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The effort to understand the universe is one
of the very few things which lifts

human life a little above the level of farce
and gives it some of the grace of tragedy.

Steven Weinberg, The First Three Minutes
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Supervisor’s Foreword

Einstein’s general theory of relativity is one of the most impressive human
achievements. It superseded Newton’s great work of 1687 to provide us with a new
theory of gravitation that extended Newton’s theory to domains where velocities
could approach that of light and gravitational forces were correspondingly strong.
In the limit that speeds are slow and gravity is weak, Einstein’s theory is well
approximated by Newton’s. This is where modern physics departs from the
Kuhnian story of scientific ‘revolutions’. Old theories are not simply replaced by
new ones. Rather, they become limiting cases of the new theory which will hold
good in extreme situations where the old one cannot remain consistent. Yet,
Einstein’s theory went further than merely extending the domain of applicability of
our theory of gravity. For the first time it provided a collection of differential
equations whose solutions, all of them, describe entire universes. For the first time,
cosmology became a science. Physicists could try to solve Einstein’s equations in
simple cases where there was lots of symmetry to find possible descriptions of our
entire astronomical universe. These solutions could then be tested against the
astronomical evidence and the subject began to resemble other experimental sci-
ences. Although you cannot experiment on the universe—we only have one uni-
verse on display—you can predict correlations that should be observed between
different properties of the same mathematical universe and look to see if they exist.
In this way, cosmology has become a major scientific enterprise. It makes use of a
host of new technologies to create light detectors of previously unimagined sen-
sitivity right across the electromagnetic spectrum and has even begun to see direct
evidence of gravitational waves. It has joined forces with elementary particle
physicists to share insights and constraints on the behaviour of matter at the highest
possible energies. And it has fully exploited the massive increase in computational
ability that allows us to simulate the behaviour of large and complicated agglom-
erations of matter to follow the processes that have led to the formation of galaxies
in the universe.

Einstein’s theory of general relativity is a spectacular success and agrees with all
the observational evidence to extraordinary accuracy. It would be fair to say that the
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agreement between theory and observation is so precise that in certain situations,
like the binary pulsar’s dynamics, it provides us with the surest and most accurate
knowledge that human beings have of anything in their experience. So, why do we
want to go ‘beyond Einstein’ in the words of Adam Solomon’s thesis title? There
are two main reasons. The first is that Einstein’s theory has its limits of reliable
applicability, just as Newton’s theory does. When the density of matter gets too
high, as it does near the apparent beginning of an expanding universe and near the
centre of black holes, we expect quantum mechanics to modify the character of
gravity in a way that will be described by some new theory of quantum gravity.
Perhaps this future theory will modify general relativity so as to remove the ‘sin-
gularities’ that presently signal the beginning and of time at the beginning of the
universe and the end of time in the inexorable contraction at the centres of black
holes? The second reason to look beyond Einstein is of more recent origin. Just 17
years ago, astronomers first discovered that the expansion of the universe smoothly
changed gear from deceleration to acceleration about 4 billion years ago. Why this
occurred is a big mystery. Three different lines of astronomical evidence find the
cause to be a ubiquitous form of energy in the universe—dubbed ‘dark energy’—
that is gravitationally repulsive. Physicists knew that quantum vacuum energy can
have this repulsive effect because of its negative pressure, but no one expected the
effects to be dramatically manifested so late in the universe’s expansion history.
About 70 % of the mass-energy in the universe seems to be in the form of this dark
component. What is this dark energy? Is it just a new type of matter field that we
have not identified and logged into the energy budget of the universe? This is one
line of inquiry that cosmologists explore. The other is to investigate whether there
are extensions of Einstein’s theory of gravity which introduce new gravitational
effects that act to accelerate the expansion of the universe when it is billions of years
old and gravity is weak. These new behaviours of gravity need to be well cir-
cumscribed. They must not produce new adverse effects locally and in parts of
cosmology where observations concur with Einstein’s predictions to high accuracy.
Adam Solomon’s thesis explores a wide class of extensions to Einstein’s theory to
see whether they can potentially explain the observed acceleration of the universe
and account for the existence of galaxies. These extensions cover theories which
include a graviton with a non-zero mass and others, like bigravity, where there are
two underlying spacetime metrics instead of one. These theories are mathematically
more complicated than Einstein’s and contain undesirable possibilities that need to
be understood and excluded. Adam’s thesis contains an elegant and systematic
study of these theories, connecting abstract mathematical studies to astronomical
predictions and observational tests of the theories. This analysis discovers new
ways to solve the equations describing the growth of inhomogeneities and a facility
with the observational data and statistical analysis needed to put them to the test.
Adam combines a very wide range of mathematical skills and astrophysical
understanding to advance our understanding of what a new theory of gravity that
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solves the dark energy problem is allowed to look like. The result is a valuable
comprehensive study that will lead us a step closer towards the solution of the dark
energy problem.

Cambridge, UK Prof. John D. Barrow
August 2016



Abstract

The accelerating expansion of the Universe poses a major challenge to our
understanding of fundamental physics. One promising avenue is to modify general
relativity and obtain a new description of the gravitational force. Because gravi-
tation dominates the other forces mostly on large scales, cosmological probes
provide an ideal testing ground for theories of gravity. In this thesis, we describe
two complementary approaches to the problem of testing gravity using cosmology.

In the first part, we discuss the cosmological solutions of massive gravity and its
generalisation to a bimetric theory. These theories describe a graviton with a small
mass, and can potentially explain the late-time acceleration in a technically natural
way. I describe these self-accelerating solutions and investigate the cosmological
perturbations in depth, beginning with an investigation of their linear stability,
followed by the construction of a method for solving these perturbations in the
quasistatic limit. This allows the predictions of stable bimetric models to be com-
pared to observations of structure formation. Next, I discuss prospects for theories
in which matter “doubly couples” to both metrics, and examine the cosmological
expansion history in both massive gravity and bigravity with a specific double
coupling which is ghost-free at low energies.

In the second and final part, we study the consequences of Lorentz violation
during inflation. We consider Einstein-aether theory, in which a vector field
spontaneously breaks Lorentz symmetry and couples nonminimally to the metric,
and allow the vector to couple in a general way to a scalar field. Specialising to
inflation, we discuss the slow-roll solutions in background and at the perturbative
level. The system exhibits a severe instability which places constraints on such a
vector—scalar coupling to be at least five orders of magnitude stronger than sug-
gested by other bounds. As a result, the contribution of Lorentz violation to the
inflationary dynamics can only affect the cosmic microwave background by an
unobservably small amount.
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Parts of this thesis have been published in the following journal articles:

Following the tendency of modern research in theoretical physics, most of the
material discussed in this dissertation is the result of research in a collaboration
network. In particular, Chaps. 3—7 were based on work done in collaboration with
Yashar Akrami, Luca Amendola, Jonas Enander, Tomi Koivisto, Frank Konnig,
Edvard Mortsell, and Mariele Motta, published in Refs. [1-5] while Chap. 8 is the
result of work done in collaboration with John Barrow, published as Ref. [6]. I have
made major contributions to the above, in terms of both results and writing.
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Chapter 1
Introduction

I am always surprised when a young man tells me he wants to
work at cosmology;

I think of cosmology as something that happens to one, not
something one can choose.

Sir William McCrea, Presidential Address, Royal Astronomical
Society

One of the driving aims of modern cosmology is to turn the Universe into a laboratory.
By studying cosmic history at both early and late times, we have access to a range
of energy scales far exceeding that which we can probe on Earth. It falls to us only
to construct the experimental tools for gathering data and the theoretical tools for
connecting them to fundamental physics.

The most obvious application of this principle is to the study of gravitation. Gravity
is by far the weakest of the fundamental forces, yet on sufficiently large distance
scales it is essentially the only relevant player; we can understand the motion of the
planets or the expansion of the Universe to impressive precision without knowing
the details of the electromagnetic, strong, or weak nuclear forces.! As a result, we
expect the history and fate of our Universe to be intimately intertwined with the
correct description of gravity. For nearly a century, the consensus best theory has
been Einstein’s remarkably simple and elegant theory of general relativity [1, 2].
This consensus is not without reason: practically all experiments and observations
have lent increasing support to this theory, from classical weak-field observations
such as the precession of Mercury’s perihelion and the bending of starlight around
the Sun, to the loss of orbital energy to gravitational waves in binary pulsar systems,
observations remarkable both for their precision and for their origin in the strongest
gravitational fields we have ever tested [3].

"Modulo the fact that we need, as input, to know which matter gravitates, and that the quantum field
theories describing these forces are essential to understanding precisely which matter we have.

© Springer International Publishing AG 2017 1
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2 1 Introduction

Nevertheless, there are reasons to anticipate new gravitational physics beyond
general relativity. In the ultraviolet (UV), i.e., at short distances and high energies,
it is well known that general relativity is nonrenormalisable and hence cannot be
extended to a quantum theory [4]. It must be replaced at such scales by a UV-
complete theory which possesses better quantum behaviour. The focus of this thesis
is on the infrared (IR), i.e., long distances and low energies. While general relativity
is a theoretically-consistent IR theory, the discovery in 1998 that the expansion of the
Universe is accelerating presents a problem for gravitation at the longest distances
[5, 6]. The simplest explanation mathematically for this acceleration is a cosmolog-
ical constant, which is simply a number that we can introduce into general relativity
without destroying any of its attractive classical features. However, from a quantum-
mechanical point of view, the cosmological constant is highly unsatisfactory. The
vacuum energy of matter is expected to gravitate, and it would mimic a cosmological
constant; however, the value it would generate is as much as 10'29 times larger than
the value we infer from observations [7-9]. Therefore, the “bare” cosmological con-
stant which appears as a free parameter in general relativity would need to somehow
know about this vacuum energy, and cancel it out almost but not quite exactly. Such a
miraculous cancellation has no known explanation. Alternatively, one could imagine
that the vacuum energy is somehow either rendered smaller than we expect, or does
not gravitate—and theories which achieve this behaviour are known [8, 9]—but we
would then most likely need a separate mechanism to explain what drives the current
small but nonzero acceleration.

For these reasons, it behoves us to consider the possibility that general relativity
may not be the final description of gravity on large scales. To put the problem in
historical context, we may consider the story of two planets: Uranus and Mercury.
In the first half of the nineteenth century, astronomers had mapped out the orbit of
Uranus, then the farthest-known planet, to heroic precision. They found anomalies
in the observed orbit when compared to the predictions made by Newtonian gravity,
then the best understanding of gravitation available. Newton’s theory had not yet
been tested at distances larger than the orbit of Uranus: it was, for all intents and
purposes, the boundary of the known universe. A natural explanation was therefore
that Newtonian gravity simply broke down at such unimaginably large distances,
to be replaced by a different theory. In 1846, French astronomer Urbain Le Verrier
put forth an alternative proposal: that there was a new planet beyond Uranus’ orbit,
whose gravitational influence led to the observed discrepancies. Le Verrier predicted
the location of this hitherto-unseen planet, and within weeks the planet Neptune was
unveiled.

Buoyed by his success, Le Verrier turned his sights to another planet whose orbit
did not quite agree with Newtonian calculations: Mercury, the closest to the Sun.
As is now famous, the perihelion of Mercury’s orbit precessed at a slightly faster
rate than was predicted. Le Verrier postulated another new planet, Vulcan, within
Mercury’s orbit. However, the hypothesised planet was never found, and in the early
parts of the twentieth century, Einstein demonstrated that general relativity accounted
precisely for the perihelion precession. In the case of Mercury, it was a modification
to the laws of gravity, rather than a new planet, which provided the solution.
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We find ourselves in a similar position today. Our best theory of gravity, general
relativity, combined with the matter we believe is dominant, mostly cold dark matter,
predict a decelerating expansion, yet we observe something different. One possibility
is that there is new matter we have not accounted for, such as a light, slowly-rolling
scalar field. However, we must also consider that the theory of gravity we are using
is itself in need of a tune-up.

The project of modifying gravity leads immediately to two defining questions:
what does a good theory of modified gravity look like, and how can we test such the-
ories against general relativity? This thesis aims to address both questions, although
any answers we find necessarily comprise only a small slice of a deep field of research.

Einstein’s theory is a paragon of elegance. It is practically inevitable that this is
lost when generalising to a larger theory. Indeed, it is not easy to even define elegance
once we leave the cosy confines of Einstein gravity. Consider, as an example, two
equivalent definitions of general relativity, each of which can be used to justify the
claim that GR is the simplest possible theory of gravity. First we can say that general
relativity is the theory whose Lagrangian,

£ = J=gR, (1.1)

known as the FEinstein-Hilbert term, is the simplest diffeomorphism-invariant
Lagrangian that can be constructed out of the metric tensor and its derivatives.> Alter-
natively, we could look at general relativity as being the unique Lorentz-invariant
theory of a massless spin-2 field, or graviton [4, 10—13].

These serve equally well to tell us why general relativity is so lovely, but they
diverge once we move to more general theories. Consider, for example, modifying
the Lagrangian (1.1) by promoting the Ricci scalar R to a general function f(R),

L =J-gfR). (1.2)

This is the defining feature of f(R) gravity, a popular theory of modified gravity
[14-16]. One can certainly make the argument that this is mathematically one of the
simplest possible generalisations of general relativity. However, when considered in
terms of its fundamental degrees of freedom, we find a theory in which a spin-0 or
scalar field interacts in a highly nonminimal way with the graviton [17].

Alternatively, one can consider massive gravity, in which the massless graviton
of general relativity is given a nonzero mass. While this has a simple interpretation
in the particle picture, its mathematical construction is so nontrivial that over seven
decades were required to finally find the right answer. The resulting action, given in
Eq. (2.21), is certainly not something one would have thought to construct had it not
been for the guiding particle picture.

There are additional, more practical concerns when building a new theory of
gravity. General relativity agrees beautifully with tests of gravity terrestrially and in
the solar system, and it is not difficult for modified gravity to break that agreement.

2For an introduction to the Lagrangian formulation of general relativity, see Ref. [2].


http://dx.doi.org/10.1007/978-3-319-46621-7_2

4 1 Introduction

While this may be surprising if we are modifying general relativity with terms that
should only be important at the largest distance scales, it is not difficult to see that
this problem is fairly generic. Any extension of general relativity involves adding
new degrees of freedom (even massive gravity has three extra degrees of freedom),
and in the absence of a symmetry forbidding such couplings, these will generally
couple to matter, leading to gravitational-strength fifth forces. Such extra forces
are highly constrained by solar-system experiments. Almost all viable theories of
modified gravity therefore possess screening mechanisms, in which the fifth force
is large cosmologically but is made unobservably small in dense environments. The
details of these screening mechanisms are beyond the scope of this thesis, and we
refer the reader to the reviews [18, 19].

In parallel with these concerns, we must ask how to experimentally distinguish
modified gravity from general relativity. One approach is to use precision tests in the
laboratory [20-27]. Another is to study the effect of modified gravity on astrophys-
ical objects such as stars and galaxies [28-31]. In this thesis we will be concerned
with cosmological probes of modified gravity. Because screening mechanisms force
these modifications to hide locally (with some exceptions), it is natural to look to
cosmology, where the new physics is most relevant. Cosmological tests broadly fall
into three categories: background, linear, and nonlinear. Background tests are typ-
ically geometrical in nature, and try to distinguish the expansion history of a new
theory of gravity from the general relativistic prediction. Considering small perturba-
tions around the background, we obtain predictions for structure formation at linear
scales. Finally, on small scales where structure is sufficiently dense, nonlinear theory
is required to make predictions, typically using N-body computer simulations.

This thesis is concerned with the construction of theoretically-sensible modified
gravity theories and their cosmological tests at the level of the background expansion
and linear perturbations. In the first part, we focus on massive gravity and its exten-
sion to a bimetric theory, or massive bigravity, containing two dynamical metrics
interacting with each other. In particular, we derive the cosmological perturbation
equations for the case where matter couples to one of the metrics, and study the
stability of linear perturbations by deriving a system of two coupled second-order
evolution equations describing all perturbation growth and examining their eigen-
frequencies. Doing this, we obtain conditions for the linear cosmological stability of
massive bigravity, and identify a particular bimetric model which is stable at all times.
We next move on to the question of observability, constructing a general framework
for calculating structure formation in the quasistatic, subhorizon régime, and then
applying this to the stable model.

After this, we tackle the question of matter couplings in massive gravity and
bigravity, investigating a pair of theories in which matter is coupled to both metrics.
In the first, matter couples minimally to both metrics. We show that there is not
a single effective metric describing the geometry that matter sees, and so there is
a problem in defining observables. In the second theory, matter does couple to an
effective metric. We first study it in the context of bigravity, deriving its cosmological
background evolution equations, comparing some of the simplest models to data, and
examining in depth some particularly interesting parameter choices. We next exam-
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ine the cosmological implications of massive gravity with such a matter coupling.
Massive gravity normally possesses a no-go theorem forbidding flat cosmological
solutions, but coupling matter to both metrics has been shown to overcome this. We
examine this theory in detail, finding several stumbling blocks to observationally
testing the new massive cosmologies.

The remainder of this thesis examines the question of Lorentz violation in the
gravitational sector. We focus on Einstein-aether theory, a vector-tensor model which
spontaneously breaks Lorentz invariance. We study the coupling between the vector
field, or “aether,” and a scalar field driving a period of slow-roll inflation. We find
that such a coupling can lead to instabilities which destroy homogeneity and isotropy
during inflation. Demanding the absence of these instabilities places a constraint on
the size of such a coupling so that it must be at least 5 orders of magnitude smaller
than the previous best constraints.

The thesis is organised as follows. In the rest of this chapter, we present back-
ground material, discussing the essential ingredients of general relativity and modern
cosmology which will be important to understanding what follows. In Chap.2 we
give a detailed description of the modified gravity theories discussed in this thesis,
specifically massive gravity, massive bigravity, and Einstein-aether theory, focus-
ing on their defining features and their cosmological solutions. In Chaps.3 and 4
we examine the cosmological perturbation theory of massive bigravity with matter
coupled to one of the metrics. In Chap.3 we study the stability of perturbations,
identifying a particular bimetric model which is stable at all times, while in Chap.4
we turn to linear structure formation in the quasistatic limit and look for observa-
tional signatures of bigravity. In Chaps. 5-7 we examine generalisations of massive
gravity and bigravity in which matter couples to both metrics. Chapter 5 focuses on
the thorny problem of finding observables in one such theory. In Chap. 6 we examine
the background cosmologies of a doubly-coupled bimetric theory, and do the same
for massive gravity in Chap. 7. Finally, in Chap. 8 we study the consequences of cou-
pling a slowly-rolling inflaton to a gravitational vector field, or aether, deriving the
strongest bounds to date on such a coupling. We conclude in Chap. 9 with a summary
of the problems we have addressed and the work discussed, as well as an outlook on
the coming years for modified gravity.

1.1 Conventions

Throughout this thesis we will use a mostly-positive (— + ++) metric signature. We
will denote the flat-space or Minkowski metric by 7,,,. Greek indices u, v, ... =
(0, 1, 2, 3) represent spacetime indices, while Latin indices i, j, ... = (1,2, 3) are
used for spatial indices. Latin indices starting from a, b, c, . . . are also used for field-
space and local Lorentz indices. Partial derivatives are denoted by d and covariant
derivatives by V. Commas and semicolons in indices will occasionally be used to
represent partial and covariant derivatives, respectively, i.e., ¢ , = 9,¢ and ¢,, =
V., ¢. Symmetrisation and antisymmetrisation are denoted by
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Table 1.1 Abbreviations

. ] Abbreviation Expression
used throughout this thesis - o

BAO Baryon-acoustic oscillations

CDM Cold dark matter

CMB Cosmic microwave
background

FLRW Friedmann-Lemaitre-
Robertson-Walker

GR General relativity

SNe Supernovae

VEV Vacuum expectation value

1 1
Sy = 5 (Suv +S0e) s Apun = 2 (A = Au) s (1.3)

and similarly for higher-rank tensors. In lieu of the gravitational constant G we will
frequently use the Planck mass, M2 = 1/87 G. Cosmic time is denoted by # and its
Hubble rate is H, while we use t for conformal time with the Hubble rate 7. For
brevity we will sometimes use abbreviations for common terms, listed in Table 1.1.

1.2 General Relativity

This thesis deals with modified gravity. Consequently it behoves us to briefly
overview the theory of gravity we will be modifying: Einstein’s general relativity.
The theory is defined by the Einstein-Hilbert action,

M2
Sen = Tpl/d“x«/—gR, (1.4)

where R = g#"R,,, is the Ricci scalar, with g, and R,,, the metric tensor and Ricci
tensor, respectively. Allowing for general matter, represented symbolically by fields
®; with Lagrangians ., determined by particle physics, the total action of general
relativity is

S = Sen + / B 5 =5 (3, D). (1.5)

Varying the action S with respect to g"” we obtain the gravitational field equation,
the Einstein equation,

1
R — ERgW =8nGTy,, (1.6)
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where the stress-energy tensor of matter is defined by

T = — 2 8(‘/__8”%). (1.7)

VAT L4

It is often convenient to define the Einstein tensor,

1
G =R, — ERguv’ (1.8)

which is conserved as a consequence of the Bianchi identity,
v,G*, =0. (1.9)

Note that we are raising and lowering indices with the metric tensor, g,,,. The Bianchi
identity is a geometric identity, i.e., it holds independently of the gravitational field
equations. The stress-energy tensor is also conserved,

v, T, =0. (1.10)

This is both required by particle physics and follows from the Einstein equation and
the Bianchi identity, which is a good consistency check. A consequence of stress-
energy conservation is that particles move on geodesics of the metric, g,,.,

Xt 4 Tl =0, (1.11)
where x*(A) is the position 4-vector of a test particle parametrised with respect
to a parameter A, an overdot denotes the derivative with respect to A, and I‘f;ﬁ =

%g’“’“” (8av,p + 8pv.« — 8ap,v) are the Christoffel symbols.

Einstein’s equation relates the curvature of spacetime to the distribution of matter.
Freely-falling particles then follow geodesics of the metric. The combination of the
Einstein and geodesic equations leads to what we call the gravitational force. John
Wheeler’s description of gravity’s nature is perhaps the most eloquent: “Spacetime
tells matter how to move; matter tells spacetime how to curve” [32].

Asdiscussed above, it seems clear to the eye that Eq. (1.4) is the simplest action one
can construct for the gravitational sector, if one restricts oneself to scalar curvature
invariants. Indeed, the simplicity of general relativity can be phrased in two equivalent
ways. Lovelock’s theorem states that Einstein’s equation is the only gravitational field
equation which is constructed solely from the metric, is no more than second order in
derivatives,’ is local, and is derived from an action [34]. Alternatively, as alluded to
previously, the same field equations are the unique nonlinear equations of motion for

3The requirement that higher derivatives not appear in the equations of motion comes from demand-
ing that the theory not run afoul of Ostrogradsky’s theorem, which states that most higher-derivative
theories are hopelessly unstable [33].
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a massless spin-2 particle [4, 10-13]. There is but one extension to the gravitational
action presented which neither violates Lovelock’s theorem nor introduces any extra
degrees of freedom: a cosmological constant, A, which enters in the action as

2
5= %/‘ﬂx‘/ —8 (R —2A)+/d4W—g§fm (& ®i). (1.12)

A represents an infrared, or low-energy, modification to general relativity, as
it only becomes important for small curvatures, R < 2A. Because the smallest
spacetime curvatures are found at large distances and late times, the most important
effect of a cosmological constant is, as the name suggests, on cosmology. As we
will see in the next section, a positive cosmological constant has the predominant
effect of causing the expansion of the Universe to accelerate at late times. The latest
data suggest that, if a cosmological constant is responsible for the present cosmic
speed-up, then it has an incredibly tiny value in Planck units, A /M2 ~ 0(107120)
[35]. Note that if there is a different explanation for the cosmic acceleration, such
as dynamical dark energy or modified gravity, then A is typically assumed to be
negligible. Indeed, since it is our aim in much of this thesis to explore modified
gravity as an alternative to the cosmological constant, we will set A = 0 throughout,
except when noted.*

1.3 The Cosmological Standard Model

Observations of the cosmic expansion history are, if we include a small cosmological
constant, extremely well described [35] by general relativity with a Friedmann-
Lemaitre-Robertson-Walker (FLRW) ansatz for the metric,

d 2
ds®> = —N(@)*dt* + a(t)? (1_—rwz + r2d§2§) , (1.13)

where we have used spherical polar coordinates, dQ% = d6?+sin® Od¢? is the metric
on a 2-sphere, and k parametrises the curvature of spatial sections. The FLRW metric
is defined by two functions of time: the lapse, N (¢), and the scale factor, a(¢). Itis a
natural metric to use for cosmology as it is the most general metric consistent with
spatial homogeneity and isotropy, i.e., the principle that there should be neither a
preferred location nor a preferred direction in space. These principles are consistent
with observations on scales larger than about 100 megaparsecs.

“The question of why A should be zero, given that it generically receives large, ﬁ’(M}%l) quantum
corrections, is one of the greatest mysteries in modern physics, but is far beyond the scope of
this thesis. Consequently we do not speculate about what mechanisms to remove the cosmological
constant may be in play.
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In general relativity, we have the freedom to choose our coordinate system, and so
the lapse can be freely “set” to a desired functional form f(¢) by rescaling the time
coordinate as dt — f(¢t)dt/N (t). Two common choices for the time coordinate are
cosmic time, N(¢) = 1, and conformal time, N () = a(t). Cosmic time is more
physical, as it corresponds to the time measured by observers comoving with the
cosmic expansion (such as, for example, us). Conformal time is often computationally
useful, especially since in those coordinates the metric is conformally related to
Minkowski space if k = 0, g,, = a(t)*n,.,; consequently, photons move on flat-
space geodesics, and their motion in terms of conformal time can be computed
without additionally calculating the cosmic expansion. It is worth keeping the lapse
in mind because this thesis deals in large part with theories in which the time-time
part of the metric (or metrics) cannot so freely be fixed to a desired value. As long
as a single metric couples to matter, however (which is the case everywhere except
in Chap. 5), the time coordinate defined by dt = N (¢)dt, where N (¢) is the lapse of
the metric to which matter couples, will function as cosmic time when computing
observables.

The dynamical variable determining the expansion of the Universe is the scale
factor, a(t). Its evolution is determined by the Einstein equation. At this point we
specialise to cosmic time; the conformal-time equivalents of the equations we present
can be easily derived by switching the time coordinate from ¢ to 7, where dt =
dt/a(t). We use as the matter source a perfect fluid with the stress-energy tensor

" = (p + p)u"u” + pg"’, (1.14)

where u" is the fluid 4-velocity, p is the energy density, and p is the pressure. Then,
taking the time-time component of the Einstein equation we obtain the Friedmann

equation,
, 881G Kk A
H =—p——+

— 1.15
3 a 3 ( )

where the Hubble rate is defined by
H=2 (1.16)
a

Conservation of the stress-energy tensor leads to the fluid continuity equation,
p+3H (p+p)=0. (1.17)

Note that, in a Universe with multiple matter species which do not interact, this
conservation equation holds both for the total density and pressure, as well as for the
density and pressure of each individual component. The spatial part of the Einstein
equation—or, equivalently, the trace—will lead to the acceleration equation,

a A
- :—471G(p+3p)+?. (1.18)
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This can also be derived using the equations we already have, by taking a derivative
of the Friedmann equation and then applying the continuity equation to remove p.
The utility of the acceleration equation is therefore limited for the purposes of this
thesis.

In order to close the system comprising the Friedmann and continuity equations, it
is typical to specify an equation of state relating the pressure to the density, p = p(p),
for each individual matter species. The simplest and most commonly-used equation
of state is

p = wp, (1.19)

where w is a constant. Examples of perfect fluids obeying such an equation of state
include pressureless matter, or “dust,” with w = 0, radiation, with w = 1/3, and
vacuum energy or a cosmological constant, with w = —1. Indeed, we only need
these three fluids to model the Universe back to about a second after the big bang,
so we will focus on them.

Let us briefly discuss some simple properties of the cosmological solutions to this
system of equations. Because observations are consistent with a flat Universe, i.e.,
k = 0 [35], we will neglect the spatial curvature from here out. With w = const.,
the continuity equation is solved by

p = poa >+, (1.20)

where pg is a constant corresponding to the density when a = 1 (usually taken to
be the present day). This leads to the following behaviours for the relevant cosmic
fluids:

4

p~a" radiation (1.21)
p~a? dust (1.22)
o = const. vacuum energy, cosmological constant. (1.23)

Plugging these into the Friedmann equation, we obtain the following expansion rates
during the various cosmic eras:

a(r) ~t'? radiation-dominated era (1.24)
a(r) ~t*3 matter-dominated era (1.25)
a(t) ~ e A-dominated era. (1.26)

In general, a universe dominated by a w = const. 7%= —1 perfect fluid will evolve as
a(t) ~ t2/3(1+w).

Notice that, as time goes on, the densities of radiation and matter (and any fluid
with w > —1) will decay, while that of a cosmological constant stays the same
(which is sensible, since it has a constant contribution to the Friedmann equation).
Therefore, if A > 0, there is necessarily a time after which the cosmological constant
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dominates the Friedmann equation, with H ~ const. and an exponential expansion.
This makes quantitative the claim from above that a cosmological constant leads to
late-time cosmic acceleration. Observations show that such a late-time acceleration
is happening in our own Universe, and if it is caused by a perfect fluid then its
equation of state is consistent with w = —1 [35]. Following this, our criterion for
self-acceleration in a theory of modified gravity will generally be that H tends to a
constant at late times.

Finally, we note that it is common to define a density parameter, €2;, for each
matter species,

8r Gp;

Qi =
3H?

: (1.27)

where the subscript i indexes each matter species. In particular, we will define Qy,,
Qp, Q, 2, and 2, for all matter (specifically dust), baryons, cold dark matter,
radiation, and a putative dark energy, respectively. In terms of the density parameter,
the Friedmann equation can be written in the simple and general form

Zszi =1, (1.28)

as long as we define appropriate density parameters for the curvature and
cosmological-constant terms. It is also common to parametrise the present-day den-
sity of each species in terms of the density parameter evaluated at the present, denoted
by ;. Broadly speaking, observations suggest 2, o ~ 0.3 and Q4 ¢ ~ 0.7, while
all other contributions are negligibly small or vanishing [35]. The fact that 2, o is
nonzero tells us that in order to match observations using general relativity, we need
to introduce a “dark energy” component, of which the simplest example is a cos-
mological constant. The precise best-fit cosmological parameters from the Planck
satellite are presented in Table 1.2.

We have progressively constructed the cosmological standard model, or A-cold
dark matter (ACDM). Its main ingredients are radiation (which is important mostly at
early times), baryons and cold dark matter comprising pressureless dust, and a small
cosmological constant. The gravitational theory is general relativity. It is the aim of
this thesis to explore alternatives in which the cosmological constant is removed at
the expense of introducing a different gravitational theory.

Table 1.2. The Planck best-fit Qp.0h? 0.022
cosmological parameters,

2
taken from Ref. [35]. Here $2,0h 0.12
Hy = 100k km/s/Mpc Q0 0(1073%)
Qa0 0.68

Hy 68.14 km/s/Mpc
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1.4 Linear Perturbations Around FLRW

The FLRW metric was constructed to be consistent with spatial homogeneity and
isotropy. The Universe is, of course, not really homogeneous and isotropic: in various
places it contains stars, planets, galaxies, people, and Cambridge. The FLRW approx-
imation holds on scales of hundreds of megaparsecs and higher, and breaks down
at smaller distances. At slightly smaller distance scales, spacetime is well described
by linear perturbations to FLRW. That is, taking g,, to be an FLRW background
metric, we consider

8uv Zglw“‘(Sg/w’ (1.29)

where 6g,, < 1 is a small perturbation, add a similar small piece to the matter
sector, and calculate the Einstein equations to first order in 6g,,,. This proves to be a
powerful tool for testing gravity: using probes of structure to test gravity at the linear
level complements and can even be more constraining than studies of the expansion
history which operate at the background level.

Let us be more explicit. We will work in conformal time (N = a) and write the
perturbed metric as

gudx"dx" = a* {— (1 + E)dt* +20; Fdtdx' + [(1 + A) §;; + 3;0;B] dx'dx’} .
(1.30)

We define the perturbed stress-energy tensor by

T% = —p(1 + ), Tiy=—(p+ P)V,

o P . _ : ; ; (1.31)
T% =(p+P)(vi+F), T ;= (P+68P)s; +%';, £/, =0,
where V' = dx'/dt and barred quantities refer to background values. Let us specialise
to pressureless dust (P = §P = £'; = 0).

Because of the coordinate independence of general relativity, not all of the pertur-
bation variables represent genuine degrees of freedom: as we have things currently
set up, it is possible for some of the perturbations to be nonzero while the spacetime
is still purely FLRW, only written in funny coordinates. This could lead to unphysical
modes propagating through the equations of motion. To remove this problem, we
choose a coordinate system, or fix a gauge. We will work in conformal Newtonian
gauge, in which F = B = 0. We will also decompose each variable into Fourier
modes and suppress the mode index; the only effect of this for our purposes is that
we can write §/9;0;® = —k*>® where ® represents any of the perturbations.

We are left with four perturbation variables, A, E, §, and 6 = 9; V. There is only
one dynamical degree of freedom among these; any three of the variables can be
written in terms of the fourth, which in turn obeys a second-order evolution equation.
We will choose to use § as our independent degree of freedom.

The removal of the other three variables in order to find the evolution equation
for § alone proceeds as follows. By taking the off-diagonal part of the space-space
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Einstein equation, we can find that A = — E. The potential E is related to the density
perturbation, §, by the time-time Einstein equation,

L
225 (1.32)
Pl

34 (E+ HE)+kKE = —

Most of the modes which we can access observationally are within the horizon, & >
. To simplify the analysis we can focus on these modes by taking the subhorizon
limits, k2® >> 2, and the quasistatic limit, #2® ~ H#'d ~ P, where again
represents any of the perturbation variables. The quasistatic assumption holds if the
timescale for the growth of perturbations is of order the Hubble time. In this limit,
Eq. (1.32) takes the simple form

ap
KE = ——25. (1.33)
M,
Recalling that k> = —V? is the Fourier-space version of the Laplace operator, we

recognise this as the Poisson equation; the matter density contrast, §, sources the
gravitational potential, E, in a familiar way.

We additionally have the v = 0 and v = i components of the stress-energy
conservation equation,

. 3.
§+0-ZE=0, v =0, (1.34)

) 1
0+ #0 — Esz =0, V=i, (1.35)

where 6 = 9;v'. In the subhorizon and quasistatic limit, these can be combined,
along with the Poisson equation, to obtain a closed evolution equation for the density

contrast,5
2 -
5+ 08— =2
2
Pl

§=0. (1.36)

The evolution equation for § can be integrated to obtain the growth rate of structure.
While in general this requires numerical integration, as an illustration we can obtain
exact solutions in general relativity during the various cosmic eras. During matter
domination, we have p ~ 3M3 77 /a,a ~ 1%, and 5 = 2/, 50 Eq. 1.36 becomes

.o 2. 6
5+25-2s=0, (1.37)
T T

3Outside the quasistatic limit, this evolution equation will be sourced by E, which in turn obeys its
own closed equation. Notice that there is still only one independent degree of freedom.
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which has, in addition to a decaying mode which we ignore, the growing solution
§~12~a. (1.38)

During dark energy domination, p (which is the density of matter) becomes negligibly
small, and the only solutions to Eq. (1.36) are a decaying mode and § = const. We see
that during the dark energy era, matter stops clustering. This makes intuitive sense:
as the expansion of the Universe accelerates, it becomes more and more difficult for
matter to gravitationally cluster “against” the expansion.

A useful parametrisation for comparison to data is based on the growth rate,

dlogé
dloga’

fla, k)= (1.39)

In the recent past, the growth rate of solutions to Eq. (1.36) is well approximated in
terms of the matter density parameter defined above,

fla, k)~ Qk, (1.40)

where the growth index y has the value y ~ 0.545. The growth index typically
deviates from this in theories of modified gravity.

1.5 Inflation

To this point we have discussed some of the essential ingredients of modern cosmol-
ogy, particularly general relativity and its application to background and linearised
FLRW spacetimes. We then used this to discuss the expansion history and the growth
of structure in the “late Universe,” i.e., during the matter- and dark-energy-dominated
eras. The standard cosmological model includes, at earlier times, two other important
eras: radiation-domination and, before it, inflation. We will skip the radiation era, as
it is not directly relevant to this thesis. This leaves inflation.

Inflationary cosmology was originally developed as a solution to some of the
glaring problems with a big-bang cosmology, which can be summarised as problems
of initial conditions: a Universe that was always decelerating (until the recent dark-
energy era) requires highly tuned initial conditions to be as flat and uniform as we see
it. Not long into the development of inflation, another significant motivation arose:
quantum fluctuations during inflation are blown up to sizes larger than the cosmic
horizon before they can average out, leaving a spectrum of perturbations which would
seed the formation of cosmic structure, in excellent agreement with observations. For
a comprehensive review of these motivations and inflationary physics, we point the
reader to Ref. [36].

The simplest physical model for inflation, and the one with which we will be
concerned in this thesis, is single-field slow-roll inflation. In this model, inflation is



1.5 Inflation 15

driven by a canonical scalar field or inflaton, ¢, with a potential V (¢). The scalar
has units of mass. We incorporate the scalar field by taking the gravitational action
(1.5) with the matter Lagrangian given by

1
L =Ly = —58" 0,090 — V(@) (1.41)

We will usually leave the dependence of the potential on ¢ implicit and simply write
V. The Einstein equation (1.6) is sourced by the stress-energy tensor, defined in Eq.
(1.7). For the scalar field action (1.41) this yields

1
T/w = V/quvvd’ - (Eva‘pva(p + V) 8pv- (1.42)

Finally, by varying the action with respect to ¢ (or, equivalently, by calculating the
Euler-Lagrange equation for .%}) we obtain the equation of motion for the scalar
field, or the Klein-Gordon equation,

O¢ = Vy, (1.43)

where O = g*"V,,V, is the D’ Alembertian operator, and Vy = dV /d¢. The Ein-
stein and Klein-Gordon equations completely determine the behaviour of the two
dynamical fields, g, and ¢.

Now let us specialise to homogeneous and isotropic cosmology. As argued above,
the metric must take the FLRW form. The scalar can only depend on time, ¢ (x*) =
¢ (¢); if it were to depend on space, then it would break homogeneity or isotropy (or
both) and communicate that violation to the metric through the Einstein equation.
With this metric, the stress-energy tensor can be written in the perfect-fluid form
(1.14). Doing this we can identify the density and pressure of the scalar field,

¢ ¢’

p N

The most essential condition for solving the big-bang initial condition problems
and generating the observed cosmic structure is that the spacetime geometry during
inflation be very close to de Sitter space, the vacuum solution of Einstein’s equations
with a positive cosmological constant. This corresponds to an FLRW spacetime with
a constant Hubble rate in cosmic time, H = const. Therefore in order to be a good
driver of inflation, the inflaton, ¢, must source the Friedmann equation in a way close
to a cosmological constant.® Recall from the previous section that a cosmological

61t cannot be exactly a cosmological constant as there would be no physical clock to distinguish one
time from the next, and inflation could never end. This is why we need a scalar field with dynamics,
rather than just a cosmological constant term.
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constant enters the Friedmann equation as a constant, while matter species enter
through their densities. The condition for inflation is, therefore, that the density of
the scalar be nearly constant. As we have seen, this requires

¢ _y
Sz +V
2N?

It is clear that this condition is satisfied when ¢?/N? <« V. This is the slow-roll
condition: the scalar field must be rolling very slowly compared to the size of its
potential. It is not difficult to see that this does what we want: if the scalar field’s
value does not change quickly, then neither will V(¢), and so the density p will
behave much like a cosmological constant.

We can understand this condition in terms of the scalar field microphysics, i.e., as
a condition on the potential, by utilising the Friedmann and Klein-Gordon equations.
In the FLRW background these take the forms

S N
. a NY. .,

where H = a/(aN) is the cosmic-time Hubble parameter. At this point we will
specialise, for simplicity, to cosmic time (N = 1), although when relevant we will
present results in terms of conformal time (N = a) as well. The expressions presented
up to this point, keeping N general, will be necessary in Chap.7 when we consider
a scalar field in a theory where we cannot freely rescale N.
By taking a derivative of the Friedmann equation and removing terms using the
Klein-Gordon equation, we obtain
)
H= —¢—2. (1.48)
2Mpg,

This formalises the result we had derived less rigorously earlier: if ¢ is small, then
H is nearly constant. But ¢ is dimensionful, so what do we mean by “small?” We

have already argued that 2 should be small compared to the potential, V. Moreover,
in this slow-roll limit, the Friedmann equation becomes

3H? ~ v

N — (1.49)
Mg,
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Using this equation and the expression for H we see that ¢2 is smaller than V if

H
=5 <1, (1.50)

where ¢ is the slow-roll parameter.

It turns out not to be enough to demand that € be small: it must also be small for a
sufficiently long period of time. If it were not, inflation would not last very long, and
would be unable to solve the initial-conditions problems or produce cosmic structure
over the range of scales that we observe. We formalise this condition by defining
a second slow-roll parameter. Much the way that ¢ is defined to demand that H be
small,” we define a new parameter, 1, to measure the smallness of ¢,

_ ¢ (1.51)
"= He '
Note that in conformal time, t, defining ' = d/dt and using # again for the
conformal-time Hubble parameter .5# = a’/a, the slow-roll parameters are
A g
=1-—, = ) 1.52
€ P n= (1.52)

The full slow-roll limit of inflation can therefore be defined by demanding ¢, n < 1.
Observations require that inflation last at least 50-60 e-folds, or In(a s /a;) 2 50-60,
where a; and ay are the scale factors at the start and end of inflation, respectively.
In the slow-roll limit, both ¢ and 5 are constant at first order and we can integrate to
find, to first order in &,

_ HZ 2
a=e (1 — 2; e+ @’(82)) (1.53)
H=H(1- Hte + 0(s%)), (1.54)
or, in conformal time,
1 2

a=——4¢s+ 0()), (1.55)

Hrt

1

H = —;(1+8+ﬁ(£2)), (1.56)

where H is the Hubble rate of the de Sitter background that emerges in the limit
¢ — 0. Note that in conformal time, 7 runs from —oo at the big bang to O in the far
future. In practise, “the far future” actually corresponds to the end of inflation, taken

7We define & with a minus sign so that € > 0: in order to satisfy the null-energy condition, we need
H <O.
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to be when €, n ~ 1 and the slow-roll expansion breaks down. This is assumed to
be followed by a period of reheating, in which the scalar field decays into standard-
model particles, and the radiation era thus commences.

