Význam enzymových testů při vyšetření nepravidelných protilátek proti erytrocytům

Bakalářská práce
v oboru zdravotní laborant

Vedoucí bakalářské práce: MUDr. Alena Pejchalová
Autor: Pavlína Hynková

Brno, duben 2013
Jméno a příjmení autora: Pavlína Hynková

Název bakalářské práce: Význam enzymových testů při vyšetření nepravidelných protilátek proti erytrocytům

Pracoviště: Městská nemocnice Ostrava

Vedoucí bakalářské práce: MUDr. Alena Pejchalová

Rok obhajoby bakalářské práce: 2013

Abstrakt:
Vyšetření antierytrocytárních protilátek patří k základním imunohematologickým testům. Je součástí předtransfuzního vyšetření a jeho podstatou je detekce nepravidelných antierytrocytárních protilátek. Protilátky vznikají jako reakce buněk imunitního systému na kontakt s cizorodým antigenem a mohou být přičinou potransfuzní reakce při podání antigenně neshodných erytrocytů imunizovanému příjemci. Prokázat klinicky významné protilátky proti erytrocytům a určit jejich specifitu jsou kroky, které umožní zajistit pro pacienta vhodnou transfuzi, což je hlavním cílem předtransfuzního vyšetření.

Předmětem mé práce je stanovit význam použití enzymového testu při rutinním screeningovém vyšetření antierytrocytárních protilátek. Na základě analýzy souboru údajů zhodnotit, zda se jedná o důležité vyšetření, a to s ohledem na možné klinické návaznosti tj. v kontextu potransfuzní hemolýzy.

Klíčová slova:
antigen, protilátky, aglutinace, enzym

Souhlasím, aby má práce byla půjčována ke studijním účelům a byla citována dle platných norem.
Prohlašuji, že jsem bakalářskou práci na téma Význam enzymových testů při vyšetření nepravidelných protilátek proti erytrocytům vypracovala samostatně pod odborným vedením MUDr. Aleny Pejchalové a uvedla v seznamu literatury všechny použité literární a odborné zdroje.

V Brně dne 29. dubna 2013 ...
Poděkování:

Ráda bych poděkovala MUDr. Aleně Pejchalové za trpělivost, cenné informace, připomínky a odbornou pomoc při vypracování mé bakalářské práce.
Obsah

1 ÚVOD...9

I. TEORETICKÁ ČÁST

2 HISTORIE TRANSFUZE..10
3 ZÁKLADNÍ IMUNOHEMATOLOGICKÉ POJMY ...11
 3.1 Imunitní systém...11
 3.2 Antigen..11
 3.3 Protilátka ...12
 3.3.1 Chemické složení ..12
 3.3.2 Varianty imunoglobulinu ...14
 3.3.3 Klasifikace ...14
 3.3.4 Tvorba ..16
 3.3.5 Rozdělení ...17
 3.4 Komplement ..20

4 REAKCE MEZI ANTIGENEM A PROТИLÁTKOU ..21
 4.1 Charakteristika reakce ..21
 4.1.1 Nekovalentní vazby ...21
 4.1.2 Specifita vazby ...22
 4.1.3 Síla vazby ...22
 4.1.4 Zkřížená reaktivita ...23
 4.1.5 Rovnovážná konstanta ..23
 4.1.6 Podmínky reakce ..24
 4.2 Imunohematologické reakce s neznáměným antigenem nebo protilátkou26
 4.2.1 Aglutinace ...26

II. SPECIÁLNÍ ČÁST

5 PŘEDTRANSFUZNÍ VYŠETŘENÍ..32
 5.1 Příjem vzorku a žádanky o předtransfuzní vyšetření ..33
 5.2 Stanovení krevní skupiny AB0 a antigenu D ...34
 5.2.1 Určení AB0 ..34
 5.2.2 Určení RhD ..34
 5.3 Screening nepravidelných protilátek proti erytrocytům ..35
5.3.1 Příprava vzorku ... 36
5.3.2 Techniky testů ... 36
5.3.3 Reagencie ... 37
5.3.4 Postup ... 38
5.3.5 Falešně pozitivní a falešně negativní výsledky 39
5.3.6 Skladování vzorků .. 39
5.4 Identifikace nepravidelných protilátek proti erytrocytům 39
5.5 Výběr vhodného transfuzního přípravku ... 40
5.6 Test kompatibility ... 41
5.7 Klinický význam ... 41
5.8 Antigény a protilátky dalších krevních skupinových systémů 43
 5.8.1 Krevní skupinový systém Kell ... 43
 5.8.2 Krevní skupinový systém Duffy .. 43
 5.8.3 Krevní skupinový systém Kidd .. 44
 5.8.4 Krevní skupinový systém MNS ... 44
 5.8.5 Další skupinové systémy ... 44
6 KOMPLIKACE HEMOTERAPIE ... 45
 6.1 Akutní potransfuzní reakce .. 45
 6.2 Pozdní potransfuzní reakce .. 46
III. EXPERIMENTÁLNÍ ČÁST
7 STATISTICKÝ SOUBOR ... 47
8 STATISTICKÁ DATA ... 48
9 ZAHRANIČNÍ STUDIE .. 57
10 ZÁVĚR ... 58
LITERATURA
PŘÍLOHY
Seznam použitých zkratek:

ABO – skupinový systém erytroctů ABO

AGH – sérum obsahující protilátku proti lidskému imunoglobulinu (antiglobulinum humanum)

AIHA – autoimunitní hemolytická anémie

BCR – receptor pro antigen na B lymfocytech (B-cell receptor)

B lymfocyt, T lymfocyt, T h lymfocyt, NK buňka – subpopulace lymfocytů

C – symbol pro komplement (C1-C9 složky komplementu)

EKK – externí kontrola kvality

ENZ – enzymový test

ENZ+NAT – enzymový test a nepřímý antiglobulinový test

Fab fragment – část molekuly imunoglobulinu tvořena variabilní oblastí lehkého a těžkého řetězce

Fc fragment – C-koncová konstantní část dvou těžkých řetězců

GvHD – reakce štěpu proti hostiteli (graft versus host disease)

HON – hemolytické onemocnění plodu a novorozence

Ig – imunoglobulin

KC FNO – Krevní centrum Fakultní nemocnice Ostrava

K₃EDTA – tri-draselná sůl kyseliny ethylen-diamin-tetraoctové

LIS – laboratorní informační systém

LISS – roztok s nízkou iontovou silou (Low Ionic Strenght Solution)

LISS-NAT – nepřímý antiglobulinový test s použitím erytroctů resuspendovaných v roztoku s nízkou iontovou silou

MAC – komplex atakující membránu (Membrane Attack Complex)
min. – minuta

MNO – Městská nemocnice Ostrava

NAT – nepřímý antiglobulinový test

PAT – přímý antiglobulinový test

PEG – polyethylenglykol

RhD – antigen D

SOP – standardní operační postup

TRALI – akutní poškození plic související s transfuzí (transfusion related acute lung injury)

VKK – vnitřní kontrola kvality
1 ÚVOD

Transfuze krve je lékařský proces, kdy vpravujeme plnou krev nebo jen některé její složky získané od zdravého člověka do krevního oběhu člověka nemocného. Slovo transfuze pochází z řeckého slova „transfusio“, v překladu přelévat, míšit. Výraz „transfusio sanguinis“ pak znamená krevní transfuzi nebo krevní převod. Člověk, kterému jsou plná krev nebo některé komponenty krve odebrány, se označuje jako dárci krve. Člověk, kterému je transfuze podávána, se nazývá příjemce transfuze. Cílem účelné hemoterapie je nahradit nemocnému ty složky krve, které mu chybí.
I. TEORETICKÁ ČÁST

2 HISTORIE TRANSFUZE

3 ZÁKLADNÍ IMUNOHEMATOLOGICKÉ POJMY

3.1 Imunitní systém

Imunitní systém zajišťuje organismu prospěšnou schopnost rozpoznávat cizorodé látky a bránit se proti nim. Dále má imunitní systém schopnost autotolerance, kdy rozeznává vlastní tkáň a nereaguje na ni a zajišťuje také imunitní dohled, který zahrnuje odstraňování starých, poškozených nebo mutovaných buněk. Imunita však může také poškozovat organismus, např. při vzniku různých imunopatologických stavů, např. u alergií a autoimunitních nemocí.

Imunitu rozlišujeme jako přirozenou a získanou. Přirozenou imunitu tvoří obranné bariéry kůže, slizu, komplement a jiné cytokiny a fagocytující buňky, zabírající průnik cizorodé látky do organismu. Zásadní význam v imunitních reacích má humorální a buněčná složka získané imunity, která je po kontaktu s cizorodou látkou – antigenem – realizována prostřednictvím T a B lymfocytů. Ty působí buď cytotoxicky, nebo tvorbou specifických protilátek. Buňky zajišťující získanou imunitu mají také schopnost zapamatovat si cizorodou látku a při opakovaném kontaktu na ni reagovat rychleji a účinněji.

3.2 Antigen

Látku, která je pro organismus cizí a vyvolá u jedince imunitní odpověď, označujeme jako antigen. Antigen musí vykazovat chemické složení odlišné od organizmu a určitou velikost a současně komplexnost své molekuly. Pokud reaguje pouze s těmito protilátkami a lymfocyty, jejichž tvorbu vyvolal, označuje se jako antigen specifický. Antigény se nacházejí na povrchu buněk zakomponované do buněčné membrány nebo jsou jako rozpustné antigény přítomné v tělních tekutinách. Rozpustné antigény jsou např. v krevním séru či plazmě nebo se vyskytují v žaludeční šťávě a ve slinách. Antigen, který má příliš malou molekulu a který se může na protilátky vázat, ale není schopen vyvolat jejich tvorbu, se označuje jako hapten. Plnohodnotným antigenem se stává v případě, kdy se spojí s větší molekulou – nosičem. Oblast na molekule antigenu, kam se váže protilátku, nazýváme epitop neboli antigenní determinanta.
3.3 Protilátka

3.3.1 Chemické složení

Z chemického hlediska zařazujeme imunoglobininy mezi glykoproteiny, tzn., že se jedná o molekulu, která je tvořena proteinovou složkou a složkou sacharidovou. Každá molekula imunoglobinu se skládá ze základní jednotky, jejíž struktura má tvar písmene Y. Tento monomer imunoglobinu je složený ze dvou identických lehkých a dvou identických těžkých polypeptidových řetězců. Lehké řetězce označujeme písmenem L jako “lihg” a těžké řetězce pak písmenem H jako “heavy”. „Lehké řetězce obsahují průměrně 215 aminokyselinových jednotek a existují ve dvou typech-kapa (κ) nebo lambda (λ), zatímco těžké řetězce jich mají o něco více než dvojnásobek. Těžkých řetězců je 5 druhů a podle nich se imunoglobininy zařazují do tříd (třída IgG má těžké řetězce γ, třída IgM řetězce μ, třída IgA řetězce α, třída IgD řetězce δ a třída IgE řetězce ε).” (Ferenčík a kol., 2004)

Obr. č. 1: Základní jednotka imunoglobinu
Řetězce jsou navzájem spojeny disulfidickými vazbami. Disulfidické vazby kromě toho vytváří v polypeptidovém řetězci smyčky, které nazýváme domény. Každý řetězec obsahuje variabilní a konstantní oblast, lišící se ve své funkci. Variabilní úsek je tvořen asi 100 aminokyselinami a právě pořadí aminokyselin v tomto úseku je významné, jelikož určuje specifitu protilátky. Mezi variabilním úsekkem lehkého a těžkého řetězce se nachází vazebné místo, pomocí kterého se protilátka váže specificky na antigen. Specifita protilátky není určena jen sekvencí aminokyselin ve variabilní oblasti lehkého a těžkého řetězce, ale i spojení disulfidickými vazbami uvnitř polypeptidového řetězce způsobuje vznik smyčky. Ta vytváří ve vazebném místě dutinu, jejíž tvar také určuje specifitu protilátky vůči konkrétní antigenní determinantě podobně jako klíč do zámku. Konstantní úsek se naopak neúčastní vazby antigenu, ale umožní zapojení mechanismů nespecifické imunity schopností vázat se a aktivovat komplement nebo se uplatnit při vazbě na fagocytující buňky při opsonizaci. Konstantní úsek těžkého řetězce vykazuje také značnou flexibilitu, molekula se může rozevírat či otáčet a umožňuje změnu konformace imunoglobulinu vůči antigenní determinantě a zajistit tak vhodné prostorové uspořádání ke konkrétnímu specifickému antigenu. Tuto oblast označujeme jako "pantovou oblast". V této části molekuly je protilátka velmi citlivá na působení enzymu.

Obr. č. 2: Proteolytické štěpení protilátek (Krejsek, Kopecký, 2004)
Molekuly imunoglobulinů se pomocí enzymů proteolyticky štěpí nejprve na jednotlivé fragmenty, následně pak na polypeptidy, ty jsou dále štěpeny až na jednotlivé aminokyseliny, které jsou opět použity pro tvorbu nových plně funkčních molekul imunoglobulinů. Proteolytickým štěpením molekuly imunoglobulinu enzymem papainem se vytvoří dva Fab fragmenty, schopné vázat se specificky na antigén a jeden Fc fragment, tvořený ze zbývajících konstantních částí těžkého řetězce. Je-li molekula naopak štěpena enzymem pepsinem, vzniknou také dva Fab fragmenty, ale spojené pantovou oblastí, jelikož tento enzym štěpí molekulu imunoglobulinu pod místem, kde jsou těžké řetězce spojeny disulfidickou vazbou. Místo Fc fragmentu pak vznikají pouze peptidové fragmenty.

3.3.2 Varianty imunoglobulinu

- Izotypy

Na základě typu těžkého řetězce určujeme jednotlivé třídy imunoglobulinů.

- Alotypy

V rámci jedné třídy nebo podtřídy rozeznáváme malé odlišení ve složení aminokyselin v konstantní části těžkého řetězce, což je způsobeno genetickým polymorfismem.

- Idiotypy

Jsou to rozdíly ve složení hypervariabilních částí molekuly imunoglobulinu podmíněné geneticky, tento soubor vazebných míst pak tvoří jedinečnou oblast, která je specifická vůči konkrétnímu antigenu.

3.3.3 Klasifikace

Podle druhu těžkého řetězce imunoglobuliny zařazujeme do pěti tříd, a to na IgG, IgA, IgM, IgD a IgE. Jednotlivé třídy se liší v prostorovém uspořádání, v molekulové hmotnosti a také ve složení jednotlivých řetězců. Z hlediska imunohematologie jsou nejdůležitější protilátky IgG a IgM. Jsou to typické protilátky kolující v krvi.
Když se jedinec setká s antigenem cirkulujícím v krvi poprvé, začne proti němu tvořit protilátky třídy IgM. Tento případ nastává, jedná-li se o korpuskulární antigen, např. o transfundované alogenní erytrocyty. Po opakovaném kontaktu se stejným antigenem se vytváří protilátky třídy IgG. Oba uvedené izotypy protilátek mají z hlediska imunitní reakce vliv systémový, tj. působí v celém organismu, zatímco např. imunoglobuliny třídy IgA působí pouze lokálně, např. na sliznicí dýchacího nebo trávicího ústrojí.

Imunoglobulin G (IgG)

Imunoglobulin M (IgM)

Molekula IgM je složena z pěti základních subjednotek spojených J-řetězcem a tvoří pentamer. Má deset vazebných míst pro kontakt s antigenem a je nejúčinnější protilátkou ve schopnosti vázat komplement a aktivovat ho až k lýze erytrocytu. Neprochází placentou a do tkání a je přítomen pouze v krvi a v lymfě. Pro silnou aktivaci komplementu a výraznou likvidaci mikrobů a infekčních agens je nutné, aby se tento imunoglobulin vyskytoval pouze cévním řečišti, aby nedošlo k negativním následkům aktivace imunitního systému. V krevním séru se jeho hodnoty zvyšují při akutní infekci. Vyskytuje se také na povrchu B lymfocytů.

