetricky. Pan S. K. seděl několik minut a poté jsme vyzkoušeli stoj.
Stoj byl lehce nestabilní, PDK mírně podklesávala. Pacient s oporou o má ramena vyzkoušel přenést váhu z jedné DK na druhou. Chvíli stál, ale pak se posadil a lehl si.

Před odchodem jsem zapolohovala rameno jako prevenci vzniku paretického ramene a instruovala pacienta k taktilní stimulaci horní končetiny pomocí gumového ježka, kterého měl k dispozici.

Třetí návštěva 6. 3. 2015

Pacient se stále cítil unavený, ale byl v dobré náladě. Stěžoval si na nepohodlnost nemocničních lůžek.

Při příchodu jsem si všimla, že na postižené horní končetině z dorzální strany předloktí a dlaně se pacientovi objevily hematomy. Pacient mi sdělil, že byl zřejmě příliš horlivý při taktilní stimulaci, proto jsem ho zainstruovala znovu.

Cvičení jsme zahájili mostěním, kde jsem pozorovala zlepšení v koordinaci v průběhu elevace pánev. Byla však nutná stále opora akra postižené DK a zajištění proti vyrotování kyčle ze vzniku důvodu oslabených vnitřních rotátorů. Dále pacient překládal flektované končetiny na obě strany.

Dalším cvikem bylo rozfázované otáčení na obě strany se sepjatými horními končetinami před tělem. Trup a HKK začínají pohyb a flektované DKK pohyb ukončují. Pohyb zpět do výchozího postavení na zádech se děje v opačném pořadí.

Vyzvala jsem pacienta, aby zůstal v poloze na boku a provedla mobilizaci lopatky a obě její pohybové diagonály. Dnes jsem poprvé zařadila jejich provádění proti odporu. Pan S. K. je prováděl velice hezky, zvládl 5 opakování. Pokračovala jsem v obou diagonálách páneve, které jsme také vyzkoušeli provést také proti odporu. To na pacienta bylo dost náročné a cítil se potom unavený. Dala jsem mu kratší oddych.

Naše cvičení bylo přerušeno, protože na S. K. musel absolvovat CT vyšetření. Na jeho návrat jsem nečekala, protože se jevil už dost unavený.

Čtvrtá návštěva 9. 3. 2015

Při příchodu na neurologickou JIP mi bylo sděleno, že pan S. K. byl přeložen na standardní pokoj. Našla jsem ho v dobré náladě. Byl rád, že se zbavil monitorovacích
přístrojů a s nimi související kabeláže. Sdělil mi, že v sobotu u něj proběhla rehabilitace. Zároveň byl však frustrován, že akrum PHK stále není aktivní. Stěžoval si na křeče v dlani a mírnou bolest v ramenním kloubu.

Začali jsme cvičební jednotku od PHK. Začala jsem nejprve jemnou taktilní stimulaci molitanovým měchtem, následně pacient procvičil aktivně ramenní kloub za pomoci druhorostranné HK (ruce propletény prsty) do flexe. Zainstruovala jsem ho, aby si tento pohyb prováděl poté i během dne jako prevenci ztuhnutí a bolestivosti. Dále jsme přesli na aktivní pohyb v loketním kloubu a s dopomocí provedli pohyb v zapětí. Pohyby ve všech kloubech byly prováděny do všech fyziologických směrů a v maximálním možném rozsahu.

Zmobilizovala jsem drobné klouby ruky a palce a následně se zaměřila na pasivní pohyby. Při tom jsem vyzvala pacienta, aby si pohyby představoval, jako by je prováděl on sám. Poté jsem vyzvala pacienta, aby se snažil provést pohyb v plegickém akru, kdy předloktí bylo v supinaci. Pacient s velkým soustředěním provedl 2x za sebou téměř plnou extenzi prstů a palce následovanou jejich plnou flexí. Poté jsem předloktí uvedla do neutrálního postavení a pacient se pokoušel pohyby zopakovat. V tomto postavení byl pohyb více omezen, možná pro únavu. Dále jsme prováděli PNF na PHK.