We now, finally, have the tools to understand the microphysics of a scalar field sat-
isfying the slow-roll conditions. Using the expression (1.48) for H and the definition
of the slow-roll parameters, we can find

_ K2
17—2(8+Hq.>). (1.57)

Therefore, in addition to the aforementioned condition, 9{32 &V, we see that we must
also demand ¢ <« H¢. These correspond to ¢ < 1 and n < 1, respectively. The
latter condition implies that the ¢ term must be subdominant in the Klein-Gordon
equation, so we can write its slow-roll version as

3Hp ~ —V,. (1.58)

Using this expression and the slow-roll Friedmann equation, Eq. (1.49), we can write
the slow-roll parameter as

H h2 ME (V,\?
e=- A & Ma(Yey_ (1.59)
oo 2 \v

Next, by taking the derivative of the slow-roll Klein-Gordon equation, and using the
other slow-roll relations as before, we obtain

V.
g — — ~ M222 =, (1.60)

We have already shown that é /H é < 1,500, < 1is implied by slow roll.

Thus we can equivalently impose slow roll by demanding that the potential slow-
roll parameters, e, and n,, be small.® This tells us how to construct a good slow-
roll potential: it should be very, very flat. Specifically, its first two derivatives with
respect to ¢ should be small in such a way that V,, < V/Mpj and Vyy, < V/ME. A
prototypical inflationary potential is shown in Fig. 1.1. Popular forms for the potential
include V ~ ¢2, V ~ e and V ~ cos ¢ /f.

We conclude by mentioning that this formalism can be applied to the late-time
accelerating phase as well. This idea underlies quintessence models of dark energy.
In quintessence, the cosmological constant is given dynamics by being promoted
to a scalar field. This allows w to vary from —1, and can also change the way that
structure forms, because unlike a cosmological constant, quintessence can cluster.

8During slow roll, the potential slow-roll parameters are related to € and n by &, ~ ¢ and 5y ~
2e — lr).
2
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Fig. 1.1 A prototypical V(o)
potential for slow-roll
inflation, taken from Ref. A op
Y
-
$oMB Pend reheating
-

Ag

The mathematical formalism is almost exactly the same as that presented in this
section. In the simplest models, the scalar field has the same Lagrangian, hence the
same density and pressure, as we have used, and the condition for acceleration is
again that the potential dominate over the kinetic energy, now at late rather than early
times. The main differences are that we need to include matter (specifically baryons
and dark matter) in the matter Lagrangian as well, and that the potential is allowed
to satisfy the slow-roll conditions forever, since while we know inflation ended, dark
energy could well last eternally.
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Chapter 2
Gravity Beyond General Relativity

Is this quintessence o[r] dust?
Hamlet, Hamlet, 2.2

At the core of this thesis is the question of modifying general relativity. In the previous
chapter, we introduced general relativity and its cosmological solutions, culminating
in a discussion of two key aspects of the cosmological standard model: ACDM at late
times and inflation at early times. In this chapter, we extend that discussion to theories
of gravity beyond general relativity, and in particular the theories which will receive
our attention in this thesis: massive gravity, massive bigravity, and Einstein-aether
theory.

General relativity is the unique Lorentz-invariant theory of a massless spin-2
field [1-5]. To move beyond this theory, we must therefore modify its degrees of
freedom. In massive gravity, this is done by endowing the graviton with a small but
nonzero mass. Bigravity extends this by giving dynamics to a second tensor field
which necessarily appears in the action for massive gravity; its dynamical degrees
of freedom are two spin-2 fields, one massive and one massless. Finally, in Einstein-
aether theory the massless graviton is supplemented by a vector field. This vector
is constrained to always have a timelike vacuum expectation value (vev), and so
spontaneously breaks Lorentz invariance by picking out a preferred time direction.
It is thus a useful model for low-energy gravitational Lorentz violation.

2.1 Massive Gravity and Bigravity

The history of massive gravity is an old one, dating back to 1939 when the lin-
ear theory of Fierz and Pauli was published [6]. Studies of interacting spin-2 field
theories also have a long history [7]. However, there had long been an obstacle to
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22 2 Gravity Beyond General Relativity

the construction of a fully nonlinear theory of massive gravity in the form of the
notorious Boulware-Deser ghost [8], a pathological mode that propagates in massive
theories at nonlinear order. This ghost mode was thought to be fatal to massive and
interacting bimetric gravity until only a few years ago, when a way to avoid the ghost
was discovered by utilising a very specific set of symmetric potential terms [9—16].
In this section we review that history, before moving onto the modern formulations
of ghost-free massive gravity and bigravity, and elucidating their cosmological solu-
tions. We refer the reader to [17, 18] for in-depth reviews on massive gravity and its
history.

2.1.1 Building the Massive Graviton

The Fierz-Pauli Mass Term

Let us begin by considering linearised gravity described by a spin-2 field, 4,,,. We
will routinely refer to this field as the graviton. The theory of a massless graviton
is given by linearising the Einstein—Hilbert action around Minkowski space, i.e., by
splitting the metric up as 1

—hy,, (2.1)
Mp "

8uv = Nuv +

where 4, /Mp; < 1, and keeping in the action only terms quadratic in £, . Doing
this, we obtain the Lagrangian of linearised general relativity,

1 A
gGR,linear = _Zh/wéajfhaﬂ: (2.2)

where indices are raised and lowered with the Minkowski metric, 7,,,, and we have
defined the Lichnerowicz operator, &, by

5 1
EPhag = -3 (Ohpy — 20.00h8) + 0,0,k — 1, (Oh — 0,05h°F)) . (2.3)

where h = n*"h,,, is the trace of h,,. No other kinetic terms are consistent with
locality, Lorentz invariance, and gauge invariance under linearised diffeomorphisms,

h;w — hp.v + 23(,,'%'],). 2.4)

Indeed, this uniqueness is a necessary (though not sufficient) part of the aforemen-
tioned uniqueness of general relativity as the nonlinear theory of a massless spin-2
field.

The role of gauge invariance is to ensure that there are no ghosts, i.e., no degrees of
freedom with higher derivatives or wrong-sign kinetic terms. Ostrogradsky’s theorem
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tells us that, up to a technical condition,' a Lagrangian with higher than second
derivatives will lead to a Hamiltonian which is unbounded from below, and thus states
with arbitrarily negative energy are allowed (for a thorough, modern derivation, see
[19]). If we had included in Eq. (2.2) other terms that can be constructed out of &,
and its first and second derivatives, then the action would no longer be invariant under
Eq.(2.4). In that case, we could split 4, into a transverse piece, hzv, and a vector
field, x,., as

Ry = Ry, + 20 X0 (2.5)

and any terms not included in the action (2.2) would contain pieces with higher
derivatives of x,. Therefore we can see the linearised Einstein—Hilbert term as the
kinetic term uniquely set by three requirements: locality, Lorentz invariance, and the
absence of a ghost.

We would like to give h,, a mass—i.e., add a nonderivative interaction term—
while maintaining those three requirements. Unfortunately, it is impossible to con-
struct a local interaction term which is consistent with diffeomorphism invariance
(2.4). Since this was useful in exorcising ghost modes, we will need to take care
to ensure that no ghost is introduced by the mass term. At second order, this is not
especially difficult as there are only two possible terms we can consider: h*"h,,, and
h?. We can then consider a general quadratic mass term,

1
ZLinass = _ng (h;whl“ —(1- a)hz) . (2.6)

This leads to a ghostlike, scalar degree of freedom with mass m2 = 33%m?. The
only way to remove the ghost from this theory, besides setting m = 0, istoseta = 0.
The ghost then has infinite mass and is rendered nondynamical. We see the unique

ghost-free action for a massive graviton at quadratic order is the Fierz—Pauli action,
1 v pap 1 2 v 2
Lp = —Zh“ &y hag — g™ (huwh™ — h*). 2.7)

The Stiickelberg “Trick”

Before moving on to higher orders in #,,,, let us take a moment to count and classify
the degrees of freedom it contains at linear order. Recall that a massless graviton
contains two polarisations. Because we lose diffeomorphism invariance when we
give the graviton a mass, it will contain more degrees of freedom. In fact, there are
five in total. In principle, a sixth mode can arise, but it is always ghost-like and
must therefore be removed from any healthy theory of massive gravity. To separate
the degrees of freedom contained in the massive graviton, we use the Stiickelberg
“trick.”

Stiickelberg’s idea is based on the observation that a gauge freedom such as
diffeomorphism is not a physical property of a theory so much as a redundancy in

INamely that the Lagrangian be nondegenerate, i.e., that 9L /3§ depend on g.
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description, and that redundancy can always be introduced by bringing in redundant
variables. Let us consider splitting up 4,,, as

2 2
hyy = hyy + EB(MA.,) + WBMBI@. (2.8)

Defining the field strength tensor for A, analogously to electromagnetism, F,, =
%B[MAU], as well as I1,,, = 9,,0,¢ and the trace notation [A] = n*"A,,,, the Fierz—-
Pauli action (2.7) becomes

1 A 1 1
gpp = _Zhuugjuﬂhaﬁ - EhMV (Hp,v - [H]Thw) - gFMVFMV

1 1
=— gm2 (huh*” — h*) — 3" (" — hn™) 3, Ay (2.9)

This action is invariant under the simultaneous gauge transformations
m
Ry = hyy +20,.80), Ay, — A, — 3?’&“ (2.10)

for h,,,, and
Ay — A+, ¢ — ¢ —mr (2.11)

for A,,. With these gauge invariances restored, one can find that /2, contains the usual
two independent components of a spin-2 degree of freedom, A,, similarly contains
the standard two independent components, and ¢ contains one, leading to a total of
2 42+ 1 =5 degrees of freedom for a Fierz—Pauli massive graviton.

Before moving on, let us briefly consider the limit m — 0. Intuitively we would
expect this to reduce to general relativity. In this limit, the vector completely decou-
ples from the other two fields, while the scalar remains mixed with the tensor. They
can be unmixed by transforming %,, — h,, + ¢n,,. However, this transformation
introduces a coupling between ¢ and the stress-energy tensor for matter (which, for
simplicity, we have neglected so far) which does not vanish in the massless limit.
This is the origin of the van Dam—Veltman—Zakharov (vDVZ) discontinuity [20, 21].
While linearised Fierz—Pauli theory with matter indeed does not reduce to general
relativity in the limit m — 0, nonlinear effects cure this discontinuity: this is the
celebrated Vainshtein mechanism which restores general relativity in environments
where ¢ is nonlinear and allows theories like massive gravity to agree with solar
system tests of gravity [22]. For a modern introduction to the Vainshtein mechanism,
see Ref. [23].

The Boulware-Deser Ghost

Upon moving beyond linear order, disaster strikes. While the Fierz—Pauli tuning
(expressed above as a = 0) removes a sixth, ghostlike degree of freedom from the
linear theory, Boulware and Deser found that this mode generically reappears at
higher orders [8]. This is the notorious Boulware-Deser ghost. It is infinitely heavy
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on flat backgrounds, as evidenced by its infinite mass at the purely linear level, but can
become light around nontrivial solutions [9], including cosmological backgrounds
[24] and weak-field solutions around static matter [25-27].

A full history of this ghost mode is beyond the scope of this thesis; we will simply,
following the review [17], introduce the simplest nonlinear extension of the Fierz—
Pauli mass term and demonstrate the existence of a ghost mode, as an illustration of
the fact that nontrivial interaction terms are required beyond the linear order in order
to obtain a ghost-free theory of massive gravity. Let us define the matrix

M¥, = g Nya- (2.12)

Linearising this matrix around 7,,, as above, we find

1
M—h“v ~ §*, — MH,. (2.13)
Pl

The Fierz—Pauli term (2.7) can be obtained by linearising (g, = 1w + huw/Mpr)
the nonlinear action [25]

Lp nontinear = —m>Mp/—g {[T — M)*] — [I — MJ*}, (2.14)

where 1 is the identity matrix in four dimensions.

With a candidate nonlinear completion of massive gravity in hand, let us examine
the behaviour of the helicity-0 mode, ¢, ignoring the helicity-1 and helicity-2 modes
for simplicity. The matrix M becomes

Muv - 8”1} -

1
I —— 1%, I1%,. 2.15
Mp]le v+ M}%lm4 o v ( )

Plugging this into our nonlinear action, we find

A (i) - ) +

4 2 2
FP,nonlinear m2 ([ 1= )+ Mpim

(im*1 - m2pR).
(2.16)

2 .6
MP]m

This clearly contains higher time derivatives for ¢, and will therefore lead to an
Ostrogradsky instability and hence to ghosts. In fact, even the first, quadratic term—
the most obvious ancestor of the Fierz—Pauli term—has higher derivatives. However,
they turn out to be harmless for the reason that this quadratic term is, after integration
by parts, a total derivative and therefore does not contribute to the dynamics. This
miracle does not extend to any of the higher terms, which lead to a genuine sixth
degree of freedom.”

2While we have seemingly split the metric up into five degrees of freedom—two tensor, two vector,
and one scalar—and focused on the scalar, when ¢ has higher time derivatives it in fact contains
two degrees of freedom, one of which is generically a ghost.
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The Boulware-Deser ghost is not specific to this particular, simple nonlinear com-
pletion of the Fierz—Pauli term. It is a very generic problem, to the point that as of
a decade ago it was thought to plague all nonlinear massive gravity theories [26].
The ghost can, however, be removed: one can consider general higher-order exten-
sions and, at each order, tune the coefficients to eliminate higher time derivatives by
packaging them into total derivative terms [9]. This led to a ghost-free, fully nonlin-
ear theory of massive gravity in [10], nearly four decades after the discovery of the
Boulware-Deser ghost.

To the Nonlinear Theory

Taken on its own, linearised gravity in the form (2.2) is a perfectly acceptable theory
without being seen as a truncation of a nonlinear theory such as general relativity.
Indeed, it is even a perfectly fine gauge theory, as its linearised diffeomorphism
invariance is exact (as long as we include the Stiickelberg fields, if we take the graviton
to be massive). The wrench in the works comes when we add matter in. Unfortunately,
the coupling to matter is necessary, as we prefer our theories to communicate with
the rest of the Universe and hence be subject to experiment.
The coupling to matter at the linear level is of the form

1 v
gmatter,linear = mhuv T()M s (217)

where 7" is the stress-energy tensor of our matter source. Diffeomorphism invari-
ance is preserved in the matter sector if stress-energy is conserved, i.e.,if 3, 7, = 0.
However, the coupling to £, necessarily induces a violation of this conservation.
For a simple example of this using a scalar field, see Ref. [17]. This problem is fixed
by adding nonlinear corrections both to the matter coupling,

1 1
gmatter,nonlinear = mhuv T()HV + Mh;w haﬂ Tllwaﬂ s (218)
for some tensor T}***”, and to the gauge symmetry, symbolically written as

h > b+ 0E + ——d(hE). (2.19)
Mpy

While this ensures the conservation of the stress-energy tensor at the linear level, it
is broken at the next order, and so we must continue this procedure order by order,
ad infinitum.

For a massless spin-2 field, the end result of this procedure is well-known: it is
general relativity. The fully nonlinear gauge symmetry is diffeomorphism invariance,
and as long as the matter action is invariant under this symmetry, the stress-energy
tensoris covariantly conserved, V, T#” = 0. The linear action (2.2) must be promoted
to something which is also consistent with this symmetry, and there is one answer:
the Einstein—Hilbert action (1.4).
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If we wish to extend this procedure to a massive graviton, i.e., nonlinearly complete
the Fierz—Pauli mass term, then, as discussed in Sect.2.1.1, the Boulware-Deser
ghost looms as a pitfall. Demanding that this ghost be absent will severely restrict
the allowed potentials to a very specific and special set of functions of M. However,
the gauge invariance can still be restored quite easily by a nonlinear version of the
Stiickelberg trick. Because this elucidates several of the properties of massive gravity,
we will review it here.

When constructing a nonlinear candidate theory of massive gravity in Sect.2.1.1,
we employed the matrix M = g~'n, where ¢! is the inverse of the dynamical
metric and 7 is the Minkowski metric. The appearance of a second, fixed metric
in addition to the dynamical one is new to massive gravity. Indeed, it is necessary
to have such a second metric, or reference metric, in order to give the graviton a
mass. A mass term is a nonderivative interaction,® and the only nonderivative scalars
or scalar densities we can construct out of g,, alone are tr g = 4 and det g. The
first possibility is trivial, while it was shown in Ref. [8] that functions of the metric
determinant can only consistently lead to a cosmological constant as well. Therefore
we need a reference metric in order to construct a massive graviton.*

Note that, while we have so far taken the reference metric to be Minkowski,
in principle we could extend the theory to a more general reference metric, f,,.
Consequently, even once we have specified the interaction potential there are many
different massive gravity theories, one for each reference metric. Alternatively, f,,
can be viewed as a “constant tensor” which must be specified by hand. Physically,
the reference metric corresponds to the background around which linear fluctuations
acquire the Fierz—Pauli form [15, 34]. This is why we have naturally discussed
theories with a Minkowski reference metric: we began by considering fluctuations
around that metric, and so it remains when extending to the nonlinear theory. Note
that f,,, = n,, is a natural choice, as the theory then possesses a Poincaré-invariant
preferred metric, allowing us to define mass and spin regardless of the solutions of
the theory.’

The nonlinear Stiickelberg trick is simply to introduce into the reference metric
four Stiickelberg fields, ¢, as

Fuv = fuv = Fupdu 9 9,0". (2.20)

Note that here Latin indices are in field space, not spacetime; in particular, each
of the ¢ fields transforms as a spacetime scalar. Consequently, f,w transforms as
a tensor under general coordinate transformations, as well as M*, and all of the
nonlinear completions of the Fierz—Pauli term constructed out of it, as long as we

3We could not have kinetic interactions anyway; in four dimensions, the Einstein—Hilbert term is
unique [28].
“We have assumed locality in this discussion. A nonlocal theory can give the graviton a mass without
the need for a reference metric [29-31]; see Refs. [32, 33] for studies of two interesting realisations
of this idea.

>We thank Claudia de Rham for emphasising this point.
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replace f),, with f,w. If we choose the coordinate axes to align with the Stiickelberg
fields, x* = ¢“, then we have f,w = fuv and recover the previous description. This
is called unitary gauge. For simplicity we will usually work in unitary gauge when
dealing with massive gravity.

2.1.2 Ghost-Free Massive Gravity

de Rham-Gabadadze-Tolley Massive Gravity

Recent years have seen a breakthrough in massive gravity, stemming from the devel-
opment of a fully ghost-free and nonlinear theory by de Rham, Gabadadze, and Tolley
(dRGT) [9, 10], following the important preliminary steps taken in [35, 36] using
auxiliary extra dimensions. The full proof that the dRGT theory is ghost-free, includ-
ing for a general reference metric, was completed in [14—16]. There are indications
that this theory is the unique ghost-free massive gravity; in particular, new kinetic
interactions do not appear to be consistent [37, 38]. We will use the formulation of
the dRGT interaction potential developed in Ref. [13].
The action for dRGT massive gravity around a general reference metric, f,,,.° is

M2 ¢
Sargr = =7 | d*xy/=gR +m*Mj / d*xy/=g D anen(®) + / d*xy=8L (3, Bi),
n=0

(2.21)
or, equivalently,

M2 4
Siar =~ [ d'xgR + M [ diTE Y puen) + [ x5 200,

n=0
(2.22)
where we have defined the square-root matrix X as

X=glf, (2.23)

i.e., defined X so that (reintroducing explicit spacetime indices) X", X%, = g"* f,,,
and the related matrix K by
K=I-X. (2.24)

Here, o, and B, are dimensionless coupling constants, generally taken to be free
parameters, and e, are the elementary symmetric polynomials of the eigenvalues X;
of the matrix argument. In terms of the eigenvalues, assuming i runs from 1 to 4,
these are (taking as the argument a general matrix, A, for concreteness)

6As discussed above, we are, strictly speaking, writing the action for massive gravity in unitary
gauge. Extending to a more general gauge by including Stiickleberg fields by promoting f,, to
Fabdu@®d,@" is trivial.
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eo(A) =1,

e1(A) = A1+ hy 4+ A3 + Aay

er(A) = Miho + Ah3 + AAg + Aoz + Aodg + A3Ayg,

e3(A) = A1doAs + Mgy + AiAszAg + Aodshy,

ea(A) = Ay dahshy = det A. (2.25)

It is often more useful to write these polynomials directly in terms of the matrix,

eo(A) =1,
e1(A) = [A],

1
ex(h) = 3 (IA]> — [A%]),

1
es(8) = < (IAF — 3[ANA%] + 2[A%),
es(A) = det (A) . (2.26)

The formulations (2.21) and (2.22) interms of K = T1—/g~! fand X = \/g~! f are
both very common in the literature. For reasons partly physical and partly historical,
the K formulation is more common in massive gravity, while X is predominant in
bigravity. The free parameters in the two formulations, «,, and 8, are related by [13]

( 1)t+n
(4—n)!2(4 56— ;. (2.27)

Throughout this thesis we will use the X basis and 8, parametrisation except when
stated otherwise.

Notice that although these potential terms are very complicated, they have a signif-
icant amount of structure. This can be better understood by decomposing the metrics
into their vielbeins, defined by

uv = nabEauEbv, f/w = nabLa;Lwa (2.28)

Since vielbeins are, in a sense, the “square roots” of the metrics, and the dRGT
potential terms are built out of a square root matrix, this is a natural language in which
to formulate massive gravity. The interaction terms are, up to numerical constants,
given by [39]

€0(X) & gabcdguvaﬂEa;LEbuECaEdﬁa

e1(X) o Eupea€™ P E* EP \E“o LY,
er(X) o EabcdgﬂvaﬁEauEvaCaLdﬂv
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€3 (X) (08 Eabcd’éﬂvaﬂ Ea;AthLCoz Ldﬁ )

e0(X) o Eupeg€ P LY L LW L. (2.29)

We can now understand the simplicity of the dRGT interaction potential: it is a
linear combination of the only possible wedge products one can construct from
E* = E¢,dx" and L* = L“,dx".

Finally, notice that we have only coupled matter minimally to the dynamical met-
ric, g,,,. More general matter couplings are certainly possible, but the vast majority of
attempts to couple the same matter sector to both metrics reintroduce the Boulware-
Deser ghost [40—42]. The question of formulating and studying more general matter
couplings will form a significant part of this thesis, lying at the heart of Chaps. 5-7.

Hassan—-Rosen Bigravity

In dRGT massive gravity, the reference metric, f,,, is fixed and must be put into the
theory by hand. This leads to a multiplicity of theories of massive gravity: massive
gravity around Minkowski, around de Sitter, around anti-de Sitter, and so on. As
shown by Hassan and Rosen in Ref. [43], the reference metric can be freely given
dynamics without spoiling the ghost-free nature of the theory, as long as its kinetic
term is also of the Einstein—Hilbert form. This leads to Hassan—Rosen bigravity or
massive bigravity,

Ms% 4 MJ2r 4
S ==~ [ dtv=gr - 5 [ d'x/=FRA)
4
M / A3y Puen(X) + / A3 =8 % (3. B (230)
n=0

where R(g) and R(f) are the Ricci scalars corresponding to each of the metrics.
We have allowed for the two metrics to have different Planck masses, M, and M,
although as long as both are finite, they can be set equal to each other by performing
the constant rescalings [44]

fiw = M fuv. Bu— MBy, 2.31)

where M, = M /M,. Therefore the f-metric Planck mass is a redundant parameter.
We will generally perform this rescaling implicitly in later chapters, although for now
we will leave both Planck masses in to help to elucidate some of the physical features
of the theory.

In terms of free parameters bigravity is simpler than massive gravity: we have
traded a constant matrix ( f,,,) for a constant number (M ) which is not even physi-
cally relevant. We thus need to specify fewer theory ingredients to test its solutions.”

"Note however that the f-metric cosmological constant, fg, is physically relevant in bigravity but
not in massive gravity, as it is independent of g,, and hence only contributes to the equation of
motion for f,,.
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On the other hand, it is less simple from the more theoretical point of view that it
contains more degrees of freedom. The mass spectrum of bigravity contains two
spin-2 fields, one massive and one massless. We can see this at the linear level by
expanding each metric around the same background, g,,,, as

1 1

g,U-V = gll-v + _h;l,v» f/“} = g,w + _l/J.U~
M, My

(2.32)

For simplicity we assume the “minimal model” introduced in Ref. [13], given by

Bo = 3, B =—1, B = 0, B3 = 0, Ba=1. (2.33)

The quadratic Lagrangian is given by [43]

1 A 1 A
gHR,linear = _Zhﬂvg/%;haﬁ - Zluvé):fl“ﬂ

1 heo N\ (h LY
g M [(v i) -G ) } . @3
g f g f

where we have defined M} = M . l+M ;2. Indices are raised and lowered with the
background metric. We notice the usual Einstein—Hilbert terms for each of the two
metric perturbations, as well as two Fierz—Pauli terms with some additional mixing
between £, and /,,. This can be easily diagonalised by performing the change of
variables

1 1 1 1 1 1
—u h//.v + Vgl/w’ — Vi = M_fh/,w - Vg

RS Lo (235)
Mg My Mg .

The resultant unmixed Lagrangian,
1 wv paf 1 v pap 1 2 v 2
AR linear = —Zu éalw Uop — Zv éiw Vap — gm (v,wv —v ) , (2.36)

contains a Fierz—Pauli term for v,, and no interaction term for u,,. Therefore in
the linearised theory u,, corresponds to a massless graviton and v,,, to a ghost-free
massive one with mass m. We can see that in the limit where one Planck mass is much
larger than the other, the metric with the larger Planck mass corresponds mostly to
the massless graviton: if My > M,, then (u,,, vun) = (lu, hy), and similarly
it Mg > My, then (uy,, vu) —> (Buy, —lu). This formalises the notion, which is
intuitive from Eq. (2.30), that we can recover dRGT massive gravity by taking one of
the Planck masses to infinity. In that case, the massless mode corresponds entirely to
the metric with the infinite Planck mass, its dynamics freeze out so that it becomes
fixed, and the massless mode decouples from the theory, leaving us with what we
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expect for massive gravity.® Note, finally, that the notion of mass is only really
well-defined around Minkowski space, as it follows from Poincaré invariance. More
generally we can identify modes with a Fierz—Pauli term as massive, by analogy to
the Minkowski case. As shown above, one can identify massive and massless linear
fluctuations in this way around equal backgrounds for a special parameter choice, and
indeed this can be done for general parameters as long as g,,, and f},, are conformally
related [40], but for general backgrounds there is no unambiguous splitting of the
massive and massless modes in bigravity.

An interesting and useful property of Hassan—Rosen bigravity is that while g,,,
and f,, do not appear symmetrically in the action (2.30), it nevertheless does treat
does metrics on equal footing, ignoring the matter coupling. In particular, the mass
term has the property

S e (Ve'r) = V=5 S b (ViTe). @3
n=0 n=0

which follows from the identity /—ge, (a/g_l f) — V= Feun (\/ f—lg) [43].
This can easily be seen by formulating the e, polynomials in terms of the eigen-
values of X as in Eq.(2.26). The result follows from using basic properties of the
determinant and the fact that, because /g ! f and / f ~! g are inverses of each other,
their eigenvalues are inverses as well. As a consequence, the entire Hassan—Rosen
action in vacuum is invariant under the exchange of the two metrics up to parameter
redefinitions,

8y <> f;w’ Mg <~ Mf’ Bn —> Ba—n. (2.38)

The fact that the matter coupling breaks this duality by coupling matter to only one
metric will motivate the search for “double couplings” in later chapters.

By varying the action (2.30) with respect to the g and f metrics we obtain the
generalised Einstein equations for massive bigravity [13],

3
1
Guu(®) +m* D (=1 Bugua¥iny (V') = 775 T (2.39)
n=0 8
2 3
G )+ 33 2 (=" B fua Vi (VI T8) = 0, (2.40)
* n=0

where G, is the Einstein tensor computed for a given metric. The interaction matri-
ces Y, (X) are defined as

8See, however, [45] for some caveats on taking the massive-gravity limit of bigravity.
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Yo X) =1,
Yo (X) = X - [[X],

1
Yo, (X) = X? — X[X] + 5]1 (IX]* = [X?])
1
Yo (X) = X — X[X] + X (IX1* = [x%])
— él[ (IXT? = 3[XI[X?] + 2[X7]) . (2.41)

Notice that they satisfy the relation [40]

Yo (X) = Z(—l)ix"*fei (X). (2.42)
i=0
The tensors g, Y(’}l)v are symmetric and so do not need to be explicitly symmetrised
[40], although this fact has gone unnoticed in much of the literature. Finally, T,, is
the stress-energy tensor defined with respect to the matter metric, g,

— g
7= 2 W detgZ) (2.43)

- J—detg gty

It is not difficult to check that when 7},, = 0, the Einstein equations are symmetric
under the interchanges (2.38).

General covariance of the matter sector implies conservation of the stress-energy
tensor as in general relativity,

Vngw =0. (2.44)

Furthermore, by combining the Bianchi identities for the g and f metrics with the
field Eqgs. (2.39) and (2.40), we obtain the following two Bianchi constraints on the
mass terms:

2

3
VEE D 1 Bugua¥ ey, (VBT S) =0, (245)

2 n=0
m? <
Vioam 20 GV B Fua¥i, (ﬂ) =0, (2.46)
* n=0

after using Eq.(2.44). Only one of Eqs.(2.45) and (2.46) is independent: a linear
combination of the two divergences can be formed which vanishes as an identity,
i.e., regardless of whether g,,, and f},, satisfy the correct equations of motion [46],
so either of the Bianchi constraints implies the other.
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Field Equations for Massive Gravity

Note that we can also easily obtain the equations of motion for dRGT massive gravity
from the bimetric equations: the Einstein equation is simply Eq. (2.39) with f,,, fixed
to the desired reference metric,

3

Gu + m? z (=D" ﬂnguaY&)u (\/ﬁ) =

= —Tu, 247
2 Mz (2.47)
and matter is conserved with respect to g, as usual. This quick “derivation” should
be taken purely as a heuristic—i.e., if we had started off with the dRGT action (2.21)
and varied with respect to g,,, we would clearly obtain Eq.(2.47) regardless of
whether f,, is dynamical—and not as the outcome of a limiting procedure. Indeed,
because f,, lacks dynamics there is no analogue of its Einstein equation (2.40),
and including that equation would lead to extra constraints. It turns out that massive
gravity can be obtained as a limit of bigravity, but the process is more subtle than
simply taking M ; — oo (which freezes out the massless mode and equates it with
fuv, as discussed above) [45, 47]. Alternatively, the dRGT action can be obtained
from the bigravity action by taking M; — 0, but to obtain massive gravity we
must throw away the f,,, Einstein equation (2.40) by hand. If we leave it in then it
is determined algebraically in terms of g,,.° Plugging this into the mass term we
simply obtain a cosmological constant; thus this is the general-relativity limit of
massive gravity.'? This agrees with the linear analysis above, where we found that
in the limit My — 0, the fluctuations of g,, become massless.

2.1.3 Cosmological Solutions in Massive Bigravity

In this subsection we review the homogeneous and isotropic cosmology of massive
bigravity. We will follow the framework derived in Refs. [48, 49], and use, with some
generalisations, the notation and approach summarised in Ref. [50]. As discussed
above, we will rescale f},, and 8, so that the two Planck masses are equal, My = M,.

Cosmological Equations of Motion

‘We assume that, at the background level, the Universe can be described by Friedmann—
Lemaitre—Robertson—Walker (FLRW) metrics for both g,,, and f,,,. Specialising to
spatially-flat metrics, we have

9This is because we are effectively taking the dRGT action and varying with respect to fuv, treating
it like a Lagrange multiplier. Hence f},,, cannot be picked freely in this case but is rather constrained
in terms of g, .

10We thank Fawad Hassan for helpful discussions on these points.
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—N©)%dt* + a()*di>, (2.48)
—X()%dr®> + Y (1)*di2, (2.49)

ds?

8
2
dsy

where a(¢) and Y (¢) are the spatial scale factors for g,, and f},,, respectively, and
N(t) and X (t) are their lapses. In the rest of this thesis we will leave the time
dependences of these functions implicit. We will find it useful to define the ratios of
the lapses and scale factors,

X (2.50)

|~

X
N7

Notice that these quantities are coordinate-independent: while we can freely choose
either lapse or rescale either scale factor, their ratio is fixed. This is because bigrav-
ity is still invariant under general coordinate transformations as long as the same
transformation is acted on each metric.'!

With these choices of metrics, the generalised Einstein equations (2.39) and (2.40),

assuming a perfect-fluid source with density p = —T9, give rise to two Friedmann
equations,
N 2772 2 3
3™ =2 5p+mN (Bo+3B1y + 3627 + B3y , (2.51)
4
3K =m*X* (B1y 7 + 32y + 383y~ + Ba) (2.52)

where we have defined the Hubble rates as'?

H=adaja, K=Y/Y, (2.53)
and overdots denote time derivatives. We will specialise in this thesis to pressureless
dust, which obeys

p+3Hp =0. (2.54)
The Bianchi constraint—either Eq. (2.45) or Eq. (2.46)—yields
m*a’P (Xa — NY) =0, (2.55)

where we have defined
P =B +2By + B3y’ (2.56)

Tn group-theoretic terms, there are two diffeomorphism groups, one for each metric, and bigravity
breaks the symmetry under each of them but maintains the symmetry under their diagonal subgroup.
This is obvious from the fact that the mass term only depends on the metrics in the combination
8" fav.

121n order to present the cosmological solutions for general lapses, we will define the g-metric
Hubble rate differently here than in the rest of this thesis; in particular, H is not necessarily the
cosmic-time Hubble rate.
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The Bianchi constraint has two branches of solutions:

Algebraic branch: P =

e

Dynamical branch: x =

Q| =<

The algebraic branch is satisfied if 8; + 28,y + B3y?> = 0, which seems to be
nongeneric as it requires tuned initial conditions. Because the solutions on this branch
have y = const., the mass term in Eq.(2.51) clearly reduces to a cosmological
constant. Thus the algebraic branch, at the background level, is equivalent to ACDM
[48, 51]. At the level of linear perturbations, evidence has been found for several
modes being strongly coupled [52]. Consequently we will focus our attention on the
dynamical branch. In this case, the Bianchi constraint implies that the ratio of the
lapses, x, can be written in terms of other background quantities as

Ky (2.57)
x=—. .
H
The Friedmann equations, (2.51) and (2.52), and the Bianchi identity (2.57) can
be combined to find a purely algebraic, quartic evolution equation for y,

P
2,2
Mgm

B3y + BBy — Ba) Y 4+3(B1 — Ba) y2+( + Bo — 3ﬂz)y—ﬂ1 =0. (2.58)

The g-metric Friedmann equation (2.51) and quartic equation (2.58) completely
determine the expansion history of the Universe. As in standard cosmology, we see
that the cosmic expansion is governed by a Friedmann equation. It is sourced by a
mass term that depends on y, the evolution of which is in turn determined by the
quartic equation.

It will be useful to simplify the dynamics by expressing all background quantities
solely in terms of y(¢) and then solving for y(a). We can rearrange Eq. (2.58) to solve

for p(y),

P

—— = =B’ + (B =362 + 3B — By + 38— Po+ By~ (259)
m Mg

We can then substitute this into the Friedmann equation to find H (y),

3H? = m*N? (Bay* + 33y + 3B+ By ). (2.60)

By taking a derivative of the quartic equation (2.58) and using the fluid conservation
Eq.(2.54) and our solution (2.59) for p(y) we can find an evolution equation for

v(a),
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diny —y _ _3,33y4 + B2 = By’ +3(B1 = B)Y* + (Bo — 3B2)y — Bi

dina ~ Hy ~ 385yt 2038, — By +3(Bi — B2y + i
(2.61)
Using the definition of y to find y, we can easily write K (y),
y
K=H+=. (2.62)
y

We can now write any background quantity in terms of y alone, except for y and
a themselves, and further we have two avenues for determining y(a): integrating
Eq.(2.61), or using the quartic equation (2.58) with p = ppa 3. These expressions
will be crucial throughout this thesis since they reduce the problem of finding any
parameter—background or perturbation—to solving for y(z), where z = 1/a — 1 is
the redshift.'?

We note briefly that there has been some discussion in the literature over how to
correctly take square roots in bigravity. There exist cosmological solutions in which
det /g~ f becomes zero at a finite point in time (and only at that time), and so
it is important to determine whether to choose square roots to always be positive,
per the usual mathematical definition, or to change sign on either side of the point
where det/g~!f = 0. This was discussed in some detail in Ref. [53] (see also
Ref. [54]), where continuity of the vielbein corresponding to +/g~! f demanded
that the square root not be positive definite. We will take a similar stance here, and
make the only choice that renders the action differentiable at all times, i.e., such
that the derivative of \/g~! f with respect to g, and f,,, is continuous everywhere.
In particular, for the FLRW backgrounds we are dealing with in this section, this
choice implies that ,/—det f = XY3. This is important because, as we will see in
Chap. 3, it turns out that in the only cosmology with linearly-stable perturbations,
the f metric bounces, so X = KY/H changes sign during cosmic evolution. With
our square-root convention, the square roots will change sign as well, rather than
develop cusps. Note that sufficiently small perturbations around the background will
not lead to a different sign of this square root.

Properties of Bimetric Cosmologies

We can understand the qualitative behaviour of bimetric cosmologies by taking the
early- and late-time limits, p — oo and p — 0, respectively. We will use heuristic
arguments to motivate results which were determined more rigorously in Ref. [55]
and can also be seen from a statistical comparison to observations of the expansion
history [49]. At early times, the quartic equation (2.58) is solved either by y — 0 or
y — oo. The former solution is quite easy to see: the quartic equation is of the form
...+ py = 0, where . .. contains only positive powers of y, so y — 0 will clearly
be a solution. These are called finite-branch solutions. The solutions with y — oo

3Note that while we have expressed all background quantities in terms of y only, perturbations
will in general depend on both y and a.
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at early times, or infinite-branch solutions, occur when one of the higher powers of
y in the quartic equation scales at just the right rate to cancel out the py term. These
solutions are rather less common; in order to enforce Q,, — 1 and H? > 0 at early
times, viable infinite-branch solutions require 8, = 83 = 0 and B4 > 0 [55]. To see
this, notice that Qm = N?p/(3M;H?) can be written in the limit y — oo, using
Egs. (2.59) and (2.60), as

2
szl—@yﬁ@— bz (2.63)

Ba Bi B

The condition 84 > 0 (rather than just B4 # 0) arises from demanding, per Eq. (2.60),
that H? be positive at all times.

On either branch, at late times y will always flow to a constant, y., given by the
quartic equation with p = 0,

By + (BB — By +3B1—B) v+ (Bo—3B) ve — B =0.  (2.64)

Moreover, by taking a derivative of the quartic equation we see that y # O unless
either p = Oory = 0. Therefore y evolves monotonically throughout cosmic history,
flowing either from O up to y,. or from oo down to y..'*

As long as y. > 0, the mass term asymptotes in the future to a cosmological
constant. Hence bimetric cosmologies generally possess late-time acceleration with
H? ~ O(m*B;). This is the case even if the g-metric cosmological constant, By,
is turned off, hence these theories self-accelerate. Because y cannot be constant in
these models,'? the effective dark energy is dynamical. In particular, we do not have
w = —1 except at the asymptotic future. Crucially, the parameters and the potential
structure leading to the accelerated expansion are thought to be stable under quantum
corrections [56], in stark contrast to a cosmological constant, which would need to be
fine-tuned against the energy of the vacuum [57-59].!® Thus we find that bigravity
is an excellent candidate for technically-natural self-acceleration. Comparisons to
background data—specifically the cosmic microwave background, baryon acoustic
oscillations, and type Ia supernovae—show that these cosmological models can agree
well with observations [48, 49, 55].

Before ending this subsection, let us consider a worked example: the model with
only f; nonzero. Because theoretical viability conditions require this term to be
nonzero (ignoring the exact ACDM case with §; = B3 = 0), it is the simplest
nontrivial one-parameter model which will lead to sensible cosmologies [55]. It has

4Note that these are not necessarily the same y,, as Eq. (2.64) can have multiple roots.

15Unless it is either 0 at all times, which is trivial, or the special case §1 = B3 = 0, in which case the
Friedmann equation can be rewritten, with the help of the quartic equation, as a ACDM Friedmann
equation with a rescaled gravitational constant [48].

16f matter couples to guv then matter loops will still contribute to m2By as usual. It is the rest
of the dRGT potential which is stable under quantum corrections. Consequently we focus on self-
accelerating models and assume—as is common in the literature—that some unknown mechanism
removes the dangerous cosmological constant.



2.1 Massive Gravity and Bigravity 39

been shown in Refs. [49, 55] that this model provides a self-accelerating evolution
which agrees with background cosmological observations and, as it possesses the
same number of free parameters as the standard ACDM model, is a viable alternative
to it. Indeed, it may be more viable than ACDM if the graviton mass turns out to be
stable to quantum corrections, as mentioned above. The graviton mass in this case
is given by 4/Bim. Note that in order to give rise to acceleration at the present era,
the graviton mass typically should be comparable to the present-day Hubble rate,

ﬂlmz ~ HOZ
In this simple case, the evolution equation (2.61) for y(a),
dl 2
1Y 31— , (2.65)
dlna 1 4 3y2

can be integrated exactly to find

y(a) = éa—3 (—C + /1245 + C2) : (2.66)

Assuming y > 0 forces us to select the positive branch. Using the Friedmann and
quartic equations, we can set the value of C using initial conditions,

Hg

ﬂlmz’

m? By
C=-— 3 2.67
7 + (2.67)

where H is the cosmic-time Hubble rate today. Equivalently, we can use the quartic
equation to solve for y and express the Friedmann equation as a modified expression

for H(p),
2

N
H = = (p +/12mi M2 + ,02) . (2.68)
8

In either formulation, the late-time approach to a A-like behaviour is evident.