Imunoglobulin A (IgA)

s neznámou funkcí ve formě monomeru. Chrání jedince proti průniku infekčních částic sliznicí, kdy navážáním na cizorodou částici působí neutralizačně a brání tak přílnutí mikroorganismu na povrchu sliznice, kdy následně může být cizorodý patogen obranným mechanismem zlikvidován.

Imunoglobulin D (IgD)

Vyskytuje se na povrchu B lymfocytů a v sérů ve velmi malém množství jako monomer. Jeho funkce je neznámá.

Imunoglobulin E (IgE)

Je přítomen jen ve velice malém množství, jeho hladina však stoupá při alergické reakci I. typu nebo při parazitárních infekcích. IgE se uplatňuje navážáním na receptor nacházející se na buňkách imunitního systému např. mastocytech, basofilech, ale také na epitelových buňkách. Vazba vede k aktivaci buněk s následnou produkci mediátorů a důsledky těchto uvolněných mediátorů na organismus, jako je např. degranulace mastocytů a uvolnění histaminu s následným účinkem na dilataci cév, vznik edému nebo smršťení hladké svaloviny.

3.3.4 Tvorba

Protilátky jsou tvořeny B lymfocyty, které se po aktivaci diferencují v plazmatické buňky. Klidová buňka B lymfocytu má na svém povrchu antigenní receptor, který slouží k rozeznání specifického antiguenu. Součástí receptoru je specifická protilátka, zakotvená v membráně B lymfocytu: nejčastěji se jedná o molekulu IgD nebo o monomer IgM s upraveným Fc koncem. Vazebná místa pak vyčínávají volně do prostoru. Po navázání komplementárního antigenu na vazebné místo B receptoru je lymfocyt stimulován k dělení a k přeměně v buňku plazmatickou, která produkuje protilátky se specifitou odpovídající specifitě receptoru. Takto se tvoří převážně základní molekuly IgM s nízkou afinitou k cizorodé částici, což je kompenzováno tvorbou pentameru této molekuly. Pro tvorbu imunoglobulinů jiných tříd s vyšší afinitou k antigenu je vyžadován kontakt s T lymfocytárním systémem a ovlivnění následné diferenciaci B lymfocytů. Signál aktivovaných Th lymfocytů je nutný pro somatickou hypermutaci, kdy v genetické informaci pro tvorbu imunoglobulinů dojde k bodové mutaci a ke změně genu pro vznik variabilních oblastí. Je omezena produkce
B lymfocytů, u kterých tato mutace nebyla úspěšná a které mají nízkou afinitu k antigenu. Současně dochází k izotypovému přesmyku, kdy delece v genetické informaci na chromozomu zodpovědném za vznik těžkého řetězce způsobí změnu v konstantní části těžkého řetězce a tím i produkci protilátek dalších tříd bez vlivu na antigenní specifitu variabilních oblastí. Takto dochází k produkci protilátek různých tříd, ovšem se stejnou antigenní specifitou původního antigenu, který tvorbu protilátek vyvolal. Netvoří se však jen plazmatické buňky, ale také buňky paměťové, které si kontakt se specifickým antigenem pamatují a při opakovaném setkání pak umožní rychlejší a intenzivnější odpověď.

3.3.5 Rozdělení

Protilátky dělíme do několika kategorií: podle původu protilátky, podle příčiny vzniku, podle specifity, podle původu antigenu, který tvorbu protilátek vyvolal, podle tepelného optima reakce protilátky a dále podle schopnosti sérologicky reagovat s antigenem.

Podle původu

- lidské nebo zvířecí

Lidské nebo zvířecí sérum (plazma) obsahují protilátky proti konkrétnímu antigenu nebo proti několika antigenům, které byly vytvořeny přirozenou cestou např. po prodělání infekčního onemocnění, nebo byly vyvolány cíleně imunizací. Obsahuje polyklonální protilátky. Takto se připravují různá antiséra pro léčebné nebo diagnostické použití. Zvířecí antiséra mají ve srovnání s protilátkami vyrobenými z lidské plazmy více nežádoucích účinků a také vyšší riziko alergických reakcí.

- rostlinné (lektiny)

Jsou to látky neimunní povahy získávané z rostlin. Lektiny jsou schopny specificky rozpoznat molekulu sacharidu a navážat se na ni. Mají schopnost shlukovat buňky díky vlastnosti navážat se na oligosacharidy a glykoproteiny přítomné na buněčné membráně, čehož se využívá v diagnostice.
• protektiny

Jsou regulační proteiny na povrchu buněk, které mají vliv na bílkovinnou složku komplementu C9 a chrání buňku před nežádoucí aktivací komplementu zabráněním tvorby útočného komplexu, dávajícího podnět k likvidaci buňky.

• monoklonální protilátky

Jedná se o uměle vyrobené protilátky specificky namířené pouze proti jednomu antigenu přesněji proti jedné antigenní determinanci na antigenu. Tímto je možné, že proti jednomu antigenu může být vytvořeno více monoklonálních protilátek. Hybridomy, které jsou zdrojem monoklonálních protilátek, zdědí po myelomové buňce schopnost neomezeného růstu a po B lymfocytu schopnost tvořit protilátku.

• polyklonální protilátky

Polyklonální protilátky vznikají přirozeně po prodělání infekčního onemocnění nebo vznikají uměle imunizací. Jsou tvořeny několika klony B lymfocytů a jsou namířeny proti více epitopům jednoho nebo více antigenů. Pro diagnostické účely se používají zvířecí antiséra připravená imunizací laboratorních zvířat antigenem nebo směsi antigenů.

Podle příčiny vzniku

• přirozené

Přirozené protilátky jsou produktovány imunitním systémem proti běžným antigenům např. bakteriím, toxinům, virům, kdy pomáhají jejich zničení. Vznikají nenápadně a jejich tvorba nesouvisí s patologickými projevy. Mezi přirozeně se vyskytující protilátky také patří protilátky některých krvních skupin. Jsou namířeny proti antigenům, které se na autologních krvinkách jedince nenacházejí a také za fyziologických podmínek se nevytvářejí proti vlastním antigenům.

• imunní

Vznikají následkem imunizace jedince po kontaktu s antigenem, nejčastěji po prodělání infekční nemoci. Mohou také vzniknout imunizací po transfuzi neshodných erytrocytů
nebo během těhotenství či při porodu, kdy do krevního oběhu matky proniknou erytrocyty plodu (tzv. fetomaternální krvácení).

Podle specifity

- specifické

Jsou protilátky namířené proti určitému, konkrétnímu antigenu, který jejich tvorbu vyvolal.

- nespecifické

Reagují s různými antigeny nezávisle na jejich antigenní specifičnosti.

Podle původu antígenu, který vznik protilátek vyvolal

- aloprotílátky

Vznikají následkem imunizace jedince cizorodými antigeny.

- autoprotílátky

Jedná se o protilátky namířené proti antigenům přítomných na vlastních buňkách.

Podle tepelného optima

- chladové

Jsou to protilátky, které reagují s antigenem nejlépe při tzv. pokojové teplotě 20–24 °C nebo při teplotách nižších.

- tepelné

Reagují nejlépe při teplotě lidského těla, a to při 37 °C.
Podle schopnosti protilátky sérologicky reagovat s antigenem

- kompletní

Jedná se o protilátky, které lze prokázat již v solném testu, kdy přímo reagují s antigenem. Jsou to většinou protilátky třídy IgM, jejichž molekuly jsou dostatečně velké a překonají tak vzdálenost mezi jednotlivými erytrocyty, tzv. zeta potenciál a umožní vznik aglutinace.

- inkompletní

Inkompletní protilátky nejsou schopné přímo reagovat s antigeny. Proto, aby mohly být detekovány, je zapotřebí modifikovat reakci. K tomu se používají různé aditiva, která usnadní a pomohou vizualizovat reakci těchto protilátek s antigeny.

3.4 Komplement

Jednotlivé složky na sebe kaskádovitě navazují, když se podnětem aktivovaná složka rozštěpí na dva fragmenty, které pak ovlivňují následující složku k rozložení a aktivaci dalších složek a tento sled dějů vede až k následné lýze buňky. Rozlišujeme tři cesty aktivace komplementu a to klasickou, alternativní a lektinovou. Klasická cesta aktivace komplementového systému je iniciována komplexem „antigen-protilátka“, který účinkuje již na C1. Postupnými kaskádovitě probíhajícími ději je vytvořen komplex C9, který má silný lytický účinek na membránu buňky, tzv. MAC (Membrane Attack Complex). Jeho působením dochází ke vzniku pórů v membránách, která pak na základě osmotických jevů zaniká. Klasickou cestou aktivovat komplement mají schopnost jen protilátky třídy IgG a IgM. Alternativní cesta je aktivována od složky C3, která je pro všechny cesty aktivace společná.

4 REAKCE MEZI ANTIGENEM A PROTILÁTKOU

4.1 Charakteristika reakce

4.1.1 Nekovalentní vazby

Základem reakce je tvorba imunokomplexů „antigen-protilátka“ mezi vazebním místem protilátky a epitopem antigenu, což je umožněno vytvořením nekovalentních vazeb. Tyto mezimolekulové síly jsou velmi slabé, proto je ke vzniku imunokomplexů potřeba jejich větší množství.

Elektrostatické síly

Je to vzájemné působení opačně nabitých molekul nebo jejich funkčních skupin na základě přitažlivých sil mezi elektrickými náboji, jejich vzdáleností a vlivu prostředí na elektrické pole mezi nimi.

Vodíkové můstky

Jednotlivé molekuly mohou být spojeny mezimolekulovou vazbou tzv. vodíkovým můstkem, kdy se atom vodíku vyskytuje mezi atomy molekul se záporným nábojem, což je dáno nižší elektronegativitou atomu vodíku. V důsledku toho jsou atomy sousedních molekul vzájemně přitahovány ke kladně nabitému atomu vodíku. Vodíkové můstky vznikají např. mezi hydrofilními skupinami –NH₂, –COOH, –OH.
Van der Waalsovy síly

Velikost těchto slabých interakcí mezi molekulami a atomy závisí na jejich vzájemné vzdálenosti. Jedná se o tvorbu dipólů přitažlivými silami vzájemně přítahovaných molekul opačně nabitém konci. Dipóly mohou být tvořeny vzájemnou přitažlivostí mezi elektricky nabitém náboji stejné velikosti, jen opačné polarity nebo odpuzováním elektronů v molekule v místech překrytí elektronových oblastí sousedících atomů. Vzájemné působení těchto dipólů je pak podstatou Van der Waalsových sil.

Hydrofobní interakce

Jde o tvorbu hydrofobní vazby mezi dvěma nepolárními částmi molekul ve vodném prostředí za uvolnění molekul vody. Molekuly se svými hydrofobními povrchy k sobě přiblíží natolik, že dojde k jejich vzájemnému působení a následnému kontaktu, kdy jsou molekuly vody uvolněny do roztoku.

4.1.2 Specifita vazby

Antigenní determinanta je oblast na molekule antigenu, která se specificky váže k vazebnému místu přítomnému na variabilních částech molekuly imunoglobulinu. Specifita protilátky je dána pořadím aminokyselin variabilních oblastí lehkého a těžkého řetězce a smyčkou, vytvořenou pomocí disulfidických vazeb uvnitř těžkého řetězce. Toto prostorové uspořádání vazebného místa pak umožňuje na základě komplementarity se specificky navážat na jeden konkrétní epitop antigenu.

4.1.3 Síla vazby

Afinita

Je vaznost nebo intenzita vazby jedné konkrétní antigenní determinanty antigenu nebo haptenu, na kterou se může specificky navázt protilátku jedním vazebným místem své molekuly dle vzájemného prostorového uspořádání.
Avidita

Charakterizuje sílu vazby polyvalentní protilátky vůči polyvalentnímu antigenu. Avidita označuje sílu vazby celé molekuly a narůstá s afinitou jednotlivých vazeb.

4.1.4 Zkřížená reaktivita

Pokud je epitop antigenu podobný původnímu antigenu, který vyvolal tvorbu specifické protilátky nebo má podobné strukturní a chemické vlastnosti, může nastat stav, který nazýváme zkříženou reaktivitou. Při něm protilátka, vyvolána jedním konkrétním antigenem, reaguje s více epitopy daného antigenu nebo s jiným, ale podobným antigenem. Protilátka se však váže k podobnému epitopu s nižší afinitou, než by byla síla vazby k původnímu antigenu. Antigény mohou být např. polysacharidy nebo oligosacharidové zbytky přítomné na membránách různých buněk nebo na povrchu mikrobů. Tento jev může komplikovat provádění diagnostického testování, např. vyšetření antigenů a může mít jak pozitivní, tak i negativní klinický význam. Je např. prospěšný v rámci imunity, kdy organismus může specificky reagovat proti infekčním agens podobné antigenní struktury, se kterou se jedinec již setkal nebo naopak může jedinci způsobovat komplikace a vést ke vzniku autoimunitních onemocnění.

4.1.5 Rovnovážná konstanta

Pro tvorbu imunokomplexů mezi antigenem a protilátkou je důležité, aby nabídka antigenních determinant a vazebných míst protilátek byla v rovnováze. Rychlost vzniku imunokomplexů je pak přímo úměrná molární koncentraci obou složek vstupujících do reakce, rovněž jako rychlost opačně probíhající reakce při rozkladu již vytvořených imunokomplexů. Tento stav charakterizuje Guldbergů-Waageův zákon.

\[[\text{Ab}] + [\text{Ag}] \leftrightarrow [\text{AbAg}] \]

\[K_a[\text{Ab,Ag}] \] – asociací rovnovážná konstanta
Kd[AbAg] – disociační rovnovážná konstanta

\[K = \frac{[AbAg]}{[Ab][Ag]} \]

„Rovnovážná konstanta K charakterizuje efektivnost vazby a její hodnoty při reakci antigenů se specifickými protilátkami se pohybují v rozsahu \(10^5\) až \(10^{11}\) mol/l.“

(http://ach.upol.cz/user-files/intranet/inl-1263148359.pdf)

(pozn. – v hranatých závorkách je uvedena molární koncentrace)

Přebytek protilátek v reakci způsobuje utlumení aglutinace v neředěném vzorku plazmy, tzv. fenomén prozóny a tím i falešně negativní výsledek testu. Tomuto jevu můžeme předcházet vhodným naředěním séra či plazmy.

4.1.6 Podmínky reakce

Reakce probíhající „in vitro“, tedy v laboratorních podmínkách, by měla mít stejné nebo podobné předpoklady jako reakce, která nastává „in vivo“ v přirozených podmínkách v lidském těle.

- **hodnota pH**

 „Optimální pH prostředí je pro různé protilátky odlišné, ale obecně jsou používány testy s pH kolem hodnoty 7. Snížení pH zvyšuje disociaci protilátky z komplexu s antigenem.“ (Penka, Tesařová a kolektiv, 2012)

- **teplota**

 Dle optimální teploty, při které lze protilátky prokázat, rozlišujeme chladové protilátky, které reagují s antigenem velmi dobře při pokojové teplotě 20–24 °C nebo při teplotách nižších. Obvykle je k jejich průkazu používána laboratorní teplota 4 °C. Tepelné protilátky se prokazují nejlépe v testech při 37 °C, tj. při teplotě lidského těla. Význam detekce protilátek proti erytrocytům v testech při 37 °C je zásadní s ohledem na klinický význam protilátek.
• koncentrace elektrolytů (NaCl)

Snížením koncentrace elektrolytů se sníží i odpudivé síly mezi erytrocyty a zvýší se tak schopnost protilátek vázat se na antigeny. Přebytek elektrolytů způsobí nárůst odpudivých sil a vzdalování erytrocytů mezi sebou.

• počet antigenních determinant

Množství antigenních determinant přítomných na membráně erytrocytu a také jejich vzájemná vzdálenost je důležitá pro uplatnění protilátek třídy IgG, které někdy mohou při velké nabídce antigenních míst a současně při značném množství protilátek vyvolat aglutinaci přímo.