Pan S. K. posléze prováděl mostění, kde došlo k výraznému zlepšení. Již jsem nemusela dávat oporu akru ani nedocházelo v konečné poloze k rotaci kyčle zevně. Pohyb byl plynulý a koordinovaný. Dále následovalo přetáčení pánev do stran s flektovanými DKK.

V poloze na zdravém boku jsme prováděli mobilizaci lopatky a obě diagonály lopatky proti odporu k aktivaci mezilopatkových svalů a svalstva trupu. Poté jsme zařadila diagonály
pánve také proti odporu, kde bylo mým cílem zapojení břišního svalstva. Když jsem zjistila, že pacient toto vše ovládá, zkombinovala jsem diagonály lopatky a pánve. Prvním cvikem byla kombinace odporové anteriorní elevace lopatky s posteriorní depresí pánve a druhým cvikem kombinace odporové posteriorní deprese lopatky s anteriorní elevací pánve. Pacient udával namáhavost tohoto cviku, a proto jsem zvolila jen 2 opakování. Bez odporu zvládl 5 opakování každého cviku.

Na konci cvičení se pan S. K. posadil zcela samostatně, pár minut seděl a poté si samostatně stoupl. Stoj byl stabilní, ale raději jsem pacienta přidržovala za pánev, jeho ruce se opíraly na má ramena. V tomto postavení přenášel váhu z jedné DK na druhou, provedl výstup ze špiček na paty a úkroky do stran.

Pátá návštěva 10. 3. 2015

Využila jsem polohy pacienta v sedu, který jsme s pacientem ještě upravili (chodidla se dotýkala podlahy, kolenní a kyčelní klouby v 90° flexi), a zahájila cvičební jednotku procvičením krční páteře do anteflexe, lateroflexe na obě strany, rotaci a provádění půloblouků na obě strany. Retroflexi jsem vyloučila z důvodů diagnózy pacienta a možnosti útlaku a. vertebralis a následného kolapsu.

na DKK jsme prováděli cviky dle Frenkela (např. dotyk pat, střídavý dotyk špiček a pat a přikládání paty na protilehlé koleno).

Ve cvičební jednotce jsme se dále přesunuli na PHK, kde jsem si nejprve ozřejmila, zda nedošlo ke zhoršení aktivního pohybu v ramenním kloubu v důsledku jeho předchozí bolestivosti. Ke zhoršení nedošlo, bolest se upravila. Navázala jsem tedy PNF na PHK, kde jsem využila obou diagonál a vzorů. Vyzkoušela jsem klást odpor, který jsem upravila schopnostem pacienta. Dále jsem se věnovala akru PHK, kde se pophyblivost zatím nezlepšila. Provedla jsem jemnou taktilní stimulaci, mobilizaci drobných kloubů ruky a palce a zakončila jsem pasivním pohybo k zamezení ztuhlosti kloubů a zachování jejich rozsahu.

K podpoře svalstva trupu a břicha prováděl mostění a rotaci pánve do stran s flektovanými DKK. V důsledku zlepšení koordinace a svalové síly jsem opět zařadila cvik, při kterém pacient elevuje pánev nad podložku a při pokládání nasedá na pravou hýždi, znovu elevuje pánev do osy a při pokládání nasedá na levou hýždi.

Na konec cvičební jednotky jsem v poloze na boku ovlivnila mobilizačními technikami lopatku. Pokračovala jsem s PNF lopatky (obě diagonály) bez i proti odporu, dále PNF pánve (obě diagonály) bez i proti odporu a kombinací diagonál lopatky a pánev proti odporu.

V sedu jsme dále prováděli odporovou trojflexi na zdravou DK, kde pacient mírně elevoval cvičící končetinu a PDK byla tak nucena jít do opory. Cvik jsme zopakovali 5x. Poté jsem zařadila balanční cvičení, kdy pacient přenášel váhu z jedné strany těla na druhou, lokty byly extendované, opora byla o dlaně v pronaci a dorzální flexi. Z toho důvodu, že se objevila bolestivost v zápěstí (pacienta uvádí, že jej zápěstí bolelo ještě před vznikem CMP) a také pro zvýšení obtížnosti, prováděl následně stejné cvik, ale s oporou u předloktí (lateroflexe z horního trupu). Několikrát zopakoval. Tímto cvikem zjistovala aferenci z PHK do centra díky aktivaci proprioreceptorů. V dalším cviku měl za úkol dotknout se mě dlaně v různých výškách a rovinách křížno přes střední rovinu nejprve dlaní zdává HK, čímž se stimuluje trupové svalstvo, upevňuje sed a oporu pravé ruky. Následně cvik prováděl PHK, kde tento cvik mino jiné napomáhá správné taxí končetiny.