The minimal B;-only model is also distinctive for having a phantom equation
of state, w(z) ~ —1.227002 — 0.6470932/(1 + z) at small redshifts. Moreover, w
is related in a simple way to the matter density parameter [55]. This provides a
concrete and testable prediction of the model that can be verified by future large-
scale structure experiments, such as Euclid [60, 61], intensity mappings of neutral
hydrogen [62, 63], and combinations of structure and cosmic microwave background
measurements [64]. The model has also been proven in [65] to satisfy an important
stability bound at all times, avoiding the Higuchi ghost which plagues theories of a
massive graviton on expanding backgrounds [66]. It is, however, worth noting that its
linear cosmological perturbations are unstable until z ~ 0.5, as shown in Chap. 3 of
this thesis. We emphasise that this instability does not rule out the 8;-only model, but
rather impedes our ability to use linear perturbation theory to describe perturbations at
all times. This raises the interesting question of how to make predictions for structure
formation during the unstable period, a question which is beyond the scope of this
thesis.
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The aforementioned studies have largely been restricted to the background cos-
mology of the theory. As the natural next step, in Chaps. 3 and 4 we will extend the
predictions of massive bigravity to the perturbative level, and study how consistent
the models are with the observed growth of structures in the Universe.

A No-Go Theorem for Massive Cosmology

As discussed in the previous section, we can easily obtain the equations of motion
for massive gravity from those of bigravity; the g-metric equation is the same, and
we lose the f-metric equation. Note that we also still have the Bianchi constraint
(2.55). This fact will turn out to be crucial.

Let us assume that the reference metric is Minkowski, f,, = 7,,. Under the
assumption of homogeneity and isotropy for g, in unitary gauge, the Friedmann
equation is simply equation (2.51) with y = a~!. This alone would define perfectly
acceptable cosmologies. However, the Bianchi constraint (2.55) causes trouble. In
the bigravity language we now have X = Y = 1, so the constraint becomes

m?a*Pa = 0. (2.69)

Because Y = 0, we no longer have an interesting dynamical branch: it merely
suggests a = 0. Unfortunately, the algebraic branch, P = 0, also only has a = const.
as a solution; in bigravity it would fix y = Y /a while allowing a and Y to change,
but in massive gravity, it is a which is fixed. Therefore a is generally fixed to be
constant, and this system has no dynamical solutions. This is the famous no-go
theorem on cosmological solutions in dRGT massive gravity, and it is present for
both flat and closed universes [67]. If we instead consider open universes or different
reference metrics, such as FLRW or de Sitter, then FLRW solutions do exist, but
they are unstable to the aforementioned Higuchi ghost and other linear and nonlinear
instabilities [68—73].

The search for a viable cosmology with a massive graviton which avoids these
conclusions has involved two routes. One is to extend dRGT by adding extra degrees
of freedom. As discussed above, these problems are cured when the second met-
ric is given dynamics. Other extensions of massive gravity, such as quasidilaton
[74], varying-mass [67, 75], nonlocal [29, 76, 77], and Lorentz-violating [78, 79]
massive gravity, also seem to possess improved cosmological behaviour. The other
approach is to give up on homogeneity and isotropy entirely. While FLRW solutions
are mathematically simple, the Universe could in principle have anisotropies which
have such low amplitude, are so much larger than our horizon, or both, that we can-
not easily observe them. Remarkably, these cosmologies are much better behaved
in massive gravity than is the standard FLRW case [67]. The general scenario of
an FLRW metric with inhomogeneous Stiickelberg fields has been derived in Refs.
[80, 81]. This includes, but is not limited to, the case in which the reference metric
is still Minkowski space, but only has the canonical form »,, = diag(—1,1,1, 1)
in coordinates where g, is not of the FLRW form [82]. The inhomogeneous and
anisotropic solutions are reviewed thoroughly in Ref. [17]. See Ref. [83] for a review
of cosmology in massive gravity and some of its extensions.
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2.2 Einstein-Aether Theory

In the final section of this chapter, we explore a different route to modifying gravity:
allowing Lorentz symmetry to be violated. This is not a step taken lightly; Lorentz
invariance is a cornerstone of modern physics. The two theories which have been
separately successful at predicting nearly all experimental and observational data
to date, general relativity to explain the structure of spacetime and gravity and the
standard model of particle physics to describe particles and nongravitational forces
in the language of quantum field theory, both contain Lorentz symmetry as a crucial
underlying tenet.

What do we gain from exploring the breakdown of this fundamental symmetry?
Given its foundational significance, the consequences of violating Lorentz invari-
ance deserve to be fully explored and tested. Indeed, while experimental bounds
strongly constrain possible Lorentz-violating extensions of the standard model [84],
Lorentz violation confined to other areas of physics—such as the gravitational, dark,
or inflationary sectors—is somewhat less constrained, provided that its effects are not
communicated to the matter sector in a way that would violate the standard-model
experimental bounds. Moreover, it is known that general relativity and the standard
model should break down around the Planck scale and be replaced by a new, quantum
theory of gravity. If Lorentz symmetry proves not to be fundamental at such high
energies—for instance, because spacetime itself is discretised at very small scales—
this may communicate Lorentz-violating effects to gravity at lower energies, which
could potentially be testable. The study of possible consequences of its violation,
and the extent to which they can be seen at energies probed by experiment and obser-
vation, may therefore help us to constrain theories with such behaviour at extremely
high energies.

A pertinent recent example is Hofava—Lifschitz gravity, a potential ultraviolet
completion of general relativity which achieves its remarkable results by explicitly
treating space and time differently at higher energies [85]. The consistent nonpro-
jectable extension [86—88] of Hotfava—Lifschitz gravity is closely related to the model
we will explore. Moreover, since we will be dealing with Lorentz violation in the grav-
itational sector, through a vector-tensor theory of gravity, the usual motivations for
modifying gravity apply to this kind of Lorentz violation. Indeed, there are interesting
models of cosmic acceleration, based on the low-energy limit of Hotfava—Lifschitz
gravity, in which the effective cosmological constant is technically natural [89, 90].
Generalised Lorentz-violating vector-tensor models have also been considered as
candidates for both dark matter and dark energy [91, 92].

Lorentz violation need not have such dramatic, high-energy origins. Indeed, many
theories with fundamental Lorentz violation may face fine-tuning problems in order
to avoid low-energy Lorentz-violating effects that are several orders of magnitude
greater than existing experimental constraints [93]. However, even a theory which
possesses Lorentz invariance at high energies could spontaneously break it at low
energies, and with safer experimental consequences.
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Spontaneous violation of Lorentz invariance will generally result when a field
that transforms nontrivially under the Lorentz group acquires a vacuum expectation
value (VEV). A simple example is that of a vector field whose VEV is nonvanishing
everywhere. As mentioned above, in order to avoid the experimental constraints
such a vector field should not be coupled to the standard model fields, but in order
to not be completely innocuous we will ask it to couple to gravity. Moreover, to
model Lorentz violation in gravity without abandoning the successes of general
relativity—in particular, without giving up general covariance—the (spontaneously)
Lorentz-violating field must be a spacetime vector and must be dynamical.!”

A particularly simple, yet quite general, example of a model with these features is
Einstein-aether theory (&-theory) [94, 95]. It adds to general relativity a dynamical,
constant-length timelike vector field, called the aether and denoted by u“, which
spontaneously breaks Lorentz invariance by picking out a preferred frame at each
point in spacetime while maintaining local rotational symmetry, thus breaking only
the boost sector of Lorentz symmetry [95, 96]. The constant-length constraint plays
two crucial roles. The first is phenomenological: it ensures that the aether picks a
globally-nonzero VEV and so guarantees that Lorentz symmetry is in fact broken.
The other role is to ensure that the theory is not sick: if the length is not fixed and the
kinetic term is not gauge-invariant'® then the length-stretching mode has a wrong-
sign kinetic term and hence is ghostlike [97]. Note that @-theory is the most general
effective field theory in which the rotation group is unbroken [98], and hence it can
be seen as the low-energy limit of any theory which violates boosts but maintains
rotational symmetry.

2.2.1 Pure Aether Theory

Einstein-aether theory (which we will often refer to as “pure” Einstein-aether theory
or ®-theory) is a theory of the spacetime metric g,,, and a vector field (the “aether”)
u*. The action is [95, 99]

1
S = /d4x4/_—g [mR — K" oVt Vou® + & (uu, + mz):| . (2.70)

where we have defined

K" o = 18" 80 + cz(Sg(Sl‘; + C3555; + cau’u’ g0 2.71)

17The requirement that the field be dynamical stems from the fact that there is no nontrivial (i.e.,
nonzero) spacetime vector which is covariantly constant, i.e., if V,u"” = 0 everywhere then neces-
sarily u” = 0.

I8Note that gauge invariance would uniquely pick out the Maxwell term, in which case we would
simply have electromagnetism which clearly does not spontaneously break Lorentz symmetry.
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The action (2.70) contains an Einstein—Hilbert term for the metric, a kinetic term
for the aether with four dimensionless coefficients ¢; (coupling the aether to the
metric through the covariant derivatives), and a nondynamical Lagrange multiplier
A. Varying this action with respect to A constrains the aether to be timelike with a
constant norm, u*u, = —m?. The aether has units of mass; its length, m, has the
same dimensions and corresponds to the Lorentz symmetry breaking scale.

The action (2.70) is the most general diffeomorphism-invariant action contain-
ing the metric, aether, and up to second derivatives of each. Higher derivatives are
excluded because they would generically lead to ghostlike degrees of freedom. Most
terms one can write down involving the aether are eliminated by the fixed norm con-
dition. One could consider a term R, u*u", but this is equivalent under integration
by parts to (Vﬂu")2 + (1/2)F,,, F*Y — (V,u,)(VFu"), where F,,, = 2V[,u,) is the
field strength tensor, and so is already included in the @-theory action [94]. In what
follows we will follow much of the literature on aether cosmology (e.g., Refs. [99,
100]) and ignore the quartic self-interaction term by setting c4 = 0.

It is generally assumed that (standard-model) matter fields couple to the metric
only. Any coupling to the aether would lead to Lorentz violation in the matter sector
by inducing different maximum propagation speeds for different fields, an effect
which is strongly constrained by experiments [84]. These problematic standard-
model couplings may, however, be forbidden by a supersymmetric extension of
@-theory [101]. The work on @-theory which we detail in Chap. 8 will be interested
in exploring and constraining Lorentz violation in the gravitational sector and in
a single non-standard-model scalar, hence we will not need to worry about such a
coupling.

The gravitational constant G that appears in Eq.(2.70) is to be distinguished
from the gravitational constants which appear in the Newtonian limit and in the
Friedmann equations, both of which are modified by the presence of the aether [99].
The Newtonian gravitational constant, G y, and cosmological gravitational constant,
G, are related to the bare constant G by

G
Gy=——, 2.72
N 1+ 87Gs 2.72)

G
G, = ———, (2.73)

1+ 8tGa
where

8§ =—cym?, (2.74)
o = (c13 + 3¢c2)m>. (2.75)

We have introduced the notation ¢;3 = ¢ + c3, etc., which we will use throughout.
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2.2.2 Coupling to a Scalar Inflation

‘We now introduce to the theory a canonical scalar field ¢ which is allowed to couple
kinetically to the aether through its expansion, 8 = V,u* [102]. The full action reads

1

1
_ 4 — _ v p o n 2\ _ ° 2 _
S—/d XA/ g|:167'rGR K" 06 VufVyu +)L(u Uy +m ) 2(8¢) V(9,¢)].

(2.76)

Let us pause to motivate the generality of this model. Our aim in Chap.8 will be
to constrain couplings between a Lorentz-violating field and a scalar, in particular
a canonical, slowly-rolling scalar inflaton, in as general a way as possible. As men-
tioned above, Einstein-aether theory is the unique Lorentz-violating effective field
theory in which rotational invariance is maintained [98],'” so any theory which spon-
taneously violates Lorentz symmetry without breaking rotational invariance will be
described by the vector-tensor sector of our model at low energies. As for the scalar
sector, the main restriction is that we have assumed a canonical kinetic term. While
there are certainly coupling terms between the aether and the scalar which do not
fall under the form V (0, ¢), all of these terms have mass dimension greater than
4 and so are irrelevant operators. Such terms are nonrenormalisable. While this is
not necessarily disastrous from an effective field theory perspective, these terms are
also nevertheless mostly important at short distances, and so should not factor into
the cosmological considerations at the heart of this thesis. To see that all terms with
dimension 4 or less fall into the framework (2.76), notice that the aether, scalar, and
derivative operators all have mass dimension 1, the aether norm is constant so u, u*
cannot be used in the coupling, and the aether and derivative operators carry space-
time indices which need to be contracted. Subject to these constraints, one can see
that any terms which involve both u* and ¢ and have dimension 4 or less are either
of the form f (6, ¢) or can be recast into such a form under integration by parts. In
particular, the only nontrivial interaction operators which are not irrelevant are ¢0
(dimension 3) and ¢ (dimension 4).

This type of coupling was originally introduced with a more phenomenological
motivation [102]. In a homogeneous and isotropic background, the aether aligns
with the cosmic rest frame, so 6 is essentially just the volume Hubble parameter,
60 = 3mH. Hence the introduction of the aether allows a scalar inflaton to couple
directly to the expansion rate. This is impossible in GR where H is not proportional
to any Lorentz scalar.

The aether equation of motion, obtained by varying the action with respect to u*,
is 1

A’ =V, J" — EVVVQ (2.77)

where the current tensor is defined by

19However, we note that there is an allowed term, the quartic self-interaction parametrised by c4,
which we have turned off.
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Thy = —K™ o, Vyu?, (2.78)

and we are denoting partial derivatives of the potential by V, = 9V /06 and
Vs = 0V /0d¢. Projecting this equation along u* allows us to obtain the Lagrange
multiplier A,

1 Y 1 1

We will account for the modification to gravity by leaving the Einstein equations in
the standard form (1.6) and defining a stress-energy tensor for the combined aether-
scalar system. Taking into account the contribution from the Lagrange multiplier
term, this is given by

<
+u”7u uy, — L8y (2.80)

where & is the Lagrangian for the aether and scalar. Using this formula we find the
stress-energy tensor,

Ty =21 (Vyu’Vyu, — VPu,V,u,)
= 2[V,u@d ) + Vo’ Jun) — Vo (udn?)]
— 2m’2uGVpJ"puMu,, + g2

1
+ VM¢VV¢ - (zvp¢vp¢ + V- 9V9) 8uv
+ (upvp VQ)(g/w + mizu/lduv)v (2.81)

where ., = K"¥,,V,u”V,u’ is the Einstein-aether Lagrangian. Finally, the infla-
ton obeys the usual Klein—Gordon equation,

O¢ = V. (2.82)

Notice that while this equation has the standard form, it couples the scalar to the
aether since generally we will have Vg = Vy(0, ¢).

Note that the equations of motion for the pure ®-theory follow simply by setting
¢ =0and V(0,¢) =0.

2.2.3 Einstein-Aether Cosmology

In this section we examine the evolution of FLRW cosmological solutions in Einstein-
aether theory. Consider a flat FLRW background geometry evolving in conformal
time, T,

ds* = a*(v)(—dt? + d3?). (2.83)
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In pure -theory, we take the 0—0 and trace Einstein equations to obtain the Friedmann
equations,

87G,

A= T, (2.84)
4G,

A = —T[Tazpm(l + 3w), (2.85)

where 7 = a'/a = dIna/dr is the conformal time Hubble parameter. These are
exactly the Friedmann equations of general relativity except that, as discussed above,
the bare cosmological constant, G, is renormalised,

G

- (2.86)
1+ 87Ga

c

witha = (c;+3ca+c3)m?. The aether does not change the cosmological dynamics at
all, but just modifies the gravitational constant. This arises because in a homogeneous
and isotropic background the Einstein-aether terms for the vector field only contribute
stress-energy that tracks the dominant matter fluid, so the associated energy density
is proportional to H? [99].2

The aether does contribute dynamical stress-energy once we couple it to a scalar.
In the theory (2.76) the Friedmann equations are

87G 1

AP = %az (v — OV + pm + Eqb’za_z) , (2.87)
4nG

A = %az [—3% (3%%9 A — A2+ v9¢¢/) — om(1+3w) +2(V — V) — 24;%‘2} ,

(2.88)

For completeness we have included a matter component, but in the rest of this section
and in Chap. 8 we will assume that ¢ is gravitationally dominant and ignore any p,.
The scalar field obeys the usual cosmological Klein—-Gordon equation,

¢ +2¢ +a*Vy =0. (2.89)

As discussed above, the coupling to 6 is contained in the function V. In the back-
ground, 6 = 3mH, with H = J¢/a the cosmic-time Hubble parameter, so this
contributes either Hubble friction or a driving force [102].

We need not write down the aether field equations in the background. The vector
field must be aligned with the cosmic rest frame due to homogeneity and isotropy,
and its value,

ut = %5*‘0, (2.90)

20Note, however, that perturbations of the aether do carry some dynamics [100].
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is determined completely by the normalisation condition, u,u* = —m?. One can
check that this solution satisfies the spatial component of the aether equation, while
the temporal component only determines the Lagrange multiplier. In pure @-theory
this solution is stable perturbatively [100, 103—105] and that stability holds nonlin-
early for most large perturbations [106]. This statement is subject to several con-
straints on the ¢; parameters which can be found in, e.g., [95, 100, 105], and we will
assume throughout this thesis that these constraints hold. One of the important results
in Chap. 8 is that the coupling between u* and ¢ can render cosmological solutions
unstable for large regions of parameter space that are allowed by other experimental,
observational, and theoretical constraints.

When the scalar potential is V (6, ¢) = V (¢), the background aether is irrelevant
apart from rescaling Newton’s constant, and many choices for the potential can lead
to periods of slow-roll inflation [107]. Adding a coupling to the aether will change
the dynamics but may still allow for inflation [102]. We will therefore aim to be as
general about V (6, ¢) as possible when discussing perturbation theory.
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Part I
A Massive Graviton

It was therefore quite a shock when he said, “But why should anybody be interested in
getting exact solutions of such an ephemeral set of equations?”. I remember very well

this word “ephemeral.” It meant that he did not consider his gravitational equations
as the last word.

Cornelius Lanczos, Einstein: The Man and His Achievement



Chapter 3
Cosmological Stability of Massive Bigravity

There is nothing stable in the world; uproar’s your only music.

John Keats, Letters

In the previous chapter, and in particular in Sect.2.1, we discussed an approach to
modifying gravity in which its force-carrier particle, the graviton, is given a small
mass. In particular, by specialising to the dRGT interaction potentials (2.22) we
ensure that the notorious Boulware-Deser ghost mode is absent, and by allowing
both metrics to be dynamical and taking the graviton mass to be of the order of the
present-day Hubble rate, we can obtain cosmological solutions which agree well with
observations of the cosmic expansion history. These solutions are self-accelerating:
the Hubble parameter goes to a constant at late times even in the absence of a
cosmological constant. The action of this bimetric theory, or bigravity, is given by
Eq. (2.30), and the associated modified gravitational field equations were presented
as Egs. (2.39) and (2.40).

We have discussed work comparing these FLRW solutions to tracers of the expan-
sion history, most notably in Refs. [1-3]. The natural next step is to move beyond
the assumption of homogeneity and isotropy and allow for linear perturbations to
FLRW which could describe the formation of large-scale structure. In particular, by
employing the frequently-used subhorizon and quasistatic approximations we can
dramatically simplify the complicated system of perturbed field equations while still
capturing most observable linear modes. Indeed, this is precisely what we will do in
Chap. 4.

© Springer International Publishing AG 2017 55
A.R. Solomon, Cosmology Beyond Einstein, Springer Theses,
DOI 10.1007/978-3-319-46621-7_3


http://dx.doi.org/10.1007/978-3-319-46621-7_2
http://dx.doi.org/10.1007/978-3-319-46621-7_2
http://dx.doi.org/10.1007/978-3-319-46621-7_2
http://dx.doi.org/10.1007/978-3-319-46621-7_2
http://dx.doi.org/10.1007/978-3-319-46621-7_2
http://dx.doi.org/10.1007/978-3-319-46621-7_4

56 3 Cosmological Stability of Massive Bigravity

The quasistatic limit is, however, a valid approximation only if the full system
is stable for large wavenumbers. Previous work [4-6] has identified a region of
instability in the past." The aim of this chapter is to investigate this problem in detail.

The rest of this chapter is organised as follows. In Sect. 3.1, we present the lin-
earised Einstein and fluid conservation equations in massive bigravity, which are
derived in Appendix A, present a scheme for counting the number of independent,
dynamical degrees of freedom, and then use that counting to pick a useful gauge.
Putting this all together, we discuss how to reduce the system of ten Einstein and
conservation equations to two equations for the two independent fields. In Sect. 3.2,
we solve these equations when the background can be assumed to be slowly vary-
ing, which is valid on small scales, and obtain the eigenfrequencies for the various
bimetric models. With these in hand, we analytically determine the epochs of sta-
bility and instability for all the models with up to two free parameters which have
been shown to produce viable cosmological background evolution. The behaviour
of more complicated models can be reduced to these simpler ones at early and late
times.

We show that several models which yield sensible background cosmologies in
close agreement with the data are in fact plagued by an instability that only turns
off at recent times. This does not necessarily rule out these regions of the bimetric
parameter space, but rather presents a question of how to interpret and test these
models, as linear perturbation theory is quickly invalidated. Remarkably, we find
that only a particular bimetric model—in which only the B, and B4 parameters
are nonzero (that is, the linear interaction and the cosmological constant for the
reference metric are turned on)—is stable at all times when the evolution is on a
particular branch. This shows that a cosmologically-viable bimetric model without
an explicit cosmological constant does indeed exist, and raises the question of how to
nonlinearly probe other corners of bigravity. We summarise and discuss our results
in Sect.3.3.

3.1 Linear Cosmological Perturbations

In this section we set up the formalism for cosmological perturbation theory in mas-
sive bigravity. We define the scalar perturbations to the FLRW metrics by extending
Egs. (2.48) and (2.49) to?

I'This should not be confused with the Higuchi ghost instability, which affects most massive gravity
cosmologies and some in bigravity, but is, however, absent from the simplest bimetric models which
produce ACDM-like backgrounds [7].

2By leaving the lapse N in the g metric general, we retain the freedom to later work in cosmic or
conformal time. There is a further practical benefit: since this choice makes the symmetry between
the two metrics manifest, and the action is symmetric between g and f as described in Sect.2.1.2,
this means the f field equations can easily be derived from the g equations by judicious use of
ctrl-f.
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ds; = —=N*(1 + Ep)dt* + 2Nad; Fydtdx' +a” [(1 + Ag)8;; + ;0;B, | dx'dx/,
(3.1)

dst = =X*(1+ Ep)dt® +2XY0; Frdtdx' +Y* [(1 + Ap)8i; + 8,0, By ] dx'dx’,
(3.2)

where the perturbations {E, s, Ay r, Fy r, By s} are allowed to depend on both time
and space. Spatial indices are raised and lowered with the Kronecker delta. The
stress-energy tensor is defined up to linear order by

T% = —p(1 +9),

T'o=—(p+P)V'

T% = (p+P) (v + 9 F) .

T';=(P+8P)8; + %'}, (3.3)
where 8 is the density contrast, v’ = dx'/dt is the 3-velocity, and X'; is the
anisotropic stress, with X'; = 0. We specialise immediately to dust (P = §P =

%'; = 0) and define the velocity divergence, 6 = 9;v".

3.1.1 Linearised Field Equations

The linearised Einstein and conservation equations are arrived at by a fairly lengthy
computation. We summarise the results here; details on the derivation can be found
in appendix A. The g-metric Einstein equations are

e 0-0:
3H . 5| Ag 2F, By m? ) 1 o
7 (HEg — Ag) +V [aZ +H(Na - NZ)} + 5P (3a4+v2aB) = 757%.
3.4)
e 0-i:
L (Ag — HE,) +m? Xa (xFy — F)—iaTO- 3.5)
N2 s § xy N T = et '
® i—i:
U302 = 2N 1) By iEg — Ay — 3y + N d : 3Z)D
ﬁ(* *ﬁ)ng g —Ag = 3HAg + g+2(+k)g
+m2BxPAE+yQ(AA+ 32+3k )} % . (3.6)
g

e Off-diagonal i—j:
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1 m?

. . 1 .
S0, D = —-yQd'8;AB = - 50T, 3.7)

M

where H = a/a is the usual g-metric Hubble parameter (in cosmic or conformal
time, depending on N), 8j2. +07 in the i—i spatial Einstein equation refers to derivatives
with respect to the other two Cartesian coordinates, i.e., V2 —9'9; where the i indices
are not summed over, and we have defined

P =1 +2By + B3y’ (3.8)

0=p+&+y) b+ xybs, (3.9

x = X/N, (3.10)

y=Y/a, (3.11)

AA=A;— A, (3.12)

AB = B; — B,, (3.13)

AE = E; — E,, (3.14)

as well as

Dgz%+%(%—%)+%—%(ég—%8g). (3.15)

The linearised Einstein equations for the f metric are

e 0-0:

3K . A 2Fy B 2 p

o (KEp—Ag)+ 2 [Y§+K(X;—é)]—zmwﬁ(mmrvzw):o, (3.16)
o 0—i:

2
m P (v —xFy) =0, (3.17)

1 ,
20 (Af—KEf)JrM—*zy—Qx—er} i (

® i—i:
1 . , X . .. . X . L/o
o | (2K +3K> —20 K ) Ep 4 Kip— Ay —3KAg+ SAp |+ 5 (07 +37) Dy

2

m2 1[I 1/ -
_MTQ)C?[EPAEWLQ(AAJFE(%WM,() AB)]_O, (3.18)

e Off-diagonal i—j:

Lyia,p, 4+ o 2
e 2M? xy?

5 3'9;AB =0, (3.19)
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where K = Y /Y is the f-metric Hubble parameter and we have again defined

Af+E; K (4F; 3B;\ 2F, 1 (. X.
D=Lt (L) 2L (B, —ZB,). (320
4 Y? +X(Y x ) Txy e\ xPr (3:20)

Finally the fluid conservation equation, V5 T#, = 0, can be split into time and space
parts, neither of which is changed from general relativity,

e Energy conservation (v = 0):

ngﬂo=—(5+3H§)(1+5)—5[8+9+§A +1VZB] (3.21)
M 278 T2 TR ’

e Momentum conservation (v = i):
- _ - /. . 1_
VET!; = (p+4Hp) (vi 4+ 0 F) + p (Vi + 0 Fy) + PO Ey. (3.22)

We have assumed for simplicity that the fluid comprises only pressureless dust. These
are in agreement with the results found elsewhere in the literature using various
choices of gauge-invariant variables [4, 8, 9].

It is worth mentioning that the g-metric i—i equation, (3.6), is identically zero in
GR after taking into account the 0—i, off-diagonal i—j, and momentum conservation
equations and hence gives no information; in massive (bi)gravity, however, it is
crucial, and is manifestly only important whenm # 0.In a gauge with F, = Fy =0
it has the simple form

m* [P (xEf — yE;) +2yQAA] = 0. (3.23)

Performing the same steps on the f-metric i—i equation, we arrive again at Eq. (3.23).
Hence both i—i equations carry the same information. We see there is an extra
algebraic constraint hidden in the system of perturbation equations; this is closely
related to the nontrivial constraint which eliminates the Boulware-Deser ghost,3 and
will become important shortly when discussing the degrees-of-freedom counting in
bigravity.

Herein we will decompose the perturbations into Fourier modes without writing
mode subscripts: every variable will implicitly refer to the Fourier mode of that
variable with wavenumber k.

3We thank Shinji Mukhoyama for discussions on this point.
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3.1.2 Counting the Degrees of Freedom

While we have ten equations for ten variables, there are only two independent degrees
of freedom.* These can be seen as corresponding, for example, to the scalar modes
of the two gravitons or to the matter perturbation and the scalar mode of the massive
graviton. To understand the degrees-of-freedom counting, we will start with the sim-
pler waters of general relativity, using the language we have employed for bigravity
and following the spirit of the discussion in Ref. [10]. The time-time and time-space
perturbations, E, and Fy, as well as the velocity perturbation, 6, are auxiliary in that
they appear in the second-order action without derivatives.> Therefore their equa-
tions of motion are algebraic constraints which relate them to other perturbation
variables, and they can be removed from the system trivially. This leaves us with
three dynamical variables, A, B, and 8, two of which can be gauge fixed, or set to
a desired value (such as zero) by a coordinate transformation. Hence at linear order
general relativity only has one dynamical (scalar) degree of freedom propagating on
FLRW backgrounds. In inflation, for instance, this is often taken to be the comoving
curvature perturbation, .

This is relatively straightforward to extend to massive bigravity; we point the
reader to Refs. [10, 11] for in-depth discussions. Few complications are introduced
because the only new components of the theory are an Einstein—Hilbert term for f,,,
which has exactly the same derivative structure as in general relativity, and a mass
term, which has no derivatives. Therefore we can see immediately that five of the
perturbations—E,, Er, F,, F'y, and 6—are nondynamical and can be integrated out
in terms of the dynamical variables and their derivatives. As discussed in Sect.2.1.3,
the coordinate invariance in massive bigravity is effectively the same as in general
relativity, as long as we view the gauge transformations as acting on the coordinates,
rather than on the fields. This can be seen by the fact that the Einstein—Hilbert terms
are clearly invariant under separate diffeomorphisms for g,,, and f},,, and the mass
term is invariant as long as g ! f is, which is the case if we act the same coordinate
transformation on each of them. We can therefore gauge fix two of the dynamical
variables.

Because we have started with ten perturbation variables, five of which were aux-
iliary and two of which can be gauge fixed, we are now left with three dynamical
variables. However, they are not all independent. After the auxiliary variables are
integrated out, one of the initially-dynamical variables becomes auxiliary, i.e., its
derivatives drop out of the second-order action, and it can itself be integrated out.
This leaves us, as promised, with two independent, dynamical degrees of freedom.

It is therefore possible to reduce the ten linearised Einstein equations to a much
simpler system of two coupled second-order differential equations. As we will see,

“The discussion in this section is indebted to useful conversations with Macarena Lagos and Pedro
Ferreira.

SSpecifically, they appear without time derivatives. Recall that we are working in Fourier space
where spatial derivatives effectively amount to multiplicative factors of ik.
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with the right choice of gauge this process is fairly simple. This will allow us, in
Sect. 3.2, to check whether the solutions to that system are stable.

3.1.3 Gauge Choice and Reducing the Einstein Equations

In Ref. [10] a method for identifying the gauge-invariant degrees of freedom was
presented in which Noether identities are used to identify “good” gauges, i.e., gauges
in which the equations of motions for the gauge-fixed variables are contained in the
remaining equations of motion. This methodology was applied to massive bigravity
in Ref. [11]. While the method was developed with a focus on deriving the second-
order action for the perturbations, rather than starting with the equations of motion
as we do here, we will find that this method of picking a gauge will be convenient.

Many common gauges choose to fix auxiliary variables, but this makes the job
of reducing the perturbation equations to the minimal number of degrees of free-
dom difficult. By contrast, in the Noether-identity method only dynamical variables
are fixed. Specifically, one chooses to eliminate those variables whose equations of
motion are redundant, i.e., are contained within the equations of motion for fields
which we leave in, so that no physical information is lost. Because the equations
of motion for the perturbation variables are the same as the Einstein equations we
are using, such a gauge choice works well for our purposes. The end result is that
we should choose to eliminate one of {A,, A} and one of {B,, By, x} [11], where
x=k25+ (3/2)k’2Ag — (1/2) B,, which characterises the fluid flow, is the basic
scalar dynamical degree of freedom for a perturbed fluid [12]. This uses up all of the
available gauge freedom.

In this chapter we will work in a gauge in which Ay = x = 0. This has the
advantage of treating the two metrics symmetrically: the remaining independent,
dynamical fields are B, and B, with A, having become auxiliary in the process.
Our goal is to derive the reduced system of equations of motion for B, and By,
as well as expressions relating all of the rest of the perturbation variables to these.
Because the resultant equations are extraordinarily lengthy, we will not present them
but will simply summarise the steps.

Five equations—the 0-0 and 0—i Einstein equations for each of the metrics and
the energy-conservation equation—correspond directly to the equations of motion
for the five auxiliary variables. In these equations the auxiliary variables only appear
linearly and without derivatives. Therefore we can easily “integrate them out” by
solving the system of those five equations to obtain {Eg, E¢, Fg, Fy, 0} in terms of
the remaining degrees of freedom, {A,, B,, B/}, and their derivatives.

We are left with Ay, B,, and By, and their equations of motion are the g-metric
i—i, g-metric i—j, and f-metric i—j equations, respectively. As discussed above,
the i—i equations effectively become constraints after manipulation with the other
equations of motion. We demonstrated this in a gauge where Fy, = F; = 0; while
mathematically simple, this gauge is not very helpful as it only eliminates auxiliary
variables. In the more convenient gauge we are now using there is an equivalent
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statement: after integrating out the five auxiliary variables, all derivatives of A,
vanish from the g-metric i—i equation, so that it can be used to solve algebraically
for A, in terms of B, By, and their first derivatives. This is the result, mentioned
above, that after integrating out the auxiliary variables, one of the dynamical variables
becomes auxiliary. We note that A, only depends on B, and B up to first derivatives.
This fact is crucial because A ¢ (though not A ¢) appears in the remaining equations
of motion. If A, depended on second derivatives, then higher derivatives would
appear upon integrating it out, and we would be in danger of a ghost instability.
Indeed, as mentioned above, the fact that A, loses its dynamics is nothing other than
the Boulware-Deser ghost being rendered nondynamical by the specific potential
structure of massive bigravity [13].

3.2 Stability Analysis

Having reduced the system of linearised Einstein and conservation equations using
the steps outlined in Sect.3.1.3, we can write our original ten equations as just two
coupled second-order differential equations. Defining the vector

B
X = ( Bi) , (3.24)

this system takes the simple form
X+ Ax+Bx=0, (3.25)

where A and B are matrices with extremely unwieldy forms which depend only on
background quantities and on k. Equivalently we can write Eq. (3.25) in the same
form in terms of N = Ina (not to be confused with the g-metric lapse, N),

X"+ Ax' + Bx = 0, (3.26)

where we use primes to denote derivatives with respect to N. We will choose this
formulation to simplify the analysis and better understand its physical consequences.

We are now in a good position to analytically probe the stability of linear cos-
mological perturbations in bigravity. If we neglect the dependence of A and B and
treat them as constants, then Eq. (3.26) is clearly solved by a linear superposition of
exponentials

X = Zgiei’”’w. (3.27)

We refer to w; as eigenfrequencies because they can be determined by solving for
the eigenvalues of iw; A + B. While A and B are not truly constant, they do in fact
vary slowly enough for the WKB approximation to hold, in which case Eq. (3.27)
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is the correct first-order solution for x. The criterion for the WKB approximation to
hold is |@'/w?| < 1; this will be satisfied in the cases in which we are interested.

The criterion for stability is that all eigenfrequencies be real. This is necessary
to obtain purely oscillating solutions for the perturbation variables; if any eigenfre-
quency had an imaginary piece, then there would be exponentially growing modes.
The eigenfrequencies we obtain from Eq. (3.26) are inordinately complicated.® To
simplify the analysis and focus on subhorizon scales, which account for most of the
modes we can observe, we will take the limit k >> 7, where, as elsewhere in this
thesis, we denote the conformal-time Hubble rate by 7.

As discussed in Sect. 2.1.3, the only theory with one nonzero §; parameter which
allows for viable cosmological background expansion is the 8; model, providing an
excellent fit to background data including Type Ia supernovae, the cosmic microwave
background, and baryon-acoustic oscillations [2, 3]. However, the analysis in this
chapter shows that it suffers from instabilities throughout most of cosmic history. In
the limit of large k /.7 we find the eigenfrequencies for this model are

k =1+ 12y2 49"
+ i A

H 1+ 3y?

wp, = (3.28)

The condition for stability, i.e., for the object inside the square root to be positive, is

y > % (ﬁ - 2) ~ 0.28. (3.29)

This suggests that there is an instability problem at early times; recall from Sect. 2.1.3
that the B; model has only finite-branch solutions, meaning that y evolves monoton-
ically from O at early times to, at late times, a positive constant. Therefore the S,
model always suffers from an instability at early times, with a turnover from unsta-
ble to stable occurring when y & 0.28. This instability is quite dangerous. Consider
scales of k ~ 10057, which is a typical mode size for structure observations. Those
modes would then grow, assuming Im(w) ~ (1), as roughly ¢!V which is far
too rapid for linear theory to be applicable for more than a fraction of an e-fold.
During what time period is this instability present? If y reached 0.28 at sufficiently
early times, one might expect that the presence of radiation or other new fields, which
we have ignored in favour of dust, could ensure that modes are stable. However, the
time at which the instability turns off is generically close to the time at which the
expansion begins to accelerate, so this is clearly a modern problem. We can find the
exact region of instability recalling that, in this model, we can solve for y(a) exactly,

c.f. Eq. (2.66),
yla) = %a” (—c + v/ 12a° + C2) . (3.30)

SWe recognise that the number of unused synonyms for “these equations are very long” is growing
short as this chapter progresses.
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where

3
C=-B —, 3.31
1+ B, ( )

where B| = m?B,/ Hg and H is the cosmic-time Hubble rate today. The best-fit value
for B; using a combination of SNe, CMB, and BAO data is B; = 1.448 4 0.0168
[2, 14]. For By = 1.448 exactly, wg, switches from imaginary to real at N =
—0.49, corresponding to a relatively recent redshift, z = 0.63435. This number is
fairly sensitive to the choice of datasets. The CMB and BAO data are taken from
observations which assume general relativity in their analysis. Restricting the analysis
to supernovae alone, the best fitis By = 1.3527 £0.0497. In this case, the instability
endsat N = —0.38 or z = 0.47. At any epoch before this, the perturbation equations
are unstable for large k. This behaviour invalidates linear perturbation theory on
subhorizon scales and may rule out the model if the instability is not cured at higher
orders. This is not necessarily out of the realm of possibility. As discussed earlier,
massive bigravity possesses the Vainshtein mechanism, in which nonlinear effects
suppress the helicity-0 mode of the massive graviton in dense environments, thereby
recovering general relativity [15, 16]. It may be the case that such a mechanism will
also impose general-relativistic behaviour on nonlinear cosmological perturbations.

Now let us move on to more general models. As we mentioned in Sect. 2.1.3, the
other one-parameter models are not viable in the background,’ i.e., none of them
has a matter-dominated epoch in the asymptotic past and produces a positive Hubble
rate [3].% Nevertheless it is worthwhile to calculate the eigenfregencies in these cases
in order to study the asymptotic behaviour of the viable multiple-parameter models.
For simplicity, from now on we refer to a model in which, e.g., only §; and j, are
nonzero as the 818, model, and so on.

At early times, every viable, finite-branch, multiple-parameter model is approx-
imately described by the single-parameter model with the lowest-order interaction.
For instance, the 8152, 8183, and B 8,83 models all reduce to §;, the 8,83 model
reduces to B, and so on. Similarly, in the early Universe, the viable, infinite-branch
models reduce to single-parameter models with the highest-order interaction. This
is clear from the structures of the terms in the Friedmann equation and the P and
Q parameters introduced above. It is only through these terms that the 8; parame-
ters enter the perturbation equations. Therefore, in order to determine the early-time
stability, we need only look at the eigenfrequencies of single-parameter models. In
addition to wg, presented in Eq. (3.28) above, we have

7With the exception of the By model, which is simply ACDM.

8We frequently discuss the viability of various models in this section; all such results were derived
in Ref. [3].
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k1

wp, = ij—f;, (3.32)
k /=34 8y* —y*

wg, = 3.33
k1

wp, =t——. (3.34)
A2

We see that the 8, and 4 models are stable at all times, while the 83 model suffers
from an early-time instability just like the 8; model. We can now extend these results
to the rest of the bigravity parameter space by using the single-parameter models to
test the early-time stability.

Since much of the power of massive bigravity lies in its potential to address the
dark energy problem in a technically-natural way, let us first consider models without
an explicit g-metric cosmological constant, i.e., By = 0. On the finite branch, all such
models with 8; # 0 reduce, at early times, to the §; model. As we have seen, this
possesses an imaginary sound speed for large k, cf. Eq. (3.28), and is therefore
unstable in the early Universe. Hence the finite-branch 88,8384 model and all its
subsets with B; # 0 are all plagued by instabilities. This is particularly significant
because all of these models otherwise have viable background evolutions [3]. This
leaves the 8, 8384 model; this is stable on the finite branch as long as 8, # 0, but its
background is not viable. We conclude that there are no models with 8y = 0 which
live on a finite branch, have a viable background evolution, and predict stable linear
perturbations at all times.

This conclusion has two obvious loopholes: we can either include a cosmological
constant, By, or turn to an infinite-branch model. We first consider including a nonzero
cosmological constant, bearing in mind this may not be as interesting theoretically
as the models which self-accelerate. Adding a cosmological constant can change the
stability properties, although it turns out not to do so in the finite-branch models with
viable backgrounds. In the By8; model, the eigenfrequencies,

k /=1+2(Bo/B1)y + 12y> +9y*
W, = +— ’

7z 1432 -39

are unaffected by f at early times and therefore still imply exponential mode growth
in the asymptotic past. This result extends (at early times) to the rest of the bigravity
parameter space with 8y, 81 7 0. No other finite-branch models yield viable back-
grounds. In conclusion, all of the solutions on a finite branch, for any combination of
parameters, are either unviable (in the background) or linearly unstable in the past.
Let us now turn to the infinite-branch models. There are two candidates with
viable background histories. The first is the the ByB,8s model. The reality of wg,
and wg,, cf. Eq. (3.32), suggests that this model is linearly stable. At the background
level, this case is something of an exception as it is the only bimetric cosmology
with exact ACDM evolution: the structure of the Friedmann equation and quartic
equation conspire to allow the dynamics to be rewritten with a modified gravitational
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constant and an effective cosmological constant [1],

Ba 0 2 BoBs — 9,322.