• množství protilátky a antigenu

Optimální poměr antigenů a protilátek vstupujících do reakce je významný pro vznik stabilních komplexů. V přebyteku protilátek nebo v přebyteku antigenů jsou vytvořené komplexy nestabilní a mohou se rozkládat. Stavu, kdy je optimální poměr mezi množstvím protilátky a antigenu, říkáme „zóna ekvivalence“.

Obr. č. 3: Zóna ekvivalence

![Diagram zóny ekvivalence](image-url)
• doba inkubace

Je to čas závislý na druhu protilátky, na teplotě a na prostředí probíhající reakce, potřebný k vytvoření rovnováhy mezi antigenem a protilátkou.

4.2 Imunohematologické reakce s neznáčeným antigenem nebo protilátkou

4.2.1 Aglutinace

Negativní elektrostatický náboj na povrchu erytrocytu způsobuje jejich odpuzování, vytvářejí mezi sebou prostor o vzdálenosti 20–30 nm. Kompletní protilátky třídy IgM mají rozpětí svých variabilních částí 35 nm a proto mohou překonat odpudivé síly, vázat antigeny sousedících erytrocytů a vytvořit aglutinaci. Inkompletní protilátky třídy IgG mají vzdálenost variabilních částí 14–18 nm a nejsou schopné vyvolat aglutinaci přímo, dojde pouze k navázání na antigeny, tedy k senzibilizaci. Aby však vytvořily aglutinaci, je potřeba jim vhodnou úpravou testu pomoci.

Rozlišujeme dvě fáze

- první fáze

V první fázi dochází k navázání protilátky svou vazebnou částí na membránový antigen k tzv. senzibilizaci. Tato fáze probíhá okamžitě, je specifická a není viditelná.
• druhá fáze

V druhé fázi se musí spojit protilátka svým druhým vazebným místem s antigenem jiného erytrocytu. Musí přitom překonat odpudivé síly mezi krvinkami, tzv. zeta potenciál a vzdálenost, která je mezi jednotlivými erytrocyty. Propojením více krvinek protilátkami vznikne aglutinát. Tato fáze je již viditelná, pomalejší a je závislá na prostoru mezi krvinkami, počtu antigenů na krvinec a také na množství a vlastnostech protilátek.

Dle způsobu provedení testů rozlišujeme různé vyšetřovací metody. Patří k nim např.:

• sklíčková metoda
• zkumavkový test
• pevná fáze
• sloupcová aglutinace

Dle výsledku reakce rozlišujeme aglutinaci:

• kvalitativní

 Hodnotíme přítomnost nebo nepřítomnost aglutinace.

• kvantitativní

 Stanovujeme množství protilátky po přidání určitého známého množství antigenu k postupně ředěné plazmě (obvykle ředění geometrickou řadou) a pozorujeme přítomnost aglutinace. Nejvyšší ředění séra, ve kterém je ještě prokazatelná protilátka, označujeme jako titr. Titr je vyjadřován jako převrácená hodnota ředění séra, např. při ředění 1:128 je titr označován číslem 128.

PŘÍMÁ AGLUTINACE

V této reakci se uplatní ty protilátky, které jsou schopné svým rozpětím Fab fragmentů a velikostí molekuly překonat vzdálenost mezi erytrocyty. Řadíme je mezi kompletní protilátky a jsou většinou třídy IgM. Ke známým typům patří např. protilátky proti antigenům erytrocytů ve skupině AB0, Lewis, MN.
NEPŘÍMÁ AGLUTINACE

Test se používá k průkazu protilátek senzibilizujících, které nelze prokázat v přímé aglutinaci. Tyto protilátky lze vizualizovat v komplexech s antigeny pomocí jiného typu protilátek, tzv. AGH (antiglobulinum humanum). AGH sérum, které se přidává do testu, obsahuje protilátku proti lidskému imunoglobulinu a/nebo komplementu a pomocí uvedených složek aglutinuje erytrocyty senzibilizované původní protilátkou nebo komplementem.

Reagencie ovlivňující tvorbu komplexů

K usnadnění vzniku vazeb mezi antigenem a protilátkou používáme roztok LISS nebo polyethylenglykol. Tyto reagencie přidané k erytrocytům zvyšují jejich schopnost vytvořit aglutinaci.

LISS roztok (liss – low ionic strength solution)

Je to roztok s nízkou iontovou silou, který se používá k přípravě suspenze erytrocytů. Zintenzivňuje aglutinační reakci, umožňuje protilátkám lépe se vázat na antigeny.

PEG (polyethylenglykol)

Je netoxický polymer dobře rozpustný ve vodě a v organických rozpouštědlech, který odstraňuje molekuly vody z okolního prostředí erytrocytů a usnadňuje aglutinaci.

Další mechanizmy ovlivňující vznik aglutinace

Centrifugace

Zřetelná aglutinace vzniká vytvořením agregátu ze 4–5 erytrocytů. Odstředivá síla usnadní lepší přiblížení krvínek a zesílení vazeb mezi nimi. Má především vliv na druhou fázi aglutinace a přispívá k tvorbě větších agregátů erytrocytů. Centrifugace je nejběžnějším způsobem používaným k zesílení reakcí při imunohematologickém vyšetření.
Průkaz protilátek se provádí v různých prostředích

- v solném prostředí

Tímto testem především prokážeme přítomnost pravidelných protilátek v rámci ABO skupiny a nepravidelných protilátek třídy IgM. Za solné prostředí je považován izotonický roztok NaCl (fyziologický roztok), ve kterém jsou erytrocyty rozptýleny. Výslednou aglutinaci ovlivňují vlastnosti přítomné protilátky, doba inkubace a teplota, při které probíhá.

- v enzymovém testu

Tento test je vhodný pro detekci některých incompletních protilátek třídy IgG. Proteolytický enzym v nízké koncentraci odstraní některé glykoproteiny membrány, převážně řetězce negativně nabité skupin kyseliny neuraminové. Způsobí tím redukci elektronegativního náboje erytrocytu a zmenšení vzdálenosti mezi erytrocyty navzájem a také na membráně erytrocytu více „odkryje“ jednotlivé antígeny. Tím získají incompletní protilátky možnost se uplatnit. Enzymy použité v testech však mohou destruovat některé proteinové antígeny (Duffy, MNSs) a proto nejsou vhodné pro detekci protilátek proti těmto krevním skupinám. Naopak jejich použití je výhodné u protilátek např. Rh skupiny, někdy i skupiny Kidd, které lze někdy v enzymových testech prokázat lépe než v AGH testech. Mezi používané enzymy patří bromelin, papain, trypsin a fící. V imunohematologii se nejčastěji používají enzymy bromelin a papain. Enzym se přidává do reakce jako samostatná reagencie v testu jednofázovém nebo erytrocyty mohou být enzymem ošetřeny předem (dvoufázový test).

K nevýhodám enzymových testů patří nespecifické reakce, kdy erytrocyty v prostředí s enzymem podléhají spontánní aglutinaci. Vznikají tak reakce, které nejsou typické pro reakce specifických protilátek a lze je považovat za „nezádoucí“. V enzymových testech lze také někdy zachytit chladové protilátky, které nemají pro transfuziologii význam.

- v antiglobulinovém testu

Test patří mezi nejdůležitější imunohematologické testy. AGH testy jsou schopné zachytit i velmi slabé protilátky. Antiglobulinové neboli Coombsovy testy zavedl roku 1945 britský imunolog Robin Coombs se svými spolupracovníky, když imunizací pokusných zvířat (hlodavci, králíci) lidskými imunoglobuliny získal sérum, které mělo schopnost reagovat s lidskou bílkou a detekovat ji. AGH sérum je obvykle tvořeno směsí zvířecích protilátek proti lidským IgG a proti C3 složce komplementu. Lze vyrobit také AGH séra detekující
jednotlivé složky lidských bílkovin, jako např. séra proti IgG, IgA, IgM, C3. Protilátky obsažené v AGH séru se navazují na lidské proteiny, které pro ně mají „antigenní charakter“ a jejich specifickou vazbu na ně lze prokázat jako aglutinaci erytrocytů.

Rozlišujeme přímý a nepřímý antiglobulinový test

Přímý antiglobulinový test

Používá se u osob, u kterých se domníváme, že došlo k vazbě antigenu a protilátky in vivo, v jejich krevním řečišti, např. při imunitním typu hemolýzy u pacientů po skupinově neshodné transfuzi či transplantaci, při hemolytickém onemocnění novorozence nebo při autoimunitním hemolytickém onemocnění zahrnujícím vazbu autoprolitákty nebo C3 složky komplementu na erytrocyty.

Principem testu je prokázání reakce vyšetřovaných erytrocytů, které byly in vivo senzibilizované protilátkou, s AGH sérem. Po centrifugaci pozorujeme pozitivní výsledek ve formě aglutinátu nebo negativní výsledek tvořený jednotlivými navzájem nespojenými erytrocyty. Pozitivní výsledek nás informuje o tom, že na erytrocytech byla navázána protilátka nebo komplement.

Nepřímý antiglobulinový test

Test slouží k identifikaci protilátek, které in vivo nejsou navázané na erytrocyty, ale vyskytují se volně v plazmě jedince. Většinou se jedná o aloprotilátky. „Je to test, který prokazuje klinicky významné nepravidelné protilátky proti erytrocytům, určuje kompatibilitu erytrocytů při předtransfuzním vyšetření a lze jím vyšetřovat antigeny některých krevních skupin.“ (Penka, Tesařová a kolektiv, 2012)

Principem nepřímého antiglobulinového testu je reakce vyšetřované plazmy s diagnostickými erytrocyty, kdy po inkubaci při 37 °C, během které dojde k vazbě přítomné protilátky na antigeny erytrocytů, je po následného trojnásobném promývání do reakce
přidáno AGH sérum. Po centrifugaci hodnotíme pozitivní a negativní reakci. Pozitivní reakce nás informuje o přítomnosti protilátky nebo směsi protilátek ve vyšetřované plazmě.

Provedení nepřímého antiglobulinového testu má tři fáze

- incubace diagnostických erytrocytů s plazmou vyšetřovaného pacienta probíhající při 37 °C
- následné promytí a odstranění přebytečných nenavázaných proteinů
- reakce senzibilizovaných diagnostických erytrocytů s AGH obsahujícím protilátky proti IgG a C3 složce komplementu (nebo proti jednotlivým typům proteinů)

Při provedení nepřímého antiglobulinového testu zkumavkovou metodou nebo na pevné fázi je nutno dodržovat přesný postup. Před přidáním AGH je nutné důkladně promýt erytrocyty, aby se z jejich povrchu odstranily všechny přebytečné proteiny, které by mohly znehodnotit reakci AGH jeho zneutralizováním. To by vedlo k falešně negativním výsledkům. Proto je potřeba každý negativní výsledek NATu reakce zkontrolovat pomocí kontrolních, IgG protilátkou senzibilizovaných erytrocytů, jejichž přidání zapříčiní vznik pozitivní reakce v případě, že v prostředí zůstalo nespotřebované AGH. Pozitivní reakcí s kontrolními erytrocyty tak potvrdíme správný postup při promývání erytrocytů i funkčnost AGH séra.

Modernější a v současnosti nejčastěji používanou metodou je provedení tohoto testu sloupcovou aglutinací. Jedná se o metodu využívající sestavu mikrozkumavek naplněných obvykle gelem. AGH je již obsažené v gelu a používané erytrocyty jsou suspendovány v LISS roztoku. Gel svou funkci nahrazuje síto, kterým prochází pouze erytrocyty s nenavázanou protilátkou a usazují se v jeho spodní části. Erytrocyty s navázanou protilátkou vytváří AGH komplexy, které pro svoji velikost neprojdou gelem až na dno a v gelu se zadržují.

Výhodou této metody oproti provedení ve zkumavkách nebo na pevné fázi je její rychlost a jednoduchost provedení. Odpadá promývání erytrocytů, protože gel propouští pouze erytrocyty a nemůže tak dojít k neutralizaci AGH séra protilátkami z plazmy. Výhodou metody je také standardizované hodnocení výsledků. Nevýhodou jsou však vyšší náklady.
II. SPECIÁLNÍ ČÁST

Ve speciální části bakalářské práce popisují metodiky používané při rutinním screeningovém vyšetření nepravidelných protilátek proti erytrocytům tak, jak se provádí v laboratoři krevního skladu v MNO. Vyšetření nepravidelných protilátek proti erytrocytům je prováděno jako součást předtransfuzního vyšetření. Věnuji se jednotlivým krokům předtransfuzního vyšetření, ale především screeningu nepravidelných protilátek proti erytrocytům. Tímto testem zjišťujeme přítomnost protilátek v plazmě vyšetřovaného pacienta.

Protilátky mohou vznikat po kontaktu s erytrocytárním antigenem, který není přítomen na erytrocytech pacienta. K tomuto nejčastěji dochází na základě aplikování erytrocytárního přípravku. Protilátky však mohou vznikat i při inkompatibilním těhotenství u žen, kdy plod má na svých erytrocytech odlišné antígeny, než jaké jsou zastoupené na erytrocytech matky. Některé protilátky se mohou tvořit v důsledku poruchy imunitního systému. V tomto případě hovoříme o autoprotilátkách.

Při pozitivním výsledku screeningu nepravidelných protilátek proti erytrocytům je potřeba protilátku identifikovat. Identifikací protilátky určíme její specifitu. Zjistíme informaci, proti kterému erytrocytárnímu antigenu byla protilátka vytvořena. V našem pracovišti v laboratoři krevního skladu v MNO se identifikace nepravidelných protilátek proti erytrocytům neprovádí, proto se jen krátce zmíníme o tomto vyšetření, které zasíláme do specializované imunohematologické laboratoře v KC FNO.

Dále analyzuji detekované protilátky s ohledem na jejich klinický význam, tj. dle jejich schopnosti způsobit hemolýzu. Pomocí analýzy zpracovaného souboru následně hodnotím význam enzymových testů používaných při předtransfuzním vyšetření.

5 PŘEDTRANSFUZNÍ VYŠETŘENÍ

Předtransfuzní vyšetření je souhrnný název pro kroky prováděné laboratoří na základě indikace lékaře, jejichž cílem je zajistit příjemci vhodný erytrocytární přípravek a minimalizovat některé možné nežádoucí účinky podané transfuze.
Předtransfuzní vyšetření obsahuje několik částí:

- přijem vzorku a žádanky o předtransfuzní vyšetření
- stanovení krevní skupiny AB0 a antigenu D
- screeningové vyšetření nepravidelných protilátek proti erytrocytům
- identifikaci nepravidelných protilátek proti erytrocytům při pozitivním screeningu
- výběr vhodného transfuzního přípravku
- test kompatibility

5.1 Přijem vzorku a žádanky o předtransfuzní vyšetření

Pro předtransfuzní vyšetření je v laboratoři přijímán vzorek nesrážlivé krve o objemu 7,5 ml s protisrážlivým roztokem K3EDTA (vakuový systém zn. Sarstedt) a žádanka o předtransfuzní vyšetření s úplnými údaji. Jelikož jsou technické a administrativní chyby častou příčinou komplikací krevní transfuze, je důležité dbát na správnost údajů na štítku vzorku krve, které musí souhlasit s údaji vyplněnými na žádance o předtransfuzní vyšetření. Při nedostatečném nebo neúplném označení laboratoře vzorky nepřijeme a neprovede vyšetření.

Pro minimalizaci administrativních chyb je také nutné kontrolovat současná vyšetření s imunohematologickými vyšetřeními provedenými v historii u téhož pacienta. V případě nejasností je potřeba zjištěné informace objasnit ještě před vydáním požadované krevní transfuze.
5.2 Stanovení krevní skupiny AB0 a antigenu D

5.2.1 Určení AB0

Stanovení krevní skupiny AB0 zahrnuje stanovení antigenu A a antigenu B na erytrocytech vyšetřovaného jedince a určení pravidelně se vyskytujících přirozených protilátek anti-A a anti-B v plazmě.

Antigény detekujeme pomocí monoklonálních diagnostických sér anti-A a anti-B a protilátky stanovujeme pomocí 0, A1, A2 a B diagnostických erytrocytů (musí být alespoň A1 a B erytrocyty), kdy erytrocyty 0 slouží jako negativní kontrola testu.