Vyzvala jsem pacienta, aby si stoupil, a poté jsme se šli projít na chodbě. Jistila jsem pacienta za jeho PHK. Ušli jsme 200 m, chůze byla opět lehce nestabilní, chodidlo po chvíli opět zaostávalo a bylo taženo po podlaze. Ukončili jsme chůzi a vrátili se do pokoje.
Šestá návštěva 11. 3. 2015

Pacient udával nevyspání a únavu, proto jsem rozhodla dnešní cvičební jednotku poněkud zkrátit.

Vleže na zádech jsme provedli nejprve PNF na PHK obě diagonály a oba vzorce proti mírnému odporu, pokračovala jsem facilitací postiženého akra pomocí míčkování, dále mobilizace malých kloubů ruky a palce s následnými pasivními pohyby. Poté jsem přenesla pozornost k PDK, kde jsme prováděli zkrácené diagonály zaměřené na akrum v rámci metodiky PNF. Diagonály byly prováděny proti odporu, přičemž na konci pohybu jsem vyzvala pacienta k mírné elevaci PDK, čímž jsem chtěla dosáhnout maximálního zapojení m. quadriceps femoris, zejm. m. vastus medialis, intermedius a rectus femoris.

Poté se pacient samostatně posadil, chodidla ležela na podložce, chvíli seděl a následně vstal. Chůze byla dnes zcela samostatná, pacient více flektoval koleno a zvedal chodítko nad podložku, čímž chtěl zamezit tažení chodidla po podlaze. Zainstruovala jsem ho, aby tak nečinil, z důvodu možného zafixování špatného vzoru chůze. U bradel jsme nacvičovali přenos váhy z jedné DK na druhou, výpady, přenos váhy ze špiček na paty, úkroky do stran a modifikace chůze. Nabádala jsem ho k držení bradel oběma rukama, aby neustále docházelo k přísunu informaci z akra PHK do centra.

Při chůzi po chodbě ušel 200 m. Cvičební jednotku jsem více neprolužovala a zavedla pacienta zpět na pokoj.

Sedmá návštěva 12. 3.2015

Dnes se pacient cítil více odpočatý, únava byla minimální. Po krátkém rozhovoru jsem se dověděla, že pravá ruka se začíná pomalu zlepšovat. Zvládl válcový úchop a stavěl kostky na sebe pod dohledem ergoterapeutky, která má pana S. K. v péči.

Cvičební jednotku jsem začala cviky na PDK vleže na zádech. Cvičili obě pohybové diagonály s oběma vzorcí v rámci PNF DK, prováděné nejprve bez a poté i s odporom. Pan S. K. si toto cvičení velice chválil, protože cítil zlepšení v síle a stabilitě PDK při chůzi, což bylo ostatně mým cílem. Dále jsme prováděli rytmickou stabilizaci kyčelního kloubu. Přešli jsme na odporovou trojflexi na zdravé DK (PDK byla ve flexi jak v kyčelním tak i kolenním kloubu, chodidlo leželo na lůžku), kdy ciflem bylo zapojení PDK do opory o lůžko. Posléze jsme se přesunuli k nácviku taxe dle Frenkela (viz výše).
Nevynechali jsme ani mostění a rotaci pánve na obě strany, elevaci pánve s následným střídavým nasedáním na jednu a druhou hýždi k posílení trupového svalstva.

V poloze na zdravém boku jsem ovlivnila mobilizačními technikami lopatku, pokračovali jsme jejími diagonálami bez i proti odporu. Následně jsme zkombinovali diagonály lopatky a pánve pro zpevnění trupového a mezilopatkového svalstva. Pacient zvládl vícero opakování.