3H*= —— "~ +m (3.36)
,34—3/32 Mg ,84_3/32
The quartic equation for y can be solved to find
5 mzLMg + Bo — 382
y=————--. (3.37)

Ba—3pB2

This implies that all solutions to this model live on the infinite branch. In order for
y to be real at all times, we are required to have By — 38, > 0 and B4 — 38, > 0.
Unfortunately, for these reasons we cannot have a viable self-accelerating solution;
if By were set to zero (or were much smaller than 8, and B4), then the effective
cosmological constant would be negative. The modified gravitational constant would
also be negative if 84 were positive. From a cosmological point of view, these models
are therefore not altogether interesting.

Finally there is a small class of viable and interesting models which have stable
cosmological evolution: the self-accelerating 8 ; model and its generalisation to
include B,.° Here, y evolves from infinity in the past and asymptotes to a finite de Sit-
ter value in the future. For these Sy 81 4 models we perform a similar eigenfrequency
analysis and obtain

k=1 2Bo/B0) Y+ 1292 + 9+ 280Ba/BY) y* — 2 (Ba/B1) [49° +3¥5 — (Ba/B1)y°]

Dpop1ps = i% 1+3y2 —2(Ba/B) 3 G 38)

Restricting ourselves to the self-accelerating models (i.e., By = 0), we obtain

Ky 1+ 1202 9y —2(Ba/B1) [49° +3Y° — (Ba/ B1)y"]
wp g, = £ . (3.39)
H 143y =2 (Bs/B1) y°

Notice that at early times, i.e., for large y, the eigenvalues (3.38) and (3.39) reduce to
the expression (3.34) for wpg,. This frequency is real, and therefore the 8 84 model, as
well as its generalisation to include a cosmological constant, is stable on the infinite
branch at early times.

Interestingly, the eigenfrequencies for this particular model can also be written as

9We do not have the freedom to include nonzero 8, or B3; in either case the background evolution
would not be viable [3]. We can see this from the expressions (2.59) and (2.60) for p(y) and H? ).
If B3 were nonzero, then 2, = p /(3M§H 2y would diverge as y at early times. Setting B3—¢, we
find @, — 1 —38,2/B4 as y — oo. If we demand a matter-dominated history, then B, must at the
very least be small compared to 4.
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Fig. 3.1 Plot of the function
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Therefore, the condition for the stability of this model in the infinite branch, where
Y < 0, is simply y” > 0. One might wonder whether this expression for w is
general or model specific. While it does not hold for the 8, and B3 models, c.f.
Egs. (3.32) and (3.33), it is valid for all of the submodels of ByfS; B4, including the
single-parameter models presented in Egs. (3.28) and (3.34). We can see from this,
for example, that the finite-branch (y’ > 0) 8; model is unstable at early times
because initially y” is positive. In Fig.3.1 we show schematically the evolution of
the B84 model on the finite and infinite branches. The stability condition on either
branch is y”/y" = dy’/dy < 0. For the parameters plotted, 84 = 21, one can see
graphically that this condition is met, and hence the model is stable, only at late times
on the finite branch but for all times on the infinite branch. Our remaining task is to
extend this to other parameters.

Let us now prove that the infinite-branch 8; 84 model is stable in the subhorizon
limit at all times as long as the background expansion is viable, which restricts us
to the parameter range 0 < B4 < 28 [3]. From Eq. (3.39) we can see that the
subhorizon perturbations are clearly stable if and only if

— 1+ 129* +9y* — 2 (Ba/B1) [4Y® +3Y° — (Ba/B1)y°] > 0 (3.41)

At early times, y — 00, this is dominated by a manifestly positive term. Indeed
we have already seen that the eigenfrequencies match those in the 84 model (3.34)
which are purely real. At later times, Eq. (3.41) is satisfied for all y > 1 as long
as we restrict to the viable parameter range, 0 < B4/81 < 2. We can therefore
rephrase the question of stability as a question about the background evolution: do
the infinite-branch models in this region of the parameter space always have y > 1?
The answer is yes. Recall from Sect.2.1.3 that, on the infinite branch, y evolves
monotonically from y = oo to y = y,, where y, is defined by Eq. (2.64),
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Bsy. —3B1y; + B = 0. (3.42)

Because the evolution of y is monotonic, y > 1 at all times if y. > 1. Moreover,
because y = y. corresponds, through the quartic Eq. (2.58), to p = 0, we are only
interested in the largest real root of Eq. (3.42). For the largest allowed value of S,
B4 = 2P exactly, we find y. = 1. We must then ask whether for 0 < 84 < 28,
Y. remains greater than 1. Writing p = y. — 1, using Descartes’ rule of signs, and
restricting ourselves to 0 < B4 < 28;, we can see that p has one positive root, i.e.,
there is always exactly one solution with y. > 1 in that parameter range. Therefore,
in all infinite-branch solutions with 0 < B4 < 28, y evolves to some y. > 1 in
the asymptotic future. We conclude that all of the infinite-branch ; 84 cosmologies
which are viable at the background level are also linearly stable at all times in the
subhorizon limit, providing a clear example of a bimetric cosmology which is a
viable competitor to ACDM. This stability has been confirmed and extended to the
superhorizon limit in a complementary analysis in Ref. [11].

As a side remark, we note that in this model the asymptotic past corresponds to
the limit y — oo and y’ — —3y,i.e., y — a~*2. This implies that ¥ ~ a2, i.e.,
the second metric initially collapses while “our” metric expands. On the approach
to the final de Sitter stage, y approaches a constant y,, so the scale factors ¢ and Y
both expand exponentially. This infinite-branch model therefore contains a bouncing
cosmology for the f metric.

This bounce has an unusual consequence. Recall from Eq. (2.57) that, after impos-
ing the Bianchi identity, we have fyo = —Y?/.7>. Therefore, when y bounces, foo
becomes zero: at that one point, the lapse function of the f metric vanishes.'” Never-
theless, this does not render the solution unphysical, for the following reasons. First,
the f metric does not couple to matter and so, unlike the g metric, it does not have
a geometric interpretation. A singularity in f},, therefore does not necessarily imply
a singularity in observable quantities. In fact, we find no singularity in any of our
background or perturbed variables. Second, although the Riemann tensor for the f
metric is singular when fyo = 0, the Lagrangian density «/— f R(f) remains finite
and nonzero at all times, so the equations of motion can be derived at any points in
time.

3.3 Summary of Results

In this chapter, we introduced the tools for perturbation theory in massive bigravity
and used them to test the stability of the theory.

‘We began by presenting the cosmological perturbation equations; these are derived
in Appendix A. We went on to detail the way in which the physical degrees of freedom
are counted and described how to pick a good gauge and integrate out nondynamical

10Moreover, the square root of this, ¥ /.7, appears in the mass terms. We choose branches of the
square root such that this quantity starts off negative at early times and then becomes positive.
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variables. By doing so we reduced the ten linearised Einstein and fluid conservation
equations to a system of two coupled, second-order differential equations. These
describe the evolution of the two independent, dynamical degrees of freedom present
at linear order around FLRW solutions in massive bigravity.

We then identified the stable and unstable models by employing a WKB approx-
imation and calculating the eigenfrequencies of the perturbation equations. This
analysis revealed that many models with viable background cosmologies exhibit
an instability on small scales until fairly recently in cosmic history. However, we
also found a class of viable models which are stable at all times. These are defined
by giving nonzero, positive values to the interaction parameters §; and B, setting
B> = B3 = 0, and choosing solutions in which the ratio y = Y/a of the two scale
factors decreases from infinity to a finite late-time value. A cosmological constant
can be added without spoiling the stability, although it is not necessary; the theory
is able to self-accelerate.

On the surface, these results would seem to place in jeopardy a large swath of
bigravity’s parameter space, such as the “minimal” g;-only model which is the only
single-parameter model that is viable at the background level [3]. It is important to
emphasise that the existence of such an instability does not automatically rule these
models out. It merely impedes our ability to use linear theory on deep subhorizon
scales (recall that the instability is problematic specifically for large k). Models that
are not linearly stable can still be realistic if only the gravitational potentials become
nonlinear, or even if the matter fluctuations also become nonlinear but in such a way
that their properties do not contradict observations. The theory can be saved if, for
instance, the instability is softened or vanishes entirely when nonlinear effects are
taken into account. We might even expect such behaviour: bigravity models exhibit
a Vainshtein mechanism [15, 16] which restores general relativity in environments
where the new degrees of freedom are highly nonlinear. Consequently two very
important questions remain: can these unstable models still accurately describe the
real Universe, and if so, how can we perform calculations for structure formation?

Until these questions are answered, the infinite-branch S; 84 model seems to be
the most promising target at the moment for studying massive bigravity. In the next
chapter, we will calculate its predictions for structure formation, confront them with
data, and discuss the potential of near-future probes like EUCLID to test this model
against ACDM.
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Chapter 4
Linear Structure Growth in Massive
Bigravity

The wonder is, not that the field of the stars is so vast, but that
man has measured it.
Anatole France, The Garden of Epicurus

We have, to this point, reviewed the background FLRW solutions of massive bigravity
in Chap. 2 and begun to analyse linear perturbations around these solutions in Chap. 3.
In addition to introducing the formalism for cosmological perturbation theory in
bigravity, the specific aim of the previous chapter was to identify which models are
stable at the linear level and which are not. The natural next step is to use perturbation
theory to derive observable predictions for the stable models.

In this chapter we undertake a study of the cosmological large-scale structure
(LSS) in massive bigravity with the aim of understanding the ways in which bigravity
deviates from general relativity and its potentially-testable cosmological signatures.
This is motivated in particular by anticipation of the forthcoming Euclid mission
which is expected to improve the accuracy of the present large-scale structure data
by nearly an order of magnitude [1, 2].

At the background level, careful statistical analyses show that several bimetric
models can provide as good a fit as the standard ACDM model, including one case,
the B;-only model, which has the same number of free parameters as ACDM [3-5].!
This is a blessing and a curse; while it is encouraging that massive bigravity can
produce realistic cosmologies in the absence of a cosmological constant, the quality
of background observations is not good enough to distinguish these models from
ACDM or from each other. In particular, the parameter constraints obtained from
the expansion history have strong degeneracies within the theory itself.

To efficiently test the theory and distinguish its cosmology from others one needs
to move beyond the FLRW metric and study how consistent bimetric models are
with the observed growth of cosmic structure. We restrict ourselves to the linear,

! As discussed in Chap. 3, this model is linearly unstable. However, if the instability is cured at higher
orders in perturbation theory before the background solution is spoiled, then at the background level
this is a perfectly viable model.
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subhorizon régime and examine whether there are any deviations from the standard
model predictions which may be observable by future LSS experiments.

Note that due to the aforementioned instability, some (though not all) bimetric
models cannot be treated with linear perturbation theory at all times, as any individual
mode would quickly grow large during the period of instability (from early times
until some recent redshift). Structure formation must be studied nonlinearly in these
cases. In order to demonstrate our methodology, we choose to study every model
with a sensible background evolution and one or two free B; parameters, so some
unstable cases will be included. For the most part these should be seen as toy models,
useful for illustrative purposes, although our results about quantities which do not
depend on initial conditions, such as the anisotropic stress, will be observationally
relevant at later times. One specific model which we study, the infinite-branch §; 84
model, is stable at all times, and so we will pay extra attention to its comparison to
observations.

This chapter is organised as follows. Taking the subhorizon and quasistatic limit
of the full perturbation equations, we arrive at a convenient closed-form evolution
equation in Sect. 4.1 that captures the modifications to the general relativistic growth
rate of linear structure, as well as the leading-order scale-dependence which modifies
the shape of the spectrum at near-horizon scales. The coefficients in the closed-form
equation are given in Appendix B. The results are analysed numerically in Sect. 4.2,
where we discuss the general features of the models and confront them with the
observational data. We conclude in Sect.4.3.

4.1 Perturbations in the Subhorizon Limit

We define the perturbed metrics in conformal time (N = a) as

ds; = a* {—(1 + Eg)dt> + 20, Fedtdx' + [(1 4 A)8;j + 0;0; By | dx'dx'}
(4.1)

—X*(1 4+ Ep)dt* +2XY0; Fpdrdx' +Y* [(1 4+ Ay)8;j + 9;0; By dx'dx/,
4.2)

2
dsf

and immediately specialise to dust (P = § P = 0) and work in Fourier space. The
linearised Einstein and fluid conservation equations have been presented in Sect. 3.1
and are derived in Appendix A. These equations are quite complicated; in order
to isolate the physics of interest, namely that of linear structure in the subhorizon
régime, we focus on the subhorizon, quasistatic limit of the field equations. This
limit is defined by taking k2® > H?>® ~ H® ~ & for any variable ®, where we
have expanded in Fourier modes with wavenumber k, and assuming K ~ H so we
can take the same limit in the f-metric equations. Moreover, we will take A, ; and
E, r to be of the same order as k Fyy s and k*B,. - as these terms all appear this way
in the linearised metric. Finally, we will work in Newtonian gauge for the g metric,
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defined by setting F, = B, = 0. Since we are working in the singly-coupled theory
where g,,, is the “physical” metric, i.e., only g, couples (minimally) to matter, this
is as sensible a gauge choice as it is in GR.?

With these definitions, we can write down the subhorizon evolution equations.
The energy constraint (the 0-0 Einstein equation) for the g metric is

sz—i-mszB +32P(A Ap)=-"Ls (4.3)
- —yPa —m - = —34. .
a s T f) TR YE e = Ay M2

The trace of the i—j equation yields

. 25 I
(H —H+ %) E, +m2d® I:ExP (Ef— E;) +y0 (A, — Ag)] — 0. (44)
8

The off-diagonal piece of the i—j equation tells us
Ay + E, +m*a*yQB; = 0. (4.5)

We have not presented the momentum constraint (the O—i Einstein equation) as it
has already been used, along with the momentum conservation equation (4.10), to
simplify the trace i—j Eq. (4.4).% Note also that we have used the off-diagonal piece,
Eq. (4.5), to eliminate some redundant terms in the trace equation. For the f metric,
the corresponding equations are

k2 m? Pa? 3m? P
- Af—TTB +T;(Af—Ag)=o,

a
(4.6)
. X a’x 1
[—K + (H + ;) K} Ef +m27 [EP (Ef—Eg)+Q(As — Ag)} =0,
4.7)

2
A +E; —szTan =0.
4.8)

Finally, due to the minimal coupling between matter and g,,,, the fluid conservation
equations are unchanged from GR,

2Given two separate diffeomorphisms for the g and f metrics, only the diagonal subgroup of the
two preserves the mass term. In practice, this means that we have a single coordinate system which
we may transform by infinitesimal diffeomorphisms, exactly as in GR.

3In the approach of Ref. [6], where this limit is taken by dropping all derivative terms, this step is
crucial for the results to be consistent; in our case it is simply useful for rewriting derivatives of A g
and A ¢ in terms of Ey, so that the equation is manifestly algebraic in the perturbations.
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§+6=0, (4.9)

: 1
0+ HO — EkZEg =0. (4.10)

In GR the trace equation, (4.4), adds no new information: it becomes an identity
after using the Friedmann equation. In massive bigravity this equation does carry
information and it is crucial that we use it. However, we can still simplify it by using
the background equations, obtaining*

m* [P (xE; — yE,) +2yQAA] = 0. (4.11)

Note thatthe m — 0 limit yields an identity, as expected. There is a further interesting
feature: if we substitute the background equations into the f-metric trace equation,
(4.7), we obtain Eq.4.11 again. Hence one of the two trace equations is redundant
and can be discarded, so what looks like a system of six equations is actually a system
of five.

With these relations, the system of equations presented in this section is closed.

4.2 Structure Growth and Cosmological Observables

In this section we study the linearised growth of structure in the quasistatic and
subhorizon limit, first solving the field equations to obtain predictions and then
comparing to data. Deviations from the predictions of general relativity can be sum-
marised by a few parameters which are observable by large-scale structure surveys
such as Euclid [1, 2]. The main aim of this section is to see under what circumstances
these parameters are modified by observable amounts in the linear régime by massive
bigravity.

4.2.1 Modified Gravity Parameters

We will focus on three modified growth parameters, defined in the Euclid Theory
Working Group review [2] as f (and its parametrisation y), Q, and 1. They are:

Growth rate (f) and index (y): These parameters measure the growth of struc-
ture, and are defined by

_dlogs

f(a, k) Qr (4.12)

m?

- dloga

where Q,, = a’//(3M H?) is the usual matter density parameter.

“This equation holds beyond the subhorizon limit, in a particular gauge; see Appendix A.
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Modification of Newton’s Constant (Q): The function Q(a, k)®> parametrises
modifications to Newton’s constant in the Poisson equation,

k? Q(a, k)p
8
Anisotropic Stress (y):  Effective anisotropic stress leads the quantity A, 4 E, to
deviate from its GR value of zero, which we can parametrise by the parameter

n(a, k),

A
(a,k) = —=8. (4.14)
n(a £,

In GR, these parameters have the values y ~ 0.545and Q =n = 1.

We have five independent Einstein equations (Eqs. (4.3), (4.5), (4.6), (4.8), (4.11))
for five metric perturbations® and 8. Crucially, this system is algebraic. There are five
equations for six variables, so we can only solve for any five of the perturbations
in terms of the sixth. Of the modified growth parameters, Q and 7 are ratios of
perturbations so are insensitive to how we solve the system. However, to find y we
need to solve a differential equation for §. It is therefore simplest to solve for the
perturbations {A, ¢, E¢ 7, By} in terms of 4.

Solving the system, we find each perturbation can be written in the form f (z, k)3,
for some function f(¢#). We do not display the solutions here as they are quite
unwieldy, although we do note that in the limit with only 8; # 0 studied in Ref. [6],
and taking into account differences in notation and gauge, our expressions for the
perturbations match theirs.

With these solutions for {A, ¢, E, s, By} in hand, we can immediately read off Q
and 7. To calculate the growth index, y, we need to solve a conservation equation for
the density contrast, §. The fluid conservation Egs. (4.9) and (4.10), are unchanged
from GR, so as in GR we can manipulate them to find the usual evolution equation
for § sourced by the gravitational potential,

. . 1
S+ HS + Eszg(a) =0. (4.15)

At this point we diverge from the usual story. In GR, there is no anisotropic stress
and the Poisson equation holds; combining the two, we find KE ¢ = —(a? o/ Mg2)8 .
Both of these facts are changed in massive bigravity, so there is a modified (and
rather more complicated) relation between k?E, and §. However, since we do have
such a relation, § still obeys a closed second-order equation which we can solve
numerically.

5Not to be confused with the background quantity defined in Eq. (3.9), Q = 1 +(x + y) S2+xyps.
6 After gauge fixing there are six metric perturbations, but once we substitute the 0—i equations into
the trace i—j equations, Fy drops out of our system. In a gauge where F, = Fy = 0, as was used
in Ref. [6], the equivalent statement is that the B, and B, parameters are only determined up to
their difference, By — B, which is gauge invariant.
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Finally, we note that the three modified gravity parameters are encapsulated by
five time-dependent parameters. The expressions for n and Q can be written in the

forms
—h L+ khy (4.16)
1=\ T kms ) ‘
1+ k*hy
—n (22, 4.17
0 1(1+k2h3) 4.17)

where the h; are functions of time only and depend on m? ;. We present their explicit
forms in Appendix B. The same result has been obtained for Horndeski gravity [7, 8],
which is the most general scalar-tensor theory with second-order equations of motion
[9]. The similarity is a consequence of the fact that massive bigravity introduces only
a single new spin-0 degree of freedom, its equations of motion are second-order, and
the new mass scale it introduces (the graviton mass) is comparable to the Hubble
scale [6, 10].

Furthermore, the structure growth equation, (4.15), can be written in terms of Q
and 7 and hence the h; coefficients as

.. 10a%
5aHs_ 129l (4.18)
20 M

The quantity Q/n, sometimes called Y in the literature [6, 8, 11], represents devi-
ations from Newton’s constant in structure growth, and is effectively given in the
subhorizon régime by (hhs)/(hyh3).

4.2.2 Numerical Solutions

In this section we numerically solve for the background quantities and modified grav-
ity parameters for one- and two-parameter bigravity models.” We look in particular
for potential observable signatures, as the growth data are currently not competitive
with background data for these theories, although we expect future LSS experiments
such as Euclid [1, 2] to change this. The recipe is straightforward: using Eq.(2.61)
we can solve directly for y(z), which is all we need to find solutions for n(z, k) and
0(z, k) using Egs. (4.16) and (4.17). Finally these can be used, along with Egs. (2.59)
and (2.60), to solve equation (4.18) numerically for § (z, k) and hence for f(z, k). We
fit f(z, k) to the parametrisation Q' in the redshift range 0 < z < 5 unless stated
otherwise.

7We focus on these simpler models to illustrate bigravity effects on growth. Current growth data
are not able to significantly constrain these models, so we would not gain anything by adding more
free parameters.
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The likelihoods for these models were analysed in detail in Ref. [3], using the
Union2.1 compilation of Type Ia supernovae [12], Wilkinson Microwave Anisotropy
Probe (WMAP) seven-year observations of the CMB [13], and baryon acoustic oscil-
lation (BAO) measurements from the galaxy surveys 2dFGRS, 6dFGS, SDSS and
WiggleZ [14-16]. We compute likelihoods based on growth data compiled in Ref.
[17], including growth histories from the 6dFGS [18], LRG¢9, LRGg [19], BOSS
[20], WiggleZ [21], and VIPERS [22] surveys.

Both the numerical solutions of background quantities and the likelihood com-
putations are performed as in Ref. [3], where they are described in detail. Following
Ref. [3], we will normalise the §; parameters to present-day Hubble rate, Hy, by
defining

m?

Bi = H_(?'Bl

(4.19)

Throughout, we will assume that the g-metric cosmological constant, By, vanishes,
as we are interested in the solutions which accelerate due to modified-gravity effects.

The Minimal Model

We begin with the “minimal” model in which only B; is nonzero. This is the only
single- B; theory which is in agreement with background observations [3]; the other
models also have theoretical viability issues [5]. Note, however, that the linear per-
turbations are unstable at early times until relatively recently, z ~ 0.5, as discussed
in Chap. 3. This restricts the real-world applicability of the results presented herein,
as the quasistatic approximation we employ will not be viable. Our results will hold
for observations within the stable period. Specifically, our results for Q and n will
certainly hold, while the growth rate, f, may vary if the initial conditions for § are
significantly changed from what we assume herein. Otherwise this should be seen
as an illustrative example.

The likelihoods for B, are plotted in Fig.4.1 based on supernovae, BAO/CMB,
growth data, and all three combined, although the growth likelihood is so wide that
it has a negligible effect on the combined likelihood. The point was raised in Ref.
[6] that the WMAP analysis is performed assuming a ACDM model and hence may
not apply perfectly to these data. We will take an agnostic point of view on this and
consider both the best-fit value of B; from supernovae alone (B; = 1.352740.0497)
and from the combination of supernovae and CMB/BAO (B, = 1.448 £+ 0.0168).8
The results do not change qualitatively with either choice.

The growth rate, f, atk = 0.1 i/Mpc is plotted in the first panel of Fig. 4.2, along
with the parametrisation €2}, with best fits y = 0.46 for B; = 1.35 and y = 0.48 for
B, = 1.45. This is in agreement with the results of Ref. [6], who additionally found
that f(z) is fit much more closely by a redshift-dependent parametrisation, f =
QY (1 + ly_Jr]z) In the second panel we plot the best-fit value of y as a function of B;.
All values of B consistent with background observations give a value of y that is far

8These differ slightly from the best-fit B; = 1.38 % 0.03 reported by Ref. [5], also based on the
Union2.1 supernovae compilation.
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1.2 - - -

CMB/BAO -
Combined

Likelihood

Fig. 4.1 The likelihood for B; in the B;-only model from growth data (red), as well as background
likelihoods for comparison. The fits for B; effectively depend only on the background data; the
combined likelihood (black) is not noticeably changed by the addition of the growth data

from the GR value (including ACDM and minimally-coupled quintessence models)
of y & 0.545. While present observations of LSS are unable to easily distinguish this
model from ACDM (cf. Fig.4.1), the Euclid satellite expects to measure y within
0.02 [1, 2] and should easily be able to rule out either the minimal massive bigravity
model or GR. Note that there is a caveat, in that we have calculated y by fitting over
a redshift range (0 < z < 5) which includes the unstable period of this model’s
history (z 2 0.5) during which linear theory breaks down. As emphasised above,
these predictions should only be compared to data during the stable period. Therefore
if this model does describe reality, Euclid may measure a different growth rate at
higher redshifts; a nonlinear analysis is required to answer this with certainty.

We next look at the modified gravity parameters n(z, k) and Q(z, k). In Figs.4.3
and 4.4 they are plotted with respect to z, By, and k, respectively, with the other two
quantities fixed. Q deviates from the GR value Q = 1 by ~0.05, while n deviates
from GR by up to ~0.15. From the first panel of Fig.4.3 we notice that Q and n
lose their dependence on B; momentarily around z ~ 2.5. This feature persists to
other values of B; as well. Additionally, we can see from the third panel that Q
and n only depend extremely weakly on k in the linear subhorizon régime. Future
structure experiments like Euclid will be able to constrain Q and n more tightly in a
model-independent way because they are effectively scale-independent; in particular,
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Fig. 4.2 First panel The growth rate, f = d Iné/d In a, for the SNe best-fit parameter, B = 1.35
(in black), and for the SNe/BAO/CMB combined best-fit parameter, B; = 1.45 (in red). The full
growth rate (solid line) is plotted alongside the €27 parametrisation (dotted line) with best fits
y = 0.46 and 0.48 for By = 1.35 and 1.45, respectively. Second panel The best-fit value of y as
a function of B;. For comparison, the GR prediction (y & 0.545) is plotted as a black horizontal
line. The blue lines correspond to the best-fit values of B from different background data sets. This

is a prediction of a clear deviation from GR
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Fig.4.3 The modified gravity parameters Q (modification of Newton’s constant) and n (anisotropic
stress) in the Bp-only model as functions of z and B;. They exhibit O(1072)-0(10~ 1) deviations
from the GR prediction, which will be around the range of observability of a Euclid-like mission
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Fig.4.4 The modified gravity parameters Q (modification of Newton’s constant) and 1 (anisotropic
stress) in the Bj-only model as functions of scale. They depend only very weakly on scale; con-
sequently, more stringent constraints can be placed on them in a model-independent way by future
surveys

because of scale independence they are expected to be able to measure n within 10 %
[11], which would bring this minimal model to the cusp of observability.

Two-Parameter Models

At the background level, four models with two nonzero B; parameters provide good
fits to the data: BB, B| B3, B| B4, and B,B; [3]. Even though these models all
possess a two-dimensional parameter space, only an effectively one-dimensional
subspace matches the background data (cf. Figs.4.7 and 4.8 of Ref. [3] and 4.4 of
Ref. [5]). We will restrict ourselves to those subspaces by fixing one B; parameter
in terms of another, usually B;. We do this by identifying the effective present-day

dark energy density, Q2. from the Friedmann equation (2.51):

1
Q4" = Biyo+ Bayg + 3 B30, (4.20)

9This does not need to coincide with the value of Q5 derived in the context of ACDM models. For
the Bj-only model and hence all the two-parameter finite-branch models, they happen to be similar
in value, although this was not a priori guaranteed, while in the infinite-branch Bj B4 model, the
best-fit value to the background data is Q?{f = 0.841’8:8; [5].
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and plugging that into the quartic equation for y (2.58), evaluated at the present day
(y = yo) and using £2,, o + Q‘j\ff = 1. This procedure fixes one B; parameter in terms
of the other and Q4. The value of QS can be determined by fitting to the data, as was
done in Ref. [3]. However, for finite-branch solutions of the B; B; models we can also
simply take the limit in which only B; is nonzero, recovering the single-parameter
model discussed above; by then using the SNe/CMB/BAO combined best-fit value
B = 1.448 we find Q5T = 0.699.

A detailed study of the conditions for a viable background was undertaken in
Ref. [5]. There are two results that are particularly relevant for the present study and
bear mentioning. First, a viable model requires B; > 0. Second, the two-parameter
models are all (with one exception, which we discuss below) finite-branch models,
in which, as discussed in Sect.2.1.3, y evolves from 0 at z = oo to a finite value y,
at late times, which can be determined from Eq. (2.59) by setting p = 0 aty = y,.
Consequently, the present-day value of y,, which is generally simple to calculate,
must always be smaller than y. (or above y, in a model with an infinite branch). In
the By B3 and B; B4 models this will rule out certain regions of the parameter space
a priori.

There is one two-parameter model which was shown in Ref. [3] to fit the back-
ground data well but was ruled out on theoretical grounds in Ref. [5]: the B, Bj
model. The theoretical issue is that y becomes negative in finite time going towards
the past. This itself may not render the model observationally unviable, as long as
any issues occur outside of the redshift range of observations. However, we have
solved Eq.(2.61) numerically for y(z), and found that y generically goes to —oo
at finite z, which means that at higher redshifts there is not a sensible background
cosmology at all. This problem can be avoided by introducing new physics at those
higher redshifts to modify the evolution of y, or by increasing B, enough that the
pole in y occurs at an unobservably high redshift.'® However, these are nonminimal
solutions, and so we do not study the B, B; model.

Recall from Chap. 3 that all of the two-parameter models except for the infinite-
branch B; B, model suffer from an early-time instability. Consequently, caution
should be used when applying the results for any of the other models in this section
to real-world data. We emphasise again that our quasistatic approximation is only
valid at low redshifts, and that moreover the growth rate should be recalculated
using whatever initial conditions the earlier period ends with. (The predictions for Q
and n do not depend on solving any differential equation and therefore apply with-
out change.) Modulo this caveat, we present the quasistatic results for the unstable
models as proofs of concept, as examples of how to apply our methods. The infinite-
branch B) B4 predictions, presented at the end of this section, can be straightforwardly
applied to data.

We evaluate all quantities at k = 0.1 h/Mpc. The modified gravity parameters in
all of the two-parameter models we study depend extremely weakly on k, as in the
Bj-only model.

10For B, = (5, 50, 500), and B3 chosen to give an effective Qj\ff ~ (.7 today, the pole occurs at
z~ (1.99, 8.19, 27.95).
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As we have already mentioned, in these models the two B; parameters are highly
degenerate at the background level. One of the main goals of this section is to see
whether observations of LSS have the potential to break this degeneracy.

BB,: The B; B, models which fit the background data [3] live in the parameter

subspace
. — B} +9Q4" — /B + 9B QT wa
2 o0 ’ '

with Q‘j{f ~ (.7. This line has a slight thickness because we must rely on observations
to fit Qiff. We can subsequently determine y, from Eq. (4.20).

This model possesses an instability when B, < 0.!! This is not entirely unex-
pected: the B, term is the coefficient of the quadratic interaction, and so a negative
B, might lead to a tachyonic instability. However, the instability of the B; B, model
is somewhat unusual: in the subhorizon limit, Q and 1 develop poles, but they only
diverge during a brief period around a fixed redshift, as shown in the first panel of
Fig.4.5, regardless of wavenumber or initial conditions. We can find these poles using
the expressions in Appendix B. The exact solutions are unwieldy and not enlight-
ening, but there are three notable features. First, as mentioned, the instability only
occurs for B, < 0. (When B, > 0, these poles occur when y is negative, which is not
physical.) Second, the instability develops at high redshifts, z > 2. The redshift of
the latest pole (which can be solved for by taking the limit k/H — o0) is plotted as
a function of Bj in the second panel of Fig.4.5. As a result, measurements of Q and
n at z < 2 would generally not see divergent values. However, such measurements
would see the main instabilities at much lower redshifts. Finally, the most recent pole

occurs at y = 0 for B, = 0 (B; = 3§2‘j\ff ~ 1.45), and approaches y = y,/2 as
B, > —o0 (Bl — OO)

This particular instability is avoided if we restrict ourselves to the range 0 < B <
1.448, for which B, > 0. Some typical results for this region of parameter space are
plotted in Figs.4.6 and 4.7. The first panel of Fig. 4.6 plots f(z) and the best-fit 2},
parametrisation for selected values of B; [with B, given by Eq.(4.21)], while the
second panel shows the best-fit value of y as a function of B;. For smaller values of
B this parametrisation fits f well, more so than in the B;-only model discussed in
Sect.4.2.2 (which is the By = 1.448 limit of this model). We find that y is always
well below the GR value of y & 0.545, especially at low B .

In Fig.4.7 we plot Q and 7, both in terms of B; at fixed z and in terms of z at
fixed B;. In comparison to the B;-only model (at the far-right edge in the first panel),
lowering B; tends to make these parameters more GR-like, except for 1 evaluated
at late times (z ~ 0.5), which dips as low as n ~ 0.6. Because these quantities
are all k-independent in the linear, subhorizon régime, future LSS experiments like

1A similar singular evolution of linear perturbations in a smooth background has been observed
in the cosmology of Gauss-Bonnet gravity [23, 24]. This instability is different from the early-time
instabilities discussed in Chap. 3, as those do not arise in the quasistatic limit which we are now
taking.
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Fig. 4.5 First panel Q and n for a few parameter values in the instability range of the B B, model.
Generally there are two poles, each of short duration. Note that the redshift at which the pole occurs
depends only on B; and B; and not on the initial conditions for the perturbations. Second panel
The redshift of the most recent pole in Q (the pole in 1 occurs nearly simultaneously) in terms
of By > 1.448. This parameter range corresponds to B, < 0, cf. Eq.(4.21). The minimum is at
(B1, By, z) = (3.11, =2.51,2.24)
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Fig. 4.6 Growth-rate results for the By B, model, with Qf\ff = 0.699 and B; < 1.448. The signif-
icant deviation from GR in y should be observable by a Euclid-like experiment. Moreover, it has
the potential to break the degeneracy between B; and B, when fitting to background observations
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Euclid would be able to measure 7 at these redshifts to within about 10% [11] and
thus effectively distinguish between ACDM and significant portions of the parame-
ter space of the B; B, model, testing the theory and breaking the background-level
degeneracy.

BB;: The B B; models which are consistent with the background data [3] lie along
a one-dimensional parameter space (up to a slight thickness) given by

3B} + 818,957 + /(887 — 27951)? (1687 + 27087 .
By = R
’ 243(Q5T)? (422

with Qiff ~ (.7. There is a subtlety here: the physical branch is constructed in
a piecewise fashion, taking the + root for By < (3/2)%2,/Q¢f = 1.536 and the
— root otherwise [5]. We solve for y(z) using the initial condition,'? derived from

(2.58),
1 —/1—3%BB;

4.23
2B, (4.23)

Yo =

As discussed at the beginning of this section, yy should not be larger than the value of
y in the far future, y.. Demanding this, we find a maximum allowed value for B,

1 2
By < o= (—32313 +81B; + \/(16312 +27) (8Bf — 27) ) : (4.24)

For Q‘j\ff = 0.699 this implies we need to restrict ourselves to B; > 1.055. This
sort of bound is to be expected: we know that the B3-only model is a poor fit to the
data [3], so we cannot continue to get viable cosmologies the entire way through the
B; — 0 limit of the B| Bz model.

We plot the results for the B; B3 model in Figs.4.8 and 4.9. These display the
tendency, which we will also see in the B; B4 model, that large | B;| values lead to
modified gravity parameters that are closer to GR. For example, y can be as low
as y ~ 0.45 for the lowest allowed value of Bj, but by B; ~ 3 it is practically
indistinguishable from the GR value, assuming a Euclid-like precision of ~0.02 on
y [1]. Again we note that this value of y has been obtained assuming 0 < z < 5,
which is not a valid range for observations because of the early-time instability. For
lower values of Bj, current growth data (see, e.g., Ref. [17]) are not sufficient to
significantly constrain the parameter space, but these non-GR values of y and 7
should be well within Euclid’s window.

12There is also a positive root, but this is not physical. When B3 < 0, that root yields yy < 0. When
B3 > 0, which is only the case for a small range of parameters, then the positive root of yy is greater

than the far-future value y. and hence is also not physical.

13Note, per Eq. (4.22), that this is equivalent to simply imposing Qiff < 1, which must be true since

we have chosen a spatially-flat universe a priori.
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anisotropic stress, n(z ~ 0.5), is a particularly good target for observations
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parameters approaching their GR values for large B; (large, negative B3)
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B B,: This model comprises the lowest-order B term in conjunction with a cosmo-
logical constant for the f metric, B4.'* Note that B4 does not contribute directly to
the Friedmann equation (2.51), but only affects the dynamics through its effect on
the evolution of y.

The B; B, model has two viable solutions for y(z): a finite branch with0 < y < y,,
and an infinite branch with y. < y < oo. The infinite-branch model is the only two-
parameter bimetric model which is linearly stable at all times, as shown in Chap. 3.
Therefore this should be considered the most viable bimetric massive gravity theory
to date. In this section we will elucidate its predictions for subhorizon structure
formation.

As discussed in the beginning of this section, y. is the value of y in the asymptotic
future and can be calculated by setting p = 0 in Eq. (2.59). We will consider the two
branches separately.

For a given Q¢ B, is related to B; by

_ 3Q4'B} — BY

B, = @n (4.25)
while yj is given by
Qs
= . 4.26
Yo=p (4.26)

Background viability conditions impose B; > 0 for both branches and By > 0 on
the infinite branch [5]. The late-time value of y, y,, is determined by

By} —3B;y> + By =0, (4.27)

from which we can determine that real, positive solutions for y. only exist if By <
2B;. Combined with Eq. (4.25) and the requirements that By, Qf\ff > 0, we find two
possible regions for By, as can be seen from the example plotted in the first panel of
Fig.4.10. We can identify each of these two regions with the two solution branches
by comparing the solutions of Eq.(4.27) for y. to yo = QC/B;. Restricting to
positive, real roots of y. one can see (graphically, for example) that the first region,
with the smaller values of Bj, has yy > y, for all roots of y., and hence can only
comprise infinite-branch solutions, while yy < y. in the second region, as is plotted
in the second panel of Fig.4.10. This identification is supported by observational
data [5] and also makes intuitive sense. Consider the limit B4 = 0. In the second
region this has B; > 0 and corresponds to the B;-only model, a finite-branch model,
which we discussed in Sect.4.2.2. In the first region the point B4 = 0 coincides with
By = 0, which is simply a CDM model with no modification to gravity, in agreement
with the fact that there should not be an infinite-branch B;-only model.

14In the singly-coupled version of massive bigravity we are studying, matter loops only contribute
to the g-metric cosmological constant, By.
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Fig. 4.10 Allowed regions in the Bj—B4 parameter space. First panel Regions in parameter space
with B4 < By, which is required for the viability of the background. The orange line fixes B4 as
a function of B; for Qj{f = 0.84, per Eq. (4.25). The blue line is B4 = 2B). Second panel Plotted
are yo (orange line) and the three roots of y., again with Qiff = 0.84. Of the two regions with
B4 < By, we can see that the region with smaller By has yp > y. and therefore corresponds to the
infinite branch, while the region with larger By has yy < y. and therefore possesses finite-branch
solutions

These considerations place constraints on the allowed ranges of B, as in the B B3
model, which depend on the best-fit value of Q‘j\ff. The B;-only model (B4 = O,
B, > 0) is on the finite branch, so that on that branch we can use Qj\ff = 0.699 as
we did in the other models. This implies B; > 1.244 for the finite branch. On the
infinite branch, SNe observations are best fit by Qiff = 0.84 [5]; consequently we
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restrict ourselves to By < 0.529 for the infinite branch. Note that the infinite-branch
model therefore predicts an unusually low matter density, €2,, 0 ~ 0.18.

We plot the results for the finite branch in Figs.4.11 and 4.12. Qualitatively,
this model predicts subhorizon behaviour quite similar to that of the B; B3 model,
discussed above and plotted in Figs. 4.8 and 4.9.

Now let us move on to the stable infinite-branch model, the modified gravity
parameters of which are plotted in Figs.4.13 and 4.14. This is the only model we
study which does not possess a limit to the minimal B;-only model, and it predicts
significant deviations from ACDM. In this model, 1 deviates from 1 by nearly a
factor of 2 at all observable epochs and for all allowed values of B, providing a clear
observable signal of modified gravity. This is a significant feature of this model; it
has no free parameters which can be tuned to make its predictions arbitrarily close
to ACDM and therefore is unambiguously testable.

We can understand this behaviour analytically as follows. In the asymptotic past,
we can take the limits of our expressions for  and Q to find

1 2
lim 5= 2 and Nlim 0=- (4.28)
——00

— 3

Unusually, structure growth does not reduce to that of ACDM even though at early
times the graviton mass is very small compared to the Hubble scale. In the future
one finds n — 1 if & is kept finite, but this is somewhat unphysical: for any finite &
there will be an epoch of horizon exit in the future after which the subhorizon QS
approximation breaks down. We can see both the asymptotic past and asymptotic
future behaviours in the second panel of Fig.4.14, although the late-time approach
of 1 to unity is not entirely visible.

The growth rate and index, f(z) and y, also deviate strongly from the ACDM
predictions. Using the 2}, parametrisation, we find that y is even lower than the range
~0.45-0.5 which we found in the B;-only model and in the other two-parameter
models. However, the ), parametrisation is an especially bad fit to f'(z) in this case;
we fit y to f(z) in the redshift range 0 < z < 5 (as in the rest of this chapter) and
0 < z < 1 (which is the redshift range of present observations [17]) in Fig.4.13,
obtaining significantly different results and still never agreeing well with the data.

As shown in Fig.4.15, the confidence region obtained from the growth data is
in agreement with type Ia supernovae (SNe) data (see Ref. [5] for the likelihood
from the SCP Union 2.1 Compilation of SNe Ia data [12]). The growth data alone
provide f; = 0.40%01% and By = 0.67703 with a 2, = 9.72 (with 9 degrees of
freedom) for the best-fit value and is in agreement with the SNe Ia likelihood. The
likelihood from growth data is, however, a much weaker constraint than the likelihood
from background observations. Thus, the combination of both likelihoods, providing
Br = 0.4870% and By = 0.947011, is similar to the SNe Ia result alone.