Má-li jedinec na krvinkách přítomný antigen A, vyskytuje se v jeho plazmě protilátka anti-B. Stejně tak jedinec s antigenem B má v krvi přítomnou protilátku anti-A. Má-li jedinec na erytrocytech přítomné oba antigény, nevyskytuje se v jeho krvi žádná protilátky. Pokud nemá jedinec na erytrocytech žádný antigen, obsahuje jeho plazma protilátku anti-A i anti-B.

Přestože se v systému AB0 vyskytují převážně přirozené protilátky anti-A a anti-B, mohou vznikat následkem imunizace imunní protilátky anti- A a anti-B, které mohou být přičinnou hemolytického onemocnění novorozence. V systému AB0 se také můžeme setkat s nepravidelnými protilátkami anti-H a anti-A1, které však nebývají klinicky významné.

5.2.2 Určení RhD

Rh systém je po systému AB0 druhým významným systémem krevních skupin. Objevili ho v roce 1939 Landsteiner a Wiener, kdy po experimentální imunizaci opice Macacus rhesus nalezli protilátku, která aglutinovala lidské erytrocyty. Rh systém tvoří mnoho antigenů, mezi nejznámější patří antigeny D, C, c, E a e. Písmenem d se vyjadřuje nepřítomnost antigenu D, pokud není na povrchu erytrocytu exprimován.

Rh komplex je tvořen kombinací šesti alel. „Rh antigeny se dědí „en bloc“ jako set genů jednoho chromozomu (otce a matky). Tři páry alel D/d, C/c, E/e umožňují vznik 8 haplotypů
(Dce, dce, DcE, Dce, dcE, dCe, DCE, dCE) a kombinaci 36 odlišných genotypů."
(Penka, Tesařová a kolektiv, 2012)

V Rh systému existují také méně časté antígeny např. C^W, C^U, C^X, E^W, E^U. Antigen D se může následkem změny genů vyskytovat ve dvou variantách jako tzv. variantní D antigen (D^{variant}), který je považován za nekompletní antigen s kvalitativní změnou, kdy chybí část tohoto antigenu (jeden nebo více epitopů) nebo se vyskytuje jako slabý D antigen (D^{weak}), kdy se jedná o kvantitativní změnu antigenu s redukovaným počtem antigenních míst.

Podle přítomnosti či nepřítomnosti antigenu D na krvince jsou pak jedinci označováni jako RhD pozitivní a RhD negativní, přitom pozitivita znamená přítomnost D antigenu. D antigen je v rámci krevní skupiny vyšetřován dvěma různými monoklonálními diagnostickými séry, detekujícími odlišné D epitopy.

Protilátky v Rh systému se zpravidla nevyskytují jako přirozené, vznikají následkem imunizace krvní transfuzí nebo v těhotenství. Vzácně se může vyskytovat přirozená protilátková reakce anti-E. Protilátky jsou třídy IgG a patří mezi klinicky významné protilátky. Bývají přičinou hemolytického onemocnění novorozence při Rh inkompatibilitě matky a plodu, nebo hemolýzy při inkompatibilitě v Rh antigenech mezi dárcem a příjemcem krevní transfuze. Jako autoprotiživky mohou být také přičinou autoimunitních hemolytických anémii. Protilátky proti Rh antigenům optimálně reagují při teplotě 37 °C a jejich reakce může být zesílena použitím enzymu při jejich detekci.

Nejčastěji vznikající protilátkou je protilátká an-D, jelikož antigen D, proti kterému je namířena, je z Rh antigenů nejvíce imunogenní. Mezi další časté protilátky patří např. anti-C, anti-E, dále se vyskytují anti-c, anti-e a anti-C^W.

5.3 Screening nepravidelných protilátek proti erytrocytům

Screening nepravidelných protilátek proti erytrocytům jako součást předtransfuzního vyšetření je metodou k průkazu přítomnosti či nepřítomnosti protilátek v plazmě pacienta – příjemce transfuze. V případě pozitivního výsledku je potřeba protilátku nebo více protilátek identifikovat a na základě zjištěných údajů s ohledem na klinický význam protilátek vybrat k transfuzii vhodné erytrocyty, např. se může jednat o erytrocyty bez antigenu, proti kterému má příjemce vytvořenou protilátku.
5.3.1 Příprava vzorku

Přijatý vzorek je v laboratoři identifikován a zadán do laboratorního informačního systému (LIS), kde je mu přiděleno identifikační číslo vzorku pacienta.

Po první centrifugaci (10 minut při 3000 otáček/min.) se provede první oddělení plazmy od erytrocytů pacienta do zkumavky předem označené identifikačním číslem vzorku pacienta a příjmením pacienta, následně se provede druhá centrifugace oddělené plazmy (10 minut při 3000 otáček/min.) a provede se druhá alikvotace vzorku do předem označené zkumavky identifikačním číslem vorku pacienta, příjmením, jménem a rodným číslem pacienta.

5.3.2 Techniky testů

Moderní a současně doporučená metoda pro provedení screeningu protilátek je sloupcová aglutinace. Jedná se o techniku, která využívá sestavu mikrozkumavek naplněných obvykle gelem, včetně gelu neutrálního a obsahujícího AGH sérum.

- Nepřímý antiglobulinový test-NAT

Tímto testem prokazujeme přítomnost klinicky významné nepravidelné protilátky proti erytrocytům.

Principem testu je reakce mezi diagnostickými erytrocyty a plazmou vyšetřovaného pacienta, kdy při inkubaci při 37 °C dochází k navázání přítomné protilátky na antigen erytrocytu. Po přidání AGH dojde k aglutinaci, která prokazuje protilátku.

Nepřímý antiglobulinový test s použitím erytrocytů resuspendovaných v roztoku o nízké iontové síle v tzv. LISS roztoku tvoří metodu LISS-NAT, která je považována za hranici citlivosti k detekci klinicky významných protilátek a je povinným testem pro screeningové vyšetření nepravidelných antierytrocytárních protilátek.
• **Enzymový test**

Enzymový test je považován za doplňující vyšetření k NAT a je citlivou metodou pro detekci některých Rh protilátek. Je to doporučované vyšetření u opakovaně transfundovaných pacientů, používá se při vyšetření potransfuzních reakcí.

Provedení enzymových testů může být jednofázové nebo dvojřádové. Při jednofázové metodě je enzym přidáván jako samostatná reagencie, při dvojřádovém provedení testu jsou erytrocyty použité k vyšetření předem enzymem ošetřeny a není potřeba ho do reakce přidávat. Také při enzymovém testu probíhá inkubace při 37 °C.

Pro vyšetření screeningu nepravidelných protilátek proti erytrocytům se v MNO používá jednofázová metoda, kdy se do reakce dodá enzym bromelin.

5.3.3 Reagencie

Pro vyšetření nepravidelných protilátek proti erytrocytům používáme ID karty firmy BIO-RAD. ID-Karta „Reverse Grouping with Antibody screening“ obsahuje v gelové matrix ve třech mikrozkumavkách neutrální gel pro doplňující enzymový test a ve třech mikrozkumavkách polyspecifický anti-humánní globulin (králičí anti-IgG a monoklonální anti-C3d) pro nepřímý antiglobulinový test, kdy jedna karta je použita vždy pro jednoho pacienta. K detekci potřebujeme diagnostické erytrocyty firmy BIO-RAD ID-DiaCell I-II-III (0,8 % diagnostické erytrocyty pro ID-Mikro Typing Systém). Diagnostické erytrocyty jsou krevní skupiny 0. „Pro vyšetření příjemce transfuze nebo těhotné se musí použít panel tří nebo čtyř typů erytrocytů se zastoupením antigenů C, C\(^w\), c, D, E, e, K, k, Fy\(^a\), Fy\(^b\), Jk\(^a\), Jk\(^b\), S, s, M, N, P1, Le\(^a\) a Le\(^b\).“ (Penka, Tesařová a kolektiv, 2012) Exprese některých antigenů (systém Rh, MNSs, Duffy a Kidd) musí být v homozygotní formě, jelikož by při použití heterozygotní kombinací protilátky proti těmto antigenům nemusely být odhaleny. V panelu diagnostických krvek se vyskytují haplotypy R\(_2\)R\(_2\), R\(_1\)\(^W\)R\(_1\) a rr. ID-Diluent I (modifikovaný bromelinový roztok) je upravený bromelin pro DiaMed ID Micro Typing Systém s dlouhodobě stabilizovanou enzymovou aktivitou. Dále potřebujeme plazmu vyšetřovaného pacienta. Někdy dochází k situaci, kdy zbytky fibrinu obsaženého v plazmě zachytí některé neaglutinované erytrocyty a po centrifugaci vytvoří na povrchu gelu úzké červené vlákno tzv. fibrinové vlákno. Neaglutinované erytrocyty sedimentují na dno mikrozkumavky.
5.3.4 Postup

1. Popis ID karty (pořadové číslo laboratoře, příjmení pacienta, datum provedení testu a k jednotlivým mikrozkumavkám typ kapaných diagnostických erytrocytů)

2. Napipetování 50 µl jednotlivé suspenze diagnostických erytrocytů do mikrozkumavek dle příslušného označení

3. Napipetování 25 µl plazmy vyšetřovaného pacienta

4. Napipetování 25 µl enzymu bromelinu do třech mikrozkumavek určených pro enzymové vyšetření

5. Inkubace 15 minut při 37 °C

6. Centrifugace v ID-centrifuze 10 minut při 990 otáček/min.

7. Makroskopické odečtení výsledku

V případě pozitivního nebo nejasného výsledku screeningu protilátek proti erytrocytům je vyžádán nový vzorek pacienta, který je poté zaslán k došetření a k identifikaci protilátek na KC FNO.

Hodnocení výsledné reakce

Pozitivní reakce v jedné nebo více mikrozkumavkách značí přítomnost nepravidelné antierytrocytární protilátky a je potřeba určit její specifitu.

Negativní reakce ve všech mikrozkumavkách nás informuje o nepřítomnosti protilátky.
5.3.5 Falešně pozitivní a falešně negativní výsledky

Falešně pozitivní výsledky mohou být způsobeny polyaglutinabilitou erytrocytů, nespecifickou reakcí při výskytu protilátek proti použitému enzymu, přenosem specifických diagnostik v mikrozkumavkách, bakteriální nebo jinou kontaminací použitého materiálu.

Falešně negativní výsledky nebo neočekávaně slabé reakce mohou být způsobeny opomenutím přidání plazmy vyšetřovaného pacienta, pipetováním nesprávných objemů, kontaminací diagnostických erytrocytů.

5.3.6 Skladování vzorků

Po vyšetření všech požadovaných testů jsou alikvot plazmy a originální zkumavka s erytrocyty vyšetřovaného pacienta uchovávány 7 dní při 2–8 °C pro případnou rekonstrukci vyšetření při zjištěné potransfuzní reakci.

V souladu se správnou laboratorní praxí by měl být používaný pracovní materiál přezkušován. K tomuto procesu slouží kontroly kvality. Interní kontrola kvality se provádí denně za použití testovacího systému DiaMed Q.C. Systém, který slouží k ověření kvality rutinních reagentů a zajišťuje správnost výsledků. Externí kontrolu kvality zajišťuje firma SEKK 2x ročně zasílanými vzorky s neznámými výsledky. Na základě správného vyšetření je pak laboratoří udělen Certifikát nebo Osvědčení o účasti, které činí laboratoř způsobilou k provádění analýz.

5.4 Identifikace nepravidelných protilátek proti erytrocytům

Identifikace nepravidelných protilátek proti erytrocytům se provádí v případě pozitivity screeningového testu. K identifikaci nepravidelných protilátek proti erytrocytům používáme podobně, jako tomu bylo u screeningu nepravidelných protilátek proti erytrocytům, panel diagnostických erytrocytů, který však obsahuje větší počet diagnostických suspenzí erytrocytů v různé antigenní kombinaci, aby bylo možné protilátku nebo směs protilátek identifikovat.
Také v panelu diagnostických erytrocytů pro identifikaci protilátek platí určité požadavky na zastoupení jednotlivých antigenů, jejich kombinaci, přítomnost některých antigenů v homozygotní formě i přítomnost určitých haplotypů.

Protilátku identifikujeme dle pozitivní nebo negativní reakce porovnáváním s tabulkou antigenů z příbalové informace. K potvrzení specifity protilátky je nutné, aby reagovala alespoň se dvěma typy diagnostických erytrocytů, obsahující určitý antigen a nereagovala minimálně se dvěma suspenzemi diagnostických erytrocytů, na kterých konkrétní antigen není přítomen. V krvi pacienta se může vyskytovat více protilátek současně.

Paralelně je s vyšetřením zařazována autokontrola, která nám umožní odhalit autoprotílátky. Při zjištění specifické protilátky se vyšetří erytrocyty pacienta na nepřítomnost antigenu dané specifity. Pokud je tato reakce pozitivní, odhalíme přítomnost autoprotílátky. Stejný nález však může vzniknout i po podání inkompatibilní transfuze.

Pro identifikaci nepravidelných antierytrocytárních protílátok se používá nepřímý antiglobulinový test provedený při 37 °C a doplňujícími technikami jsou enzymový test a chladový solný test. Tyto testy pomohou rozpoznat nepravidelné antierytrocytární protílátky reagující ve směsi nebo reagující slabě v NAT testu. Také použití monospecifického AGH séra umožní rozlišit protílátky IgG od protílátok reagující vazbou komplementu.

Jelikož je v MNO pouze laboratoř krevního skladu, provádí identifikaci protílátok specializovaná imunohematologická laboratoř KC FNO.

5.5 Výběr vhodného transfuzního přípravku

Dle zjištěné specifity protílátky je příjemci vybrán erytrocytární přípravek. U klinicky významných protílátok musí být erytrocyty negativní pro antigen komplementární ke zjištěné protílátce. Při výběru erytrocytárního přípravku je nutno brát v úvahu i protílátky detekované u konkrétního pacienta v minulosti. V případě méně klinicky významných protílátok se volí transfuzní přípravek s negativní reakcí v NAT při testu kompatibility.
5.6 Test kompatibility

Testem kompatibility je nazývána reakce mezi plazmou příjemce a erytrocyty ze segmentu transfuzního přípravku. Tímto testem prokazujeme kompatibilitu mezi krvi dárcé a příjemce.

Test kompatibility provedený metodou LISS-NAT s negativním výsledkem nás informuje o nepřítomnosti klinicky významných protilátek v erytrocytárním přípravku a o vhodnosti podání tohoto přípravku příjemci a je doporučenou metodou pro dané vyšetření.

5.7 Klinický význam

Klinický význam detekovaných protilátek je dán rizikem vzniku potransfuzní hemolytické reakce u příjemce erytrocytů, které obsahují antigen proti identifikované protilátké. Za klinicky významné protilátky se považují AB0 protilátky a většina protilátek reagujících v NAT při teplotě 37 °C. V případě nálezu klinicky závažné protilátky se transfuze zajišťují erytrocytárními přípravky negativní pro antigen korespondující protilátké. Není-li identifikovaná protilátká klinicky významná, postačuje k transfuzi erytrocytární přípravek kompatibilní v NAT. Přestože nález protilátek detekovaných enzymovým testem není paušálně považovaný za klinicky významný, je obvyklým opatřením většiny laboratoří neignorovat takovou protilátku. Pokud má tedy „enzym-only“ protilátká specifitu odpovídající klinickým protilátkám, jako jsou protilátky proti Rh antigenům nebo skupině Kidd, obvykle se protilátká respektuje a k transfuzi se volí erytrocyty odpovídajícího fenotypu, tj. bez daného antiguenu.