Následovala změna polohy do sedu, kde pacient prováděl opakovou trojflexi, balanční cviky (lateroflexe z horního trupu) a rytmickou stabilizaci sedu, kdy jsem silou působila na pacienta a snažila se ho vychýlit ze zaujaté pozice vsedě do různých směrů.

Osmá návštěva 13. 3. 2015

Dnes po příchodu na pokoj jsem zde zastihla ergoterapeutku, které se věnovala nácviku ztracené funkce ruky. Proto jsem ze cvičební jednotky vynechala cviky na akrum, aby nedošlo k přetížení a následné regresi.
Pan S. K. se dnes cítil velmi dobře, únavu neguje. Je pozitivně naladěn díky zlepšující se funkci pravé ruky.

V poloze vleže na zádech jsme prováděli aktivní pohyb v ramenním kloubu, lokti a zápěstí do všech rovin a do max. rozsahu. Dále jsme se věnovali PNF PHK bez i proti odporu a nácviku taxe. Poté jsme se věnovali PDK. Začali jsme aktivními pohyby ve všech rovinách do max. rozsahu, následovala rytmická stabilizace kyčelního kloubu. Dalším bodem bylo PNF PDK bez i proti odporu, kde jsem se dnes více zaměřila na akru. Pacient prováděl diagonály proti odporu a v konečné poloze DK lehce nadzvedl nad podložku. Dále jsme nacvičovali taxi dle Frenkela.

Vzhledem ke zlepšujícím se motorickým a koordinačním dovednostem pacienta jsem zařadila do cvičební jednotky polohu na čtyřech v opoře o předloktí (ve známené poloze v opoře o dlaně udává bolest zápěstí). Cviky prováděl na karimatce, kterou jsem přinesla. Zkorigovala jsem polohu horních i dolních končetin. Ramenní klouby svírají pravý úhel s trupem, stejně tak klouby kyčelní. Lokty jsou v 90º flexi a uloženy v ose pod rameny, kolena rovněž v 90º a uloženy v ose pod kyčlemi. Ramena jsou odtázena od uší. Pacient přenáší váhu na HKK a posléze na DKK, čímž dochází k aproximaci do kloubů a zvýšení aference do mozku, posílení zádového, trupového i končetinového svalstva a nácviku stability. Modifikací toho cviku je vzpálování jedné a druhé HK. Smyslem totéž co v předchozím cviku. Pan S. K. zvládl 10 opakování a uznal, že tento cvik je namáhavý, ale unavený se necítil.

Pak se pacient samostatně přesunul do pozice vsedě. Hlava se netočila, sed byl stabilní. Vyzvala jsem pana S. K., aby se dotkl mé dlaně svou zdravou HK přes střední rovinu, opět jsem se snažila o zvýšení stability sedu, nácvik rovnováhy a taxe. V sedu jsem provedla ještě rytmickou stabilizaci sedu a odporovou trojflexi na zdravou DK.

Na konci cvičení jsme se s panem S. K. šli projít po chodbě. Při chůzi jsem pozorovala zlepšení, PDK se normálně odvíjela od podložky, chodidlo nebylo taženo po podlaze. U bradel prováděl nácvik švihové fáze kroku, výpady, modifikace chůze (u některých z nich byla chůze nejistá) a rytmickou stabilizaci stojů. Bradel se držel oběma rukama. Pacient ušel 250 m.
Devátá návštěva 16. 3. 2015

Zastihla jsem pacienta v sedu na lůžku, byl dobře naladěn, únavu necítil, spal dobře.

V poloze vleže na zádech jsem věnovala pozornost akru PHK, kde jsem ji nejprve taktilně nastimulovala, provedla mobilizace drobných kloubů a následně pacient prováděl aktivní pohyby do flexe, extenze, abdukce a addukce prstů a palce, dále opozici palce a nakonec jsme se zaměřili na provádění úchopů s opozicí palce.