InFig.4.16 we compare the growth rate directly to the observational data compiled
in Ref. [17], using the best-fit values determined above. The available growth data
are unable to distinguish between the infinite-branch model and ACDM. We also
find that an alternative parametrisation,
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By > 1.244. The behaviour is quite similar to that of the B Bz model, plotted in Figs. 4.8 and 4.9
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Results are displayed for Q< = 0.699 and B > 1.244
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Fig. 4.13 Growth-rate results for the B; B4 model on the infinite branch, with Qf\ff = 0.84 and
By < 0.529. This model is qualitatively different from the others we study, as it does not possess a
limit to the minimal Bj-only model, and has the strongest deviations from ACDM among all of the
models presented in this work. Here we plot f(z) as well as the best-fit parametrisation €2, with
the fitting done over the redshift ranges 0 <z < 1land0 <z <5
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Fig. 4.16 Growth history for the best-fit infinite-branch f; B4 model (solid blue) with 1 = 0.48
and B4 = 0.94 compared to the result obtained from the best fit (4.29) (solid orange) with yy = 0.47
and o = 0.21 and the ACDM predictions for €2,, o0 = 0.27 (dotted red) and Q,, o = 0.18 (dotted-
dashed green). The latter value for the matter density is the same as is predicted by the infinite-branch
model. Note that a vertical shift of each single curve is possible due to the marginalisation over og.
Here we choose oy for each curve individually such that it fits the data best. The growth histories
are compared to observed data compiled by Ref. [17]

f@)~Qn (1+a1iz), (4.29)

is able to provide a much better fit to f(z) than the usual },. The best-fit values for
this parametrisation are yy = 0.47 and o = 0.21.
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4.3 Summary of Results

In this chapter we have examined the evolution of cosmological perturbations on
subhorizon scales in massive bigravity, describing linear structure formation dur-
ing the matter-dominated era. We solved the linearised Einstein and conservation
equations in the quasistatic, subhorizon limit in Newtonian gauge for g,,. In this
limit, we found that the perturbations are described by a system of six algebraic
equations for five variables. We obtained a consistent solution to this system relating
each of the metric perturbations appearing in the subhorizon Einstein equations to
the matter density contrast. This allowed us to derive a modified evolution equation
for the density contrast, which differs from its GR counterpart by a varying effec-
tive Newton’s constant. We also obtained algebraic expressions for the anisotropic
stress, 1(z, k), and the parameter measuring modifications to Newton’s constant in
the Poisson equation, Q(z, k), purely in terms of background quantities. We then
solved for the background numerically to obtain these parameters, and finally inte-
grated the structure growth equation to derive the growth rate, f(z, k), and its best-fit
parametrisation, f ~ Q.

We have studied every subset of the theory which is viable at the background level
and contains one or two free parameters, excluding the g-metric cosmological con-
stant as we are interested in self-accelerating theories. Among the single-parameter
models, only the case with the lowest-order interaction term, 8; # 0, is in agreement
with the background data. As emphasised in Refs. [3-5], this “minimal” bigravity
model is especially appealing because it possesses late-time acceleration and fits the
background data well with the same number of free parameters as ACDM. We have
found that it predicts modified gravity parameters that differ significantly from GR:
y ~ 0.46-0.48 (in agreement with Ref. [6]), O ~ 0.94-0.95, and  ~ 0.88-0.90.
For reference, the ACDM predictions are y ~ 0.545 and Q = n = 1. Future large-
scale structure experiments such as Euclid [1, 2] will easily be able to distinguish this
simple model from GR, if we can trust its predictions. However, we have shown in
Chap. 3 that this model suffers from an early-time instability. If this can be overcome,
or if observations are restricted to late times (z < 0.5), our results demonstrate that
by going to the level of linear perturbations, this theory can be probed in the near
future by multiple observables which deviate significantly from general relativity.

We additionally examined the four two-parameter models which are viable in
the background, all of which keep ; > 0 while turning on a second, higher-order
interaction term. Two of these models, in which either the cubic interaction, 3, or the
f-metric cosmological constant, B4, is nonzero (the latter specifically in the “finite
branch,” which reduces to the minimal model in the 84 — 0 limit), have similar
behaviour to each other. They predict GR-like values for all three modified gravity
parameters in the limit where m?g;/H; is large, becoming indistinguishable from
ACDM (given a Euclid-like experiment) for m?B;/H} > 3. These reduce to the
predictions of the minimal model in the limit m?8;/H ~ 1.45 (the best-fit value
for B; in the minimal model). For lower values of 8; (corresponding to positive B3
or f4) these models predict even more dramatic deviations from GR: y can dip to
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0.45, and 7 at recent times can be as low as ~0.75. Euclid is expected to measure
these parameters to within about 0.02 and 0.1, respectively [1, 2, 11], and therefore
has the potential to break the degeneracies between 8, and B3 or 8, and B4 which is
present at the level of background observations.

The B B, model has an instability when §,, the coefficient of the quadratic term, is
negative. This instability does not necessarily rule out the theory, but it might signal
the breakdown of linear perturbation theory, in which case nonlinear studies are
required in order to understand the formation of structure. This is different from the
early-time instability discussed in Chap. 3 which does not show up in the subhorizon,
quasistatic régime. It is possible that these perturbations at some point become GR-
like due to the Vainshtein mechanism. Moreover, because the instability occurs at
a characteristic redshift (which depends on the B; parameters), there may be an
observable excess of cosmic structure around that redshift.

The parameter range of the f8;8, model over which this instability is absent,
0 < Bi < 1.45H/m? (corresponding to Hi/m* > B, > 0), is quite small; near
the large B; end the predictions recover those of the minimal 8;-only model, while
at the small B, end the perturbations can differ quite significantly from GR, with y
as low as ~0.35 and 7 as low as 0.6. However, the exact 8; = 0 limit of this theory
is already ruled out by background observations [3], so one should take care when
comparing the model to observations in the very low f; region of this parameter
space.

Finally, we examined the “infinite branch” of the B, 84 model, which is the only
bimetric model'” that avoids the early-time instabilities uncovered in Chap. 3. This is
called an infinite-branch model because the ratio of the f metric scale factor to the g
metric scale factor, y, starts at infinity and monotonically decreases to a finite value.
In the rest of the models we study, y starts at zero and then increases; consequently,
in the B4 — O limit this theory reduces to pure CDM, rather than to the S;-only
model.

The predictions of the infinite-branch g, 4 theory deviate strongly from GR. The
model predicts a growth rate f(z) which is not well-parametrised by a @}, fit, but
has best-fit values of y on the low side (0.3—-0.4, depending on the fitting range). The
anisotropic stress 7 is almost always below 0.7 and can even be as low as 0.5, a factor
of two away from the GR prediction. Across its entire parameter space, this model
has the most significantly non-GR values of any we study. Its predictions should be
well within Euclid’s window.

As the only sector of the massive bigravity parameter space which both self-
accelerates and is always linearly stable around cosmological backgrounds, it is a
prime target for observational study, especially because its observables are far from
those of ACDM for any choices of its parameters.

13Up to the addition of a cosmological constant, which is uninteresting.
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Chapter 5
The Geometry of Doubly-Coupled Bigravity

O, that way madness lies; let me shun that;
No more of that.
Lear, King Lear, 3.4

The existence of a consistent bimetric theory raises an intriguing question: which
is the physical metric? In Chaps.3 and 4 we chose to couple only one of the two
metric, g, directly to matter, while the other dynamical metric, f,,, only interacts
with matter fields indirectly through its interactions with g, It is specifically in this
singly-coupled context that the absence of the Boulware-Deser ghost was originally
proven [1-3], and extending that analysis to other matter couplings is decidedly
nontrivial [4-7]. It is therefore natural to interpret g,, in this case as the usual
“metric” of spacetime, while f,,, is an extra spin-2 field that is required in order to
give mass to the graviton. Since the fields g,,, and f,,, have metric properties, we have
called both g, and f,,, “metrics,” even though strictly speaking, the singly-coupled
theory could more accurately be called a theory of “gravity coupled to matter and a
symmetric 2-tensor” [8].

In this chapter we aim to explore the consequences of coupling matter to both
metrics in massive bigravity. As discussed in Sect. 2.1.2, the bimetric action (2.30) in
vacuum places both metrics on equal footing: it is invariant under the interchanges
(2.38)

8uv <> f;uu Mg <~ Mf’ ﬂn - ,34—n- (51)

This metric-interchange duality is broken by the addition of matter in the singly-
coupled version of bigravity. The structure of the vacuum theory might hint that
any fundamental theory which gives rise to massive bigravity does not discriminate
between the two metrics. Consequently it is important to explore doubly-coupled
bigravity, in which matter couples to both metrics in a way that maintains the inter-
change duality (5.1).
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We are specifically interested in the possibility of double-coupling schemes in
which there is no “effective metric” whose geodesics describe the motion of matter.
In these cases, we must introduce new tools for understanding the physical geometry
of spacetime. We will focus on one of the most straightforward possibilities for
double coupling, in which matter is minimally coupled to each metric. This theory
was introduced and its cosmological solutions were studied in Ref. [9]. Subsequent
work showed this type of coupling revives the Boulware-Deser ghost at arbitrarily
low energy scales and therefore cannot be a fundamental theory of bigravity [4,
5]. Indeed, there is only one known double coupling which avoids the ghost at
low energies, and even in this theory it re-emerges at or above the strong-coupling
scale [5, 10]." This coupling is the phenomenologically interesting one and will be
investigated in depth in Chaps.6 and 7. These theories couple matter to a single
effective metric built out of g,,, and f,,, and so avoid the problem of determining the
physical spacetime. It is, however, not yet clear whether such theories are immune
from other types of pathologies, and it may well be the case that the unknown, healthy
doubly-coupled theory of bigravity will not admit an effective-metric formulation at
all. It is our goal in this chapter to demonstrate the difficulties such theories would
have with regards to defining observables by studying arguably the simplest example
of doubly-coupled bigravity without an effective-metric description. In this context,
the traditional notion of a “physical metric” may have to be discarded, leaving us
faced with entirely new conceptual challenges in interpreting even the observables
of the theory.

This chapter is organised as follows. In Sect. 5.1 we argue that there is no effective
metric to which matter minimally couples, and that such a metric does not even exist
for mostindividual fields. In Sect. 5.2 we explore light propagation in this theory in the
geometric optics limit, and discuss the problem of relating cosmological observables
to the underlying theory when we can no longer describe photon trajectories as
null geodesics in a metric. In Sect.5.3 we examine the dynamics of point particles,
finding that they effectively live in a Finsler spacetime, a geometry which depends
nontrivially on the coordinate intervals. Finally, we conclude in Sect.5.4.

5.1 The Lack of a Physical Metric

‘We consider a doubly-coupled bimetric theory in which the action (2.30) is extended
by the addition of a minimal-coupling term between matter fields, ¥;, and f,,,

M2 . M2 4
Stk =*7g/d4"~/ng<g>* Tf/d“Xx/Tme+m2M§/d4ngZﬂnen<X>
n=0

o [ @xiTa @ 00+ as [ a4 (.00 (5.2)

! Using the same principles, further candidate double couplings have been constructed in Ref. [11],
but it is not yet known which, if any, of these are ghost-free.
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This extends the symmetry (5.1) to the entire action, as long as we also exchange o,
and o,
8uv <> fuvs My < My, Bn = Ba—n, Ug <>y (5.3)

The presence of the interaction term is crucial; if one were to couple two pure,
noninteracting GR sectors to the same matter, the Bianchi identities would constrain
that matter to be entirely nondynamical [9]. Note that o, and « ¢ are not both necessary
to fully specify the theory; only their ratio is physical, as can be seen by rescaling
the action by Olgl. For the purposes of this chapter, we will find it useful to leave
both in so as to keep the symmetry between the two metrics explicit.

An immediate concern is the violation of the equivalence principle. However,
because the Vainshtein mechanism screens massive-gravity effects [12], it is not
obvious how stringent the constraints from tests of GR in the solar system would
be: the modifications might be hidden from local experiments while showing up at
cosmological scales. The cosmology of this doubly-coupled theory has been studied
and shown to produce viable late-time accelerating background expansion without
an explicit cosmological constant term [9], and with a phenomenology which can
be interestingly different from that of the singly-coupled theory [13]. We emphasise
again that this model itself possesses the Boulware-Deser ghost and hence we cannot
trust its cosmological solutions, but a ghost-free doubly-coupled theory may well
have similar properties. Indeed, the cosmological phenomenology of this theory is
quite similar to that of the healthier doubly-coupled theory introduced in Ref. [5], as
we will show in Chap. 6.

We can readily confirm that no physical Riemannian metric exists in the sense
that all matter species would minimally couple to it and thus follow its geodesics.
Indeed, for some matter fields such a metric does not exist at all. Consider a massive
scalar field. Its action is given by

1 1
Sp = —otg / e (—Eg'”amam - V(¢>) ey / ey (—Efwamam - V<¢>) .
(5.4)

Let us assume that ¢ is minimally coupled to an effective metric, /,,,[g,.v, f,v]. This
metric is defined through the relation

Sy = /d4x\/ —hqu‘ = otg/d“x«/—gqu +af/d4x\/—f.$¢f. (5.5)
where we have defined the various scalar Lagrangians as

1
g(;gvf,h) — _E(g’ f’ h)ltvaﬂqsavqb _ V((b) (56)

The kinetic and potential terms, respectively, yield the conditions
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ag/—88" + ap/—f [ = —hh" (5.7)
Agn/—8 +ap/—f =~/ —h. (5.8)

These are not necessarily consistent with each other: taking the determinant of
Eq.(5.7), we find

det (ag«/—gg“" +ary —ff’”) =h, (5.9

sothat Eqs. (5.7) and (5.8) overdetermine £, unless g,,, and f,,, satisfy the nontrivial
relation

(o8 + o/ F) =~ det (/88" +ar /7). 610)

However, even the simplest case, g,, = fu» = 1., fails this test, as well as more
complicated but physically-relevant cases like FLRW.

Therefore, any choice of 7, will generally result in either a noncanonical kinetic
term or a spacetime-varying mass for the scalar. For some special choices of g,
and f,,, particularly if they are related by a constant conformal factor, then this will
only rescale the mass or kinetic term by a constant amount. In this particular theory,
however, such a relation between g, and f,,, is far from general [9].

If the scalar field is massless, V (¢) = 0, then we lose the constraint (5.8). Massless
scalars therefore do have physical metrics defined by Eq.(5.7). As a consistency
check, we can confirm that the Klein-Gordon equation in #,,,

O = 0, .11

yields the correct massless Klein-Gordon equation [9]
(v =80, +as/=10;) 6 =0. (5.12)

This is straightforward to show using the identity g"'T'/,, = —ﬁau(\/—_gg””).
This is the only example we have found of a field for which we can construct an
effective metric.

Consider the electromagnetic field A,,. This is of paramount importance for cos-
mology, since we make observations by tracking photons. Its action is

SA = thag/d4x\/__ggﬂagVﬂFquaﬂ _af/délx\/ifﬂa vﬂFquaﬁa
(5.13)
where F,, = 9, A, — 9,A,, is the usual field-strength tensor and does not depend on
a metric. If A,, is minimally coupled to an effective metric, %,,,, then we can write
Eq.(5.13) as

1
S, =_Z/d4x /—hhﬂahUﬂFquaﬁ- (5.14)



5.1 The Lack of a Physical Metric 107

This implies that &, obeys

/88" 8" oy /= 1 P = =R (5.15)

However, this equation overconstrains #,,,. Consider the 00-00, 00—ii, and ii—ii
components,

/=8 (8%) +ap /= (™) = =k (%), (5.16)
0[g«/_gOO ii +afrf00fll _«/_hooh” (517)
/=g (¢7) +apy/=F (F1) = vV=h (7). (5.18)

where repeated indices are not summed over. Solving for 2% and 4"’ using Eqs. (5.16)
and (5.17), Eq. (5.18) becomes a constraint on g, and f,,,

gOOfu fOO u (519)

Note that we have chosen an arbitrary spatial index, i, in an arbitrary coordinate
system; Eq. (5.19) therefore applies to any diagonal spatial component in any coor-
dinates. This equation is not satisfied by general choices of g,, and f,,. An FLRW
universe is a simple example where this condition fails to be satisfied. Thus, except
in special circumstances, there is no physical metric for the electromagnetic field.

Similar arguments should hold for other fields. The massless scalar appears to be
a special case because it lacks a potential term to constrain /,,, and because it has no
indices, so its kinetic term only includes one appearance of the metric.

5.2 Light Propagation and the Problem of Observables

We have shown that the electromagnetic field is not minimally coupled to any effec-
tive metric. This case is of particular physical relevance because we make observa-
tions by tracking photons. For cosmological observations, especially, it is crucial to
know how light propagates.

Even in this simplified case, photons turn out not to travel on null geodesics of any
metric. To see this, we will consider the plane-wave approximation for the Maxwell
field,

A, =Re|(a, +€b,) V], (5.20)

and take the geometric optics limit in which the wavelength is tiny compared to the
characteristic curvature scale, € = L/R < 1. This provides a rigorous approach to
describing light propagation in curved spacetime. In this ansatz, a,, is the leading-
order polarisation vector and v is the phase. Herein we will drop the real evaluation
for compactness. Because this is a “pregeometric” approach, we can utilise it to
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tackle the propagation of light rays in bigravity. The stress-energy tensor for the
electromagnetic field, which can be derived from the action (5.13), is

1 1
TH, = y (F’“‘“FUD,—ZS FaﬁF“ﬂ) (5.21)
Tt

We must be careful about which quantities depend on a metric and which don’t. The

field tensor is defined as usual in terms of the electromagnetic 4-potential A,,, which

is itself defined with lower indices just in terms of the fields, so A" is the same in

both metrics. Similarly, because of the symmetries of the Christoffel symbols, F,,

can be defined equivalently in terms of covariant or partial derivatives; because of

the latter, we see that F,,, with lower indices is also independent of the metric.
Stress-energy conservation is given by [9]

/=g VETS 4+ /= fVITY, =0, (5.22)

where V}; and Vf: are the covariant derivatives defined with respect to g,,, and f,,,
respectively. To apply this to the electromagnetic field, we first need to know (in
terms of g,,,,, for concreteness) the divergence of the stress-energy tensor. The identity
Vio Fv1 = 0holds independently of the theory of gravity and in either metric, because
it relies only on the usual expression for the commutation of covariant derivatives
and the symmetries of the Riemann tensor. Using this, we find

V. TH, = FuV, F". (5.23)

Plugging this into Eq.(5.22) and using the fact that it should apply for arbitrary
F,, (because, as mentioned above, this is independent of the metrics), we find a
straightforward generalisation of the Maxwell equations,

ag/—gVEF! +ay/—fVIF}" =0, (5.24)

where g and f subscripts on F*” tell us which metric is being used to raise indices.

We have yet to use our gauge freedom. We will choose to work in a Lorenz
gauge, where V,A" = 0. Since this cannot be simultaneously satisfied in both
metrics, we will choose to apply this gauge with respect to g,,. As we will see
shortly, this choice does not make a difference at leading order in the geometric
optics approximation. After specialising to this gauge and commuting some covariant
derivatives, the Maxwell equation reduces to

/=8 (8" Ty Ay — RIA) +apy/—f (f“VDfAM —VIVEA, - Rf;VAM) —0.

(5.25)
Plugging the ansatz (5.20) into Eq. (5.25) and keeping only the leading-order terms
in e—i.e., those obtained by acting the covariant derivatives on the exponential term
twice—we obtain
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ay o/ =88"8 + oy /= F " £ = apJ= [ 4 ) kaky =0, (5.26)

where k,, = 0, is the wavevector. Note that in the singly-coupled limit, this gives
us the standard result that k, is null in g,,,,.

As discussed above, we cannot use this to define a metric, 2*”, in which k, is
lightlike. This creates problems when applying the standard methods of relativistic
cosmology to compare observable quantities to the underlying theory. In a bimetric
cosmology, as we have seen, there are two scale factors and two Hubble rates. When
matter couples to both metrics, neither of these quantities plays the role that they play
in general relativity. Had we been able to identify an effective metric from Eq. (5.26),
then the scale factor of that metric would have been the geometrical quantity that
entered the expression for the redshift, and its Hubble rate (computed using the
effective metric’s lapse) would be the “physical” Hubble rate. The next step, relating
the theoretical redshift to the shift in wavelengths observed by a telescope, would
involve understanding the proper time of a massive observer, which we tackle in the
next section. However, Eq. (5.26) defies the usual, simple categorisation. While we
can, in principle, use this to compute light propagation, this approach does not shed
light on the identification of a physical scale factor to compare to observations.

5.3 Point Particles and Non-Riemannian Geometry

The situation we have described in bimetric theories is radically different from the
extensively-studied nonminimally coupled theories where the behaviour of matter
can be described in terms of a single metric. In the context of scalar-tensor theories,
for example, it is well known that there are conformally-equivalent descriptions of
the theory where either the gravity sector is general relativity whilst matter has a
nonminimal coupling (the Einstein frame), or matter is minimally coupled whilst the
gravity sector is modified (the Jordan frame). All physical predictions are completely
independent of the frame in which they are calculated after properly taking into
account the rescaling of units in the Finstein frame [14]. One can generalise to
nonuniversal couplings, allowing different Jordan frame metrics for different matter
species, or to couplings to multiple fields. These bring about new technical but
not fundamental difficulties. However, the doubly-coupled bimetric theories we are
studying do not admit a Jordan frame at all for most types of matter. They possess
mathematically two metrics but physically none, and to understand them we need to
step beyond the confines of metric geometry.

For concreteness, let us look at the simplest possible type of matter: a point particle
of mass m. Its action is given by

Sop = —mag/dk./—gﬂv)&“)év —moay | di/— fu,xrx?, (5.27)
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where overdots denote derivatives with respect to a parameter A along the particle’s
trajectory, x** (). Varying with respect to A, we obtain the “geodesic” equation [9]

I Gl I i dsf Wi fa Y =0, (5.08)
¢8ap dg /wugug ar 0‘5 dS ;wufu =Y, .

where uy = dx"/ds, is the four-velocity properly normalised with respect to g,
such that g, uy u, = 1, and u’; is defined analogously for the f,, geometry. In
defining ug and u’; we have introduced the line elements for the two metrics, dsg =
gudx"dx? and ds = fydxtdx".

Is Eq. (5.28) the geodesic equation for a Riemannian metric? In other words, can
the motion of point particles in this bimetric theory be described as geodesic motion
of an effective metric? We can gain insight on this question by writing Eq. (5.27) in
the form

Sop = —imag/dsg - imotg/dsf. (5.29)

To see that this is equivalent to Eq. (5.27), note that we can write

A =g ¥ = idsg[gudiut = ids,. (5.30)

where we have used the fact that (by definition) g,,uu’ = 1. Similar logic holds
for f,,. The form (5.29) is less useful calculationally, partlcularly for deriving the
geodesic equation (5.28), but it opens up a helpful rephrasing of the question of an
effective metric: we want to find a line element, ds, for which S, = —im [ ds. This
would imply

ds = ogds, +oypdsy. (5.31)

Squaring this and plugging back in the definitions of ds, and dsy, we find that the
cross-term introduces a non-Riemannian piece,

ds® = (a7 gu + af fuy) dx"dx’ + 2agaf\/ Qv fapdxitdxdxedxf,  (5.32)

and so point particles do not move on geodesics of an effective metric.

In fact, Eq.(5.32) is the line element of a Finsler geometry [15, 16]. A Finsler
spacetime can be defined by the most general line element that is homogeneous of
degree 2in the coordinate intervals dx*, i.e.,

ds®> = f(x*, dx"), (5.33)
Fx", adx’y = A2 f (x", dxV). (5.34)

The homogeneity property (5.34) conveniently allows us to write the Finsler line
element in a pseudometric form. Following Bekenstein [16], let us write Eq. (5.34)
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takingA =1+eande < 1,

0 1 32
f dx" + —62—f
ddxt 2 ddx*adxY

f+e dxtdx" + 0(€) = (1+2¢+¢€) f, (535)

where f here is shorthand for f(x*, dx"). Taking the &'(¢?) piece, we find the line
element can be written in terms of a quasimetric 4,,,

f =ds* =9,,dx"dx", (5.36)
where the quasimetric is defined by

1 9%f

% -
Y2 9dxrodxy

(5.37)

It is worth noting that this is an exact relation, as we have not thrown away any
information by expanding in €. We have simply used the fact that the condition
(5.34) has to be satisfied at every single order in €. Indeed, this result equivalently
follows from Euler’s theorem for homogeneous functions. Euler’s theorem for a
multivariate function (in this case, a function of each component of dx”, holding x*
fixed) can be written®

af

F =350

dx". (5.38)

Differentiating this with respect to dx*, we obtain

dx". (5.39)

af 1[ af 3 f af 02 f
= - 8V, + dx" | = =
adx+ 2 |:8dx” " ddxradxy * adx*  ddx*ddx”
Plugging this back into Eq. (5.38), we recover the result (5.36, 5.37).
Note that the quasimetric can depend on the coordinate intervals, dx*, which is
how it differs from the metric of a usual Riemannian spacetime. We can see this by
applying the Eq. (5.37) to the definition (5.32) of f to explicitly calculate ¢,,,,,
G = aﬁgaﬁ + Ol}faﬂ +oagay |:

de ng ¢ f
s, (v —ubul) + &, (foz,B - ul{u{) +2uf,uy) |

(5.40)

In addition to constant conformal relations to the original metrics, this quasimetric is
disformally related to the particle’s four-velocity. The link between Finsler geome-
tries and disformal relations is not new; certain Finsler geometries can be described
as Riemannian spacetime with matter disformaly coupled to a scalar or vector field,
such as a disformal scalar-tensor theory where matter couples to the effective metric

2Note that this is the &(¢) piece of Eq.(5.35). This form of the line element, f = pudxt, defines
the Finsler one-form, p, [17].
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& + 9,90,¢ [16]. Disformal theories of gravity have attracted attention recently
[18, 19]; it would be interesting if these theories turned out to be related to bigravity.

This formulation in terms of Finsler geometry opens up our understanding of
point-particle dynamics. For massive particles, we can define the proper time, t,
from the line element in the usual way,

dt? = —ds>. (5.41)

It follows trivially that, in terms of this proper time, massive point particles travel on
unit-norm timelike geodesics with respect to the quasimetric,

dx® dx"

Gpg—— = —1. 5.42
p dt dt ( )

We are also now in a position to extend the action (5.27) to massless particles. This
action vanishes in the limit m — 0 and so is technically only defined for massive
particles. In general relativity, the geodesic equation does hold for massless particles.
This can be seen from the fact that m drops out of the geodesic equation, but to show it
rigorously, it is common to introduce a Lagrange multiplier, often called the einbein.
The same logic carries over to our bimetric theory uninterrupted. Let us write the
action (5.27) in terms of a parameter A and introduce the einbein, e(}), as

S = I dx 1(/\)(@)2 Ze() (5.43)
——2/ e I +m“e . .

For m # 0, varying this with respect to e we find

1d
o= (5.44)
mdi
Plugging this into the action (5.43), we obtain the original action, Eq. (5.27). But we
can now extend the treatment to m = 0. In this case, varying with respect to e yields

ds> =0. (5.45)

Then, varying with respect to x“, we find the same geodesic equation as for the
massive point particles. In other words, we have found that massless point particles
travel on null geodesics of ¢,,,. We may want to use a different form than (5.28) for
the geodesic equation when dealing with massless point particles, since in general
ds, and ds ; may vanish for a massless particle.> We can write the geodesic equation
(for a massive or massless point particle) in terms of the quasimetric as

3This will be the case in particular if guv and f,, are conformally related, as then a lightlike path
in one metric is also lightlike in the other.
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. 1 v a
Gx" + Y — z{fm,ﬂ x'x% =0. (5.46)

Note that we do not write this in terms of Christoffel symbols because we do not
have to; if we had, we would need to calculate the inverse quasimetric, which is both
difficult and unnecessary.

This result is straightforward to extend to theories with N interacting metrics
gfw, corresponding to a massless graviton with a tower of N — 1 massive gravitons
[20, 21]. In this case, the line element is defined by

2
N
ds® = (Z o/ g;;vdxudxv) : (5.47)

i=1

which is clearly Finslerian.

5.4 Summary of Results

We have examined an example of a bimetric theory in which, due to their minimal
coupling to both metrics, matter fields do not feel a universal physical metric. We have
found that when coupling matter to multiple metrics, the massless scalar might be
unique in minimally coupling to a Riemannian effective metric. The massive scalar,
Maxwell field, and point particle all provide counter-examples. We examined in detail
light propagation in the geometric optics limit and showed that there is a distinct
problem in relating observations to the underlying theory. We can make progress by
generalising the line element beyond a Riemannian form. In particular, we showed
that point particles follow geodesics of a Finsler spacetime, which is nonmetric. This
geometry that emerges for a pointlike observer depends quite nontrivially upon, in
addition to the two metric structures, the observer’s own four-velocity through a
disformal coupling.

These considerations in this chapter may force us to rethink the geometric nature
of spacetime, even in a metric theory of gravity. Consider the fundamental question
of how to relate bigravity to observations, such as cosmological measurements. The
textbook methods lean heavily on the existence of a “Jordan-frame” metric to which
matter is minimally coupled. Here, however, such a metric does not exist universally,
and may not exist at all for certain species of matter. How, then, should one calculate
the redshift and the luminosity distance of a cosmological source in terms of the
underlying FLRW geometries? Even the proper time along a timelike path is no
longer trivial, as we cannot use the assumption dt = —ds. Indeed, because of the
different effective metrics (or lack thereof), the notion of proper time is likely no
longer even unique, depending instead on which matter fields an observer uses to
construct her clock.
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Perhaps the best approach to solving physical problems in bimetric spacetimes
without an effective metric is to go back to “primitive,” pre-geometric constructions.
In the absence of a single spacetime on which to formulate physics, we may need
to simply consider particle motion coupled to two (or more) spin-2 fields in a way
that only looks geometric because it is the nature of the spin-2 particle to invoke
geometry [22, 23].

Paradoxically, once we have doubled geometry, we lose the ability to use its
familiar methods. This is a call to go back to the basics, and rediscover the justification
for results which we have taken for granted for the better part of the last century.
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Chapter 6
Cosmological Implications
of Doubly-Coupled Massive Bigravity

The universe is full of magical things patiently waiting for our
wits to grow sharper.
Eden Phillpotts, A Shadow Passes

So far we have studied the cosmological solutions of massive bigravity in Chaps. 3
and 4 with matter coupled only to one metric, and discussed some of the theoretical
issues with extending to a bimetric matter coupling in Chap.5. As emphasised in
the introduction of Chap. 5, the singly-coupled theory spoils the metric interchange
symmetry present in vacuum; the kinetic and mass terms treat the metrics on equal
footing, but this is broken when one couples matter to only one metric. It is therefore
compelling to investigate other types of matter coupling that extend this metric-
interchange symmetry to the entire theory. Moreover, as demonstrated in Chap. 3,
cosmological background viability and linear stability rule out all but a small hand-
ful of the parameter space of the singly-coupled theory. By extending the matter
coupling, we may be able to open up the space of observationally-allowed bimetric
theories.

The most significant obstacle to the construction of such a theory is that almost all
attempts to couple matter to both metrics, such as the double minimal coupling dis-
cussed in Chap. 5, reintroduce the Boulware—Deser ghost (cf. Sect. 2.1.1) at arbitrarily
low energies [1-3]. One of the papers demonstrating this, Ref. [3], also proposed a
double coupling which is significantly better-behaved with respect to the Boulware—
Deser ghost. While a ghost does appear in this theory, it appears at a scale at least as
high as the strong coupling scale and possibly parametrically larger, in which case it
is outside the domain of the validity of the effective theory. While this may present
a problem for highly anisotropic solutions, the absence of the ghost around FLRW
solutions was demonstrated explicitly [3]. The status of the ghost in this specific
coupling has also been investigated in Refs. [4-6].

In this theory, matter couples minimally to an effective metric constructed out
of the two metrics appearing in the gravitational sector of the theory, regardless of
whether the second metric is dynamical. This would alleviate the problem of con-
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structing physical observables discussed in Chap. 5, as matter would move on geo-
desics of the effective metric. This proposal has been derived using complementary
methods and extended to a multi-metric framework in Ref. [7], while the cosmology
of this new coupling has been investigated in the dRGT context in Ref. [8] and will
be discussed in Chap. 7.

In this chapter, we study the background cosmology of massive bigravity when
matter couples to the effective metric proposed in Ref. [3]. We show that the back-
ground expansion can asymptotically approach ACDM at both early and late times,
and for certain parameter values is identical to ACDM always. At the background
level, this type of coupling is therefore consistent with observations. In a future study,
we will investigate whether this holds true for cosmological perturbations.

This chapter is organised as follows. In Sect. 6.1 we present the effective metric and
the symmetries that are present in the action. In Sect. 6.2 we derive the cosmological
equations of motion and discuss their main features. A parameter scan of the minimal
models, where only one of the interaction terms is nonvanishing, is performed in
Sect.6.3. In Sect. 6.4 we discuss some special parameter choices. We conclude in
Sect. 6.5.

6.1 Doubly-Coupled Bigravity

In this chapter we will extend the bigravity action (2.30) to a doubly-coupled version

with an effective metric, gfflf ,! given by

M2 M2
e = — 5 / d'xJERE) ~ / dx/~FR(f)
4
M} [ d= Y pren)+ [ VgL (ger @) (61
n=0

The effective metric, first introduced in Ref. [3], is defined by2

g = gun + 2088 X%y + B s X =g TN (62)

As shown in Appendix C, the effective metric is symmetric under the interchange
guw < fuw and @ <> B. This makes the entire action symmetric under the transfor-
mations

8w < fuvs M, < My, Bn — Bin, o < B. (6.3)

IWe will denote the effective metric with “eff” written as a superscript or subscript interchangeably.

2In Ref. [3] the effective metric is given in an explicitly symmetric form, but this is not needed since
8ua XYy, = gua X%, as first shown in Ref. [1]; see also Appendix C.


http://dx.doi.org/10.1007/978-3-319-46621-7_5
http://dx.doi.org/10.1007/978-3-319-46621-7_7
http://dx.doi.org/10.1007/978-3-319-46621-7_2

6.1 Doubly-Coupled Bigravity 119

There is thus a duality between the two metrics present in the action which is spoiled
when matter couples to only one of the metrics (taken by setting either « = 0 or
B =0).

The effective metric has the convenient property that its determinant is in fact in the
form of the ghost-free interaction potential in Eq. (6.1). In particular, the determinant

can be written as [3]
N —8ett = «/—g det (o + BX). (6.4)

The right-hand side is a deformed determinant, and it appears naturally when con-
structing a ghost-free potential [9]. Indeed, this deformed determinant is nothing
other than a subset of the ghost-free dRGT potential with specific choices for §,,,

4
det (@ + BX) = > a* "¢, (X). (6.5)

n=0

Therefore matter loops, which will generate a term of the form /—ges A, will by
construction not lead to a Boulware—Deser ghost. This simple criterion in fact dooms
many other forms of double coupling and is, in part, what motivated Refs. [3, 7] to
construct this specific form of g&f

The action (6.1) contains two Planck masses (M, and M), five interaction para-
meters (f,, of which Sy and B, are the cosmological constants for g and f, respec-
tively), and two parameters describing how matter couples to each metric (« and ).
The Planck masses and the coupling parameters « and 8 only enter observable quan-
tities through their ratios. Moreover, one of those ratios is redundant: as described
in Appendix C, the action can be freely rescaled so that either M /M, or B/a is set
to unity.? Therefore the physically-relevant parameters are §, and either M /Mg or
B/c. In this chapter we will rescale the Planck masses so that there is one effective
gravitational coupling strength, M. We will also keep o and B explicit to make
the ¢ <> B symmetry manifest, but the reader should bear in mind that only their
ratio matters physically. All observational constraints will be given solely in terms
of B/, from which it is straightforward to take the singly-coupled limit, /o — O.

The Einstein equations have been derived in Ref. [10] and can be written in the
form

3
(X—l)(uaG;)a+m2 Z(_l)nﬁngocﬁ(x—l)(u Y(';));; _ W /g;tt ( x—He, Tv)a+ﬂTuv)

n=0
(6.6)
M2 3
X(M Gv)a %Z —1)"Ba_ faﬂX(u Y(li)l))ﬂ _ % g;ﬁ( T“‘v—l—ﬁX(“ Tv)oz) (6.7)
f =0 f

3See also Sect.2.1.2 for the redundancy of the Planck masses in the singly-coupled theory.


http://dx.doi.org/10.1007/978-3-319-46621-7_2

120 6 Cosmological Implications of Doubly-Coupled Massive Bigravity

The matrices Y and ¥ depend on \/g~! f and \/ f ~'g, respectively, and are the same
as were defined in Eq.(2.41). The Einstein tensors G}~ and G‘;v have their indices
raised with g,, and f),,, respectively. Note that the terms with g.;r can be simplified
using Eq. (6.4). The stress-energy tensor 7" is defined with respect to the effective
metric gegr as

1
8 [/ =8ett Lo (getr, )| = 7V —ger T 885, (6.8)
and obeys the usual conservation equation

Vet =0, (6.9)

eff

where Vﬁff is the covariant derivative for gJ;,,.

6.2 Cosmological Equations and Their Solutions

To describe homogeneous and isotropic cosmologies, we specialise to the Friedmann—
Lemaitre-Robertson—Walker (FLRW) ansitze for both g,,, and f},,,

ds; = —Ngdt® + agdx’, (6.10)
ds} = —N7di* + ajdx’, (6.11)
where N, r and ag  are the lapses and scale factors, respectively, of the two metrics.
Because both metrics are on equal footing, we have changed the notation slightly from
Chaps. 2 to 4 to be more symmetric between the two metrics. As in general relativity,

we can freely rescale the time coordinate to fix either N, or N; however, their ratio
is gauge-invariant and will remain unchanged. The effective metric becomes

dsk; = —N*dt* + a*dx?, (6.12)
where the effective lapse and scale factor are related to those of g, and f,,, by

N =aN, + BNy, (6.13)
a=aag, + Pay. (6.14)

The equations of motion can be derived either directly from Eqgs. (6.6) and (6.7), or
by plugging the FLRW ansitze into the action and varying with respect to the scale
factors and lapses, as was done in Ref. [3]. We have checked that both approaches
yield the same result. Defining

By(y) = Bo +3B1y + 3By + B3y, (6.15)
Bi(y) =By > + 3By 2 + 383y + B, (6.16)
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where, as before,
y=-L, 6.17)

the Friedmann equations for g,, and f,, are

apa

3H? = +m23 , 6.18

< Meﬂ 3 0 (6.18)
po a’

3H; = —— +m (6.19)
! Mgff af

Here the energy density, p, is a function of the effective scale factor, a, and we have
defined the g- and f-metric Hubble rates as

. Hy=-— (6.20)
Ngay, Nyay

Notice that the two Friedmann equations for H, and H; map into one another under
the interchange B, — B4, @ < B, and g,, < f,, (Which sends H, < Hy,
y — y~!,and By <> B)), as expected from the properties of the action described in
Appendix C.

The stress-energy tensor is conserved with respect to the effective metric, so we

immediately have

. a
p+3;(p+p) =0, (6.21)

where the density, p, and pressure, p, are defined in the usual way from the stress-
energy tensor. By taking the divergence of either Einstein equation with respect to
the associated metric (e.g., taking the g-metric divergence of Eq. (6.6)) and using the
Bianchi identity and stress-energy conservation, we obtain the “Bianchi constraint,”

2 2 2 apa’p . .
m* (Biag + 2prazas + prat) — e (Nyag, — Nyay) = 0. (6.22)
eff

In complete analogy with the singly-coupled case discussed in Sect.2.1.3, which can
be obtained by setting « or § to zero, Eq. (6.22) gives rise to two possible branches
of solutions, one algebraic and one dynamical [11-13].4

“In the singly-coupled theory, Eq.(6.22) would be a constraint equation arising from the Bianchi
identity and stress-energy conservation. When using the effective coupling, the stress-energy con-
servation holds with respect to the effective metric, rather than g, or f},,. This gives rise to the
pressure-dependent term in the left bracket. Due to this term, both branches—obtained by setting
either bracket to zero—can be regarded as dynamical. We choose to adopt the terminology from
the singly-coupled case here, however.
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6.2.1 Algebraic Branch of the Bianchi Constraint

As discussed in Sect.2.1.3, in the singly-coupled case, setting the first bracket of
Eq. (6.22) to zero gives an algebraic constraint on y that can be shown to give solutions
that are indistinguishable from general relativity at all scales [12]. In the doubly-
coupled theory, the presence of the pressure term makes the phenomenology of the
algebraic branch richer.

In this section, without any ambition to examine all possible solutions, we briefly
outline some of the properties of a few specific solutions on the algebraic branch of
the Bianchi constraint (6.22). In this branch we have

ot,Bazp

ity (6.23)
Mesz

m? (ﬂlag +2Bracayr + ,3351%) =

If the Universe is dominated by dust (p = 0), then as in the singly-coupled theory
this is a polynomial equation for y,

B+ 2By + B3y> =0, (6.24)

which is solved by a constant y = y.. Notice that when y is constant, the mass terms
in the two Friedmann equations become constant, so H, and H are determined by
Friedmann equations containing effective cosmological constants.’> Using the fact
thata = (a + By.) a, = (a/y. + B) ay, we can show that the observed Hubble rate,
H = a/(aN), for a constant y is given by

N\ N, !

8

If the ratio Ng/N is constant, the solutions on this branch contain an exact cos-
mological constant (at least at the background level) given by a combination of the
metric interaction terms.

Since for a constant y, the two Hubble rates are related by

Ne

Hy = HgN—f, (6.26)

the bimetric interactions mimic a cosmological constant when H,/H ¢ = const. This
is only possible if the parameters satisfy ay>B; = Bo. For more general parameter

values, we have ) ) 3
(&) B S (6.27)
N, 38H? +m? (B1y} — BBo)’

which is dynamical, so these cosmologies are not exactly ACDM.

