Theses on a related topic (having the same keywords):
p-critical operator, sturm-liouville difference equation, friedrichovske rozsireni, maticovy operator, kladne reseni, friedrichs extension, sub/supercritical operator, matrix operator, positive solution, sturm-liouville difference operator, three term difference equation, sturm-liouvilleova diferencni rovnice, sturm-liouvilleuv diferencni operator, sub/superkriticky operator, triclenna diferencni rovnice., linear hamiltonian difference system, recessive system of solutions, linearni hamiltonovsky diferencni system, recesivni system reseniKeywords ordered alphabetically | Keywords ordered by occurrence rate
1.
Jekl, Jan
Faculty: Faculty of Science
Year: 2023, studies completed, degree conferred: Ph.D.
Programme/field: Mathematics and Statistics / Mathematical Analysis
Doctoral thesis defence: Qualitative properties of solutions of linear difference equations | Theses on a related topic
Faculty: Faculty of Science
Year: 2023, studies completed, degree conferred: Ph.D.
Programme/field: Mathematics and Statistics / Mathematical Analysis
Doctoral thesis defence: Qualitative properties of solutions of linear difference equations | Theses on a related topic
2.
Pechancová, Šárka
Faculty: Faculty of Science
Year: 2007, studies completed, degree conferred: Ph.D.
Programme/field: Mathematics / Mathematical Analysis
Doctoral thesis defence: Fáze a oscilační teorie diferenčních rovnic druhého řádu | Theses on a related topic
Faculty: Faculty of Science
Year: 2007, studies completed, degree conferred: Ph.D.
Programme/field: Mathematics / Mathematical Analysis
Doctoral thesis defence: Fáze a oscilační teorie diferenčních rovnic druhého řádu | Theses on a related topic
3.
Zemánek, Petr
Faculty: Faculty of Science
Year: 2011, studies completed, degree conferred: Ph.D.
Programme/field: Matematics (4-years) / Mathematical Analysis
Doctoral thesis defence: Nové výsledky v teorii symplektických systémů na časových škálách | Theses on a related topic
Faculty: Faculty of Science
Year: 2011, studies completed, degree conferred: Ph.D.
Programme/field: Matematics (4-years) / Mathematical Analysis
Doctoral thesis defence: Nové výsledky v teorii symplektických systémů na časových škálách | Theses on a related topic