V sedu měl pacient za úkol vzít plastový kalíšek, který jsem měla položený na dlani, položit na lůžko a vrátit ho zpět na mou dlani. Tímto cvikem jsem zároveň obsáhla cvičení taxe PHK. Pacient zvládal a 5x tento pohyb zopakoval. Dále jsme cvičili přenos váhy z jednoho předloktí na druhé, rytmickou stabilizaci sedu a odporovou trojflexi na zdravou DK.

Pacient se na mě požádání přesunul na karimatku do pozice na čtyřech v opoře o předloktí, kde nacvičoval přenášení váhy z HKK na DKK. Tomu předcházela úprava pozice (viz výše). Poté vzpázoval jednu a druhou HK. Dalším cvikem bylo zanožování jedné a následně druhé DK. Pan S. K. vše zvládal, každý cvik zopakoval 10x.

Tím jsem cvičební jednotku ukončila a nadnesla, co se bude dít následující den.

Desátá návštěva 17. 3. 2015

V den posledního setkání jsem provedla výstupní vyšetření pacienta skládající se z výstupního kineziologického rozboru a neurologického vyšetření. Pro zhodnocení jsem provedla FIM test a Barthel Index a MMSE.

a) Kineziologický rozbor

- **Vědomí:** lucidní, orientován osobou, místem, časem, spolupracující
- **Celkový vzhled:** normostenik, pravák
• **Status praesens:**
 - **Hlava** - normocefalická, bez traumatických změn, držená v ose. Obličej symetrický, mimika neporušena
 - **Krk** - pulsace na karotidách symetrická, štítná žláza nezvětšená, meningeální jevy nejsou přítomny
 - **Hrudník** - symetrický
 - **Břicho** - lehká hypotonie vpravo, převažuje břišní dýchání, dechová vlna fyziologická
 - **Pánev** - symetrická
 - **Horní končetiny** - LHK bez deformit a otoků, konfigurace i držení v normě, leží volně podél těla. PHK leží podél těla, ramenní kloub ve vnitřní rotaci, loket v mírné semiflexi, předloktí v pronaci, zápěstí a prsty v semiflexi. Otok ani bolest nejsou přítomny
 - **Dolní končetiny** - LDK v neutrální postavení, bez otoků a deformit. PDK v neutrálním postavení v kyčelním kloubu, koleno v extenzi, hlezno v lehké inverzi, prsty v extenzi. Nejsou patrné deformity ani otok. Bolest není přítomna
 - **Změny polohy:** pacient bez pomoci zvládá otáčení na zdravou i postiženou stranu. Pohyby při otáčení jsou koordinované. Sedu i stoj je dosáhne sám bez asistence
 - **Vyšetření sedu:** sed je stabilní bez titubací, obě hýždě zatíženy stejně
 - **Vyšetření stoj:** stoj je stabilní, DKK ve fyziologickém postavení
 - **Hybnost:**
 - **Horní končetiny** - LHK aktivní pohyb bez omezení, pasivní pohyb bez omezení a bolesti, proti odporu rovněž. PHK v ramenním kloubu, loketním kloubu a zápěstí je aktivní pohyb bez omezení. Prsty jsou v aktivním pohybu lehce omezené, při dokončení pohybu do extenze je nutné pasivní dotažení, flexe je zcela samostatná. Pohyby v rameni, lokti a zápěstí pacient zvládá proti maximálnímu odporu. Pasivní pohyby bez omezení a bolesti.
 - **Dolní končetiny** - LDK aktivní, pasivní pohyb a pohyb proti odporu bez omezení a bolesti. PDK aktivní, pasivní pohyb bez omezení, pacient zvládá pohyb proti maximálnímu možnému odporu.
 - **Svalový tonus:** v normě na obou HKK i DKK
 - **Trofika:** trofika kůže je v normě, turgor není snížen
• **Jemná motorika:** Na zdravé straně zcela bez omezení. Vpravo pacient ovládá dlanívá úchopy, prstové zatím neovládá. Při psaní a pítí jsou nutné kompenzační pomůcky pro širší úchop.

• **Antropometrie:** Délky na obou horních končetinách jsou symetrické. V obvodových mírách jsou stále lehké rozdíly v důsledku svalové hypotrofie. Dolní končetiny bez výrazných odchylek. Obvodové míry DKK jsou téměř stejné, bez rozdílu.