SThese are not, however, ACDM cosmologies for the effective metric due to the nontrivial coupling
to p.
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For nonzero pressure, p # 0, we can rewrite the constraint (6.23) as

o’p (1 + %y + f—iyz) p
) - (6.28)

m* B (1+2@y+éy2 5
Meff

Bi B

We will not attempt to classify the solutions in this more complicated scenario.
However, we note that for the special parameter choice

2
B2 = Bi é B3 = Bi '3—2, (6.29)
o o
we obtain ,
o=, 630

i.e., we are required to have a constant p, corresponding to a vacuum equation of
state, w = —1.

6.2.2 Dynamical Branch of the Bianchi Constraint

As is most often done in singly-coupled bigravity models—see, for example, Refs.
[12, 14-17] and Chaps.2-4—in the remainder of this chapter we will restrict our
study to solutions where the second bracket in (6.22) vanishes, as these will turn
out to be consistent with observational data. In this branch we have a dynamical
constraint on the ratio between N, and N,,

Ny _ay_das (6.31)
N, a, da, '

This implies the simple relation H;y = H,. Furthermore, the physical Hubble rate
H, defined as

H (6.32)

a
Na’
becomes
_ H, _ yHy
a+pBy a+By

(6.33)

Combining the two Friedmann equations, we obtain the equations for H and y,
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2(Bo+ y*By)
o _P -1 m((’— 6.34
oMz (@ +By) (@+By7") + @By (6.34)
0= % (@+By) (@ —By™") +m* (Bo— y°By). (6.35)

eff

Equations (6.34) and (6.35) determine the expansion history completely and are
invariant under the combination of 8, — B4_,, @ < B, and y — y~'. They
have the same structure as in singly-coupled bigravity (cf. Sect.2.1.3): there is a
single Friedmann equation sourced by p and y, while y evolves according to an
algebraic equation whose only time dependence comes from p. Notice that due to
Eq. (6.35) one can write many different, equivalent forms of the Friedmann equation
for H?. It is therefore dangerous to directly identify the factors in front of p in
Eq.(6.34) as a time-varying gravitational constant and the term proportional to m?
as a dynamical dark energy component: both of these effects are present, but they
cannot be straightforwardly separated from each other.

From Eq.(6.35), we see that as p — oo in the far past, either y — B/« or
y — —a/p. One can show that if p ~ a~? then H> ~ a=2P/3 as y — —a/B. Since
this scenario is observationally excluded, we will not consider this limit. Recall from
Sect.2.1.3 that in the singly-coupled theory there are also infinite-branch solutions
where y — oo at early times [17]. Indeed, as we saw in Chap. 3, these infinite-branch
solutions are crucial in order to avoid linear instabilities. However, in the doubly-
coupled theory, there are no solutions to Eq. (6.35) in which y — oo as p — oo. This
is because of the new term proportional to afy> p; none of the terms in By — y’> By,
which grows at most as y3, can possibly cancel off this term as p — oo.

An interesting feature is that in the early Universe the mass term drops away but
we are left with a modification to the gravitational constant,

@+ B>p

H? — 5
3Meff

(6.36)

Since the coefficient in front of p in the Friedmann equation during radiation domi-
nation can be probed by big bang nucleosynthesis, this could in principle be used to
constrain the parameters of the theory. However, this will only work if the correspond-
ing factor in front of p in local gravity measurements has a different dependence on
« and B. The solar-system predictions for this theory have not, to date, been worked
out.

In the far future, as p — 0, we have two possibilities. The first is that y goes to a
constant y., determined by

B3ye + BB —Ba) ¥ +3(Bi — B y:+ (Bo—3B) ye — P =0.  (6.37)

These models approach a de Sitter phase at late times (whether they self-accelerate
is a subtle question which we address below), with a cosmological constant given by
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o B Bo 38 v+ 3B+ B 32 + BBt By B3] (o

2y (o + ,3}’c)2

The second possibility is that, for some parameter choices, |y| — oo such that the
leading-order B, term in Eq. (6.35) exactly cancels the leading density term, y*p. Itis
unclear whether these solutions are viable; in this chapter, we will restrict ourselves
to solutions where y is asymptotically constant in the past and future, starting at
y = B/a and ending with y = y.. This implies that a, and as are proportional to
one another in both the early and late Universe. As long as y does not exhibit any
singular behaviour, the evolution between y = 8/« and y = y, is monotonic. This
can be seen by taking a time derivative of Eq.(6.35) and setting y = 0.

The monotonicity of the evolution of y implies that in the special case where
Yo = B/a, then we will have y = B/« at all times, and the expansion history
is identical to ACDM. This is a new feature of the doubly-coupled theory: in the
singly-coupled case, y. becomes zero in the presence of matter, which makes such a
case trivially identical to general relativity. A constant y occurs in any model where
the B, parameters and B8/« are chosen to satisfy

4 3 2
B3 (E) + (3B2 — Ba) (é) +3(B1 — B3) (é) + (Bo — 3B2) (é) - B1 =0,

o 0% o o
(6.39)

which is simply Eq. (6.37) with y. = B/«. An interesting implication of solutions
with constant y is that, since Eq.(6.31) implies N;/N, = day/da, = y, the two
metrics are proportional, f,,, = y*g,..°

6.3 Comparison to Data: Minimal Models

In this section, we compare the background expansion derived above to observations
and perform a parameter scan of the minimal models, in which only one of the 3,
is nonzero. Due to the duality property of the solutions, we only have to look at
the By, Bi1, and B, cases. We will restrict ourselves to positive B/«; in principle
negative values could also be allowed, but we have not yet investigated the physical
implications of these values.” The minimal models admit exact ACDM solutions

when B/a = {O, %, 1} for the By, B1, and B, cases, respectively, as is evident from
Eq. (6.39).

Since we have so far calculated the equations of motion only for homoge-
neous backgrounds, we will limit this study to purely geometrical tests of the

61t is not difficult to see that there are no cases in which the two metrics are related by a dynamical
conformal factor; from Eq.(6.31) any conformal relation means that day/dag, = ay/ag, but this
implies a s /a, = const.

"Note that 8 < 0 leads to instabilities in the case of doubly-coupled dRGT massive gravity, in
which one of the metrics is nondynamical [8].



126 6 Cosmological Implications of Doubly-Coupled Massive Bigravity

background expansion, including the redshift-luminosity relation of Type Ia super-
novae (SNe) [18], the observed angular scales of cosmic microwave background
(CMB) anisotropies [19], and baryon-acoustic oscillations (BAO) [20-22]. Since
the latter two depend on the physical size of the sound horizon scale around the time
when the CMB photons decoupled from the baryon plasma, we can cancel out this
dependence by using only the ratio of the observed angular scales in the CMB and
BAO [12, 23]. In this way, we obtain a cosmological probe that is highly insensitive
to the physics of the early Universe, and almost exclusively sensitive to the expansion
history of the Universe between z ~ 1000 and today.

We can calculate the effective equation of state for the background model
described in Egs. (6.34) and (6.35) using

1dlog H?

- 6.40
3 dloga ( )

Werr = —1

Since in this chapter we restrict ourselves to solutions where y approaches constant
values in the infinite past and future, for matter-dominated models we are guaranteed
to have an effective equation of state where wer — 0 as a — 0 (ignoring radiation)
and wey — —1 as @ — oo, mimicking the asymptotic behaviour of the ACDM
model. Except for some special parameter choices which are exactly ACDM (see
the discussion above, as well as Sect. 6.4), we expect the model to deviate from the
concordance model at all finite times.

It is well-known that ACDM is able to provide an excellent fit to background
expansion data, so we expect the success of the bimetric model to depend on how
close the effective equation of state is to that of ACDM. All solutions that look exactly
like ACDM will trivially be able to fit existing background expansion data. Note,
however, that this does not mean that these models are equivalent to ACDM, since
they may give different predictions for perturbations, i.e., when studying structure
formation.

In Fig. 6.1, we study the By model, i.e., when only B, is turned on. Notice, cf.
Eq. (6.34), that this model has no nontrivial interactions between the two metrics, so
it deviates from ACDM only through the novel matter coupling. In the left panel of
Fig.6.1, we compare the effective equation of state for different values of 8/« with
that of ACDM. We fix 2,, = 0.3, where

2
o~ 0o

Q —’
T 3MGHG

(6.41)

and the subscript 0 indicates a value today. In the right panel of Fig.6.1, we plot
background constraints on €2, and B/«. Note that the value of B is set by the
requirement that we have a flat geometry. Shaded contours show constraints from
SNe and CMB/BAO data, respectively, corresponding to a 95 % confidence level for
two parameters. Combined constraints are shown with solid lines corresponding to
95 and 99.9 % confidence levels for two parameters. As expected, when /o — 0,
the effective equation of state coincides with ACDM since this limit corresponds to
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Fig. 6.1 Left panel The effective equation of state, wegr, for the By model with 0 < B/a < 1
(dotted lines) compared to wesr of the ACDM model (solid line). When /o — 0, the effective
equation of state for the By model approaches that of the ACDM model. In all cases, €2,, = 0.3.
Right panel Confidence contours for €2, and B/« for the Sy model as fitted to SNe, CMB, and BAO
data
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Fig. 6.2 Confidence contours for €2,, and B/« for the B and B> minimal models as fitted to SNe,
CMB, and BAO data. In each case, we are able to obtain as good a fit as the concordance ACDM
model

the singly-coupled case where S acts as a cosmological constant. Note also that as
B/« is increased, so is the factor multiplying the matter density in the Friedmann
equation, and therefore the preferred matter density, €2,,, becomes smaller.

In Fig.6.2 we plot background constraints on the B, and f, models. Since we
know that the values /o = \/% and B/a = 1 give exact ACDM solutions for the
Bi1- and Br-only models, respectively, we expect these values to provide good fits to
the data. This is indeed the case, as can be seen in the plots. The 8, model is especially
interesting in this regard, as 8/o = 1 corresponds to the case where the two metrics
guw and f,,, give equal contributions to the effective metric (or M, = M; when
using the equal coupling strength framework described in Appendix C). Notice that
the >, model favours 8 > 0, as we would expect since the ,-only singly-coupled
model is not in agreement with background data [15] and is ruled out by theoretical
viability conditions [17].
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One of the attractive features of the double coupling is that it allows sensible
cosmological solutions with only one of the 8, turned on. For more general combi-
nations of the 8, parameters, we expect the data to favour values that cluster around
the value of 8/« given by solving Eq. (6.39), since this value yields an exact ACDM
background expansion. We do not find it meaningful to do such a parameter scan at
this moment, since it is only by including other probes, such as spherically symmetric
solutions and cosmological perturbations, that we can exclude a larger part of the
parameter space. However, in the next section, we discuss a few special cases that
may turn out to be of particular interest for further investigations.

6.4 Special Parameter Cases

6.4.1 Partially-Massless Gravity

Partial masslessness arises when a new gauge symmetry is present that eliminates
the helicity-0 mode of the massive graviton,® removing two of the problems with
massive gravity discussed in Sect.2.1: the vDVZ discontinuity in the m — 0 limit of
linearised massive gravity [24, 25] and the need for Vainshtein screening to reconcile
the theory with solar system tests [26]. This is because both of these aspects of massive
gravity are direct results of the fifth force mediated by the helicity-0 mode. Moreover,
this new gauge symmetry would both determine the cosmological constant in terms
of the graviton mass and protect a small cosmological constant against quantum
corrections. Thus it is potentially a solution to both the old and new cosmological-
constant problems: why the cosmological constant is not huge, and why it is not
exactly zero, respectively.

Massive gravity and bigravity contain a candidate partially-massless theory
[27, 28], obtained by making the parameter choices

Bo=3B=PBs, Pr1=p=0. (6.42)

For more on partially-massless gravity and its connection to massive (bi)gravity,
we refer the reader to Ref. [29], as well as Refs. [28, 30] and references therein.
In singly-coupled bigravity, the partially-massless parameter choices could only be
imposed in vacuum; including matter forces y to be zero, which trivially reduces
to general relativity. The nontrivial implications of the partially-massless scenario
have been demonstrated for other doubly-coupled bigravity theories (see Ref. [31],
though note that the theory discussed therein appears to have a ghost [2, 3]). Here
we discuss this class in the context of the present doubly-coupled theory.

For the partially-massless parameter choices, Eq.(6.35) implies that y = §/« at
all times, and the Friedmann equation becomes

8S0 that a partially-massless graviton has four polarisations rather than the five of a massive graviton,
hence the name.
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C(2+ﬂ2 m2,30
3 Pt s
3M 3(a? + B?)

H? = (6.43)

The cosmology of the candidate partially-massless theory is therefore equivalent to
standard ACDM with an effective cosmological constant, m?8y/(a®> + B2), and a
rescaled gravitational coupling for matter. Consequently, the background expansion
is identical to that of general relativity, albeit with shifted constants. Notice that this
is a qualitatively new feature as compared to the singly-coupled theory.

Doubly-coupled bigravity with the parameters (6.42) is thus a strong candidate
partially-massless theory of gravity. In the context of single-metric (ARGT) massive
gravity, with matter coupled only to the dynamical metric, this parameter choice
leads to a theory which is not partially massless and in fact suffers from an infinitely
strongly-coupled helicity-0 mode [32]. If doubly-coupled bigravity is shown to pos-
sess the partially-massless gauge symmetry nonlinearly and around all backgrounds,
it should automatically become one of the most interesting available theories of
gravity beyond general relativity.

6.4.2 Vacuum Energy and the Question
of Self-Acceleration

As discussed in Chap. 1, one of the primary motivations for modifying general rela-
tivity is the possibility of having self-accelerating solutions, i.e., cosmologies which
accelerate at late times even in the absence of a cosmological constant or vacuum
energy contribution. In general relativity, as well as in singly-coupled bigravity, these
two are degenerate: the vacuum energy and a cosmological constant may have differ-
ent origins, but they are mathematically indistinguishable. In bigravity with matter
coupled to the effective metric, however, this question becomes rather subtle, as the
vacuum energy from the matter sector produces more than just the cosmological
constant terms for g, and f},,, which are equivalent to By and Bj4.

We have shown in Sect. 6.1 that quantum corrections to matter coupled to gff{
will generate all of the ghost-free bimetric interaction terms. If we take the matter
loops to generate a cosmological constant term /—gefr Ay, then we can see from
Egs. (6.4) and (6.5) a pure vacuum-energy contribution can be written in the form of
the bigravity interaction potential with parameters

_ Av0l4_nﬂn

: (6.44)

Bn

m

Let us assume that the 8, parameters take this particular form, i.e., the only metric
interactions arise from matter loops. The quartic equation (6.35) can then be solved
onlyif y = B/ (or p = —Mezﬁ»Av), and the Friedmann equation becomes
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2 2 2 2 Av
e ;Zi)“(a +f) . (6.45)

Equations (6.44) and (6.45) reduce to the known expression for the ACDM solutions
with a cosmological constant proportional to either By or B4 in the singly-coupled
limit (where either 8 — 0 or o — 0).

It is, of course, not surprising that matter loops lead to an accelerating expansion.
However, the appearance of the vacuum energy in a/l the bigravity interaction terms
has novel implications. First, because the vacuum energy contributes to all the inter-
action terms, the mass scale m is not protected against quantum corrections from
matter loops [3]. Therefore, any values we obtain for these parameters from com-
parison of the theory to observations must be highly fine-tuned.’ This is in contrast
to singly-coupled bigravity, in which the only parameter that receives contributions
from quantum loops is By (if one couples matter to g, ), just as in general relativity
where the cosmological constant is unstable in the presence of matter fields. In the
singly-coupled theory, both the scale m and the structure of the interaction potential
are stable to quantum corrections [33, 34], a very useful fact which is lost once
we couple matter to ng]f .10 This is not a problem in the double coupling studied in
Chap. 5, as loops would only induce g- and f-metric cosmological constants, 8y and
B4, although that theory is not ghost-free. Candidate expressions for ng‘f where the
matter sector would only contribute quantum corrections to By and B4 have been
studied in Ref. [35], although it is not yet known whether any of these are free of the
Boulware—Deser ghost at low energies.

The other implication is that self-accelerating solutions are no longer straight-
forward to define in this theory. Typically, self-acceleration refers to cosmologies
which accelerate at late times even when the vacuum energy is set to zero. Since
in general relativity and singly-coupled bigravity, there is a single parameter which
is degenerate with the vacuum energy (A in the former and By or f4 in the latter),
one can simply set its value to zero and look for other accelerating solutions. In the
present doubly-coupled theory, however, all interaction terms are degenerate with
the vacuum energy: given an interaction potential, there is no way to unambiguously
determine the value of A,. In that respect, we cannot set some of the parameters to
zero in order to restrict ourselves to accelerating solutions arising from nonvacuum,
massive-gravity interaction terms (unless we set all the parameters to zero, which
will give uninteresting solutions). Therefore, from a particle physics point of view
this theory lacks, or at the very least cannot unambiguously define, self-accelerating
solutions.

9If the case described in Sect. 6.4.1 is truly partially massless, this may be an exception, as there is
anew gauge symmetry to protect against quantum corrections.

10Indeed, the fact that a small graviton mass is stable against quantum corrections is one of the main
motivations for studying massive (bi)gravity, particularly as a candidate to explain the accelerating
Universe.
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6.4.3 Maximally-Symmetric Bigravity

The parameter choice

Bo=PBs Pr1=p a=4p, (6.46)

is special in the sense that the duality transformation (6.3) maps solutions to them-
selves.!! Thus this theory is maximally symmetric between the two metrics: they
appear in the theory in completely equal ways. In this case, the quartic equation
(6.35) becomes

4
(=1 [ﬂl (v +1) + 3By — Boy + ﬁ 1+ y)2i| —0. (647
eff

As expected, there is an exact ACDM solution given by y = 1. Indeed, the two
metrics are completely equal, g,, = f,., because the Bianchi constraint imposes
N¢/N, = day/da, = 1. The second-order polynomial for y in brackets gives
two solutions which are inverses of one another. This is not surprising, since when

8guv < fuv we have y — y’l.

6.5 Summary of Results

In this chapter we have presented the main features of the background expansion for
massive bigravity with matter “doubly coupled” to both metrics through an effective
metric, given by

g =alguy + 2088 X% 4+ B fun.  XF, =g N (6.48)

This coupling was introduced in Refs. [3, 7], and has been further discussed in
Refs. [4-6, 8]. This matter coupling has several advantages: it retains the metric-
interchange symmetry in the presence of matter, leads to sensible cosmological
solutions, and has a straightforward physical interpretation.

The expansion history is described by a Friedmann equation for the effective met-
ric (6.34) and a quartic equation (6.35) which algebraically describes the evolution
of y = ay/a,, the ratio of the f- and g-metric scale factors. One can always choose
the parameters of the theory such that the background expansion is exactly that of
ACDM; any parameter choice which leads to y = B/« in Eq. (6.35) will have this
behaviour. For more general parameter values, the background expansion will devi-
ate from ACDM but may still be consistent with observational data. To explore this,
we confronted the models with only By, B, or B, nonzero with observational data.

"'Vacuum solutions for this model were previously studied in Ref. [30].
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The other single-parameter models—with 83 or 84 nonzero—are then automatically
included in this analysis due to the duality between solutions under g,, < f.,
By = Ba—n,and o <> B, as described in Appendix C.

A novel feature of the effective coupling studied here is that g,,, and f},, can be
conformally related to each other at the background level in the presence of matter.
In the singly-coupled case, this is only possible in vacuum, where the solutions are
de Sitter. A special example of this is the parameter choice leading to a candidate
partially-massless theory. This potentially has a novel gauge symmetry which would
eliminate the problematic fifth force and protect a small vacuum energy against quan-
tum corrections. In this case the background is identical to ACDM in the presence
of matter. This suggests that doubly-coupled bigravity is a promising candidate for
a theory of partially-massless gravity.

This matter coupling has a problematic feature, namely that loop corrections for
any matter coupled to gff{ will generate all five dRGT interaction terms. Therefore
the structure of the potential and the mass scale m lose their stability against quantum
corrections, which had been one of the most impressive features of the singly-coupled
theory. We have discussed an important consequence of this: while many solutions to
the theory accelerate at late times, it is no longer possible to unambiguously identify
solutions that self-accelerate, as the effective cosmological constant at late times can
always be identified at least in part with a vacuum energy contribution.

We end with a brief comment concerning our expectations for perturbations
around these cosmological solutions. We have shown in Chap.3 that the singly-
coupled models are often unstable for small y. One might hope that these doubly-
coupled models will have better stability properties: y is always nonzero and can be
made to have a large minimum value by tuning 8/«. Moreover, we found in Chap. 3
that the B,-only model did have stable perturbations in the singly-coupled case, but
that model is not viable in the background. As we have shown, this model is in
excellent agreement with background data if 8/« is not too small, so it may provide
another avenue for stable cosmological solutions in massive bigravity.
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Chapter 7
Cosmological Implications
of Doubly-Coupled Massive Gravity

If the Lord Almighty had consulted me before embarking upon
his creation, I should have recommended something simpler.

Alfonso X of Castile

In Sect.2.1.3 we described a no-go theorem for cosmological solutions in dRGT
massive gravity, i.e., in the theory where the only gravitational degree of freedom is
amassive graviton. If the reference metric is taken to be that of Minkowski space, then
dynamical flat and closed FLRW solutions do not exist; the Bianchi constraint (2.55)
restricts the scale factor to be constant. This can be avoided by either choosing open
solutions or changing the reference metric, but the resultant solutions are unstable.
Therefore, the search for a viable cosmology with a massive graviton has necessarily
involved extending dRGT by adding extra degrees of freedom (as in the bimetric
theory which we have studied in Chaps.3-0) or by breaking the assumptions of
homogeneity and isotropy, either in the metric or in the Stiickelberg sector.

The double coupling discussed in Chap. 6 has been shown to avoid both of these
no-go theorems, opening up the intriguing possibility of obtaining sensible cosmo-
logical solutions with only a single massive graviton [1, 2]. In this scenario, matter
is coupled to an effective or Jordan-frame metric,

8 = o’ gy + 2082 X% + B0, (7.1)

where g, is the dynamical metric, n,, is the Minkowski reference metric, and
X*, = (/g~'n)*,. The properties of this effective metric were discussed in some
detail in Sect.6.1. However, we remind the reader that the theory with this matter
coupling is believed to be ghost-free at least within the effective theory’s régime
of validity and that the Boulware—Deser ghost is absent about FLRW backgrounds
[1, 3, 4].

In this chapter we explore the basic properties of these newly-allowed massive
gravity cosmologies. Unusually, the proof in Ref. [1] that the no-go theorem is
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avoided turns out to rely crucially on coupling a fundamental field (in this case, a
scalar field) to the effective metric. In a standard late-Universe setup where mat-
ter is described by a perfect fluid with a constant equation of state (or even more
generally when w only depends on the scale factor), this result does not hold, and
FLRW solutions are constrained to be nondynamical, just as in standard dRGT. More
generally, the pressure of at least one component in the Universe must depend on
something besides the scale factor—such as the lapse or the time derivative of the
scale factor—for massive gravity cosmologies to be consistent. This is why fields,
which have kinetic terms where the lapse appears naturally, are required in order
to obtain sensible cosmological solutions. Consequently the standard techniques of
late-time cosmology cannot be applied to this theory.

While we do not aim to rule out these models, the inability to obtain cosmological
solutions with just, e.g., dust or radiation is an unusual feature which makes it difficult
to derive precise predictions for cosmology, as the nature of the “extra matter” is not
presently known. These solutions exhibit pathologies in the early- and late-time limits
if all matter couples to the effective metric, and the scalar field physics would need to
be highly contrived to avoid these issues. Moreover, the reliance on extra matter, such
as a scalar field, which may well be gravitationally subdominant and high-energy
implies a violation of the decoupling principle, in which the low-energy expansion
of the Universe should not be overly sensitive to high-energy physics.

The rest of this chapter is organised as follows. In Sect.7.1 we derive and dis-
cuss the cosmological evolution equations in this theory. In Sect.7.2 we elucidate
the conditions under which the no-go theorem is violated and dynamical cosmolog-
ical solutions exist. We discuss in Sect.7.3 some of the nonintuitive features of the
Einstein-frame formulation of the theory, and how these are resolved in a Jordan-
frame description. In Sect. 7.4 we study cosmologies containing only a scalar field,
and generalise this to include a perfect fluid coupled to the effective metric in Sect. 7.5.
In Sect.7.6 we consider an alternative setup in which the scalar field couples to the
effective metric while the perfect fluid couples to the dynamical metric. We conclude
in Sect.7.7.

7.1 Cosmological Backgrounds

The Einstein equation with all matter fields coupled to nglf was derived in Ref. [5]
(see also Sect.6.1) and can be written in the form'

3
X DG 4 m? Y (=" Bug (XY,
n=0

= % det (@ + BX) (@(X~H)®, TV + BT, 7.2)
MP]

!Our convention is that indices on the Einstein tensor GV are raised with gi".
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where the stress-energy tensor is defined as usual with respect to the effective metric,

2 é [V _geffﬁm (ng‘f’ (D)]
N/ 8t sgeh

and the matrices Y, are defined in Eq. (2.41). Let us assume a flat FLRW ansatz for
gy of the form?

T =

) (7.3)

gudx"dx" = —N*(t)dt* + a* (t)8;;dx' dx”, (7.4)

and choose unitary gauge for the Stiickelberg fields, n,, = diag(—1, 1, 1, 1), so the
effective metric is given by

golldxtdx" = =N (1)dr* + agy (1)8;;dx" dx’, (7.5)
where the effective lapse and scale factor are related to N and a by
Negr = aN + B, aegf = aa + B. (7.6)
We will define the Hubble rates for g,,, and g;“v by

Aeff

H = .
et Negt

Her =

a 7.7
aN’ 7
Notice that, because of the inclusion of the lapses in these definitions, these quantities
correspond to what would be the cosmic-time Hubble rates in general relativity,
obtained by setting N = 1 or Ny = 1. While we need not include the lapse in the
definition of H when working with diffeomorphism-invariant theories like general
relativity or massive bigravity, instead choosing to set N to a convenient value and
thereby pick a physically-meaningful time coordinate like cosmic time or conformal
time, the lack of diffeomorphism invariance in massive gravity means that neither
the lapse nor the time coordinate has any meaning on its own, but will only appear
through the combination Ndt. The time component of Eq. (7.2) yields the Friedmann
equation,

3
ap ale 381 36 | B3
3p? = —+ =+ =, 7.8
Ve o ('30+ a +a2 +a3 78
where p = — g&f)f T is the density of the matter source. The spatial component of

Eq. (7.2) gives us the acceleration equation,

2Note the differences in notation between this chapter and Chap. 6, such as our use of a for the scale
factor of g, rather than of ng‘f
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2H  ap Nega? 1 2 2 B3
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TR 7 AR Ny e aN+ T Na ]

(7.9)

where the pressure is defined by p = (1/3) geﬁ T . Notice that the double coupling
leads to a time-dependent coefficient multlplylng the density and pressure terms in
Egs. (7.8) and (7.9). The Friedmann equation for the effective Hubble rate, H¢, can
be determined from Eq. (7.8) by the relation

Na
Negi Qe

Heff = H, (710)

which follows from Eq. (7.6).
Matter is covariantly conserved with respect to g© ;w’

VT = 0, (7.11)

from which we can obtain the usual energy conservation equation written in terms
of the effective scale factor,

—=0. (7.12)

As in general relativity, this holds independently for each species of matter as long
as we assume that interactions between species are negligible. Finally, we can take
the divergence of the Einstein equation (7.2) with respect to g, and specialise to the
FLRW background to find, after imposing stress-energy conservation, the “Bianchi
constraint,”

m*Mpa® P(a)a = afa’; pa, (7.13)

where we have defined

P(a) =B + % + @ (7.14)

This can equivalently be derived using Egs. (7.8), (7.9) and (7.12). The pressure, p,
appearing in Eq. (7.13) is the total pressure of the Universe, or, if different species
couple to different metrics, the total pressure of all matter coupling to geff

Let us pause to count the number of equations and variables in this system. We
have four free functions—the scale factor, the lapse, the density, and the pressure—
and four equations—Friedmann, acceleration, conservation, and Bianchi constraint.
Of the four equations, only three are independent, much like in general relativity.
The remaining freedom is fixed by specifying an equation of state. The acceleration
equation can usually be derived from the other three, but unlike in general relativity it
is not always redundant: if the Bianchi constraint yields @ = 0, then the acceleration
equation does give new information, and in fact is what would be used to determine
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the lapse [6]. This situation is similar to general relativistic cosmology, but with
one new variable and one new equation: because we have broken diffeomorphism
invariance, the lapse cannot be fixed by a coordinate transformation, and furthermore
the divergence of the Einstein equations leads to a nontrivial constraint. This is in
contrast to general relativity, where the same procedure results in an identity.’

We emphasise that if all matter couples to the same gffg then the expansion his-
tory inferred from observations is given by a.g and Hegr, for the simple reason that
all observations are observations of matter (including light). In deriving any cos-
mological observables, the “proper time,” dt = N.gdt, will play the same role as
the cosmic time coordinate in general relativity. In particular, T corresponds to the
time measured by point-particle clocks, while the distance light travels is given by
dr = dt/ac (7). Therefore in principle we need only know He¢t(degr) in order to
connect to standard background observables. The coordinate time, ¢, is just the coor-
dinate in which the reference metric, 1,,, has the standard Minkowski form, and has
no other physical significance.

Since g, and g;“v play the exact same roles as the Einstein-frame and Jordan-
frame metrics, respectively, in other modified gravity theories, we will use these
terms freely.

7.2 Do Dynamical Solutions Exist?

In the original, singly-coupled formulation of massive gravity, 8 = 0 and so the
right-hand side of Eq. (7.13) vanishes, with the result that a is constrained to be
constant. This is nothing other than the no-go theorem on flat FLRW solutions in
massive gravity. A nondynamical cosmology is, of course, still a solution when « and
B are nonzero, in which case the values of a and N are determined from Eqgs. (7.8)
and (7.9). The question is now under which circumstances the theory also allows for
dynamical a.

To begin with, let us assume that p = wp, where w can depend on the effective
scale factor but nothing else. Assuming that @ # 0, Eq. (7.13) becomes

m*MZa*P(a) = afwa’cp, (7.15)

and p is a function only of a (or equivalently a.). To see this, consider Eq. (7.12)

in the form
dlnp

dlna

+3[1 + w(a)] = 0. (7.16)

Integrating this will clearly yield p = p(a). Unless the left-hand side of Eq. (7.15)
has the exact same functional form for a as the right hand side (which is, e.g., the

3This is because the Bianchi identity and stress-energy conservation are related to the diffeomor-
phism invariance of the Einstein—Hilbert and matter actions, respectively, but we have now added
a mass term which does not obey this gauge symmetry, after fixing the Stiickelberg fields.
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case when w = —1/3 and f, = B3 = 0), this equation is not consistent with a time-
varying a. The theory does therefore not give viable cosmologies using the standard
equation of state p = wp, where w is constant or depends on the scale factor.

This conclusion is avoided if the pressure also depends on the lapse. In this case,
Eq. (7.13) becomes a constraint on the lapse, unlocking dynamical solutions.* The
most obvious way to obtain a lapse-dependent pressure is to source the Einstein
equations with a fundamental field rather than an effective fluid. This was exploited
by Ref. [1] to find dynamical cosmologies with a scalar field coupled to gfff . We
discuss this case in more detail below. Therefore, while physical dust-dominated
solutions may exist, we must either include additional degrees of freedom or treat
the dust in terms of fundamental fields. The standard methods of late-time cosmology
cannot be applied to doubly-coupled massive gravity.

7.3 Einstein Frame Versus Jordan Frame

Before examining the cosmological solutions when the pressure depends on the
lapse, it behoves us to further clarify the somewhat unusual differences between
this theory’s Einstein and Jordan frames. It turns out that the Friedmann equation in
the Einstein frame is completely independent of the matter content of the Universe
(up to an integration constant which behaves like pressureless dust): H (a) always
has a predetermined form [see Eq. (7.19)]. In the Einstein-frame description, matter
components with nonzero pressure affect the cosmological dynamics through the
lapse, N. Because the lapse is involved in the transformation from the Einstein frame,
H, to the Jordan frame, Hcg, cf. Eq. (7.10), the Jordan-frame Friedmann equation
(corresponding to the observable Hubble rate) does depend on matter.

We proceed to demonstrate this explicitly. Regardless of the functional form of
p, and whether or not it depends on the lapse, for @ # 0 the pressure is constrained
by Eq. (7.13) to have an implicit dependence on a given by

2M2 2P
pla) = 20420 @ (7.17)
afag;
The continuity Eq. (7.12) can then be integrated to obtain
C 3m*M (B
pl@)=————4 (—1a3 + pra® + ﬂsa) , (7.18)
Aot Bagy 3

4 Another possibility is that the pressure depends on a. The dynamics would be determined by
Eq. (7.13), while the lapse would be constrained by the Friedmann equation. It is unclear whether
these would give rise to Friedmann-like evolution, and we do not discuss this case any further.
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where C is a constant of integration that includes any pressureless dust. Inserting this
into Eq. (7.8) we find a generic form for the Einstein-frame Friedmann equation,

3H? =m? (co +3cia™" +3c2a™ > + c3a7) (7.19)

where we have defined the coefficients

Bo— =B
co = PBo— —=Bi,
0 0 ld
015/31—%,32
ﬂ 9
025,32—%,33,
aC
c3 = ,33 + mZ—MEZ,I (720)

Notice that the functional forms of p(a), p(a),and H 2(a) are completely independent
of the energy content of the Universe, except for an integration constant scaling like
pressureless matter. It is interesting to note that in the vacuum energy case studied
in Sect. 6.4.2 with 8, = («/B) B.+1, all of the ¢; coefficients apart from c3 vanish. In
other words, if the metric interactions took the form of a cosmological constant for

g5, then the Einstein-frame Friedmann equation would scale as a2

7.4 Massive Cosmologies with a Scalar Field

If we include matter whose pressure does not only depend on the scale factor, ac,
then the Bianchi constraint (7.13) may not rule out dynamical cosmological solutions.
For a pressure that also depends on the lapse, Egs. (7.13) and (7.19) determine H
and N, which in turn can be used to derive the Jordan-frame Friedmann equation.
Because the lapse enters into the frame transformation (7.10), the Jordan frame can
be sensitive to matter even though, as discussed above, the Einstein frame is not. The
lapse thus plays an important and novel role in massive gravity compared to general
relativity.

As discussed above, lapse-dependent pressures are not difficult to obtain: they
enter whenever considering a fundamental field with a kinetic term. Consider a
universe dominated by a scalar field, x, with the stress-energy tensor

1 v
TH = VixVaex — (EVaxVé"ffx + V(X)) gl (7.21)

where Vi = g/ Ve and V (x) is the potential for the scalar field. The density and
pressure associated to x are
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2 <2
= —|— V s =
ang, PV =g

Py - V(). (7.22)

The constraint (7.13) now has anew ingredient: the lapse, N.¢, which appears through
the scalar field pressure.’

One can then use the Bianchi identity to solve for the lapse and substitute it into
the Friedmann equation to obtain an equation for the cosmological dynamics that
does not involve the lapse [1]. A simple way to substitute out the lapse is to use the
relation, following straightforwardly from Eq. (7.13),

-2 2M2 ZP
X2 = V() + D e @ (7.23)
2N P Ay

as the lapse only appears in the Einstein-frame Friedmann equation through x? /2 NZ;.
This explains the result, first noticed in Ref. [1], that after solving for the lapse, the
Friedmann equation loses its dependence on the kinetic term. Note however that we
can also use Eq. (7.23) to solve for the potential, V () ), and write the Einstein-frame
Friedmann equation in a form that does not involve the potential. Of course, if we
were to additionally use the continuity equation as discussed above, the Einstein-
frame Friedmann equation would take the form of Eq. (7.19) which contains neither
the kinetic nor the potential term.

Using Egs. (7.17) and (7.18) we can find expressions for the kinetic and potential
energies purely in terms of a,

2M2 3
K@) =P (c1a™! + 200072 + 307 (7.24)
20az;
2M2 3
Va) = — =P (2dy + dya™" + 2dra > + dsa™?), (7.25)
2aazy

where K = %2/2NZ%;, the ¢; are defined in Eq. (7.20), and we have further defined

o
do = Eﬂly
o
dy = p1 + 5Eﬂ2,
o
dy =y + 2553,
aC
dy = _— 7.26
3= B MG (7.26)

5The oy theory studied in Ref. [1] can be obtained by setting o = —3, 1 = 3/2, fop = —1/2,
and B3 = 0 [7]. With this parameter choice, the Bianchi constraint (7.13) reproduces Eq. (5.8) of
Ref. [1].
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Note that the terms proportional to C include any possible pressureless matter com-
ponent coupled to g°. This integration constant will always appear when solving
the continuity equation (7.12). The Friedmann equation is given by the generic equa-
tion (7.19). That is, we are left with the peculiar situation that the pressure, energy
density, and Einstein-frame Friedmann equation are completely insensitive to the
form of the scalar field potential. As discussed above, this lack of dependence on the
details of the scalar field physics is illusory; the lapse does depend on V() and ¥,
cf. Eq. (7.23), and in turn the physical or Jordan-frame expansion history depends
on the lapse, cf. Eq. (7.10).

Let us briefly remark on a pair of important exceptions. The no-go theorem forbid-
ding dynamical a still applies when there is a scalar field present if either the potential
does not depend on the lapse (such as a flat potential) or the field is not rolling. Let
us rewrite Eq. (7.12) (which is equivalent to the Klein—Gordon equation) as

d XZ ) deff ).(2
< Fvoo ) 3% X o 727
dr (21\13ff OO )3 N2, (7.27)

If V() is independent of N then %2 / Nesz cannot depend on N.g and, by extension,
neithercan p = x 2/2N32ff —V(x).Inthe specificcase of V() = const. thisis clearly
true, and we find 3%/NZ; o ae_f? , 80 p = p(a). Similarly, if the field is not rolling,
x = 0, then it is clear from Eq. (7.22) that p loses its dependence on the lapse.

To conclude this section, when a scalar field is coupled to the effective metric, we
avoid the no-go theorem and it is possible to have dynamical a, unless the potential
does not depend on the lapse or the field is not rolling. This result agrees with and
slightly generalises that presented in Refs. [1, 2]. In a realistic scenario, however, we
will have not only a scalar field but also matter components present. We now turn to
that scenario.

7.5 Adding a Perfect Fluid

We have seen that the no-go theorem on FLRW solutions in dRGT massive gravity
continues to hold in the doubly-coupled theory if the only matter coupled to the
effective metric is a perfect fluid whose energy density and pressure depend only
on the scale factor. This complicates the question of computing dust-dominated or
radiation-dominated solutions in massive gravity. One solution would be to treat the
dust in terms of fundamental fields. Another would be to add an extra degree of
freedom such as a scalar field. Its role is to introduce a lapse-dependent term into the
Bianchi constraint (7.13) and thereby avoid the no-go theorem.

It is this possibility which we study in this section. In Sect.7.4 we examined
the scalar-only case. Let us now include other matter components, such as dust
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or radiation, also coupled minimally to gfjf We assume that the density, p,, and
pressure, pp,, only depend on a.;.° We can then write the total density and pressure as

p=K—-V+pn, (7.28)
so that
K — p+p—(pm+pm)’
2
v p—p—(zpm —pm)' (7.29)

Note that Egs. (7.24) and (7.25) no longer hold, as they were derived without con-
sidering other matter, but Egs. (7.18) and (7.17) are still valid and are crucial.

We would like to investigate the cosmological dynamics of this model. Rather
than explicitly solving for the lapse and substituting it into the Friedmann equation
for H.g, which leads to a very complicated result, we will take advantage of the
known forms of K (acsr) and V (aest), as well as the fact that Neg only appears in Heg
and K through the operator

d 1 d
— = —. (7.30)
dt Negr dt
The physical Hubble rate is given by
Hoy = —ft_ %4 (7.31)
Aot Nett  Qefr Nefr
Using the chain rule, we can write
d da dV d V' x
a_<a X£_ "X (7.32)

YT U T avidy dr T @vjda)

where a prime denotes a derivative with respect to x. We also know that x =
Negr~/2K , giving
. V'Negv2K
a=——

DR (7.33)

which we can plug into Eq. (7.31) to obtain

6As discussed above and in Ref. [1], in principle any dust or radiation is made of fundamental
particles for which the stress-energy tensor does depend on the lapse. We introduce this effective-
fluid description because it is the standard method of deriving cosmological solutions in nearly any
gravitational theory and is thus an important tool for comparing to observations.
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"2
esz =5 (V1)72K > (7.34)
ase(dV /daesr)

This is the Friedmann equation for any universe with a scalar field rolling along a
nonconstant potential. Every term in Eq. (7.34) can be written purely in terms of da.g,
allowing the full cosmological dynamics to be solved in principle. K and dV /da.s
are given in terms of a.gr by Eq. (7.29) [using Egs. (7.17) and (7.18)]. V' as a function
of a.¢ can be determined from the same equations once the form of V (x) is specified.
Note that while the lapse is not physically observable, its evolution in terms of a can
then be fixed by using Eq. (7.10) to find

N2 Vv’ 2
= ok (—) , (7.35)
eff aaH(dV/daeff)

where H (a) is given by Eq. (7.19).

Assuming that the matter has a constant equation of state, we can use the known
forms of K (a) and V (a) to find a relatively simple expression for the Friedmann
equation up to V',

(Heff )2 _4a?Bady (Co 4 Craerr + Crady + Cpady) 736
v/ [3Co + 4C1ac + 5Caa%; +3(1 — w)Cpal;]”
where for brevity we have defined

Co = Be’C+ B*B1 +m*Mj, Be (B3 — BB))] .

Ci = —2m> M3, [o (B — 28B2) + B7B1].

Co = m*Mp, (BB1 — ap),

C, = —a’B(1 + w)pn. (7.37)

Notice that the right-hand side is a function of a only.