Tabulka č. 1: Klinická závažnost protilátek proti erytrocytům (Penka, Tesařová a kolektiv, 2012)

<table>
<thead>
<tr>
<th>Specifita</th>
<th>Klinická závažnost</th>
<th>Výběr transfuzního přípravku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-A, anti-B</td>
<td>Vždy ano</td>
<td>AB0 kompatibilní</td>
</tr>
<tr>
<td>Rh protilátky (reagující v NAT)</td>
<td>Ano</td>
<td>Negativní pro daný antigen a negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-D, -C,-c,-E,-e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protilátky</td>
<td>Reakce</td>
<td>Vzorcové návody</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>Anti –C<sup>w</sup></td>
<td>Negativní test kompatibility</td>
<td>Ve směsi s jinou protilátkovou negativní pro daný antigen</td>
</tr>
<tr>
<td>Kell protilátky (anti-K, -k)</td>
<td>Ano</td>
<td>Negativní pro daný antigen a negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-Kp<sup>a</sup></td>
<td>vzácně</td>
<td>Negativní test kompatibility</td>
</tr>
<tr>
<td>Duffy protilátky (anti-Fy<sup>a</sup>, -Fy<sup>b</sup>)</td>
<td>Ano</td>
<td>Negativní pro daný antigen a negativní test kompatibility</td>
</tr>
<tr>
<td>Kidd protilátky (anti-Jk<sup>a</sup>, -Jk<sup>b</sup>)</td>
<td>Ano</td>
<td>Negativní pro daný antigen a negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-S, -s, -U</td>
<td>Ano</td>
<td>Negativní pro daný antigen a negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-A<sub>1</sub>, -P<sub>1</sub>, -N</td>
<td>Vzácně</td>
<td>Negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-M (nereagující při 37 °C)</td>
<td>Vzácně</td>
<td>Negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-M (reagující při 37 °C)</td>
<td>Někdy ano</td>
<td>Negativní pro daný antigen a negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-Le<sup>a</sup>, -Le<sup>antib</sup></td>
<td>vzácně</td>
<td>Negativní test kompatibility</td>
</tr>
<tr>
<td>Anti-Le<sup>b</sup></td>
<td>ne</td>
<td>Lze ignorovat</td>
</tr>
<tr>
<td>Anti-Lu<sup>a</sup></td>
<td>Vzácně</td>
<td>Negativní test kompatibility</td>
</tr>
<tr>
<td>Protilátky s vysokým titrem a nízkou aviditou (HTLA)</td>
<td>nepravděpodobná</td>
<td>Podle doporučení specializované či referenční laboratoře</td>
</tr>
<tr>
<td>Protilátky proti antigenům s nízkou/vysokou frekvencí</td>
<td>Podle specificity</td>
<td>Podle doporučení specializované či referenční laboratoře</td>
</tr>
</tbody>
</table>
Každý jednotlivý případ protilátky s nepravděpodobnou klinickou závažností je však nutno posuzovat individuálně a hodnotit klinický efekt podané transfuze (reakce, očekávaný vzestup hodnot krevního obrazu).

5.8 Antigeny a protilátky dalších krevních skupinových systémů

5.8.1 Krevní skupinový systém Kell

Jedná se o velmi významný systém antigenů, který je po RhD antigenu nejsilnější imunogenní. K nejznámějším patří antigen K1 neboli K (Kell), antigen K2 neboli k (Cellano) a další antigeny Kp\(^a\), Kp\(^b\), Js\(^a\), Js\(^b\) a mnoho dalších. Nejsilnějším antigenem tohoto systému je antigen K, vyskytuje se u 9 % populace. Jedinci, kteří nemají na povrchu erytrocytu žádný antigen systému Kell, jsou označováni fenotypem K\(_0\) a mohou tvořit protilátky proti všem antigenům tohoto systému.

Protilátky systému Kell jsou převážně třídy IgG a jsou klinicky významné, jelikož mohou způsobit potransfuzní reakci nebo HON. Nejčastější protilátkou tohoto systému je protilátka anti-K. Vzniká následkem imunizace kk homozygotních jedinců, kteří tvoří 99% populace. Protilátka anti-k se vyskytuje velmi vzácně.

5.8.2 Krevní skupinový systém Duffy

Systém Duffy je tvořen několika antigeny, z nichž nejznámějšími jsou Fy\(^a\) a Fy\(^b\). Jejich kombinací jsou možné tři fenotypy: Fy(a+b+), Fy(a+b-), Fy(a-b+). Tyto antigeny nejsou silnými imunogeny.

Protilátky systému Duffy patří mezi IgG protilátky a mohou být příčinou potransfuzní reakce i HON. Nemohou být s výjimkou trypsinou detekovány enzymovým testem, jelikož enzym destruuje antigeny Duffy přítomné na erytrocytech. Protilátky anti-Fy\(^a\) a anti-Fy\(^b\) jsou méně časté, vyskytují se samostatně nebo s jinými protilátkami.
5.8.3 Krevní skupinový systém Kidd

Antigény tohoto systému jsou Jk\(^a\) a Jk\(^b\), jsou silně imunogenní a tvoří kombinace fenotypů Jk(a+b+), Jk(a+b-) a Jk(a-b+).

Vytvořené protilátky mohou být třídy IgG i IgM. Protilátky anti-Jk\(^a\) a anti-Jk\(^b\) nejsou časté, ale mohou být obtížně detekovány a způsobit hemolytickou potransfuzní reakci. Pro jejich detekci je potřeba použít krvinky s antigeny s homozygotní expresí.

5.8.4 Krevní skupinový systém MNSs

Řadíme sem antigény M, N, S, s a U, které se různě kombinují. Patří mezi sialoglykoproteiny a jsou destruovány enzymem.

5.8.5 Další skupinové systémy

Ze systému Lutheran jsou nejvýznamnější antigeny Lu\(^a\) a Lu\(^b\), které jsou málo imunogenní a vyvíjejí se v průběhu života. Vzniklé protitlahky mohou být třídy IgM i IgG. Protitlahky tohoto systému se nevyskytují často a lépe reagují při pokojové teplotě.

Antigény systému Lewis nejsou původní součástí erytrocytů, jsou na erytrocyty absorbovány z plazmy. Tento antigenní systém má souvislost se sekretorstvím ABH. Řadíme k němu antigeny Le\(^a\) a Le\(^b\). Antigény jsou po narození exprimovány slabě a vyzrávají s věkem. Protitlahky anti-Le\(^a\) a anti-Le\(^b\) jsou převážně třídy IgM, tvoří se přirozeně a reagují při pokojové teplotě. Nemají klinický význam. Pro transfuzi postačuje aplikace kompatibilních erytrocytárních přípravků.
6 KOMPLIKACE HEMOTERAPIE

Přestože se snažíme pomocí přesně stanovených opatření zajistit k transfuzi co nejvhodnější erytrocytární přípravek, je jeho aplikace spojená s řadou možných komplikací, které se označují jako potransfuzní reakce. Lze je rozdělit podle příčiny na imunologické nebo neimunologické. Tyto reakce se mohou vyskytovat již v průběhu krevního převodu nebo bezprostředně po jeho ukončení, některé nastávají až za několik týdnů či měsíců po transfuzi. Dle časového nástupu potransfuzních komplikací tak dělíme reakce na akutní a pozdní. Akutní projevy se objevují do 6 nebo do 24 hodin od podání krevní transfuze. Pozdní komplikace se vyskytují mnohem později.

Klinické příznaky, vyskytující se v souvislosti s imunologickými potransfuzními reakcemi, mohou být obecné, nespecifické, k nim zařazujeme např. zvýšenou tělesnou teplotu, třes, tachykardii, dušnost, nauzeu, neklid. Mohou být ale i specifické pro daný typ reakce, např. trombocytopenie při potransfuzní purpuře. Průběh reakce může mít rozdílnou intenzitu, kromě lehkých rozdeznáváme i závažné potransfuzní reakce: hemolytickou reakci, akutní poškození plic, reakci štěpu proti hostiteli nebo septickou reakci.

6.1 Akutní potransfuzní reakce

- hemolytická reakce
- febrilní nehemolytická reakce
- bakteriálně-toxická reakce
- alergická reakce a anafylaktický šok
- TRALI (akutní poškození plic související s transfuzí)
6.2 Pozdní potransfuzní reakce

- pozdní hemolytická reakce
- potransfuzní trombocytopenická purpura
- GvHD (reakce štěpu proti hostiteli)
- aloimunizace
- infekce přenesená transfuzí

K jiným typům potransfuzních reakcí patří např. oběhové přetížení, citrátová toxicita nebo hyperkalémie, přetížení organizmu železem, hypotermie, vznik purpury.

Závěrem speciální části lze uvést, že doporučeným vyšetřením pro detekci antierytrocytárních protilátek u příjemce transfuze je nepřímý antiglobulinový test v prostředí LISS. Pokud se jedná o LISS-NAT prováděný metodou sloupcové aglutinace v gelu, je to test velmi specifický a senzitivní, který naprosto dostačuje jako monotest k požadovanému vyšetření. Enzymové testy aj. techniky jsou obecně doporučované spíše pro situace, kdy je vhodné rozšířit vyšetření, jako je tomu např. u pacientů s diagnózami, které vyžadují opakované transfuze erytrocytů nebo u potransfuzních reakcí, u nichž se pátrá po jejich příčině. Enzymové testy pomáhají s upřesněním protilátkového nálezu a mohou zvýraznit některé typy protilátkových reakcí (zvláště reakce Rh protilátek).

Současná doporučení vyžadují, aby imunizovaný příjemci erytrocytů, v jejichž plazmě byla zjištěna klinicky významná alopotrilátka, byli transfundováni erytrocytovými přípravky neobsahující příslušené antígeny. Naopak příjemci s protilátkami, které nevedou při inkompatibilní transfuzi k hemolýze, mohou být transfundování pouze kompatibilními erytrocyty.
III. EXPERIMENTÁLNÍ ČÁST

V experimentální části bakalářské práce se věnuji analýze vytvořeného souboru pacientů a imunohematologických údajů.

Informuji o časovém období, za které jsem informace dohledávala a uvádím kritéria, podle kterých jsem soustředěné informace dále zpracovávala. Charakterizuji sledovaný soubor z různých hledisek a imunohematologické údaje dále analyzuji. Na základě jejich rozboru hodnotím význam enzymových testů používaných při předtransfuzním vyšetření.

Jako doplnění přehledu uvádím poznatky dvou zahraničních studií.

7 STATISTICKÝ SOUBOR

Soubor tvoří skupina odlišných pacientů s ohledem na jejich věk, pohlaví, diagnózy a indikaci k podání erytrocytů. Rutinní předtransfuzní vyšetření byla prováděná pro pacienty ošetřované ambulantně i pro hospitalizované. Většina požadavků pro ambulantní pacienty byla odesílána z oddělení hemodialýzy a z hematologické poradny. Hospitalizovaní pacienti byli z oddělení ortopedie, chirurgie, urologie, neurologie nebo onkologie a byli připravováni k plánovaným operacím. Velkou část hospitalizovaných tvořili i pacienti z interního oddělení, léčení pro anémii z různých příčin.

Na základě urgenčního požadavku bylo předtransfuzní vyšetření provedeno nejčastěji pro pacienty z chirurgického oddělení nebo pro pacientky gynekologicko-porodnického
oddělení. Ve statistickém souboru se vyskytují jak pacienti, kterým bylo provedeno předtransfuzní vyšetření poprvé, tak i opakovaně transfundování.

Sledovaným parametrem byl screening nepravidelných protilátek proti erytrocytům. Toto vyšetření bylo prováděno ve dvou prostředících – v enzymovém testu a LISS-NAT. Do souboru byli zažádány všichni pacienti, kteří měli pozitivní reakci při vyšetření screeningu nepravidelných protilátek proti erytrocytům v enzymovém testu alespoň s jedním typem diagnostických erytrocytů. Plazma některých pacientů reagovala pozitivně nejen v enzymovém testu, ale i v LISS-NAT. Také tito pacienti byli zažádáni do sledování.

Síla pozitivních reakcí byla hodnocena standardním způsobem, křížkováním (viz Příloha č. 5: Vzorky reakcí).

Jelikož v laboratoři krevního skladu v MNO neprovádíme identifikaci nepravidelných protilátek proti erytrocytům, zasíláme v případě zjištění pozitivního screeningového testu nově odebraný vzorek krve pacienta ke stanovení identifikace protilátek do KC FNO. Výsledky identifikace nepravidelných protilátek jsem následně analyzovala společně s ostatními parametry.

Ke statistickému souboru původně náleželo 13 pacientů rovněž s detekovaným pozitivním výsledkem v enzymovém testu nebo v enzymovém a současně LISS-NAT testu při screeningu protilátek. U těchto pacientů z důvodu úmrtí nebylo možno došetřit specifitu detekovaných protilátek, proto jsem je nezahrnula do sledovaného souboru.

8 STATISTICKÁ DATA

Z celkového počtu 445 pozitivních nálezů jich bylo 262 detekováno pouze v enzymovém testu a zbývajících 183 bylo zachyceno současně v enzymovém a v LISS-NAT testu. Reakce pouze v enzymu tvoří 59 % z celkového počtu pozitivních reakcí.

Tabulka č. 2: Počet pozitivních nálezů protilátek dle jejich reaktivity u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012

<table>
<thead>
<tr>
<th>druh testu</th>
<th>ENZ a ENZ+NAT</th>
<th>ENZ</th>
<th>ENZ+NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>počet</td>
<td>445</td>
<td>262</td>
<td>183</td>
</tr>
<tr>
<td>procent %</td>
<td>100</td>
<td>59</td>
<td>41</td>
</tr>
</tbody>
</table>

Ve sledovaném statistickém souboru bylo při došetření 445 pozitivních screeningů získáno celkem 632 výsledků, z toho bylo 563 patologických, tj. pozitivních reakcí a 69 negativních reakcí. U uváděných 69 negativních reakcí (11 %) sice byla zjištěna pozitivita ve screeningovém testu nebo současně i v LISS-NAT, avšak při následné identifikaci protilátek nebyla přítomnost protilátky potvrzena.

Nejvýznamnější skupinu pozitivních výsledků zastupují specifické protilátky, kterých bylo celkem 258 (41 %). Jako aloprotilátky reagovaly většinou současně v enzymovém i LISS-NAT testu, avšak 69 protilátek mohlo být prokázáno pouze v enzymu.