• **Svalová síla (orientačně):**
 - **PHK** - v zápěstí a prstech svalová síla lehce snížená (st. 4), jinak bez omezení (st. 5)
 - **LHK** - bez omezení ve svalové síle
 - **PDK** - bez omezení (st. 5)
 - **LDK** - bez omezení.

b) **Neurologické vyšetření**

• **Hlavové nervy:**
 - **I. n. olfactorius** - bez poruchy, čich normální
 - **II. n. opticus** - zraková ostrost neporušena, zorné pole orientačně bez omezení
 - **III. n. oculomotorius, IV. n. trochlearis, VI. n. abducens** - pohyby bulbu do všech stran bez omezení, ptóza víčka nepřítomna, dvojité vidění není, zornice okrouhlé, izokorické
 - **V. n. trigeminus** - citlivost obličeje na obou stranách neporušena, bolestivost výstupů jednotlivých větví nepřítomna. Motorická funkce bez omezení. Masseterový reflex výbavný bez zjevného zvýšení.
 - **VII. n. facialis** - oproti vstupnímu vyšetření pokles koutku vpravo již nepřítomen. Mimika bez omezení.
 - **VIII. n. vestibulocochlearis** - nystagmus nepřítomen, bez vertiga a poruchy sluchu, Hautantova zkouška negativní.
 - **IX. n. glossopharyngeus, X. n. vagus, XII. n. hypoglossus** - patrové oblouky, patro a uvula symetrické, jazyk plazí středem, bez fascikulací, bez poruchy polykání, přítomna lehká dysartrie.
 - **XI. n. accessorius** - funkce m. trapezius a m. sternocleidomastoideus na obou stranách bez omezení.
• Šlachové - okosticové reflexy:
 ➢ *Horní končetina* - bicipitový, tricipitový, styloradiální a reflex flexorů prstů jsou výraznější na PHK.
 ➢ *Dolní končetina* - adduktorový a patelární reflex na obou stranách symetrický, reflex achillový šlachy na obou stranách snížen.

• Pyramidové jevy iritační:
 ➢ *Horní končetina* - Juster, Tromner, Hoffmann obousměrně negativní.
 ➢ *Dolní končetina* - Babinski pozitivní vpravo, Chaddock, Oppenheim, Rossolimo, Žukovski - Kornilov obousměrně negativní.

• Pyramidové jevy zánikové:
 ➢ *Horní končetina* - Mingazzini negativní, Dufour pozitivní vpravo, Barré negativní
 ➢ *Dolní končetina* - Mingazzini negativní

• Čítí:
 ➢ *Povrchové* - bez poškození
 ➢ *Hluboké* - vpravo lehce omezen pohyb, jinak bez poškození

• **Taxe a metrie:** bez poškození.

• **Neglect:** nepříznivý.

• **Kognitivní funkce:** pacient udává zhoršení výbavnosti slov, patrná lehká dysatrie.

 c) **Barthel index** - 90 bodů (viz Příloha č. 1)
 d) **FIM** - 114 bodů (viz Příloha č. 2)
 e) **MMSE** - 28 bodů (viz Příloha č. 3)

2.4 Dlouhodobý rehabilitační plán

K dlouhodobému rehabilitačnímu plánu bych ještě přihlásil kompenzaci hyperlipidémie pacienta jako prevenci vzniku dalšího iktu a s tím související úpravu stravovacího režimu.
Pacient jako vedoucí malířské firmy má nyní sedavé zaměstnání, doporučila bych mu tedy přiměřenou tělesnou aktivitu např. v podobě procházek po zpevněném povrchu, v parku nebo v lehčím terénu, čímž se zlepší svalová síla končetin a stabilita chůze, nebo cyklistiky. Z počátku tyto aktivity provádět vždy doprovodem.

Doporučuji také pokračovat ve svých koníčích a zálibách, např. v chovu králíků, který nejen pacienta aktivizuje po stránce fyzické ale i psychické.

Pacient nadále pokračuje v logopedické péči v důsledku lehké dysartrie, dále bych doporučila kognitivní terapii zaměřenou na paměť a výbavnost slov, čímž se rovněž pozvedne pacientova psychika při komunikaci s okolím.