Let us examine the past and future asymptotics of these cosmologies, taking into
account radiation (w = 1/3) in the former and dust (w = 0) in the latter. At late
times, taking a. — o0 in Eq. (7.29), we find

K2 am—oe MM (BB — afy)

, 7.38

2N62ff 2a3 ﬂaeff ( )
dei— M3

V(x) == —ﬁ1:3ﬂ = (7.39)

We see that the scalar field slows to a halt: V () approaches a constant, while d x /d,
where dt = N.gdt is the proper time, approaches zero. Taking the late-time limit
of the Friedmann equation (7.36), we obtain
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v ———deff - (740)
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Because x approaches a constant x. at late times, V' = (dV /dx)|,=,, contributes
a constant to the Friedmann equation. Therefore we find that H.¢ generically blows
up, which is potentially disastrous behaviour. This implies a violation of the null
energy condition. Notice also that there is no guarantee that V = —f 1m2M1%1 /3B
is within the range of V(x), assuming the scalar field potential is not set by grav-
itational physics. This may lead to further pathologies, as the form of V (a) would
be inconsistent with large values of a.g. As we discuss below, if V' goes to O then,
depending on the speed at which it does so, H.i may be better behaved.

At early times, demanding the existence of a sensible radiation era leads to further
problems. Assuming radiation couples to gffg , then py, ~ ae_f? with py, = pm/3. We
have, cf. Eq. (7.29), that 2K = p + p — (pm + pm), but, cf. Eq. (7.18), p and p do
not have any terms scaling as steeply as ae_f? . Therefore, in the presence of radiation,
py and p, pick up a negative term going as a;ff to exactly cancel out py, and py,,
leading to K < 0 at sufficiently early times. From Eq. (7.34) we see that this would
lead to a negative Hesz, and hence to an imaginary Hubble rate. Equivalently, we can
take the early-time limit of Eq. (7.36) to show

2
(%ff) g 2ok, (7.41)
£0

so that again we see (for a real potential) H.¢ becoming imaginary.

How could these conclusions be avoided? We can reproduce sensible behaviour,
but only if the potential is extremely contrived. At early times, we would need to
arrange the scalar’s dynamics so that V' — oo “before” (i.e., at a later aeg then)
K crosses zero.” We would then reach the initial singularity, H.;y — 00, before the
kinetic term turns negative.® Moreover, we would need to tune the parameters of the
theory so that K = 0 happens at extremely early times, specifically before radiation
domination. At intermediate times, V' would need to scale in a particular way to
[through Eq. (7.36)] reproduce Hesz ~ ae_f? and Hesz ~ ae_f? during the radiation-
and matter-dominated eras, respectively. Finally, in order to have H.; — const.
at late times, we see from Eq. (7.40) that we would require V' to decay as ae_ffl/ :,
We can construct such a potential going backwards by setting Hef = Hacpwm in
Eq. (7.36), but there is no reason to expect such an artificial structure to arise from
any fundamental theory. Even then we may still get pathological behaviour: Neg
diverges if at some point Hegraerr = Ha, cf. Eq. (7.10).

"The other obvious possibility, having dV /daeg reach 0 before K does, is impossible given the
forms of K (a) and V (a).

8This proposal has an interesting unexpected advantage: the Universe would begin at finite degr, s0
a UV completion of gravity might not be needed to describe the Big Bang in the matter sector.
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7.6 Mixed Matter Couplings

Before concluding, we briefly discuss a slightly different formulation which avoids
some, but not all, of our conclusions. If we consider a scalar field and a perfect fluid,
the avoidance of the no-go theorem on FLRW solutions only requires that the scalar
field couple to gfflf . In principle, all other matter could still couple to g,,. In fact,
this is the theory that was studied in Ref. [1]. This theory violates the equivalence
principle in the scalar sector, but is not a priori excluded, and will turn out to have
slightly better cosmological behaviour. Moreover, there is a compelling theoretical
reason to consider such couplings: matter loops would only generate a g-metric
cosmological constant and would not destabilise the rest of the potential. However,
the scalar field’s energy would still contribute to the cosmological constant for gffﬁ
and hence to all of the interaction terms unless, for example, this was forbidden by
some symmetry. A massless scalar would be better behaved in this sense, but as
we have shown above, such a scalar field will not avoid the no-go theorem because
after integrating the Klein—Gordon equation, the pressure loses its dependence on
the lapse.

Because the perfect fluid couples to g,, and we derived the Bianchi constraint
(7.13) by taking the g-metric divergence of the Einstein equation, the constraint will
now only contain p, rather than the total pressure, i.e.,

m*Mpa® P(a)a = afa’ypya. (7.42)

This is the same constraint as in the scalar-only case discussed in Sect.7.4, so the
scalar’s kinetic and potential energies have the same forms, K (a) and V (a), as in
Egs. (7.24) and (7.25). The physical Hubble rate is now H, which after solving for
the lapse is determined by the equation’

3H? = = +m? (co +3cia” ' + 3cza_2 + C3Cl_3) , (7.43)

where the ¢; coefficients are defined in Eq. (7.20). Because the scalar field does
not have to respond to matter to maintain a particular form of p(a) and p(a), we
no longer have pathological behaviour in the early Universe, where there will be a
standard a—* evolution. Moreover, as was pointed out in Ref. [2], there is late-time
acceleration: as p, — 0, 3H?> — m?(By — (/B)B1), which, if positive, leads to an
accelerating expansion.

However, these are not always self-accelerating solutions. We will demand two
conditions for self-acceleration: that the late-time acceleration not be driven by a
cosmological constant, and that it not be driven by V () ), both of which can easily be
accomplished without modifying gravity. In other words, we would like the effective
cosmological constant at late times to arise predominantly from the massive graviton.

9Using the transformations to the « theory in footnote 5, we recover Eq. (5.9) of Ref. [1].
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Let us start with the first criterion, the absence of a cosmological constant. Recall
from Sect. 2.1.2 that we can write the dRGT interaction potential in terms of elemen-
tary symmetric polynomials of the eigenvalues of either X = /g~ f or K =1 - X,
with the strengths of the interaction terms denoted by the by-now familiar g, in the
first case and by «,, in the latter. What is notable is that oy # By: the cosmological
constant is not the same between these two parametrisations. Terms proportional to
+/—g arise from the other interaction terms when transforming from one basis to the
other. In bigravity there is a genuine ambiguity as to how one defines the cosmologi-
cal constant, and throughout this thesis, because we are concerned with cosmological
solutions, we have chosen to identify the cosmological constant with the constant
term appearing in the Friedmann equation for the physical metric. In massive gravity
with a Minkowski reference metric, however, the presence of a Poincaré-invariant
preferred metric allows for a more concrete definition of the cosmological constant.'?
Consider expanding the metric as

&uv = N + 2hyy + hyughogn™”. (7.44)

This expansion is useful because the metric is quadratic in /,,, but is fully nonlinear,
i.e., we have not assumed that £, is small [8]. In this language, the cosmological
constant term, proportional to ./—g, can be eliminated by setting «p = «; = 0.
Making this choice of parameter, and recalling, cf. Eq. (2.27), that «,, and B, are

related by [7]
4

_ \ (_1)i+n 745
Bn = ( —”)-2mau (7.45)

i=n

we find the effective cosmological constant can be expressed in terms of a3 4 by

2 o
Aefr = (ﬁo - Eﬂ1)

[3a (2+°—‘)—a (4+30—‘)+a (1+0—‘)} (7.46)
") T ) "\ T B '

Part of this constant comes from the fixed behaviour of the scalar field potential.'!
This piece is not difficult to single out: it consists exactly of the terms in Eq. (7.46)
proportional to /. Taking the late-time limit of Eq. (7.25), we can see that V (x)
asymptotes to

WERWE

2442
eff —> 00 m MP]:BI

a3B

V(x) (7.47)

10We thank Claudia de Rham for helpful discussions on this point.

HNotice from Eq. (7.24) that, as in the case with a perfect fluid, the scalar field slows down to a
halt at late times, so there is no contribution from the kinetic energy.
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Now consider the Friedmann equation in the form (7.8) with, at late times,
p — V. We can define a cosmological-constant-like piece solely due to the late-time
behaviour of V' given by

aV  (aer\3 ag—o0 m?
A E—(—) G082 (3o — 3as + ) . 7.48
=5z e 3 B Bay — 3a3 + ay) (7.48)
Then Eq. (7.46) can simply be written in the form
2 2
m m
Aefr = ER 60y — 4oz +ay) + Ay = ?130 + Ay, (7.49)

where in the last equality we mention that the residual term is nothing other than
m?By/3, which is simply a consistency check.

The modifications to gravity induced by the graviton mass therefore lead to a con-
stant contribution to the Friedmann equations at late times, encapsulated in m2 /3
(with ¢y = ¢} = 0). In a truly self-accelerating universe, this term should dominate
A, . If it did not, the acceleration would be partly caused by the scalar field, and one
could get the same end result in a much simpler way with, e.g., quintessence. For
generic values of «,, and for 8 ~ O(1), both of these contributions are of a similar
size and will usually have the same sign. To ensure self-accelerating solutions, one
could, for example, tune the coefficients so that 3o, — 3a3 + a4 = O (the scalar
field contributes nothing to Ag) or 3oy — 33 + a4 < O (the scalar field contributes
negatively to Aefr), or take 8 < 1 (the scalar field contributes negligibly to Acg).

7.7 Summary of Results

One can extend dRGT massive gravity by allowing matter to couple to an effective
metric constructed out of both the dynamical and the reference metrics. The no-go
theorem ruling out flat homogeneous and isotropic cosmologies in massive gravity
[6] can be overcome when a scalar field is “doubly coupled” in such a way [1, 2].
We have shown that this result is, unusually, dependent on the use of a fundamental
field, such as a scalar field in the aforementioned references, as the no-go theorem is
only avoided when the pressure of the matter coupled to gff]f depends on the cosmic
lapse function. This lapse dependence is not present for the types of matter usually
considered in late-time cosmological setups, such as radiation (p ~ ae_f? ) and dust
(p = 0), and therefore a universe containing only such matter will still run afoul of
the no-go theorem. While this may not be a strong physical criterion—cosmological
matter is still built out of fundamental fields—it presents a sharp practical problem
in relating the theory to cosmological observations. Furthermore, if one uses a scalar
field to avoid the no-go theorem, it cannot live on a flat potential and must be rolling.
The latter consideration would seem to rule out the use of the Higgs field to unlock
massive cosmologies, as we expect it to reside in its minimum cosmologically.
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Overall, in principle one can obtain observationally-sensible cosmologies in
doubly-coupled massive gravity, but either a new degree of freedom must be included,
such as a scalar field or some other matter source with a nontrivial pressure, or we
must treat cosmological matter in terms of their constituent fields. Thus we cannot
apply the standard techniques of late-time cosmology to this theory.

We have further shown that if dust and radiation are doubly coupled as well—
which is necessary if we demand the scalar obey the equivalence principle—then
the cosmologies generically are unable to reproduce a viable radiation-dominated
era, and in the far future the Hubble rate diverges, rather than settling to a constant
and producing a late-time accelerated expansion. These pathologies can only be
avoided if the scalar field potential is highly contrived with tuned theory parameters,
or dust and radiation do not doubly couple. In the latter case, there is generically
late-time acceleration, but for much of the parameter space, this is in large part
driven by the potential of the scalar field. In those cases the modification to general
relativity may not be especially well motivated by cosmological concerns. Otherwise,
the parameters of the theory need to be tuned to ensure that the theory truly self-
accelerates.

It seems that dRGT massive gravity only has viable cosmological solutions—
i.e., that evade the no-go theorems on existence [6] and stability [9]—if one either
includes a scalar field or some other “exotic” matter with a lapse-dependent pressure
(or possibly a pressure depending on @) and couples it to the effective metric proposed
in Ref. [1] or goes beyond the perfect-fluid description of matter. Even if one includes
anew scalar degree of freedom, significant pathologies arise if normal matter couples
to the same effective metric. In all setups, the need for descriptions beyond a simple
perfect fluid makes this theory unappealing from an observational standpoint.

We end with three small caveats. Notice that we have assumed that in uni-
tary gauge for the Stiickelberg fields, i.e., choosing coordinates such that 7,, =
diag(—1, 1, 1, 1), the metric has the usual FLRW form (7.4). However, that form
is arrived at by taking coordinate transformations of a more general homogeneous
and isotropic metric, so that assumption may be overly restrictive.'> Equivalently,
one could consider a more general, inhomogeneous and/or anisotropic, gauge for the
Stiickelberg fields.

We also note that if this theory does possess a ghost, even with a mass above the
strong coupling scale, solutions to the nonlinear equations of motion could contain
the ghost mode and therefore not be physical.!*> However, a Hamiltonian analysis
showed that the ghost does not appear around FLRW backgrounds [1], suggesting
that we have studied the correct cosmological solutions to any underlying ghost-free
theory.

Finally, as discussed in Chap. 6, if one simply gives dynamics to the reference
metric, we end up with a theory of doubly-coupled bigravity which treats the two
metrics on completely equal footing and has been shown to produce observationally
viable cosmologies.

12We thank Fawad Hassan for pointing this out to us.
13We thank Angnis Schmidt-May for discussions on this point.
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Part 11
Lorentz Violation

Einstein was a giant. His head was in the clouds, but his feet were on the ground.
But those of us who are not that tall have to choose!

Richard Feynman



Chapter 8
Lorentz Violation During Inflation

The only thing that really worried me was the ether. There is
nothing in the world more helpless and irresponsible and
depraved than a man in the depths of an ether binge. And I knew
we’d get into that rotten stuff pretty soon. Probably at the next
gas station.

Hunter S. Thompson, Fear and Loathing in Las Vegas

For this final chapter, we move to the early Universe to ask what constraints we can
put on the violation of Lorentz invariance during inflation. As discussed in Sect. 2.2,
we can use Einstein-aether theory (@-theory) [1, 2] to model Lorentz violation in the
boost sector, i.e., while maintaining rotational invariance on spatial hypersurfaces,
at low energies. In @-theory, Lorentz invariance is spontaneously broken by the
presence of a vector field nonminimally coupled to gravity. A Lagrange multiplier
enforces the constraint that this vector, sometimes called the aether and denoted here
by u*, be timelike and have fixed norm,

utu, = —m?, 8.1)

where m is a free parameter with mass dimension 1. This forces the aether to acquire
a nonzero vacuum expectation value (VEV) at every point in spacetime, so at every
point the aether picks out a timelike direction and hence defines a preferred reference
frame. Note that @-theory is a vector-tensor theory of gravity and is, at the level of the
theory, completely Lorentz invariant. It is the nontrivial constraint which ensures that
Lorentz invariance, and specifically boost invariance, is always broken at the level of
the solutions. ZA-theory corresponds, for example, to the low-energy limit of Hotava—
Lifschitz gravity, a well-studied candidate UV completion of general relativity which
breaks the symmetry between time and space coordinates directly at the level of the
action [3].

In Sect.2.2.2 we considered a generalisation of @-theory in which a scalar field,
¢, couples to the aether by allowing its potential, V (¢), to depend on the divergence
or expansion of the aether, 0 = V,u“ [4-6]. This is of particular interest for cos-

© Springer International Publishing AG 2017 155
A.R. Solomon, Cosmology Beyond Einstein, Springer Theses,
DOI 10.1007/978-3-319-46621-7_8


http://dx.doi.org/10.1007/978-3-319-46621-7_2
http://dx.doi.org/10.1007/978-3-319-46621-7_2

156 8 Lorentz Violation During Inflation

mology because 0 is related to the local Hubble expansion rate: the aether is forced
by symmetry to align with the cosmic rest frame in a spatially homogeneous and
isotropic background [2, 7-9], and purely on geometric grounds we find 6 = 3mH,
with H = a/a is the cosmic-time Hubble parameter. The ability to use the expansion
rate so freely in the field equations is a departure from general relativity and other
purely metric theories: in such theories, H is not a covariant scalar as it can only be
defined in a coordinate-dependent way. Thus, this extension of pure @-theory opens
up the interesting possibility of cosmological dynamics depending directly on the
expansion rate in a way that is not allowed by general relativity or many modified
gravity theories.

This coupling also allows the aether to directly affect cosmological dynamics
at the level of the background. Recall from the discussion in Sect.2.2.3 that this
is not possible in “pure” @-theory, as the aether tracks the dominant matter source
and hence can only rescale Newton’s constant in the Friedmann equation, slowing
down the expansion. By coupling the scalar field to 6 in the way discussed above,
one can obtain qualitative changes in the cosmological dynamics, cf. Egs. (2.87) and
(2.88). If we identify this scalar field with the inflaton, the coupling to the aether
therefore modifies inflationary dynamics. In a simple case, it adds a driving force
which can slow down or speed up inflation [4]. This theory with another simple
form of the coupling is also closely related (up to the presence of transverse spin-
1 perturbations) to @CDM, a dark energy theory in which the small cosmological
constant is technically natural [10, 11].

The type of coupling we have chosen—i.e., promoting V (¢) to V (0, ¢)—may
seem restrictive, but it is in fact a reasonably general approach to coupling the aether
to a scalar field. Any terms one can write down which do not fit in this framework
would have mass dimension 5 or higher. Such terms would only be relevant at short
distance scales and would not be power-counting renormalisable. Therefore, from
an effective field theory approach, all the operators we wish to include are captured
in V (6, ¢), up to integration by parts. We refer the reader to Sect.2.2.2 for a more
in-depth discussion of the generality of this type of coupling. We will perform our
analysis with the important assumptions that ¢ drives a period of slow-roll inflation
and that its kinetic term is canonical, but otherwise leave its properties unrestricted.
Hence we consider this theory to be a fairly general model of Lorentz violation in
the inflaton sector.

Our aim is to explore the effects of such a coupling at the level of linear per-
turbations to a cosmological background, and in particular to find theoretical and
observational constraints. For reasonable values of the coupling between the aether
and the inflaton, these perturbations are unstable and can destroy the inflationary
background. This places a constraint on the coupling which is several orders of mag-
nitude stronger than the existing constraints. If the parameters of the theory are chosen
to remove the instability, while satisfying existing constraints on the aecther VEV, then
the effects of the coupling on observables in the cosmic microwave background will
be far below the sensitivity of modern experiments.
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The remainder of this chapter is organised as follows. In Sect. 8.1 we discuss the
behaviour of linearised perturbations of the aether and the scalar around a (nondy-
namical) flat background, deriving a stability constraint (previously found by another
method in Ref. [4]) which provides a useful upper bound on the aether-scalar cou-
pling. In Sect. 8.2, we set up cosmological perturbations in this theory; the real-space
perturbation equations can be found in Appendix D. In Sect. 8.3 we examine the spin-
1 cosmological perturbations of the aether and metric during a phase of quasi-de Sitter
inflation. This demonstrates clearly the existence of a tachyonic instability, which
we explore in some depth. In Sect. 8.4 we look at the spin-0 perturbations, finding
the same instability and calculating the scalar power spectrum. Unusually, isocurva-
ture modes do not appear to first order in a perturbative expansion around the aether
norm. We give a worked example in Sect. 8.5 which elucidates the arguments made
for a general potential in the preceding sections, and conclude with a summary and
discussion of our results in Sect. 8.6.

8.1 Stability Constraint in Flat Space

Before moving on to the main focus of this chapter, perturbations around a cosmo-
logical background, we briefly examine perturbation theory in flat space. Our goal
is to derive a constraint on the coupling Vi, by requiring that the aether and scalar
perturbations be stable around a Minkowski background. This will set an upper limit
relating the coupling to the effective mass of the scalar,

Vi (0,0) < 2¢123V (0, 0), (8.2)

where, we remind the reader, cjo3 = ¢; + ¢ + ¢3, and analogously for similar
expressions. We will find this bound on V4 (0, 0)? useful when we examine the
cosmological perturbations. This result complements and generalises a derivation in
Ref. [4], which used different methods and selected a specific form of V (6, ¢), and
will take as a starting point the method utilised in Ref. [8] for pure @-theory.

We assume that the potential is analytic around (9, ¢) = (0, 0), because if it
diverges there the aether-scalar stress-energy tensor (2.81) will be nonzero and we
cannot have a Minkowski solution. We will also assume that V (0, 0) is either van-
ishing or negligibly small; if not, then this contributes a cosmological constant term
to the stress-energy tensor, and our background is (anti-)de Sitter rather than flat.
Observations constrain such a term, barring a nonlinear screening mechanism, to be
very small.!

In flat space the field equations are solved by a constant-field configuration,

IThe scalar field is canonical, coupled minimally to gravity, and not coupled at all to the matter
sector, so we would not expect any screening mechanisms to be present in this theory.
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i = (m,0,0,0), (8.3)
r=0, (8.4)
¢ =0. (8.5)

We introduce small perturbations, {v*, 8\, 8¢}, defined by

ut =u" +v*, (8.6)
A=A+ 82, 8.7)
¢ =0+59. (8.8)
Writing the action (2.76) as
5= / s, (89)

we expand the Lagrangian to quadratic order,
L =L +8L+87, (8.10)

where §,.Z and §,.Z are of linear and quadratic order, respectively. The background
and linear Lagrangians recover the background equations of motion, leaving us with
the quadratic Lagrangian,

5.2 = — c19,v" 8" vy — c2(9,0")* — €30,0" 8,y + 264 (@i v,.)

1 Y 1 P 2 2 7
— 5086059 = 5 [ Vao 0. 0)(3,0")% + Vo 0. 0039 + 2V 0. 0154 @, |
(8.11)

whose variation yields the equations of motion of the perturbed variables. From here
we drop the (0, 0) evaluation on the derivatives of the potential (although they remain
implicit). The §1 equation of motion is

v, =0. (8.12)
It constrains the timelike component of the aether perturbation to vanish,

v’ =0. (8.13)

Inserting this result into Eq.(8.11) and splitting v’ into spin-0 and spin-1 fields> as

2The aether perturbation is in a reducible subgroup of SO(3), so by decomposing v’ like this we
single out the real dynamical degrees of freedom. Note also that, here and throughout this chapter,
we will refer to scalar and vector modes of the aether as spin-0 and spin-1, respectively, so as not
to confuse them with the scalar field ¢ and vector field u*.
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vl =8+ N, (8.14)

where the spin-0 piece S’ is the divergence of a scalar potential (S’ = 9’ %) and the
spin-1 piece N' is transverse to S’ (3; N' = 0), we find that the quadratic potential
decouples for these two pieces,

0t =20+ 20, (8.15)
where the spin-0 Lagrangian is
PO =18 —18:879'S; — 2(8:5)? — 38;579;S"

1. y 1 A ,
+ 3 (8¢>2 — 8 a,-&pa,»aqs) -3 [Voo (3;S')* + Vippddp® + 2V (8; 51 ]
(8.16)

and the spin-1 Lagrangian is
LV = |N* — ¢ N'3'N;. (8.17)

We have eliminated the cross-terms between the spin-0 and spin-1 pieces, and the c3
term in the spin-1 piece, using integration by parts.

Notice that a consequence of the spin-1 perturbation N’ being divergence-free is
that the scalar-field coupling does not affect the spin-1 Lagrangian, because ¢ only
couples to the aether through & = V,u*. In particular, this allows us to use the
constraint

c1 >0 (8.18)

from the start. This was derived in pure @-theory from requiring positivity of the
quantum Hamiltonian for both the spin-0 and spin-1 fields [8], and is suggested by
the fact that for ¢; < 0 the kinetic terms for S’ and N’ in Egs.(8.16) and (8.17)
have the wrong sign. Since this was proven to be true for the spin-1 perturbations
in &-theory and they remain unchanged in this extension of it, this condition on ¢
must continue to hold.

Finally, we can vary the action with respect to our three perturbation variables—
S%, N, and §¢—to obtain the equations of motion,

.. Ci3+ iV . 1 .
$i o BTG 51960 =0, (8.19)
C1 2C1
N —3*N' =0, (8.20)
166 — Vipsdp — Vosd; S = 0. (8.21)

In @-theory, ¢ = 0 = V (0, ¢) and both aether equations are simply wave equations
with plane wave solutions [8],
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i (l;) - e—ici‘”kt-&-ii?»)?7 (8.22)
NI(R) o e~ies hiik s (8.23)

with the propagation speeds for the spin-0 and spin-1 perturbations given by

o2 = 22, (8.24)
1

2 =1, (8.25)

The scalar coupling modifies the @-theory situation in two ways. First, cjp3 is
shifted by %V@g evaluated at (8 = 0,¢ = 0) (remember that implicitly we are
evaluating all the derivatives of V there, so they are just constants). This is to be
expected: the expansion of the potential around (0, 0) includes, at second order,
the term 1 Vyp80% = 1V,0(8;S7)%, which can be absorbed into the ¢, term in the
(quadratic) Lagrangian by redefining ¢, — ¢, + %Vgg. We will find this same rede-
finition of ¢, appears in the cosmological perturbation theory.

The second change from @-theory is more significant for the dynamics. When Vy,
is nonzero—i.e., when the coupling between u* and ¢ is turned on—it adds a source
term to the wave equation for S’ (the N' equation is unmodified because neither 6
nor ¢ contain spin-1 pieces, as discussed above). Similarly, a u**-dependent source
is added to the quadratic order Klein—Gordon equation for §¢.

The equations of motion for S’ and 8¢ are those of two coupled harmonic oscil-
lators. To simplify these, we move to Fourier space, where the spin-0 degrees of
freedom S,i (t) = 3" (t) and 8¢ (1) obey the coupled wave equations (dropping the
k subscripts and absorbing %Vgg into ¢;):

" 1
V22— 7 Vesd =0, (8.26)

Cy
8¢ + (K + Vipg)dp — Viagh™ ¥ = 0. (8.27)

This system can be diagonalised® by defining

- Vig
= 8o, 8.28
v =)’ (829

- Vosk?
Sp=8p+ ——0" vy, (8.29)

022 wk

where the w. are defined by

3We thank the referee of Ref. [12] for this suggestion, which simplifies an earlier version of the
calculation while obtaining the same result.
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202 =k (14 ¢ + V2, + \/[k2 (1 _ c<°>2) + V2 ]2 n 2Vigh® (8.30)
+ s 9 s 9 o :
Under this transformation, the equations of motion are simply
Y+ =0, (8.31)
8¢ + widp = 0. (8.32)

Note that in the limit Vpy — 0 where the two fields decouple, w2 goes to k* + Vdfq,,
the squared frequency of a §¢ mode, and w? goes to c2k?, the equivalent for ¥
modes. We see that ¥ and 8~¢ are noninteracting, mixed modes which reduce to
and &¢, respectively, in the absence of a scalar-aether coupling.

For stability, we require w. to be real, so that the solutions to Egs.(8.31) and
(8.32) are plane waves rather than growing and decaying exponentials. Note that w
is manifestly real, so the 8;;5 modes are always stable. It is the aether modes, ”/7,4
which can be destabilised by the coupling to the scalar, while the reverse is not true.
Stability imposes a constraint on Vyg,

Vi < 201c2(2 + Viy), (8.33)

which, since we would like it to hold for arbitrarily large-wavelength modes (i.e.,
arbitrarily small k), can be written, substituting back in the definition (9% = ¢123/c1,

Viy (0,0) < 2¢123V 0, 0), (8.34)

where for clarity we have put back in the (9, ¢) = (0, 0) evaluation which has
been implicit. Equation (8.34) constrains the coupling between the aether and the
scalar field in terms of the aether kinetic-term free parameters (or, equivalently, its
no-coupling propagation speed) and the effective mass of the scalar in flat space. It
agrees with the spin-0 stability constraint in Ref. [4] which was derived in a slightly
different fashion for a specific form of V (6, ¢).5 The ¢; are dimensionless, so we
might expect them to naturally be &'(1). Assuming this, Eq. (8.34) roughly constrains
the coupling Vj4(0, 0) to be less than the scalar field mass around flat space. Note
that this constraint also implies ¢z > 0,° which is the combined constraint from
subluminal propagation and positivity of the Hamiltonian of the spin-0 field in pure
&-theory [8].

“4Technically, the mixed aether-scalar modes which become arbitrarily close to the aether perturba-
tions in the limit Vpy — 0.

3Qur notation is different than that used in Ref. [4] and as a result their constraint looks slightly
different. They define the aether to be dimensionless and unit norm while we give it a norm m with
mass dimensions. To compensate for this, their ¢; are 167 G mZ2¢; in our notation. We have checked,
translating between the two notations, that our constraint matches theirs.

6 Assuming that the scalar field is nontachyonic.
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8.2 Cosmological Perturbation Theory

The goal of this chapter is to explore the impact of the coupling between ¢ and
u" on small perturbations to a homogeneous and isotropic cosmology. We will be
particularly interested in a period of slow-roll inflation driven by ¢. As has been
explored in great depth over the past three decades, a scalar field rolling slowly
down its potential can lead to cosmic inflation and all of the interesting cosmological
consequences for explaining the structure of the observed universe that follow from
it [13]. In this section we set up the linearised perturbation theory for the metric and
the scalar around a homogeneous and isotropic universe. Recall that the background
equations of motion, i.e., the Friedmann and Klein—-Gordon equations, are presented
in Sect.2.2.3.

8.2.1 Perturbation Variables

Let us consider linear perturbations about the FRW background (2.83), defined by

ds* = a*(v) {—(1 +2®)dt* — 2B;dvdx' + [(1 +2W)8;; + 2Hr;;ldx dx'}

(8.35)

so the components of the perturbed metric are

goo = —a*(1+29),

goi = —a’B;,

gij = a’[(1 +2W¥)8;; + 2Hri;]. (8.36)
Inverting, and keeping terms to first-order we have

g =—a7?(1-29),

% = —a2B

¢ =a?[(1 —2w)87 —2H]. (8.37)

Indices on spatial quantities like B; are raised and lowered with §;;. The Christoffel
symbols are (with background parts in bold)

Too = 7 + @,
ry, =, — #B;,
T) = (A1 +2W) + V' —2P) 8 + B, j) + (2 Hrij + Hyy)).
Iy, = &' —#B —B",
) — . .
Ty, = A8 + 8" Bjx + \IJ’«S_’,. + H}’j,
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Tl = B Sj + Wi + W 8, — W8, + Hy'loy + Hrl , — Hrj',  (8.38)
where primes denote derivatives with respect to . We do not reproduce the compo-
nents of the Einstein tensor here; they can be found in the literature [14].

The aether in the background has only u® = . Imposing the constant-norm
constraint, u,u" = —m?, to first order the aether is given by

wh = % (1 — @), Vi), (8.39)

where V' is the spatial perturbation to the aether. With lowered indices we have
u, =ma(—(1+®),V, - B;). (8.40)

Taking the divergence of Eq.(8.39) we can find the linearised expansion,
m , .
0=—[3201-)+3V +V',]. (8.41)
a
Finally, the scalar field ¢ is split into a background piece and a small perturbation,

b=+ 8¢, (8.42)

where ¢ satisfies the Klein—-Gordon equation in the background metric. Throughout
this chapter we use overbars to denote background values.

8.2.2 Linearised Equations of Motion

In deriving the perturbation equations we will need to expand V (0, ¢) around its
background value. To second order, assuming §¢ is similar in size to the metric
perturbations, we have

- _ _ 1,.- - -
V(O,¢) =V + Vpd6 + V¢ + 5 [Vos 80 + Viypdp® + 2Vp808¢] + 0(567),
(8.43)
where, per Eq. (8.41), the linear piece of the expansion is given by

8 == (3W' =340+ V). (8.44)

In deriving the linearised field equations we will need V (6, ¢) and all of its derivatives
up to first order,
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VO, ¢) =V + V80 + VS + 0(56%),

Vo(0.¢) = Vi + Voad0 + VouSp + 0(56°),

V0, ) = Vg + Vs + Vis86 + 0(56%),
Vio (0. §) = Vg + Voood0 + Viggddp + 0(86%),
Vig (0, @) = Vi + Vios80 + Vigpd + O(80)*. (8.45)

The linearised equations of motion in real space are given in Appendix D. How-
ever, the symmetries of the FRW background allow us to decompose the pertur-
bations into spin-0, spin-1, and spin-2 components [15]. In particular, because the
background variables (including the aether, which points only in the time direction)
do not break the SO(3) symmetry on spatial slices, these components conveniently
decouple from each other. Hence we perform this decomposition both to isolate
the fundamental degrees of freedom and to make close contact with the rest of the
literature on cosmological perturbation theory.

We decompose the variables as

8¢ = Z&PkY(O)’ (8.40)
k
©— Z o, 7O, (8.47)
k
=3 w0, (8.48)
k
Vi _ Z Z Vk(im)Yi(im)7 (849)
k m=0,1
Bl Z Z BEM yitem, (8.50)
k m=0,1
HY =2 > Hy"yiem, (8.51)
k m=0,1,2

where Y@ etc., are eigenmodes of the Laplace—Beltrami operator, 32 4k (see Refs.
[8, 14] for the forms of these mode functions and some of their useful properties).
From here on, we will drop the k subscripts. The spin-0, spin-1, and spin-2 pertur-
bation equations can then be found by plugging these expansions into the real space
equations listed in Appendix D.

8.3 Spin-1 Cosmological Perturbations

We begin our analysis by focusing on the spin-1 perturbations. The spin-2 pertur-
bations are unmodified by the aether-scalar coupling because V (6, ¢) only contains
spin-0 and spin-1 terms. The only physical spin-2 perturbations are the transverse and
traceless parts of the metric perturbation Hr;;, or gravitational waves, and they behave
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as they do in pure @-theory [8]. The spin-0 perturbations, discussed in Sect. 8.4, are
more complicated than the spin-1 perturbations due to the presence of §¢ modes.
The important physical result—the existence of unstable perturbations for large, oth-
erwise experimentally-allowed regions of parameter space—will therefore be easier

to see and understand in the context of the simpler spin-1 modes.
The only nontrivial spin-1 component of the aether field Eq.(2.77)is v = i,

[[ 2—%2 + —a—// - cla } (BED — yED)
a a

1
+20152(V'ED — prEDy 4 5(63 — c)K*BEY 4 ¢ k2VED

k / " 17
_Cl3§HT(:H) — ¢ (B @D _y (:tl))
[3V00 (a— - 2%2) + 3V9¢¢3’] (BED — v<i1>)] y* =0, (852
m

while the spin-1 perturbations of the stress-energy tensor are

STV =0, (8.53)
ma 2 a a’ a’
STOED [2 (_) |:( 2_%2 _2_ _ Cl—) (VED _ pED)
' a m? a

— cia? [GZ(V/(:I:I) _ Br(:tl))]’ n E(Cl — e)KA(BED — V(:l:l)):|

] T e R [ e
a
(8.54)

. 2 ’ .
o7 =2(2) a1y [a—2 a2 —kv D 4 )] ] yi;en, (8.55)

where @ = (c13 + 3c2)m? is defined in Eq.(2.75). As a consistency check, these
expressions reduce to those found in the literature for a scalar field uncoupled to the
aether [16] (setting V (0, ¢) = V (¢)) and for @&-theory [8] (setting V(9 ) = ab?,
with ¢; — ¢ + «). For convenience, from here on we will absorb 1 Vgg into ¢, and
indicate the change with a tilde, e.g.,

3 _
o= (C1 + 3¢ + 3+ EVQQ) mz, (8.56)
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and similarly for quantities like G.. While this is convenient notation we should
remember that Vy, and hence all tilded quantities are not necessarily constant,
although they are nearly so during a slow-roll phase.’

We should first note that due to its direct coupling to the aether, the scalar field
does source spin-1 perturbations, which is impossible in the uncoupled case as the
scalar field itself contains no spin-1 piece. In pure @-theory the spin-1 perturbations
decay away as a~! [8]. We may wonder if the scalar-vector coupling can counteract
this and generate a nondecaying spin-1 spectrum.

Using the gauge freedom in the spin-1 Einstein equations, we choose to work in a
gauge where H}il) = 0; that is, we foliate spacetime with shear-free hypersurfaces.
The i—j Einstein equation in the spin-1 case is unmodified from the @-theory case
[8] and gives a constraint relating the shift B! and the spin-1 aether perturbation
yED

’ B&ED = yyED, (8.57)

where
y = 161Gm?cys. (8.58)

It is tempting to notice the similarities between the v = i aether field equation
(8.52) and the 0—i Einstein equation (8.54), but this is just hinting at the underlying
redundancy between the two equations. Indeed, using Eq.(8.52) to eliminate the
scalar field term in Eq. (8.54) just leaves us with an identity. This is because, due to
the constraint equation (8.57), the two perturbations B and V are related, and hence
(by the Bianchi identities) these two equations have to contain the same content. We
choose to use the 0—i Einstein equation to derive our equation of motion for the spin-
1 perturbations. In this equation, the scalar field couples to the vector perturbations
of the aether and the metric via %ng,(ﬁ’. In the quadratically-coupled potential of
Donnelly and Jacobson, which we discuss in detail in Sect. 8.5, the coupling \_/94, is
exactly constant. In general, we will take \79¢ to be constant to first order in slow roll.
Inserting the constraint into the O—i Einstein equation we find

o o a// a//
(2—2%2 - —— 4 — V&
m a

m?2 a

1
N : |:(Cl s 1013 ]kzv(ﬂ) F o QAVEY 4 yEDr
-V

1 B ” o
_ - [:«W@g (“— _ 2%2) + ﬁv%cp’} V=0 (8.59)
2 a m

Following Ref. [8], we define & = aV&D to eliminate the first-derivative terms, so
Eq.(8.59) becomes

7 Anonconstant Vg requires cubic or hi gher order terms in the potential. For the quadratic Donnelly—
Jacobson potential discussed in Sect. 8.5, Vyg is constant and can be freely set to zero by absorbing
it into ¢».
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o 1 a - -
— = — Vi )g =0, (8.60)

m2c;  2mc

%.// +C§i1)2k25 + (A

where the no-coupling sound speed ¢*! is the de Sitter propagation speed of the
spin-1 aether and metric perturbations when the coupling to the scalar field is absent

(8],

1 1
@2 = L Loy ¢ LEO/a 8.61)
2 1—y
The background quantity A is defined by
"
A=20%— a_
a
— %2 -
% /
=—a (—) (8.62)
a

and vanishes in exact de Sitter space.

8.3.1 Slow-Roll Limit

The equation of motion (8.60) for the spin-1 aether and metric perturbations is dif-
ficult to solve in full generality. It was solved in pure de Sitter space (A = 0) in
@-theory (i.e., in the absence of the scalar field) in Ref. [8]. In that limit, Eq. (8.60) is
a wave equation with real frequency, so & was found to be oscillatory. Therefore, in
&-theory the spin-1 shift perturbation, B*" = y £ /a, decays exponentially,® leaving
the post-inflationary universe devoid of spin-1 perturbations. To investigate whether
the inflaton coupling term will change this conclusion, let us solve Eq. (8.60) in the
slow-roll limit.
We define the slow-roll parameters, € and 7, in the usual way,

H A
é 4
'S He T e (569

where for completeness we have included both the cosmic-time and conformal-
time definitions. Slow-roll inflation occurs whenever ¢, n < 1. In this limit, both
parameters are constant at first order and we can find

8Here and in the rest of this chapter, “exponential” growth or decay should be taken to mean
exponential in cosmic time, or as a power law in conformal time.
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1
~——1[1 .
a Hr( +é), (8.65)
1
H~ ——(1+e¢). (8.66)
T

Taking conformal-time derivatives we can calculate the background quantity defined
above,

A= — A~ % (8.67)
Note that during slow roll, H is approximately constant but 7 is not; therefore,
even though we are working in conformal time, we will often choose to write the
equations of motion and their solutions in terms of H, treating it as a free parameter
which measures the energy scale of inflation.
Using these relations, as well as the Klein—-Gordon equation in the slow-roll limit
and the fact that 7 = a H, we can write the & equation of motion to first order in
slow roll as

E//+C§:tl)2k2%-+ =
’ T

1 o 1 142~ -
VooV ) € = O(&). 8.68
(m2c18 Gmer 3V ¢)§ (C) (8.68)

V (0, ¢) and its derivatives will be constant at leading order in the slow-roll para-
meters, so if we ignore ' (¢) terms then Vj and Vg4 in Eq. (8.68) are constants. Our
equation of motion for the spin-1 perturbations can then be written simply as

A
g 4 cEV2E — ;s =0 (8.69)
where we have defined the constant
Vi Vag
A=——"—""—+0(s). 8.70
Gme, H + 0(¢) (8.70)

We have also assumed that A dominates &e/(m?c;) ~ & (which is ~ ¢(1072) [17,
18]), the term from pure @-theory. In principle this need not be true, if the coupling
term \79¢ were extraordinarily small. If the aether-scalar coupling is to do anything
interesting, then \79¢ must be larger than that, so we will continue to assume that it is.

Finally, let us identify the effective mass of the spin-1 aether perturbation, V =
& /a. Writing the equation of motion (8.69) in terms of V, switching to cosmic time,
and working to leading order in slow roll, we find

. . 212
V43HV +Q— MHV + 2V ~0, 8.71)
a
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Outside the sound horizon, c;k << a, we find that V has an effective mass in the
slow-roll régime given by

Vo Vos

. 8.72
6mc  H ( )

M3 =2 —A)H?~2H* —

We expect a tachyonic instability to develop for negative M2, i.e., for A > 2. We
proceed to demonstrate that just an instability arises.

8.3.2 Full Solution for the Vector Modes

Noticing the similarity between Eq. (8.69) and the usual Mukhanov—Sasaki equation
[16], which has solutions in terms of Bessel functions, we change variables to g =
x~12¢ withx = —C‘Sil)kl' to recast Eq. (8.69) as Bessel’s equation for g(x),

d’g  dg
2 22y, —
XW-FXE-F(X —U)g—O, (8.73)
with the order v given by
1
V2 = 1 + A. (8.74)

Depending on the sign and magnitude of A, the order v can be real or imaginary. We
will find it convenient to write the general solution in terms of the Hankel functions
as

£ = */TEJTT [ HV (—cFVkt) + B HP (—cF k)] . (8.75)

To determine the values of the Bogoliubov coefficients, o; and B¢, we need to match
this solution in the subhorizon limit, —c*Vkt — o0, to the quantum vacuum state
of the aether perturbations in flat space. This is desirable because we can assume
that, at such short wavelengths, these modes do not “see” the cosmic expansion. In
Sect.IV.B of Ref. [8] the quantum mode functions N; for the aether perturbation v’
were demonstrated to satisfy

1 ‘
Ny = ———e ik, (8.76)
4/lcilk

This function is related to & by Ny = 2V = & The mode Ny is defined in
Minkowski space, where a = 1 with t = 7, so we only need to modify it by a factor
of m to obtain &. Using the asymptotic formula
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lim H‘fl’z)(—c_gil)kr) — /%;e$i(0§i”kr+8)’ (8.77)
T

D [ (1
cs kt—00 —C§ )k'L'

with § = %(v + 1/2), we find that in the subhorizon limit,
1

V2cEk

Matching to Eq. (8.76), and ignoring the unimportant phase factors e, we see that
we need

£ [ake—i(cii”kma) +ﬁke+i(c§il)kr+6):|. (8.78)

1 2
o = — (8.79)
lei’

B =0, (8.80)
where we have (consistently) put in some factors of ¢{*! which do not appear in the
flat-space calculation because it ignores gravity, but would have appeared if we had

included gravity.” Substituting in this value of o, we find the full solution for the
spin-1 perturbation

1
VED = /n4m\/|c_«/—rH“)( ). (8.81)
l

As a consistency check, if we turn off the scalar-aether coupling, we have v = 1/2,
and (up to an irrelevant phase of —m/2) we recover Eq. (91) in Ref. [8].