Další velkou část pozitivních nálezů, které však nelze zařadit k nálezům významným a není nutné je při transfuzní léčbě zohledňovat, tvoří skupina nespecifických reakcí. Tyto byly v počtu 240 (38 %) detekovány v testech chladových i v testech prováděných při 37 °C. 185 z nich přitom bylo možné prokázat pouze v enzymovém testu. Zbývající část pozitivních nálezů obsahují autoprotiilátky, kterých bylo nalezeno celkem 65 (10 %). Základní přehled všech uvedených nálezů je v tabulce č.3.
Tabulka č. 3: Detekované nálezy u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012

<table>
<thead>
<tr>
<th>nálezy</th>
<th>ENZ a</th>
<th>ENZ+NAT</th>
<th>ENZ</th>
<th>ENZ+NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>aloprotilátky</td>
<td>258</td>
<td>69</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>autoprolátky</td>
<td>65</td>
<td>25</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>nespec. reakce</td>
<td>240</td>
<td>185</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>negativní reakce</td>
<td>69</td>
<td>52</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>celkem</td>
<td>632</td>
<td>331</td>
<td>301</td>
<td></td>
</tr>
</tbody>
</table>

Graf č. 1: Detekované nálezy u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012

V další tabulce uvádím komplexní souhrn ostatních imunohematologických údajů, získaných po došetření pozitivního screeningového testu. Tabulka obsahuje přehled aloprotilátek rozdělených dle příslušnosti ke skupinovým systémům erytrocytů, přehled nespecifických reakcí členěných dle teploty prostředí, ve které byly reakce zjištěny a rozděluje autoprotiživkové reakce na specifické autoprotižity dle krevních skupin a na nespecifické autoantižity u AIHA. Eviduje i 69 původně pozitivních reakcí, které nebyly dalším testováním potvrzené jako pozitivní.
Tabulka č. 4: Detekované nálezy jednotlivě podle specifity protilátky u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012

<table>
<thead>
<tr>
<th>specifita protilátky</th>
<th>počet nálezů</th>
<th>ENZ</th>
<th>ENZ+NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-D</td>
<td>58</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>anti-C</td>
<td>33</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>anti-C(w)</td>
<td>23</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>anti-c</td>
<td>9</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>anti-E</td>
<td>66</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>anti-e</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kell systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-K</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>anti-Kp(a)</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Duffy systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-Fy(a)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>anti-Fy(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidd systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-Jk(a)</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>anti-Jk(b)</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MNSs systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-S</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>anti-M</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lutheran systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-Lu(a)</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lewis systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-Le(a)</td>
<td>21</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>anti-Le(b)</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>anti-Le/a+b/</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Ve sledovaném souboru bylo detekováno 258 specifických aloprotilátek. 189 (73 %) z nich reagovalo v enzymovém testu a současně i v LISS-NAT a 69 (27 %) jich bylo identifikováno pouze enzymovým testem. Tyto protilátky byly nejčastěji proti antigenům Rh systému a méně často proti antigenům systému Kell. K ostatním specifickým protilátkám patřily protilátky proti antigenům systému Duffy, systému Kidd, systému MNSs, systému Lutheran, systému Lewis a protilátky anti-P1 a anti-A1. Četnost Rh protilátek (v souboru byly prokázány aloprotilátky anti-D, anti-C, anti-Cw, anti-c, anti-E a anti-e) povídala informaci, že antigeny Rh systému jsou nejčastějšími antigeny, proti kterým vznikají protilátky.
Z 258 specifických protilátek náleželo 190 protilátek k Rh systému. V literatuře se uvádí, že protilátka anti-D je nejčastější protilátkou Rh systému. V analyzovaném souboru byla tato protilátka zachycena v počtu 58 (31 %). S ohledem na skutečnost, že se při hemoterapii respektuje shoda v D antigenu mezi dárcem a příjemcem erytrocytů, je tento nález překvapivý. Nabízím několik možných vysvětlení. Protilátka anti-D byla detekována nejčastěji u žen, a to v počtu 50 nálezů. Tento výskyt může být způsoben možnou imunizací

Tabulka č. 5: Přehled protilátek dle vybraných antigenních systémů u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012

<table>
<thead>
<tr>
<th>antigenní systém</th>
<th>počet nálezů</th>
<th>ENZ</th>
<th>ENZ+NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh systém</td>
<td>190</td>
<td>48</td>
<td>142</td>
</tr>
<tr>
<td>Kell systém</td>
<td>27</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>ostatní systémy</td>
<td>41</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>celkem</td>
<td>258</td>
<td>69</td>
<td>189</td>
</tr>
<tr>
<td>procent %</td>
<td>100</td>
<td>27</td>
<td>73</td>
</tr>
</tbody>
</table>

Graf č. 2: Přehled protilátek dle vybraných antigenních systémů u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012
při RhD inkompatibilitě matky a plodu. Jelikož protilátka anti-D byla ve 24 případech detekována současně s protilátkou anti-C, můžeme zvažovat přítomnost protilátky anti-G. Tato protilátka v imunohematologických testech napodobuje specifitu anti-D a současně anti-C protilátky. Např. anti-C+G nebo samostatnou anti-G si můžeme zvažovat přítomnost protilátky anti-G.

Tato protilátka v imunohematologických testech napodobuje specifitu anti-D a současně anti-C protilátky. Např. anti-C+G nebo samostatnou anti-G si můžeme zvažovat přítomnost protilátky anti-G. Dalšími vysvětleními výskytu anti-D protilátky je imunizace RhD negativních příjemců transfúzi RhD pozitivních dárců, které jim byly podané v naléhavé situaci při nedostatku RhD negativních krvi.

Nejčastěji se vyskytující Rh protilátkou v analyzovaném souboru byla protilátka anti-E. Tato protilátka byla stanovena v počtu 66 (35%). Vysoký výskyt protilátky anti-E může být vysvětlen možným nálezem přirozené protilátky anti-E, která nebyla při imunohematologické diagnostice odlišována od protilátky imunní.

190 specifických protilátek bylo vytvořeno proti antigenům Rh systému. Z nich 48 (25%) bylo zachyceno pouze enzymovým testem. Dalších 142 (75%) Rh protilátek bylo detekováno současně enzymovým testem a LISS-NAT. Podobně reagovaly také některé protilátky proti jiným krevním skupinám, které bylo možné prokázat jen v enzymovém testu. Např. anti-Kp⁹ mohla být dvakrát určena pouze v enzymovém testu.

Uvedené protilátky je možné považovat (s ohledem na specifičnost antigenu, proti kterému jsou vytvořeny) za klinicky významné protilátky, které však nereagovaly při vyšetření v LISS-NAT a při vyšetření pouze tímto testem by unikly detekci. Nemusely by tak být zachycené při předtransfuzním vyšetření, které direktivně nepřikazuje používat techniku enzymových testů. Je obecným trendem opouštět od enzymových testů při screeningovém vyšetření protilátek proti erytrocytům a také doporučené vyšetřovací postupy jsou takto formulovány. Mnoho pracovišť však má obavy z tohoto postupu a enzymové testy rutinně používá v rámci předtransfuzního vyšetření. Je to dán o určitými historickými zvyklostmi, kdy zařazení enzymových testů bylo oblíbeným krokem vyšetřování, ale i skutečností, že vyšetření v enzymu je indikované pro pacienty opakovaně transfundované, převážně pacienty s diagnózami onkologickými a hematologickými a také pro pacienty s potransfuzními reakcemi, pro které laboratoř transfúze běžně zajišťuje a je pro ni obtížné rozlišovat mezi skupinami pacientů a indikovat taxativně u jednotlivých pacientů rozšířené spektrum testů.

Protože se na našem pracovišti protilátky uvedeného typu respektují při výběru transfuzního přípravku a pacientům transfundujeme erytrocyty bez antigenu odpovídajícího
protilátce, nebylo možné stanovit další klinickou návaznost tohoto zjištění. Nebylo možné určit, do jaké míry by nastala změna v laboratorním nálezu, pokud by pacientům byly podávány antigenně neshodné erytrocyty a také zda by podáním inkompatibilních erytrocytů došlo k ovlivnění klinického stavu pacientů, tedy zda by transfuze byla provázená nežádoucí reakcí.

Tabulka č. 6: Počet identifikovaných protilátek Rh systému u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012

<table>
<thead>
<tr>
<th>specifita protilátky</th>
<th>počet pacientů</th>
<th>ENZ</th>
<th>ENZ+NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh systém</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-D</td>
<td>58</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>anti-C</td>
<td>33</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>anti-C^w</td>
<td>23</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>anti-c</td>
<td>9</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>anti-E</td>
<td>66</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>anti-e</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>celkem</td>
<td>190</td>
<td>48</td>
<td>142</td>
</tr>
<tr>
<td>procent %</td>
<td>100</td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

Graf č. 3: Počet identifikovaných protilátek Rh systému u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012
U některých pacientů byl zjištěn výskyt více než jedné specifické protilátky. V některých případech se jednalo o kombinaci dvou nebo tří specifických protilátek u téhož pacienta. V jednom případě byla zjištěna kombinace čtyř specifických protilátek a to kombinace anti-D, anti-C, anti-E a anti-Fy⁺. K výskytu více specifických protilátek došlo u opakovaně transfundovaných pacientů, kteří se dostali do kontaktu s aloantigenem a reagovali na něho. Nejčastěji se vyskytovala kombinace protilátek anti-D a anti-C a to v počtu 24 nálezů. Dále se vyskytovala kombinace protilátek anti-C⁺⁺ a anti-E a to v počtu 6 nálezů.

Tabulka č. 7: Kombinace detekovaných protilátek u pacientů vyšetřených v MNO v období od července 2007 do srpna 2012

<table>
<thead>
<tr>
<th>kombinace detekovaných protilátek</th>
<th>počet</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-D+anti-C+anti-E+anti-Fy⁺</td>
<td>1</td>
</tr>
<tr>
<td>anti-D+anti-C+anti-E</td>
<td>3</td>
</tr>
<tr>
<td>anti-S+anti-c+anti-E</td>
<td>1</td>
</tr>
<tr>
<td>anti-c+anti-K+anti-E</td>
<td>1</td>
</tr>
<tr>
<td>anti-C⁺⁺+anti-E+anti-c</td>
<td>1</td>
</tr>
<tr>
<td>anti-D+anti-K</td>
<td>1</td>
</tr>
<tr>
<td>anti-D+anti-C</td>
<td>24</td>
</tr>
<tr>
<td>anti-D+anti-Leᵇ</td>
<td>1</td>
</tr>
<tr>
<td>anti-C⁺⁺+anti-E</td>
<td>6</td>
</tr>
<tr>
<td>anti-c+anti-E</td>
<td>3</td>
</tr>
<tr>
<td>anti-C+anti-E</td>
<td>2</td>
</tr>
<tr>
<td>anti-C+anti-e</td>
<td>1</td>
</tr>
<tr>
<td>anti-K+anti-E</td>
<td>2</td>
</tr>
<tr>
<td>anti-K+anti-Jkᵇ</td>
<td>1</td>
</tr>
<tr>
<td>anti-K+anti-Leᵃ</td>
<td>1</td>
</tr>
<tr>
<td>anti-K+anti-Fyᵃ</td>
<td>1</td>
</tr>
<tr>
<td>anti-E+anti-Jkᵇ</td>
<td>2</td>
</tr>
<tr>
<td>anti-E+anti-Leᵃ</td>
<td>3</td>
</tr>
<tr>
<td>anti-P₁+anti-A₁</td>
<td>1</td>
</tr>
</tbody>
</table>
Screening a identifikace nepravidelných antierytrocytárních protilátek současně LISS/Coombs a NaCl/enzym gelovou metodou – Jeong Hwan Shin, Ja Young Lee, Jae Hyen Kim, Hye Ran Kim a Jeong Nyeo Lee (Korea 2009)

Skupina lékařů se zabývala výzkumem klinického významu LISS/Coombs testu a NaCl/enzym testu pomocí gelových metod při screeningu a identifikaci protilátek. K vyšetření screeningu a identifikace protilátek byla použita metoda sloupcové aglutinace firmy DiaMed a diagnostické erytrocyty ošetřené enzymem papainem. Vyšetřením 15 014 vzorků bylo detekováno 234 protilátek, z tohoto počtu bylo také detekováno 25 autoprotilátek. Z nálezu 209 protilátek bylo 57 protilátek detekováno oběma metodami, 137 protilátek jen enzymovou technikou, 15 protilátek pouze LISS testem.

Autoři upozorňují na obtížné rozhodnutí klinického významu protilátek detekovaných pomocí enzymového testu a také na opatrnost v interpretaci klinického významu zjištěných protilátek. Zároveň však uvádějí, že enzymová metoda odhalila vysoký podíl nespecifických reakcí s nejistým klinickým nálezem a protilátky reagující jen v enzymovém testu nemají klinický význam.

Vyhodnotili nespecifické reakce a klinicky nevýznamné protilátky. Autoři nesouhlasí naprosto s názorem, že protilátky detekované pouze enzymovou technikou jsou zcela zanedbatelné. Autoři studie upozorňují na informaci, kdy enzymový test zlepšil detekci nízkých koncentrací anti-Rh protilátek, které by jinak nebyly odhaleny. Zmiňují se také o informaci, že některé případy akutní hemolytické potransfuzní reakce nebo opožděné potransfuzní reakce byly způsobeny protilátkou detekovanou jen enzymovým testem.

Závěrem studie informují na užitečnost detekování enzymovým testem, kdy může být detekována a identifikována řada významných protilátek, přestože tato metoda odhalí vysoký podíl nespecifických reakcí a nálezu nevýznamných protilátek.
Nedostatek klinického významu „pouze enzymovým testem detekovaných“ antierytrocytárních protilátek – Issitt PD, Combs MR, Bredehoeft ML a kol., abstrakt (Transfuze 1993)

V retrospektivní studii 10 000 vzorků čerstvě transfundovaných pacientů bylo těmito vědcí zjištěno 35 vzorků, které obsahovali protilátku reagující pouze v enzymovém testu za použití enzymu fícin a nereagující v LISS-NAT testu. Pacienti byli transfundováni erytrocytárními přípravky negativními na antigen korespondující specifitě protilátky, která měla negativní reakci v LISS-NAT testu. Testováním erytrocytů z transfuzních přípravků vědci zjistili, že 19 pacientů obdrželo 32 transfuzních jednotek obsahujících antigen dodatečně zjištěný v enzymovém testu a 74 transfuzních jednotek bez přítomného antigenu. Zbývajících 16 pacientů obdrželo náhodou 57 transfuzních přípravků bez přítomného antigenu. U 1 pacienta byla následně aplikace krve s přítomným antigenem zjištěna pozdní potransfuzní reakce a byly mu detekovány další dvě protilátky reagující již v LISS-NAT testu. Nicméně detekce dvou protilátek reagujících již v LISS-NAT testu byla také nalezena u pacientů, kteří obdrželi antigen negativní transfuzní přípravky.

U 10 000 vzorků pacientů vědci detekovali 28 klinicky nevýznamných protilátek, 77 nálezů, kdy protilátku reagovala velmi slabě, a 216 autoprolátek reagujících pouze v enzymovém testu.

Na základě těchto údajů podporují myšlenku, že enzymové testy představují pro rutinní předtransfuzní vyšetření více práce, než výhodu zjištěných nálezů.

10 ZÁVĚR

Pouze v enzymovém testu však byly zachyceny také protilátky proti antigenům Rh systému, pro jejichž průkaz je tento test senzitivní a proto vhodnou detekční metodou. Klinický význam těchto „enzyme-only“ protilátek není obecně uznávaný, neměl by být pro hemoterapii zásadní a dané protilátky by nemusely být, s ohledem na platná doporučení pro imunohematologická vyšetření, považovány za protilátky rizikové pro vznik potransfuzní hemolýzy nebo nedostatečné léčebné odpovědi při podání transfuze inkompatibilní pro daný antigen.

Z jiného pohledu jsou však enzymové testy hodnocené v kontextu přípravy bezpečné transfuze u opakovaně transfundovaných pacientů event., např. při vyšetření potransfuzních reakcí. V tomto kontextu je naopak vhodné a doporučené protilátky v nich reagující zohlednit a při transfuzi respektovat.

Naše pracoviště se přikládá k rutinnímu používání enzymových testů v diagnostice a proto byly mezi pozitivními výsledky screeningových testů častými nálezy reakce, které by bylo možné považovat za nežádoucí a jejichž opomenutí by mohlo urozumět předtransfuzní vyšetření a mohlo by přinést i finanční úspory. Výsledky mé analýzy by proto mohly přispět k potvrzení nebo přehodnocení zavedeného postupu. Je přitom nutné zohlednit skupinu opakovaně transfundovaných pacientů, pro které by test měl být zachován.

Anti-D bývá uváděna jako nejčastěji vznikající protilátkou z Rh systému díky silné imunogenicitě D antigenu. Ve sledovaném souboru sice nebyla nejpočetnější zastoupena, ale četnost jejího výskytu byla zarážející s přihlédnutím k tomu, že se při hemoterapii respektuje shoda v D antigenu mezi dárcem a příjemcem erytrocytů. Analýza příčiny tohoto typu imunizace by jistě byla zajímavá.

Nejfrekventovanější protilátkou v souboru byla protilátky anti-E. Její nález může být vysvětlený výskytom přirozených protilátek, které lze při imunohematologickém vyšetření detekovat.