2.5 Závěr

Bakalářskou práci na toto téma jsem si vybrala proto, že se jedná o téma velmi aktuální a zajímavé téma. Objevuje se čím dál více případů a nejen u jedinců v důchodovém věku ale i u osob v produktivním věku a je mi jasné, že léčba CMP bude v budoucnu mým denním chlebem.

Nervová soustava člověka je složitý mechanismus, který mě vždy fascinoval svou rafinovaností a zlomkem tajemství, které nám bylo zatím odhaleno. Je důležité si uvědomit, jak málo stačí a i drobné poškození sebou nese životohrozující stav. V dnešní době existuje vyvinutá terapie ke zvládání jak ischemické tak hemorrhagické CMP. Procedury léčby se stále zrychlují, ale délka léčby následků zůstává bohužel stejná. I když žijeme v moderní době, regeneraci mozkové tkáně zatím medicína urychlit nedokáže.

Jsem ráda, že jsem mohla být součástí léčby pana S. K. a vidět jeho postupné zlepšování, kterému jsem se snažila ze všech sil napomoci. Léčba iktu započtuje nepřeberné množství metod, které mohou být aplikovány (zejména metody na neurofyzio logickém podkladu). Bohužel většinu z nich zatím neovládám, a proto jsem byla nesmírně vděčná za jakokoli radu a ukázku z nich.

V budoucnosti bych se chtěla tomuto onemocnění více věnovat, ponořit se do hloubek nervového systému a pomoci léčení jedinců touto chorobou postižených.
3 SEZNAM POUŽITÉ LITERATURY

3.1 Knížní zdroje

- NOVOTNÁ, Martina a Petr HERLE. *Neurologie pro všeobecné praktické lékaře*. Praha: Raabe, c2012, 186 s. ISBN 9788087553312
• PODĚBRADSKÝ, Jiří a Radana PODĚBRADSKÁ. Fyzikální terapie: manuál a algoritmy. Praha: Grada, 2009, 200 s. ISBN 978802472899
• ŠKODOVÁ, Eva a Ivan JEDLÍČKA. Klinická logopedie. 2. aktualiz. vyd. Praha: Portál, 2007, 615 s., viii s. barev. obr.příl. ISBN 9788073673406

3.2 Internetové zdroje

• Cévní mozkové příhody - rehabilitace. Medicabáze.cz [online]. 2007 [cit. 2014-10-01]. Dostupné z: http://medicabaze.cz/index.php?sec=term_detail&categId=27&cname=Rehabilita%C4%8Dn%C3%AD+a+fyzik%C3%A1ln%C3%AD+medic%C3%ADna&termId=1392&name=C%C3%A9vn%C3%AD+mozk%C3%A9+p%C5%99%C3%ADhody+-+rehabilitace&h=empty#jump
4 PŘÍLOHY

Příloha 1. Barthel Index pana S. K. ze dne 4. 3. a 17. 3. 2015

Příloha 2. FIM pana S. K. ze dne 4. 3. 2015 a 17. 3. 2015

Příloha 3. MMSE pana S. K. ze dne 4. 3. 2015 a 17. 3. 2015
Příloha 1. Barthel Index pana S. K. ze dne 4. 3. a 17. 3. 2015

Barthel Index
(pro hodnocení personálních ADL)

Jméno: S. K.

POLOŽKA

1. Najedení, napití
 samostatně 10b s pomocí 5b. neprovede 0b.
2. Oblékání
 samostatně 10b s pomocí 5b. neprovede 0b.
3. Koupání
 samostatně nebo s pomocí 5b neprovede 0b.
4. Osobní hygiena
 samostatně nebo s pomocí 5b neprovede 0b.
5. Kontinence moči
 plně kontinentní 10b. občas inkontinentní 5b
 inkontinentní 0b.
6. Kontinence stolice
 plně kontinentní 10b. občas inkontinentní 5b
 inkontinentní 0b.
7. Použití WC
 samostatně 10b. s pomocí 5b. neprovede 0b.
8. Přesun lůžko-židle
 samostatně 15b. s malou pomocí 10b.
 vydrží sedět 5b. neprovede 0b.
9. Chůze po rovině
 samostatně nad 50 m 15b
 s pomocí 50m 10b.
 na vozíku 50 m 5b neprovede 0b.
10. Chůze po schodech
 samostatně bez pomocí 10b
 s pomocí 5b
 neprovede 0b.