Potvrdila se skutečnost, že protilátky systému Duffy a systému MNS není možné prokázat v enzymovém testu. Všechny identifikované protilátky těchto systémů byly zachyceny pouze LISS-NAT testem.
Literatura

Klinická vložka časopisu Transfuze dnes č. 27-28/99 Předtransfuzní vyšetření: Doporučený postup při předtransfuzním laboratorním vyšetření MUDr. M. Písačka, ÚHKT Praha

Příbalový leták BIO-RAD “Reverse Grouping with Antibody screening“ ID–karta

Příbalový leták BIO-RAD Diagnostické erytrocyty pro ID–Micro Typing Systém (0,8%) pro screening protilátek

Příbalový leták BIO-RAD ID–Diluent 1 Modifikovaný roztok bromelinu pro stanovení krevních skupin a pro enzymatické testy

Příbalový leták BIO-RAD ID–Diluent 2 Modifikovaný LISS pro přípravu suspenze erytrocytů

Standardní operační postupy a pracovní instrukce MNO

Internetové zdroje

Příloha č. 1: Statistický soubor pacientů vyšetřených v MNO v období od července 2007 do srpna 2012 (pomocná tabulka)

<table>
<thead>
<tr>
<th>iniciály</th>
<th>pohlaví</th>
<th>ročník</th>
<th>ENZYM</th>
<th>LISS-NAT</th>
<th>PAT</th>
<th>výsledek 1</th>
<th>výsledek 2</th>
<th>výsledek 3</th>
<th>výsledek 4</th>
<th>výsledek 5</th>
<th>výsledek 6</th>
<th>výsledek 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČV</td>
<td>ž</td>
<td>57 ano</td>
<td>ne ano</td>
<td>ano</td>
<td>4C</td>
<td>ne</td>
<td>ano</td>
<td>37C</td>
<td>4C</td>
<td>neg.</td>
<td>anti-E</td>
<td></td>
</tr>
<tr>
<td>BM</td>
<td>ž</td>
<td>32 ano</td>
<td>ano ano</td>
<td>ano</td>
<td>4C</td>
<td>37C</td>
<td>anti-C</td>
<td>4C</td>
<td></td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
</tr>
<tr>
<td>HI</td>
<td>m</td>
<td>45 ano</td>
<td>ne ne</td>
<td>neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJ</td>
<td>m</td>
<td>38 ano</td>
<td>ne ne</td>
<td>37C</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>ž</td>
<td>35 ano</td>
<td>ne ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>anti-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>m</td>
<td>39 ano</td>
<td>ne ne</td>
<td>neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KA</td>
<td>ž</td>
<td>26 ano</td>
<td>ne ne</td>
<td>37C</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHHIK</td>
<td>ž</td>
<td>83 ano</td>
<td>ne ne</td>
<td>anti-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB</td>
<td>ž</td>
<td>57 ano</td>
<td>ne ne</td>
<td>anti-Cw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>ž</td>
<td>52 ano</td>
<td>ne ne</td>
<td>37C</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>ž</td>
<td>32 ano</td>
<td>ano ano</td>
<td>37C</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV</td>
<td>m</td>
<td>41 ano</td>
<td>ano ne</td>
<td>anti-K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>m</td>
<td>53 ano</td>
<td>ano ne</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZ</td>
<td>m</td>
<td>37 ano</td>
<td>ne ne</td>
<td>neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>ž</td>
<td>53 ano</td>
<td>ne ne</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>ž</td>
<td>23 ano</td>
<td>ano ano</td>
<td>anti-D</td>
<td>anti-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>m</td>
<td>47 ano</td>
<td>ne ne</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>anti-E</td>
</tr>
<tr>
<td>WP</td>
<td>m</td>
<td>80 ano</td>
<td>ano ano</td>
<td>anti-D</td>
<td>anti-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>ž</td>
<td>73 ano</td>
<td>ano ano</td>
<td>37C</td>
<td></td>
<td>anti-K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE</td>
<td>ž</td>
<td>41 ano</td>
<td>ano ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>ž</td>
<td>37 ano</td>
<td>ne ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td>ž</td>
<td>31 ano</td>
<td>ano ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJ</td>
<td>ž</td>
<td>53 ano</td>
<td>ano ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>ž</td>
<td>56 ano</td>
<td>ano ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>ž</td>
<td>30 ano</td>
<td>ano ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>ž</td>
<td>58 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>m</td>
<td>54 ano</td>
<td>ano ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HJ</td>
<td>ž</td>
<td>26 ano</td>
<td>ano ano</td>
<td>anti-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ČK</td>
<td>ž</td>
<td>30 ano</td>
<td>ano an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>ž</td>
<td>57 ano</td>
<td>ano ano</td>
<td>anti-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV</td>
<td>ž</td>
<td>42 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HJ</td>
<td>ž</td>
<td>53 ano</td>
<td>ano an</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM</td>
<td>ž</td>
<td>41 ano</td>
<td>ano ne</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ŘZ</td>
<td>m</td>
<td>38 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tepel.autom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td>ž</td>
<td>32 ano</td>
<td>ano ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>ž</td>
<td>25 ano</td>
<td>ano ano</td>
<td>anti-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JJ</td>
<td>m</td>
<td>45 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>ž</td>
<td>57 ano</td>
<td>ano an</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>ž</td>
<td>53 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KZ</td>
<td>ž</td>
<td>55 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>ž</td>
<td>26 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>ž</td>
<td>46 ano</td>
<td>ano ne</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>m</td>
<td>48 ano</td>
<td>ano an</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK</td>
<td>ž</td>
<td>31 ano</td>
<td>ano an</td>
<td>37C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>ž</td>
<td>55 ano</td>
<td>ano ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63
<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>Blood Type</th>
<th>Other Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>43</td>
<td>Ž</td>
<td>38</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>LV</td>
<td>41</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>HM</td>
<td>38</td>
<td>m</td>
<td>34</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>LD</td>
<td>39</td>
<td>Ž</td>
<td>34</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>TD</td>
<td>39</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>NH</td>
<td>48</td>
<td>Ž</td>
<td>34</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KO</td>
<td>40</td>
<td>Ž</td>
<td>34</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>HM</td>
<td>31</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>ZM</td>
<td>45</td>
<td>m</td>
<td>34</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>GA</td>
<td>39</td>
<td>m</td>
<td>34</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>SJ</td>
<td>31</td>
<td>Ž</td>
<td>34</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>CA</td>
<td>51</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>TJ</td>
<td>52</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>RJ</td>
<td>47</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KM</td>
<td>52</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>ČJ</td>
<td>58</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>HG</td>
<td>27</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>HH</td>
<td>43</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>MV</td>
<td>22</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>MK</td>
<td>32</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>PL</td>
<td>29</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>HM</td>
<td>23</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>JG</td>
<td>36</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>ČE</td>
<td>41</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>SB</td>
<td>52</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>HA</td>
<td>39</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>SM</td>
<td>84</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>FL</td>
<td>38</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>EL</td>
<td>80</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>FJ</td>
<td>57</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>FJ</td>
<td>51</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>SV</td>
<td>32</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KJ</td>
<td>24</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KM</td>
<td>29</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KH</td>
<td>27</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>VJ</td>
<td>32</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>NA</td>
<td>30</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>ČJ</td>
<td>26</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>RI</td>
<td>75</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>HP</td>
<td>70</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KZ</td>
<td>38</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KM</td>
<td>28</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>SJ</td>
<td>53</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>GZ</td>
<td>26</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>FA</td>
<td>40</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>WM</td>
<td>43</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>MJ</td>
<td>56</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>SP</td>
<td>42</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>SM</td>
<td>40</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>ŠM</td>
<td>72</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KA</td>
<td>38</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>KN</td>
<td>46</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>RL</td>
<td>33</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>CH</td>
<td>53</td>
<td>Ž</td>
<td>44</td>
<td>ano ano ne</td>
</tr>
<tr>
<td>ČJ</td>
<td>m</td>
<td>54</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>CHD</td>
<td>ž</td>
<td>22</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>BV</td>
<td>m</td>
<td>38</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KJ</td>
<td>m</td>
<td>47</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>FD</td>
<td>ž</td>
<td>43</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>FV</td>
<td>m</td>
<td>42</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>KS</td>
<td>ž</td>
<td>60</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HJ</td>
<td>ž</td>
<td>55</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>GL</td>
<td>ž</td>
<td>32</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>KL</td>
<td>ž</td>
<td>69</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>TO</td>
<td>ž</td>
<td>26</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HB</td>
<td>m</td>
<td>49</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>GL</td>
<td>m</td>
<td>51</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>GV</td>
<td>m</td>
<td>56</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MA</td>
<td>ž</td>
<td>35</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>LŠ</td>
<td>ž</td>
<td>72</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>VI</td>
<td>m</td>
<td>47</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>HM</td>
<td>ž</td>
<td>80</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>AL</td>
<td>ž</td>
<td>38</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>SB</td>
<td>ž</td>
<td>49</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KJ</td>
<td>ž</td>
<td>72</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>VY</td>
<td>m</td>
<td>45</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>VI</td>
<td>m</td>
<td>47</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ŠI</td>
<td>m</td>
<td>45</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MM</td>
<td>ž</td>
<td>44</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KJ</td>
<td>m</td>
<td>40</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>SJ</td>
<td>m</td>
<td>46</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PD</td>
<td>ž</td>
<td>54</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>TE</td>
<td>ž</td>
<td>53</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>IE</td>
<td>ž</td>
<td>43</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>AH</td>
<td>ž</td>
<td>40</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>PH</td>
<td>ž</td>
<td>56</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>NB</td>
<td>ž</td>
<td>83</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>CJ</td>
<td>ž</td>
<td>60</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>PM</td>
<td>ž</td>
<td>46</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>GA</td>
<td>ž</td>
<td>41</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HJ</td>
<td>ž</td>
<td>35</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>DJ</td>
<td>m</td>
<td>41</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>KL</td>
<td>ž</td>
<td>35</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ŠM</td>
<td>m</td>
<td>46</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>CHV</td>
<td>m</td>
<td>52</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>VI</td>
<td>ž</td>
<td>44</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PL</td>
<td>ž</td>
<td>47</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>JI</td>
<td>ž</td>
<td>43</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KP</td>
<td>ž</td>
<td>82</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>RJ</td>
<td>m</td>
<td>56</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>DP</td>
<td>m</td>
<td>44</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PA</td>
<td>m</td>
<td>38</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>tepel., autopr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ŠI</td>
<td>ž</td>
<td>41</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>GM</td>
<td>m</td>
<td>56</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>JI</td>
<td>m</td>
<td>37</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MA</td>
<td>ž</td>
<td>32</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>HZ</td>
<td>ž</td>
<td>24</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MV</td>
<td>m</td>
<td>23</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>GV</td>
<td>ž</td>
<td>48</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>Code</td>
<td>Gender</td>
<td>Age</td>
<td>Status</td>
<td>Antibody</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>PE</td>
<td>ž</td>
<td>53</td>
<td>ne</td>
<td>ne</td>
</tr>
<tr>
<td>ŠJ</td>
<td>ž</td>
<td>25</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>HU</td>
<td>m</td>
<td>46</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>SV</td>
<td>m</td>
<td>39</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MM</td>
<td>ž</td>
<td>51</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HM</td>
<td>m</td>
<td>48</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ČJ</td>
<td>m</td>
<td>46</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KJ</td>
<td>ž</td>
<td>54</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>NL</td>
<td>ž</td>
<td>77</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ZJ</td>
<td>ž</td>
<td>31</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>HV</td>
<td>m</td>
<td>49</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>KL</td>
<td>ž</td>
<td>76</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>JO</td>
<td>ž</td>
<td>47</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MJ</td>
<td>m</td>
<td>88</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>RV</td>
<td>ž</td>
<td>40</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>GL</td>
<td>m</td>
<td>25</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>GJ</td>
<td>m</td>
<td>44</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>BD</td>
<td>ž</td>
<td>36</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KP</td>
<td>ž</td>
<td>66</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ČJ</td>
<td>ž</td>
<td>67</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>NJ</td>
<td>ž</td>
<td>18</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>BZ</td>
<td>m</td>
<td>61</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>KS</td>
<td>ž</td>
<td>58</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>PM</td>
<td>ž</td>
<td>30</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>SV</td>
<td>m</td>
<td>45</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KM</td>
<td>ž</td>
<td>44</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>RB</td>
<td>ž</td>
<td>29</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MA</td>
<td>ž</td>
<td>34</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>LL</td>
<td>ž</td>
<td>78</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>LL</td>
<td>ž</td>
<td>45</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>WM</td>
<td>m</td>
<td>21</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>JA</td>
<td>ž</td>
<td>20</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KB</td>
<td>ž</td>
<td>31</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KY</td>
<td>ž</td>
<td>57</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PM</td>
<td>ž</td>
<td>53</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HA</td>
<td>ž</td>
<td>29</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ŠJ</td>
<td>m</td>
<td>35</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>TZ</td>
<td>m</td>
<td>51</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>FM</td>
<td>m</td>
<td>39</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>TM</td>
<td>m</td>
<td>38</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>BA</td>
<td>ž</td>
<td>47</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MM</td>
<td>ž</td>
<td>57</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MF</td>
<td>m</td>
<td>48</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KV</td>
<td>ž</td>
<td>21</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>LV</td>
<td>ž</td>
<td>41</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>BŠ</td>
<td>m</td>
<td>51</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HR</td>
<td>ž</td>
<td>50</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KP</td>
<td>m</td>
<td>63</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>DA</td>
<td>ž</td>
<td>27</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>PA</td>
<td>ž</td>
<td>33</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PF</td>
<td>m</td>
<td>52</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MP</td>
<td>m</td>
<td>57</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>HD</td>
<td>m</td>
<td>60</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>JB</td>
<td>ž</td>
<td>35</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>BM</td>
<td>m</td>
<td>30</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>Příjmení</td>
<td>Sex</td>
<td>Věk</td>
<td>Stavy</td>
<td>Reakce</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>VM</td>
<td>m</td>
<td>30</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ŘK</td>
<td>ž</td>
<td>26</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>VB</td>
<td>m</td>
<td>56</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ZV</td>
<td>m</td>
<td>63</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>VV</td>
<td>m</td>
<td>28</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>SV</td>
<td>ž</td>
<td>26</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>BV</td>
<td>ž</td>
<td>29</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ŠB</td>
<td>m</td>
<td>21</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ZH</td>
<td>ž</td>
<td>70</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>BB</td>
<td>m</td>
<td>49</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ČJ</td>
<td>ž</td>
<td>56</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>TA</td>
<td>ž</td>
<td>38</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PV</td>
<td>ž</td>
<td>95</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ST</td>
<td>ž</td>
<td>26</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ŠČ</td>
<td>ž</td>
<td>47</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PK</td>
<td>m</td>
<td>37</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>GF</td>
<td>m</td>
<td>56</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>BI</td>
<td>m</td>
<td>45</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>HL</td>
<td>ž</td>
<td>33</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>PG</td>
<td>M</td>
<td>50</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>NE</td>
<td>ž</td>
<td>41</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ŠJ</td>
<td>m</td>
<td>41</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ŠÍ</td>
<td>m</td>
<td>42</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MM</td>
<td>m</td>
<td>55</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ŠO</td>
<td>m</td>
<td>34</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MJ</td>
<td>m</td>
<td>75</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MM</td>
<td>m</td>
<td>45</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>VA</td>
<td>m</td>
<td>32</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>PA</td>
<td>ž</td>
<td>54</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>KG</td>
<td>ž</td>
<td>28</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>RZ</td>
<td>ž</td>
<td>63</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>DA</td>
<td>m</td>
<td>54</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KV</td>
<td>m</td>
<td>38</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>NJ</td>
<td>m</td>
<td>65</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>UJ</td>
<td>m</td>
<td>47</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ML</td>
<td>ž</td>
<td>34</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HV</td>
<td>ž</td>
<td>47</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MA</td>
<td>m</td>
<td>41</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MA</td>
<td>ž</td>
<td>52</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KJ</td>
<td>ž</td>
<td>46</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ŠÍ</td>
<td>m</td>
<td>38</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>LA</td>
<td>ž</td>
<td>36</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>ZL</td>
<td>m</td>
<td>59</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MM</td>
<td>m</td>
<td>53</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>SZ</td>
<td>m</td>
<td>43</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KB</td>
<td>m</td>
<td>43</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HT</td>
<td>ž</td>
<td>61</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>SD</td>
<td>m</td>
<td>54</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>CHI</td>
<td>ž</td>
<td>29</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>VI</td>
<td>m</td>
<td>67</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MP</td>
<td>ž</td>
<td>49</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>SK</td>
<td>ž</td>
<td>81</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>KA</td>
<td>ž</td>
<td>30</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ŘI</td>
<td>ž</td>
<td>43</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>HK</td>
<td>ž</td>
<td>23</td>
<td>ano</td>
<td>ano</td>
</tr>
</tbody>
</table>

67
<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Age</th>
<th>Blood Type</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL m</td>
<td>30</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>GA ž</td>
<td>49</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>BJ m</td>
<td>67</td>
<td>ano</td>
<td>ne ne</td>
<td>anti-Cw</td>
</tr>
<tr>
<td>KJ m</td>
<td>52</td>
<td>ano</td>
<td>ne ne</td>
<td>4C</td>
</tr>
<tr>
<td>PM m</td>
<td>34</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>KH m</td>
<td>50</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>SJ m</td>
<td>50</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>MA ž</td>
<td>40</td>
<td>ano</td>
<td>ano ne</td>
<td>4C</td>
</tr>
<tr>
<td>IV m</td>
<td>43</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>ŠJ ž</td>
<td>69</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-Cw</td>
</tr>
<tr>
<td>NV ž</td>
<td>37</td>
<td>ano</td>
<td>ano ano</td>
<td>4C</td>
</tr>
<tr>
<td>KS m</td>
<td>55</td>
<td>ano</td>
<td>ano neg.</td>
<td>37C</td>
</tr>
<tr>
<td>MJ ž</td>
<td>32</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>DR ž</td>
<td>77</td>
<td>ano</td>
<td>ne ne neg.</td>
<td>4C</td>
</tr>
<tr>
<td>GM m</td>
<td>68</td>
<td>ano</td>
<td>ne ne neg.</td>
<td>4C</td>
</tr>
<tr>
<td>KZ m</td>
<td>47</td>
<td>ano</td>
<td>ano ne</td>
<td>4C</td>
</tr>
<tr>
<td>OO m</td>
<td>44</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>SL ž</td>
<td>54</td>
<td>ano</td>
<td>ano ne</td>
<td>37C</td>
</tr>
<tr>
<td>KV ž</td>
<td>50</td>
<td>ano</td>
<td>ano ano</td>
<td>anti-Cw</td>
</tr>
<tr>
<td>LO ž</td>
<td>44</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>BA ž</td>
<td>53</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>KD m</td>
<td>94</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>KM m</td>
<td>58</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>PR m</td>
<td>33</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>RL m</td>
<td>53</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>LE ž</td>
<td>29</td>
<td>ano</td>
<td>ano ne</td>
<td>4C</td>
</tr>
<tr>
<td>HJ m</td>
<td>66</td>
<td>ano</td>
<td>ne ne</td>
<td>anti-Cw</td>
</tr>
<tr>
<td>ŽT ž</td>
<td>32</td>
<td>ano</td>
<td>ano ne</td>
<td>neg.</td>
</tr>
<tr>
<td>FM ž</td>
<td>48</td>
<td>ano</td>
<td>ano ne</td>
<td>neg.</td>
</tr>
<tr>
<td>SM ž</td>
<td>69</td>
<td>ano</td>
<td>ne ne</td>
<td>anti-P1</td>
</tr>
<tr>
<td>LJ ž</td>
<td>57</td>
<td>ano</td>
<td>ne ne</td>
<td>anti-Le/a/</td>
</tr>
<tr>
<td>IE ž</td>
<td>22</td>
<td>ano</td>
<td>ne ne</td>
<td>autopr. anti-C</td>
</tr>
<tr>
<td>PA ž</td>
<td>28</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>PM ž</td>
<td>26</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>MJ m</td>
<td>33</td>
<td>ano</td>
<td>ne ne</td>
<td>4C</td>
</tr>
<tr>
<td>ZM ž</td>
<td>30</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>DA ž</td>
<td>47</td>
<td>ano</td>
<td>ano ne ano</td>
<td>37C</td>
</tr>
<tr>
<td>FJ ž</td>
<td>31</td>
<td>ano</td>
<td>ne ne</td>
<td>anti-Le/a/</td>
</tr>
<tr>
<td>PE ž</td>
<td>24</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>ŠJ ž</td>
<td>26</td>
<td>ano</td>
<td>ne ne neg.</td>
<td>4C</td>
</tr>
<tr>
<td>WH ž</td>
<td>47</td>
<td>ano</td>
<td>ano ano</td>
<td>anti-K</td>
</tr>
<tr>
<td>ŠJ m</td>
<td>44</td>
<td>ano</td>
<td>ano ne</td>
<td>4C</td>
</tr>
<tr>
<td>MP m</td>
<td>49</td>
<td>ano</td>
<td>ano ano</td>
<td>AIHA, tepel., anti-e</td>
</tr>
<tr>
<td>MD ž</td>
<td>28</td>
<td>ano</td>
<td>ne ne neg.</td>
<td>4C</td>
</tr>
<tr>
<td>SJ ž</td>
<td>33</td>
<td>ano</td>
<td>ano neg.</td>
<td>4C</td>
</tr>
<tr>
<td>TA ž</td>
<td>41</td>
<td>ano</td>
<td>ano ano</td>
<td>anti-E</td>
</tr>
<tr>
<td>SS m</td>
<td>51</td>
<td>ano</td>
<td>ne ne</td>
<td>autopr.anti-e</td>
</tr>
<tr>
<td>RA ž</td>
<td>31</td>
<td>ano</td>
<td>ano ano</td>
<td>anti-E</td>
</tr>
<tr>
<td>RJ m</td>
<td>89</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>HM Ž</td>
<td>31</td>
<td>ano</td>
<td>ano ano ne</td>
<td>anti-D</td>
</tr>
<tr>
<td>BD ž</td>
<td>59</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>FK ž</td>
<td>23</td>
<td>ano</td>
<td>ano ne</td>
<td>anti-C</td>
</tr>
<tr>
<td>KA ž</td>
<td>32</td>
<td>ano</td>
<td>ne ne</td>
<td>37C</td>
</tr>
<tr>
<td>KJ ž</td>
<td>49</td>
<td>ano</td>
<td>ano ano</td>
<td>AIHA, tepel., 4C</td>
</tr>
<tr>
<td>HA ž</td>
<td>20</td>
<td>ano</td>
<td>ano ne</td>
<td>neg.</td>
</tr>
</tbody>
</table>

68
<table>
<thead>
<tr>
<th>First Name</th>
<th>Gender</th>
<th>Age</th>
<th>Blood Type</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PJ</td>
<td>m</td>
<td>48</td>
<td>ne ne neg.</td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>m</td>
<td>44</td>
<td>ne ne 37C</td>
<td>anti-Le/a+b/</td>
</tr>
<tr>
<td>HJ</td>
<td>ž</td>
<td>63</td>
<td>ano ano</td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>ž</td>
<td>25</td>
<td>ano ne 37C 4C</td>
<td>anti-E</td>
</tr>
<tr>
<td>ŠP</td>
<td>m</td>
<td>53</td>
<td>ano ano</td>
<td>anti-K</td>
</tr>
<tr>
<td>HB</td>
<td>m</td>
<td>43</td>
<td>ano ano ano 4C</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>m</td>
<td>66</td>
<td>ano ne 37C</td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>m</td>
<td>28</td>
<td>ano ano</td>
<td></td>
</tr>
<tr>
<td>DJ</td>
<td>m</td>
<td>34</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>ž</td>
<td>40</td>
<td>ano ano anti-D anti-C</td>
<td></td>
</tr>
<tr>
<td>ŠA</td>
<td>m</td>
<td>52</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>ŽD</td>
<td>ž</td>
<td>35</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>KC</td>
<td>ž</td>
<td>26</td>
<td>ano ne 37C</td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>ž</td>
<td>75</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>GJ</td>
<td>ž</td>
<td>38</td>
<td>ano ano neg.</td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td>m</td>
<td>59</td>
<td>ano ne 37C anti-Le/a/</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>ž</td>
<td>26</td>
<td>ano ano anti-D</td>
<td></td>
</tr>
<tr>
<td>HH</td>
<td>m</td>
<td>42</td>
<td>ano ne 4C</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>m</td>
<td>36</td>
<td>ano 37C</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>ž</td>
<td>58</td>
<td>ano ano anti-D</td>
<td></td>
</tr>
<tr>
<td>NJ</td>
<td>ž</td>
<td>50</td>
<td>ano ne 4C</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>m</td>
<td>29</td>
<td>ano ano anti-c</td>
<td></td>
</tr>
<tr>
<td>HJ</td>
<td>ž</td>
<td>60</td>
<td>ano ne 37C</td>
<td></td>
</tr>
<tr>
<td>OŠ</td>
<td>ž</td>
<td>48</td>
<td>ano ano anti-K</td>
<td></td>
</tr>
<tr>
<td>HŠ</td>
<td>m</td>
<td>21</td>
<td>ano ne anti-P1</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>ž</td>
<td>24</td>
<td>ano ano anti-D</td>
<td></td>
</tr>
<tr>
<td>ŠK</td>
<td>m</td>
<td>33</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>ž</td>
<td>44</td>
<td>ano ne 4C</td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>ž</td>
<td>33</td>
<td>ano ano anti-D anti-C</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>ž</td>
<td>36</td>
<td>ano 37C</td>
<td></td>
</tr>
<tr>
<td>JJ</td>
<td>m</td>
<td>53</td>
<td>ano ano anti-Le/a/</td>
<td></td>
</tr>
<tr>
<td>BM</td>
<td>m</td>
<td>36</td>
<td>ano 37C 4C</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>ž</td>
<td>23</td>
<td>ano ne 4C</td>
<td></td>
</tr>
<tr>
<td>SV</td>
<td>m</td>
<td>52</td>
<td>ano ano 37C</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>ž</td>
<td>21</td>
<td>ano ne 4C anti-E</td>
<td></td>
</tr>
<tr>
<td>ČV</td>
<td>ž</td>
<td>45</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>FJ</td>
<td>m</td>
<td>58</td>
<td>ano ne 37C 4C anti-Cw</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>ž</td>
<td>20</td>
<td>ano 37C anti-P1</td>
<td></td>
</tr>
<tr>
<td>KA</td>
<td>m</td>
<td>49</td>
<td>ano ano AHAnepel., 4C tepel.autopr.</td>
<td></td>
</tr>
<tr>
<td>ŠJ</td>
<td>m</td>
<td>48</td>
<td>ano ne 4C</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>m</td>
<td>47</td>
<td>ano 37C</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>ž</td>
<td>47</td>
<td>ano ano anti-D anti-C</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>ž</td>
<td>35</td>
<td>ano ne 37C 4C</td>
<td></td>
</tr>
<tr>
<td>ŠD</td>
<td>ž</td>
<td>31</td>
<td>ano ne 4C autopr.anti-c</td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>ž</td>
<td>43</td>
<td>ano ano anti-D</td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>ž</td>
<td>42</td>
<td>ano ne anti-E</td>
<td></td>
</tr>
<tr>
<td>FK</td>
<td>ž</td>
<td>43</td>
<td>ano ano anti-E</td>
<td></td>
</tr>
<tr>
<td>HB</td>
<td>m</td>
<td>25</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>m</td>
<td>40</td>
<td>ano ano 4C</td>
<td>anti-Fy/a/</td>
</tr>
<tr>
<td>KE</td>
<td>m</td>
<td>41</td>
<td>ano ano 4C anti-K</td>
<td></td>
</tr>
<tr>
<td>LB</td>
<td>ž</td>
<td>31</td>
<td>ano ano AHAnepel., 4C tepel.autopr.</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>m</td>
<td>41</td>
<td>ano ne 4C anti-E</td>
<td></td>
</tr>
<tr>
<td>UJ</td>
<td>m</td>
<td>22</td>
<td>ano ano 4C anti-E</td>
<td></td>
</tr>
<tr>
<td>KV</td>
<td>m</td>
<td>30</td>
<td>ano ano anti-Cw anti-E</td>
<td></td>
</tr>
<tr>
<td>KZ</td>
<td>ž</td>
<td>76</td>
<td>ano ne neg.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Age</td>
<td>Gender</td>
<td>AB Type</td>
<td>Red Cell Antigen(s)</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>VV</td>
<td>31</td>
<td>ž</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PK</td>
<td>89</td>
<td>ž</td>
<td>ano</td>
<td>ano ne</td>
</tr>
<tr>
<td>VM</td>
<td>64</td>
<td>ž</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>LA</td>
<td>26</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>ZJ</td>
<td>27</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>KV</td>
<td>31</td>
<td>ž</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MV</td>
<td>42</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>KD</td>
<td>25</td>
<td>ž</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>VS</td>
<td>39</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>BM</td>
<td>60</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>NF</td>
<td>38</td>
<td>m</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>DH</td>
<td>51</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>OA</td>
<td>23</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>LJ</td>
<td>47</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>TJ</td>
<td>23</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>PŽ</td>
<td>26</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>PA</td>
<td>37</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>ZF</td>
<td>34</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>VB</td>
<td>22</td>
<td>ž</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>BK</td>
<td>39</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>SF</td>
<td>57</td>
<td>m</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>KJ</td>
<td>46</td>
<td>m</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>VA</td>
<td>57</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>KL</td>
<td>51</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>ŠM</td>
<td>24</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>GM</td>
<td>34</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>DM</td>
<td>29</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>VR</td>
<td>21</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>ZD</td>
<td>29</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>VJ</td>
<td>24</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>ŽJ</td>
<td>49</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>KZ</td>
<td>46</td>
<td>m</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>NE</td>
<td>49</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>NF</td>
<td>34</td>
<td>m</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>MM</td>
<td>18</td>
<td>ž</td>
<td>ano</td>
<td>ano apo</td>
</tr>
<tr>
<td>DM</td>
<td>48</td>
<td>m</td>
<td>ano ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>OR</td>
<td>20</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>ŠJ</td>
<td>22</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>RA</td>
<td>35</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>DD</td>
<td>61</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>LV</td>
<td>47</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>KM</td>
<td>20</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>OŠ</td>
<td>48</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>HP</td>
<td>62</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>SM</td>
<td>38</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>KF</td>
<td>62</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>MP</td>
<td>36</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>SA</td>
<td>40</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>HJ</td>
<td>43</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>ŠA</td>
<td>32</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>SM</td>
<td>26</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>BE</td>
<td>53</td>
<td>m</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>PJ</td>
<td>64</td>
<td>ž</td>
<td>ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>ŠV</td>
<td>67</td>
<td>m</td>
<td>ano ano</td>
<td>ano ano</td>
</tr>
<tr>
<td>DV</td>
<td>32</td>
<td>ž</td>
<td>ano ano</td>
<td>ano ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KL</td>
<td>ž</td>
<td>45</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>TZ</td>
<td>m</td>
<td>36</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>JJ</td>
<td>ž</td>
<td>58</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>BE</td>
<td>ž</td>
<td>68</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>MA</td>
<td>ž</td>
<td>53</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>SV</td>
<td>ž</td>
<td>38</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>FV</td>
<td>ž</td>
<td>23</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>LL</td>
<td>ž</td>
<td>31</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>VL</td>
<td>m</td>
<td>58</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>PE</td>
<td>ž</td>
<td>63</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PL</td>
<td>m</td>
<td>32</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>NH</td>
<td>ž</td>
<td>36</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>PJ</td>
<td>m</td>
<td>20</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>ŠL</td>
<td>m</td>
<td>48</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>MA</td>
<td>ž</td>
<td>34</td>
<td>ano</td>
<td>ne</td>
</tr>
</tbody>
</table>

Příloha č. 2: Obrázky reagencí DiaMed

ID-DiaPanel a ID-DiaCell I-II-III
ID–Diluent 1 a ID–Diluent 2

DiaMed Q.C. Systém

Příloha č. 4: Obrázky přístrojové techniky DiaMed
inkubátor a centrifuga pro ID karty
Příloha č. 4: Technika pipetování do mikrozkumavky

Příloha č. 5: Vzorky reakcí
Příloha č. 6: ID karty