Hodnocení:
0 - 40 bodů
vysoce závislý v bazálních všedních činnostech
41 - 60 bodů
závislost středního stupně
61 - 95 bodů
závislost lehčího stupně
100 bodů
nezávislý

Vstupní vyšetření: 40b

Test vyhotovil: KOVÁŘOVÁ IVAN
Dne: 4.3.2015

Výstupní vyšetření: 90b

Test vyhotovil: KOVÁŘOVÁ IVAN
Dne: 14.3.2015

Pracoviště: ..
Příloha 2. FIM pana S. K. ze dne 4. 3. 2015 a 17. 3. 2015
Příloha 3. MMSE pana S. K. ze dne 4. 3. 2015 a 17. 3. 2015

MINI-MENTAL STATE EXAMINATION (MMSE)
„Dám Vám několik otázek a budete řešit některé problémy. Prosím, pokuste se odpovídat, jako to nejlépe dokážete.“ Za každý správně provedený úkol zatrahujte □ .
C. Pozornost a počítání
Začněte od 100 a odečítajte po 7. Skončete po 5-ti odečtech. Jestliže se nemocný zmýlí a další výsledky jsou proto posunuty, skořujte jako jednu chybu.

☐ 93 ☐ 86 ☐ 79 ☐ 72 ☐ 65

Jestliže nemocný nemůže, nebo nechce počítat, požádejte ho:

Hláskujte např. slovo POKRM.
Opakujte nanejvýš třikrát, až nemocný rozumí. Skóre je počet písmen ve správném pořadí (tedy např. MRKOP=5, PKORM=3).

☐ ☐ ☐ ☐ ☐

D. Výbavnost
Toč, prosím, mi řekněte ta tři slova, která jste si měl(a) zapamatovat. (Na odpověď dejte 10 vteřin).

☐ lopata
☐ šátek
☐ váza

E. Pojmenování předmětu
☐ Jak se to jmenuje? (Ukažte náramkové hodinky).
☐ Co je to? (Ukažte tužku).

F. Opakování
Opakujte po mně větu:
☐ „Žádná kdyby nebo ale“ (Na odpověď nechte 10 vteřin. Skórujte 1 jen za celou větu a jen na první pokus).

G. Třístupňový příkaz
Přečtěte nemocnému následující příkaz a deje mu do ruky kus prázdného papíru.

Vezměte do ruky tento papír, přeložte ho na polovinu a položte na podlahu.
(Ponechejte nemocnému na provedení 30 vteřin. Za každý provedený stupeň skořujte jeden bod).

☐ 1. stupeň: pravá ruka
☐ 2. stupeň: složení na polovinu
☐ 3. stupeň: položení na podlahu

H. Čtení a vyhovění příkazu
Zavřete oči.

1. Psaní
 □ Přečtěte nápis na papíře a udělejte, co žádáte.
 (Nechte nemocnému 10 vteřin na provedení příkazu, instrukci můžete opakovat maximálně třikrát. Skóre je na místě jen tehdy, jestliže nemocný skutečně zavře oči).
 Pacient [nápis]

 □ Napište jakoukoli větu.
 (Nechte nemocnému na provedení 30 vteřin. Věta by měla mít podstatné jméno a sloveso a musí mít smysl. Pravopisné chyby nevadí).

J. Opisování

□ Dejte nemocnému papír, tužku a prýž. Ukažte mu obraz a požádejte ho, abyst obraz obkreslil. Ponechte mu několik pokusů během [1 minuty].
 (Skórujte jako 1, jestliže jsou zachovány všechny strany a úhly a jestliže protáhnete vytváří čtyřúhelník. Tremor a rotace nevadí).

Výstupní vyšetření: datum: [17.3.2016] skóre: [86]

Zhotovil: [Iva Kalusková]