8.3.3 Tachyonic Instability

On superhorizon scales, the Hankel functions behave as

S S AN
lim A (—c*Vkr) = F(v) (—) ) (8.82)
k0 2

Plugging this into Eq. (8.81), we see that the large-scale vector perturbations to the
aether and metric depend on time as

9To see this, consider Eq. (8.60) in the case a = 1, which is the spin-1 perturbation equation in flat
space with gravitational perturbations turned on. Since this requires ¢ = 0, the equation of motion
(8.60) just becomes &” + c§i1)2k2$ = 0. This has the same solution as we found in the case with
gravity turned off in Sect. 8.1, but with the sound speed modified, as expected.
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VED ~ g7t (=1) " ~ (—r)%_”. (8.83)

When the aether-scalar coupling (proportional to A) is small or absent, such that
—1/4 < A < 2, the vector perturbations decay and are unobservable, as in pure &-
theory [8]. If A is outside that range, then the coupling is large enough to change the
nature of the vector perturbations. The coupling has two possible effects, depending
on its sign. If v is imaginary (A < —1/4), then the vector modes are both oscillatory
and decaying.'” This corresponds to a large coupling which significantly damps the
perturbations. On the other hand, the vector modes will experience runaway growth
if 3/2 — v is real and negative, or A > 2. In this case the coupling is large, but
with the opposite sign to the previous case, and this large coupling drives runaway
production of aether modes. This is precisely the tachyonic instability we anticipated
in Sect.8.3.1, as it results from the aether perturbations acquiring an imaginary
effective mass.

Since this growth is exponential (in cosmic time, or in number of e-folds), it
seems quite probable that this growing vector mode will overwhelm the slow-roll
background solution and therefore lead to an instability. In this subsection we will
calculate the growth of a single vector mode and compare it to the background
evolution.

In order to maintain a homogeneous and isotropic background spacetime, the time-
space term in the stress-energy tensor must be zero at the level of the background
(T°; = 0). The spin-1 perturbations do contribute to these terms in the stress-energy
tensor (8.54) through terms proportional to Vk(il) Yi(,kil). In particular, we will focus
on the scalar-aether coupling term

Tk ="+ m‘_/w%vk(il)yi(f) +e (8.84)
which we will write as _
T D m\'/gd,ﬂv,fi”yff”. (8.85)
a ,

While we focus on this term for simplicity, we note that there are many other terms
in 79 which receive contributions from the vector modes, and some may even be
larger than the term in Eq. (8.85).

Our strategy will be to focus on a single mode, picking one of the larger modes
available to us. Because V; grows with decreasing k, we choose a mode which crosses
the sound horizon at some early conformal time ;. Such a mode has wave number

1
k = —aEn (8.86)
—Cs T

10Recall that, during inflation, t runs from —oo to 0.
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The perturbation Vk(il) is given by Eq. (8.81), which for a superhorizon perturbation
becomes

@y L H TR B (V%
VE W) = -5 JWF(V)Z (—1) e , (8.87)

where N is the number of e-folds after the mode crossed the sound horizon.
The mode function Yiffl) is given by [8]

YD (%) = ﬁ [(/’é x ﬁ),« i (12 x ﬁ)i] ex (8.88)

where 7 is a unit vector orthogonal to k. We can always choose three orthogonal
coordinates such that k' = k8" and n' = 85, so the mode function is

o Fi o
YU = ek s (8.89)

This oscillates throughout space; we will choose X such that Re [(i + l)e”z'z ] has

its maximum value of 1. (The other terms in Vk(il) Y,-(’fl) are all manifestly real.)
Therefore, this particular mode has a contribution to the 0—i component of the
stress-energy tensor which includes a term

(5/ 1 v 3 (vfé)N 1 3
leD mV9¢, 7 27 \/_ F'w)2" (—7;)ze\" 2 E(Si. (8.90)

Using the slow-roll equation for ¢, 3.77¢’ ~ —az‘_/¢, we can write this as

Vg Vog _1 3 (3
T > —2% P)2'=1 (—1)1 ("IN, (8.91)
2 2 Jla]

Comparing this to the background 0-0 component of 7#,, T% = 5 = 3H*/87 G,

we find o
T« 5 G Vs Vg
T% ~ 9H?/|ci]

Using the slow-roll Friedmann equation we could rewrite this purely in terms of the
potential as

TW)2""2 (—1;)2 (2N g3, (8.92)

70, A
_ ,k ¢ 9¢7 F( )2\)*5( -L—)z e(‘} 2)N8% (893)
7% 2471»,/|c1 [V -6V,

The key feature here is the exponentlal dependence on N for v > 3/2 (the
condition we found above for Vk ) to grow exponentially in cosmic time). While
the derivatives of the potential in the numerator of Eq. (8.93) should be a few orders
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of magnitude smaller than the potential in the denominator due to slow roll, this
is likely to be dwarfed by the exponential dependence on the number of e-folds,
which even for the bare minimum length of inflation, N ~ 50-60, will be very large.
Moreover, as we will see in Sect. 8.5, v can in principle be larger than 3/2 even by
several orders of magnitude, hence the other terms with exponential dependence on
v, as well as the gamma function, can be quite large as well.

Therefore, when v > 3/2 the vector modes will generically drive the off-diagonal
term in the stress-energy tensor far above the background density. This does not nec-
essarily mean that isotropy is violated. As discussed in Sect. 8.4, the same physical
process that drives Vk(il) will similarly pump energy into the spin-O piece, v,
which affects the perturbations to 7% as well as T°;. Consequently, background
homogeneity and isotropy could still hold, but the slow-roll solution to the back-
ground Friedmann equations which we perturbed would be invalid. Either way our
inflationary background becomes dominated by the perturbations.

Note that this calculation was done for a single mode, albeit one of the largest
ones available because V). grows for smaller k. Integrating over all modes produced
during inflation would of course exacerbate the instability.

We will explore this instability in greater quantitative detail in Sect. 8.5, where
we examine a specific potential for which we can elucidate the constraints on V,, and
Vog.

8.3.4 What Values Do We Expect for A?

V' &D has an effective mass-squared (8.72) which depends on both the theory’s free
parameters and derivatives of the scalar potential, and can be of either sign. When
it is negative, the acther modes are tachyonic and V&V contains an exponentially
growing mode. This occurs when the parameter A, defined in Eq.(8.70), satisfies
A > 2. To leading order in the slow-roll parameters, A is written in terms of several
free parameters: c;, m, H, and the potential derivatives 1_/9¢ and \_/¢,

6me H?

+ O(s). (8.94)

Hence A can span a fairly large range of orders of magnitude. However, there are
several existing constraints on these parameters, most of which constrain several of
them in terms of each other.

There are two things we can do to clarify our expression for A. We generally
expect that for a slow-roll phase, ¢ <« 3H¢ and 1¢? < M3 H?, where the Planck
mass is given as usual by

Mpy* =87G =81G.- O(1). (8.95)

We will rewrite the second inequality in terms of a slow-roll parameter, ¢, as
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1 12 2 2
5¢ = My H"C, K 1. (8.96)

Using the slow-roll Friedmann and Klein—Gordon equations, we can then rewrite A

as
o2

. m - ‘_/9¢
A= sgn(d;)\/_Tc1 (M_Pl) 573 + O(e). (8.97)

Next, we can redefine the coupling \_/9¢ using the flat-space stability constraint (8.34)
that we derived in Sect. 8.1. Let us define a dimensionless coupling o by

Vi (0,0) = 2c153Mo, (8.98)

where M§ = Vu4(0,0) is the effective mass-squared of the scalar around a
Minkowski background, so that the stability constraint is simply

o<l (8.99)

Therefore, we have
A= sgn@);‘l/za”zﬁ Yoo Mo ( e

—1
_ | — O(¢). 8.100
e Vip(0.0) H Mpl) e (8100

The instability occurs when A > 2. Let us first examine Eq.(8.100) to see the
conditions under which it is positive. Most of the terms are manifestly positive.
Positivity of the Hamiltonian for spin-1 perturbations in flat space requires ¢; > 0
[8]."! Tachyonic stability of the scalar requires M, to be real and positive. The
timelike constraint on the aether requires that m be positive as well. Putting this all
together, we find

H ‘_/94) 12 _1)2 CEO) My m\"
A =sgn(@p)——— 223 2 —) +00), (8.101)
Y00(0.0) Joa H \ My
>0 >0 >0 >0 >0

implying that in order for A to be positive, ¢ and the coupling V9¢ need to have the
same sign. This is not difficult to achieve in practice; in the quadratic potential of
Ref. [4] (see Sect. 8.5 for more discussion), it amounts to requiring that ¢ and \_/9¢
have opposite signs, which is true for a large space of initial conditions leading to
inflating trajectories.

Next we need to see under which conditions |A| can be &'(1) or greater. We have
assumed that the scalar slow-roll parameter ¢ is small. In particular, in the absence

"'This was derived in pure &-theory. However, recall from Sect. 8.1 that the spin-1 modes in flat space
are unaffected by the scalar-aether coupling: spin-1 perturbations are by construction divergence-
free, so 6 only contains spin-0 aether perturbations. Hence ¢; must still be positive.
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of the aether, ¢ is equal to ¢, which observations constrain to be ~0(1072) [17].
It therefore seems sensible that ¢ /2 should be small but not terribly small, perhaps
~0 (1071 or so.

Similarly, the scalar-aether coupling, o, is constrained by the flat-space stability
of the spin-0 modes to be strictly less than 1. However, we do not want to consider
couplings so small as to be uninteresting, so we may choose the coupling to be as
close to 0 = 1 as is allowed. Therefore, o!/2 ought to be smaller, but need not be
too much smaller, than 1.

Written in the form of Eq.(8.100), the value of A is sensitive to how Vp4 and
Ve differ between a quasi-de Sitter inflationary background and a Minkowski back-
ground. In the quadratic potential V (6, ¢) = M?@®* + 110¢ which we discuss in
Sect. 8.5, both of these are constant, although one could construct inflationary poten-
tials for which this is not true. The effective mass of the scalar during inflation,
M = \_/4)142, should be less than the Hubble rate in order to produce perturbations.
Putting all this together, we are left with

0 (7 -1
A= sgn(@) g2 o2 Voo Mo M ( " ) +O(6).  (8.102)

A/C1 V9¢ (0, 0) ﬁ ﬁ Mpl
S S S —
<l <1 o) o(1)? <1 >1?

We can see that in order for A to be larger than 2, the aether VEV, m, needs to be
at least a few orders of magnitude smaller than the Planck scale. m is effectively the
Lorentz symmetry-breaking mass scale. It can therefore be quite a bit smaller than
the Planck mass, although if it were below the scale of collider experiments, any
couplings to matter could displace the aether from its VEV and Lorentz-violating
effects could be visible.

There are several experimental and observational results suggesting that m /Mp,
should be quite small. Here we briefly discuss three strong constraints, arising
from big bang nucleosynthesis, solar-system tests, and the absence of gravitational
Cerenkov radiation, as well as a possible caveat.

As mentioned in Sect. 2.2, the gravitational constant appearing in the Friedmann
equations, G, and the gravitational constant appearing in the Newtonian limit, Gy,
are both displaced from the “bare” gravitational constant, G, by a factor that is,
schematically, 1 + c; (m/Mp)?. The primordial abundances of light elements such
as helium and deuterium probe the cosmic expansion rate during big bang nucle-
osynthesis, which depends on G, through the Friedmann equations. Therefore, by
comparing this to Gy measured on Earth and in the solar system, ¢;m? can be con-
strained. Assuming the c; are ¢/(1),'!? the BBN constraint implies m/Mp; < 107!
[7].

Slightly better constraints on G./Gy come from the cosmic microwave back-
ground (CMB) [19, 20]. The tightest bound, |Gy/G,. — 1] < 0.018 at 95 % con-

12As the ¢; are dimensionless parameters, this is perfectly reasonable. Note that even if m were

order Mp; or larger and the constraints discussed in here are actually constraints on the smallness
of the ¢;, A still depends on these parameters as cl_l/ 2
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fidence level, was computed using CMB data (WMAP7 and SPT) and the galaxy
power spectrum (WiggleZ) in a theory closely related to the one described in this
chapter, and should hold generally for @-theory at the order-of-magnitude level [11].
These constrain m / Mp; to be no greater than a few percent.

There are yet stronger bounds on m/Mp; through constraints on the preferred-
frame parameters, «; », in the parametrised post-Newtonian (PPN) formalism. These
coefficients scale, to leading order, as c¢; (m/ Mp)? [2, 21]. The observational bounds
o < 107* and oy < 4 x 1077 therefore imply m/Mp < 6 x 107*. Recent pulsar
constraints on «; » are even stronger than this [22], although they are derived in the
strong-field régime and thus might not be directly applicable to the weak-field -
theory results. Similarly, recent binary pulsar constraints on Lorentz violation [23]
constrain m/Mp; < 1071, assuming ¢; ~ O(1).

The strongest constraints come from the absence of “gravitational Cerenkov radi-
ation.” Because the aether changes the permeability of the vacuum, coupled aether-
graviton modes may travel subluminally, despite being nominally massless. Con-
sequently, high-energy particles moving at greater speeds can emit these massless
particles, in analogy to the usual Cerenkov radiation. This emission causes high-
energy particles to lose energy, and at an increasing rate for higher-energy particles.
Among the highest-energy particles known are cosmic rays, which travel astronomi-
cal distances and hence could degrade drastically due to such gravitational Cerenkov
effects. Such a degradation has, however, not been observed; this generically con-
strains m/Mp; < 3 x 1078 [24].

We should note that these constraints can be side-stepped if certain convenient
exact relationships hold among the c;, although crucially they cannot all be avoided
in this way simultaneously without allowing for superluminal propagation of the
aether modes [2]. The PPN parameters «; , are identically zero when ¢3 = 0 and
2c¢1 = —3c;. The BBN constraint is automatically satisfied by requiring 2¢1 43¢ 4¢3
to vanish, as this sets G. = Gy [7]. Note that the PPN cancellations imply the BBN
cancellation, though the reverse is not necessarily true.'> The Cerenkov constraints
vanish if all five dynamical gravitational (metric and aether) degrees of freedom
propagate exactly luminally. This happens when ¢3 = —c; and ¢; = ¢;/(1 — 2¢y)
[24]. Note that while ap = 0 in this parameter subspace, o; = —8c;(m/Mp))?,
which would place a constraint on m / Mp, of order 1072, It is worth mentioning that
the Cerenkov constraints on m will also be avoided if the mode speeds for some of
the aether-metric modes are superluminal. This includes a two-dimensional parame-
ter subspace in which the PPN and BBN constraints are automatically satisfied [2].
Whether superluminal propagation is acceptable in @-theory is somewhat contro-
versial. It is a metric theory of gravity, so superluminality should imply violations
of causality, including propagation of energy around closed timelike curves [8, 24].

13The conditions for PPN and BBN to cancel can be relaxed by including a ¢4 term which describes a
quartic aether self-interaction. We have ignored such a term in order to simplify the theory, although
like the other three terms, it is permitted when that the aether equations of motion are demanded
to be second order in derivatives. When c4 # 0, the vanishing of « > continues to imply that the
BBN constraints are satisfied.
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However, this may be seen as an a posteriori demand, and some authors (see, e.g.,
Ref. [2]) do not require it.

It is unclear what fundamental physical principle, if any, would cause the c¢; to
cancel in any of the aforementioned ways. Hence it seems to be a fairly general result
that m must be several orders of magnitude below the Planck scale. If m / Mp) is small
enough compared to M /H and the other small parameters appearing in Eq. (8.102),
A can easily be above 2 and the aether-inflaton coupling runs a serious danger of
causing an instability. For a given m/Mpy, this places a constraint on the size of the
coupling \73¢. We will discuss this constraint more quantitatively in Sect. 8.5 for a
specific choice of the potential.

8.4 Spin-0 Cosmological Perturbations: Instability
and Observability

Let us now consider the spin-0 perturbations. Before getting bogged down in calcula-
tional details, we first summarise this section. The spin-0 equations are complicated
by the addition of §¢p modes which add a new degree of freedom. In order to tackle
these equations, we use the smallness of m/Mp;, discussed in Sect.8.3.4, to solve
the perturbations order-by-order, along the lines of the approach in Ref. [10]. At
lowest order in m / Mpy, the perturbations ® and §¢ have the same solutions as in the
standard slow-roll inflation in general relativity. These can be substituted into the &
equation of motion to solve for & at lowest order, which we then substitute back into
the ® and §¢ equations at &'(m/Mpy).

The instability found in the spin-1 perturbations reappears, and occurs in essen-
tially the same region of parameter space. We then assume that the parameters are
such that this instability is absent, in which case £ is roughly constant. We solve for
the metric perturbation ® and find that neither its amplitude nor its scale-dependence
are significantly changed from the standard slow-roll case. In particular, we calculate
two key inflationary observables: the scale-dependence of the ® power spectrum,
ng, and the tensor-to-scalar ratio, r.

Surprisingly, the first corrections due to the aether-scalar coupling enter at
o(m?/ Mgl). Up to first order in m/Mp, the aether-scalar coupling has no effect
on cosmic perturbations on superhorizon scales, assuming that m / Mpj is small com-
pared to unity and that the perturbations are produced during a slow-roll quasi-de
Sitter phase. A corollary of this is that superhorizon isocurvature modes, a generic
feature of coupled theories, are not produced by the aether-scalar coupling up to
O(m*/ MSI). Because of the smallness of m/Mp,, any deviations to n; and r caused
by the aether-scalar coupling are unobservable to the present and near-future gener-
ations of CMB experiments.

Since the pure @-theory terms in the perturbed Einstein equations carry two powers
of u* (which is proportional to ) and so only begin to contribute at &(m*/Mp),
we will not recover the cosmological perturbation results of pure @-theory by taking
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any limits, as we only work in this section to &'(m/Mp;). The effects of &-theory on
the spin-0 perturbations are mild, amounting essentially to a rescaling of the power
spectrum amplitude that is &(m?/M3,) and is degenerate with ¢ [8].

8.4.1 The Spin-0 Equations of Motion

In order to eliminate nonphysical degrees of freedom, we need to specify a choice
of coordinate system with no remaining gauge freedom. We choose to work in New-
tonian gauge, where B© = H{”’ = 0. The equations of motion are relatively simple
in this gauge, and the perturbation ® has a simple interpretation as the relativistic
generalisation of the Newtonian gravitational potential [16]. Hereafter we will drop
the spin-0 superscripts.

The 0-0, 0—i, and i—i Einstein equations, respectively, are

4G ('8¢ — a*Vysp) = 3H* — A) @ — 30V — Ek2\p — 87 Gec1m* k> @
+87Gecrm®k(V/ + V) — 87 G .a A kV
+ 4G omaVeg(¢'® — 34°5¢) (8.103)
1 k-
GG WA — k) = ¢sp —aAV + cym*a”! (ak @)’

- clmz% + %ma‘_/%(l_)'v (8.104)

87 G om?

4nG. (¢'8¢' — a*Vydp) = (342 — A) @ + HY -2V — W' — E123k* (@ + W)

- 3md - ,
+ 417G —— AVgag 3V = 34D +kV).
a

— 4G ema [Voy BA8¢ + 8¢) + Vaged' 5¢]
+4mGem? Vogy [3A8¢ — ¢'BW' = 32D + kV)]. (8.105)

The off-diagonal i—j Einstein equation, unmodified by the coupling between the
aether and scalar, gives a constraint,

K (® + W) = ya 2(a*kV), (8.106)

where y = 167 Gm?c 3 was defined in Sect. 8.3. We may eliminate W and its deriv-
atives by the constraint (8.106) and its conformal-time derivatives,

V' =y(ak)™" (£ — AE) — @/, (8.107)

" = y(ak)™! (%‘ — HE" — AE' 4 A (ﬁf - %’)) -, (8.108)
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where, as for the spin-1 perturbations, we have defined &€ = aV and A = 7 _w,
Note the presence of third derivatives of & in the expression for W”, which could
severely complicate the Einstein equations at &'(m?*/M3)).

Finally, the v = i aether equation of motion is, using Egs. (8.106) and (8.107) to
(8.108),

- ~ 1 - T ~ =
"y C1z3mz~ K2 + a(l—V)A—gjﬂaVeM _ cim? +~a k(aCID)/—l mane? ks
cym? +ay cym? +ay cym? +ay 2 cym? +ay
(8.109)

where, as before, tildes indicate the usual &-theory constants modified by appropriate
factors of %\_/99.

We can perform a consistency check by observing that these reduce to §7*, for a
single scalar field in general relativity [16] when the aether is turned off (in the limit
m — 0), as well as §T*#, and the &-equation of motion in @-theory [8] in the limit

V0, ¢) = V(o).

8.4.2 The Instability Returns

To lowest order in m/Mp, the constraint equation (8.106) tells us simply that the
anisotropic stress vanishes: W = —®. Taking this into account, the 0—i Einstein
equation at lowest order in m /Mp is

(a®) =47 Gad's. (8.110)

The v = i aether equation of motion (8.109) is, dropping terms of &'(m?/M3,),

Viosd' 2Vppk
g 4 con2g Yool (1 @ N ey~ Veksy g
: 2mce; cim? 2mcy
where 5 5
CA(O)ZZﬂ:ﬂ 1+0 m_2 (8.112)
cim? +ay 1 Mg,

is the same spin-0 sound speed as in flat space (cf. Sect. 8.1) to first order in m / Mp;.
In de Sitter space this becomes, using Eq. (8.110) to replace (a®)’ with §¢,

Vs q} £ k a = 1 Vg ] 8¢
” (0)2k2 _ ¢ - 1 A Go — _ 0|2 8.113
§ e TkE 2mciH? 72 H? * cym? rGe 2me | % ( :

to lowest order in the slow-roll parameters and m / Mp.
Combined with the perturbed Klein—-Gordon equation, £ and 8¢ obey coupled
oscillator equations. However, to zeroth order in m / Mpj, the scalar field is unaffected
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by the aether perturbations,'* so on superhorizon scales 8¢ is constant up to slow-roll
corrections, resulting in the standard nearly scale-invariant power spectrum. This is
consistent with the flat-space case discussed in Sect. 8.1, where it was found that the
coupling to the aether does not destabilise the scalar modes. Taking §¢ to be constant
and restricting to superhorizon scales, ¢kt <« 1, Eq.(8.113) is solved by

£=Cit" +C_1" +kép [J)—l - (1 + -2 2) L ] (8.114)
cm Mpy V9¢Mp1

where C are arbitrary constants, and

[T Ve
ST R ) 8.115
"= 5 N1 T e 2 (8.115)

As with the spin-1 perturbations, the spin-0 piece of V = £ /a can either grow or
decay exponentially (in cosmic time). In this case it will grow if

Vagd

2. 8.116
2mc; H? ~ ( )

This is exactly the same as the condition, A > 2, for the spin-1 modes to be unstable.
The real condition for instability may be slightly different, as A > 2 could violate our
assumption that m/Mp is small; however, the additional & (m?/ Mlgl) terms would
only change some multiplicative factors, and not by orders of magnitude.

As in the spin-1 case, we can most easily see the effect of unstable aether modes
on the metric perturbations through the off-diagonal i—j Einstein equation (8.106).
If V blows up exponentially then so will ® + W, and the metric perturbations will
overwhelm the FLRW background.

8.4.3 The Small-Coupling Limit
From here on we will assume that the aether perturbations are stable, so that

Voo

A
2mc; H?

< 2. (8.117)

This can be further split into two dominant cases, |A| <« 1 and A < —1/4. There
are regions in parameter space which are not covered by these cases, such as A ~ 1,
but these are likely to be highly fine-tuned as many of the parameters which enter A

14The aether coupling will still enter the perturbed Klein-Gordon equation at this order through the
potential terms.
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have no relationship to each other a priori. Consequently we should consider various
values of A on an order-of-magnitude basis. B
|A| < 1 corresponds to the limit where the coupling |Vg| is small compared to

the mass scale ¢;m H?/¢. Assuming that the background relations for the slow-roll
parameters hold as in GR (which we will explore more rigorously in Sect. 8.5 for a
particular potential), then we have ¢ = 47 G¢?/H? up to &' (m/Mp), and this limit
can be written as B

—_—— 8.118
H ﬁ Mpy ( )
In this limit, the term C_t"- in Eq. (8.114) is constant up to slow-roll corrections, as
is the term proportional to 8¢, while C, t"+ decays as t.

This case should be qualitatively similar to -theory as it makes the acther-scalar
coupling very small. However, we might be worried by the appearance of a V(,;l in

Eq.(8.114). The limit 1_/9¢ — 0does smoothly go to @-theory. The aether perturbation
& only appears, to &'(m/Mpy), in the 0—i Einstein equation,

O + HD =47GP (6¢+ mze"’g). (8.119)

The \_/9¢ in the &'(m/Mp,) term will cancel out the problematic ‘_/9;1 in the solution
for &. Taking A — 0 and substituting in the solution (8.114), this becomes

2
<1>’+%qm4nc¢3/5¢[1 -2 (1+ “2)] (8.120)
MPI com

The corrections enter at &' (m? / M) and are negligible for the purposes of this analy-
sis. Therefore the limit |A| < 1 should only differ from @-theory at &'(m?/ Mlgl) <
10715,

It is worth mentioning that for small but finite A there will be new effects on
extremely large scales, k S Vpg. These may or may not be observable, depending
on the scales covered during inflation.

8.4.4 The Large-Coupling Limit: The ® Evolution Equation

One interesting case is left: a large coupling with opposite sign to ¢, or A < 1/4. We
will consider this for the rest of this section. However, we should mention that the
sign of ¢ depends on initial conditions, and if this sign condition were not satisfied,
then (as discussed in Sect.8.4.2) the aether-scalar coupling would drive a severe
tachyonic instability. Hence such a large coupling may not be an ideal part of a
healthy inflationary theory.
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In this large-coupling case, both of the ¥ terms in Eq. (8.114) are decaying and
we are left with

£ = k%‘l’ (1 + 0 (Mipl)) (8.121)
47G
~ T’fﬂk&p, (8.122)

where we have dropped the &' (m / Mp,) terms in the coefficient of the §¢ term. Recall
that Egs. (8.114) and (8.121) have been derived for superhorizon perturbations in the
slow-roll limit. Hence we will focus our analysis on superhorizon scales, and while
we will leave the behaviour of the scale factor unspecified in this subsection, it is
worth keeping in mind that our results may not be valid in spacetimes that are not
quasi-de Sitter. Using this solution for &, we can write the O— Einstein equation to
0 (m / Mp]) as

Q'+ AP =47G (¢ + maVey) 8. (8.123)

It is an interesting result that we can write the 0—i Einstein equation in geometrical
terms as .
O+ D= Asp/¢’ (8.124)

to both zeroth and first order in &'(m/Mp;). This does not hold, however, to higher
orders, and might not hold away from quasi-de Sitter space or on subhorizon scales.

Next we solve the metric perturbation ® to & (m/ Mp;). Our master equation is the
sum of the 0-0 and i—i Einstein equations, dropping a k>® term which is negligible
on superhorizon scales,

—81Ga’Vydp = " + 64D +2 (3H4% — A) @
+ 47 GmaVyy (¢ ® — 6.8¢ — 5¢')
— 4 Gma V'8 + . .. (8.125)

where we have dropped terms of &'(m?/M3)) and higher.

Equation (8.125) becomes an evolution equation for & after using Eq. (8.123) to
rewrite the pieces proportional to 8¢ and 8¢’ in terms of ® and its derivatives. We
can also use the background equations of motion to remove \7¢ in favour of other
coefficients appearing in Eq. (8.125). For this latter step, we start with the background
relation (using Eqgs. (2.87) and (2.88) and assuming ¢ is gravitationally dominant)

A= — A =47G (§* + maVyyd) . (8.126)

Taking the conformal-time derivative, we find (dropping &'(m?/M3,) terms, as we
do throughout) that
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A’ Voo \ ¢ Vog .

(2 - ?) % + ma% + maVogy. (8.127)
Using the background Klein—-Gordon equation, we obtain an expression for V,, which
includes contributions from the aether-scalar coupling,

- A - - 1A - -
— 2a2V¢ = (X + 4%) ¢, —+ maV9¢ (EX — %) —_ maV9¢¢¢’. (8128)
In deriving the previous two expressions we have made use of the assumption that

V(M ~em12 m @

— 1. 8.129
7 Mo H S (8:129)

m

We can immediately use Egs. (8.128) and (8.123) to remove \_/¢ and the §¢ terms
from Eq.(8.125). We can also take the conformal-time derivative of Eq.(8.123) to
find, using Eqgs. (8.128) and (8.123), an expression for 8¢/,

VAR Y _li/ ’ 2_15 _
4nGp'dp = @ +(%” 2A)<b+(ﬁf ZA% A)CD, (8.130)

where we have dropped the &'(m/Mp) term as §¢" only appears in Eq.(8.125) at
that order. Using these relations, as well as the definition of A, the sum of the 0-0
and i—i perturbed Einstein equations (8.125) becomes

A A
" + (2% — X) P+ (2%2 —2A— X%) o)

ma ‘_/9(;;

_ ” _i/ l 2 _ _i/
== [cb +(2%” A)CI>+(2% 2A A%)cp]. (8.131)

Simplifying, we find the evolution equation for ® to &'(m/Mp),
A A
" + (2% - X) o+ (2%2 —2A — X%p) o =0. (8.132)

This is a surprising result. This is exactly the equation obeyed by @ in single-field
slow-roll inflation in the absence of a coupling to any other fields [16]. Coupling
to new fields generically introduces source terms to this equation, signalling the
introduction of isocurvature modes. We have therefore shown that, to first order
in m/Mpy, the scalar-aether coupling does not produce any isocurvature modes on
superhorizon scales during slow-roll inflation.

What would happen if we included higher-order terms? The pure @-theory terms
do not change Eq.(8.132) [8]. This is understandable because the aether tracks the
background energy density, precluding the production of isocurvature modes. How-
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ever, we have introduced new coupling terms in the Einstein equations at & (m*/ M3))
and higher which could potentially produce isocurvature modes. It is currently
unclear whether the unusual cancellations that led to the result (8.132) will hold
at these orders.

The solution to Eq.(8.132) is well-known [16],

®=C (1 — if/azdr) , (8.133)
a

where C is a constant. The remarkable fact that the 0—i Einstein equation can be
written in the form (8.124) to either zeroth or first order in m/Mp; means that to
first order, the relationship between ® and 8¢ is the same as in the case without the
aether. Using Eq. (8.133) to find a~' (a®)’ and plugging that into Eq. (8.124), we can

determine the constant C,
aH
C = 7 8¢, (8.134)

exactly as in general relativity.

The amplitude of §¢ is determined by quantising it in a (quasi-)de Sitter back-
ground on subhorizon scales, k > aH, and imposing a Bunch-Davies vacuum
state. The variable §¢ is coupled to the spin-0 aether perturbations, as discussed in
Sect.8.1, and its dispersion relation is modified by . = Vy4(0, 0). However, the
flat-space stability condition constrains this to be less that the flat-space mass of the
scalar, My = Vq,l 4/52 (0, 0), up to an &'(1) factor. Therefore, if the initial conditions are
set at scales k > M, (which follows from k > aH since My << H), then k > n
as well, and the scalar at these scales behaves as it does in the case with no aether.
We therefore see that the scalar and metric perturbations, §¢p and @, are exactly the
same as in general relativity up to &'(m/Mpy).

8.4.5 The Large-Coupling Limit: CMB Observables

Let us finally connect these calculations to observations. As mentioned at the begin-
ning of this section, the two key inflationary observables currently accessible to
CMB experiments are the spectral index of the primordial power spectrum, n, and
the tensor-to-scalar ratio, r.

We have seen that, surprisingly, neither of these will be affected by the aether-
scalar coupling at &' (m/Mp)). Any new effects must therefore enter at earliest at
O(m*/M3). To discuss these effects, we split @ into zeroth-, first-, and second-
order pieces,

2
® = Bog + (_) Oyt (8.135)

Using this expansion, the power spectrum of @ is
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2
Po = (%) = (B2) +2 (Mﬂ) (PGrD2) + - - - . (8.136)
Pl

The deviation from scale-invariance, ny, is defined by

dln A2
ng—1=2122 (8.137)
dlnk
where the dimensionless power spectrum is
2 K’
A5 = — Pg. 8.138
o =5 Fo ( )
In GR, the deviation from scale-invariance is —2¢& — 1. Using the results
dindgy _ 5, (8.139)
dink £ '
din® __, (s — 1) (8.140)
——= =3+, — 1), .
dlInk 2

where (n; — 1), is the spectral index of &, and assuming that &, is not too much
larger than ®gg, the spectral index to second order in m/ Mp is given by

2
m 0]
ng—1=-2e—n+(~——) —=[26+n+ 0, — ] +---. (8.141)
Mp ) @

Finally, we consider the tensor-to-scalar ratio, r, defined by

AZ

1

r=—- (8.142)
2 9

Ay
where A? is the dimensionless power spectrum of the spin-2 perturbations, Hﬁz).
Pure @-theory effects contribute a constant rescaling to the tensor spectrum which
only becomes important at &(m?/Mp,) [8]. Recall that the coupling between the
aether and ¢, however, has no effect on the tensor perturbations as none of the
coupling terms contain spin-2 pieces, so the tensor spectrum A,z is unchanged apart
from the aforementioned (small) rescaling. Therefore, r is modified by a factor

2
r _ ACDO

= 3
FGR Atb

(8.143)

where rgr is the tensor-to-scalar ratio in the absence of the aether-inflaton coupling.
Using the expansion (8.135), we find that the corrections to r are small,
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r m \? b,
—=1-2{—) —+---. (8.144)

What size are the corrections to n; — 1 and r? As discussed in Sect. 8.3.4, m/Mp,
is no larger than ~&’(10~7), barring any special cancellations among the ¢;. We
constructed the expansion of @ so that &, is comparable in size to ®y. We assume
that there are no effects such as instabilities at &'(m/Mp;) which would cause this
construction to fail (the one instability that we have found in the spin-0 modes,
discussed in Sect. 8.4.2, has been assumed to vanish, by making the coupling either
very small or of the opposite sign to ¢). The Planck sensitivity to r is about 107",
and about 1072 ton, — 1 [17, 18].

We see that the first corrections to ® enter at &'(m?*/Mg). This is constrained by
other experiments to be a tiny number, placing any coupling between ¢ and 6, which
is not already ruled out, far outside the current and near future windows of CMB
observability.

8.5 Case Study: Quadratic Potential

8.5.1 Slow-Roll Inflation: An Example

The arguments so far have been made for a general potential V (6, ¢) with only
minimal assumptions. In order to be more quantitative, we will now look more
closely at a particular form of the potential for which the inflationary dynamics are
known and relatively simple.

The Donnelly—Jacobson potential [4] contains all terms relevant to the dynamics
at quadratic order in the fields and is given by

Vo, o) = %M2¢2 + nbo. (8.145)

A term proportional to 6 would contribute a total derivative to the action and hence
be nondynamical (note that the potential enters the Friedmann equation through
V — 0Vy, not V itself), while a term proportional to 62 could be absorbed into ¢,
and would only renormalise G.. We take ;v > 0 as the theory is invariant under the
combined symmetry 4 — —u and ¢ — —¢. Any dynamics with © < 0 can be
obtained by flipping the sign of ¢.

This is simply m?¢? chaotic inflation with an extra force that pushes ¢ towards
negative values [4]. In the case where the scalar field has no mass term, ¢ possesses
exact shift symmetry, ¢ — ¢ 4+ const., and this theory essentially becomes @CDM,
a dark energy theory in which p is related to the dark energy scale and, importantly,
is protected from radiative corrections by the existence of a discrete symmetry [10,
11]. Interestingly, in the special case where the aether is hypersurface-orthogonal,
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this theory also admits a candidate UV completion in the consistent nonprojectable

extension [25-27] of Hotava—Lifschitz gravity [3]. In that case, however, the spin-1

modes we have discussed vanish. This is because the aether can be written as the

(normalised) gradient of a scalar field corresponding to a global time coordinate, so

it possesses no spin-1 modes. A similar coupling was also considered in Ref. [28].
The equations of motion, in conformal time, are

47 G, n
%zz 7T3 az (qub +¢2 2)’ (8.146)
47 G, ,
= e g 2(M2¢ 2(]5/261_2—3@(1)), (8.147)
3 a
0=¢" +22¢°M*¢ + 3. mpua. (8.148)

Normally, we can obtain a slow-roll inflationary solution to leading order by neglect-

ing ¢*> = a~2¢'% in the Friedmann equation (8.146) and ¢>15 in the scalar evolution
Eq. (8.148). The same applies in this theory; we now briefly justify this.

A slow-roll inflationary phase requires H to be changing slowly, and for inflation
to be successful it needs to last at least 50-60 e-folds. This is guaranteed by making
sure the slow-roll parameters

H '
e=—mm =15, (8.149)
- s (8.150)
= He T we ’

are both very small compared to unity. For convenience we will work in cosmic time
(r= f adr) here. The slow-roll parameters are

6= 47;]G (6% + mug) . (8.151)
é 2¢ +mpu
2 ——]. 152
" [ " Hé (2¢+2mu)] ®12
Defining
_ 4nGC<132
S = —§H2 , (8.153)
A= i., (8.154)
3H
_Mur
v=4q = (8.155)

15We cannot just drop ¢” as it contains a term like H . It is easiest to drop the second derivative
piece from the cosmic time scalar evolution equation and then move to conformal time.
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where
= ! M (8.156)
Re= JToamG.m’ '
we can calculate the slow-roll parameters,
e =38 +ys'/2 (8.157)
652
p=—mf 221 ). (8.158)
662 + 2y

The usual slow-roll conditions, ¢? <« H? and ¢ < 3H, are equivalent to § < 1
and A < 1, respectively. We generally expect M < H in order for the inflaton
to produce perturbations. As we will see below, both the requirement that inflation
end and the stability considerations discussed in Sect. 8.1 impose u < .. When
combined, these conditions imply ¥ < 1. So, under these reasonable assumptions
on M and p, in order to ensure ¢ < 1 and n < 1 we simply need $* « H? and
¢ < 3H¢ as usual. Note, however, that the usual identifications of & and 7 in terms
of the potential will be changed if the scalar-aether coupling is large enough for y to
be comparable to §'/2.

In the slow-roll limit, the Friedmann and Klein—Gordon equations are, respec-
tively,

47 G,

7= G aidl, (8.159)

¢~ -

Ma (sgn(¢) 4 Mi) . (8.160)

c

127G,

Notice the appearance of p. defined above. During slow-roll, it is related to the
inflationary dynamics by
Mg
I’LC - 9

, (8.161)

The value of 1/u. is physically significant because it determines the stability of
the slow-roll solution. The number of e-folds that inflation lasts tends to infinity as
W — ., which corresponds to exact de Sitter expansion; for i > . the slow-roll
solution is unstable and grows without bound [4]. We will therefore always consider
inflationary solutions with & < (..

There is an additional constraint on u/u,. from the spin-0 stability constraint
(8.34). Substituting the definition of 1. into this gives the constraint

2 247 Gm?>
B 24nGumlepy = 22 A (8.162)
2 14+ 87Gua

c
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The same constraint was derived along similar lines in Ref. [4].'® Since ¢}»3 < 1 and
o > 0 (see Sect. 8.1, as well as Refs. [7, 8]), this is more restrictive than simply u <
e, unless m is comparable to, or greater than, the Planck scale—a possibility that
seems to be ruled out by experiments, as discussed in Sect. 8.3.4. Since experiments
suggest m/Mp; < 1077, 11/ 1. must be so small that inflationary dynamics would be
effectively unchanged by the coupling, unless cancellations among the ¢; conspire
to weaken the bounds on m.

8.5.2 The Instability Explored

Specialising to the Donnelly—Jacobson potential and using the slow-roll Egs. (8.159)
and (8.160), we can write the spin-1 equation of motion (8.69) to first order in the
slow-roll parameters as

A
£+ e — £ =0, (8.163)
T
with A given by
I ppe 1z
A=—z—C — )+ 0,
e (sgn(¢) + M) +0)

M? cO /o | M?
=-1 c‘§0)20+sgn(u¢)%‘/m—?+Cl3+362 +0(e). (8.164)
1

Here, as in Sect. 8.3.4, we have defined the dimensionless coupling o by
2 __ 2 2 2
w =2ci3M°0 =247 G.m cip30 U, (8.165)
so that flat-space stability of the spin-0 modes implies o < 1.

As with the general case, the solution (8.81) to Eq. (8.163) is written in terms of
the first Hankel function of order v, where

+ A (8.166)

<
I

Bl

Repeating the analysis of Sect. 8.3.3, we pick a single mode which leaves the sound
horizon at some conformal time t;, which we could take to be the start of inflation.
We pick a mode which crosses the horizon early because Vj(7) is largest at small
k (with t held fixed), so this is one of the larger superhorizon modes available. We
want to calculate the contribution of this mode to the 0—i component of the stress-

16 As discussed in footnote 5, our action and potential differ from those in Ref. [4] because we give
the aether units of mass while their aether is dimensionless. Taking the different definitions of c¢;,
m, and p into account, our constraint agrees with theirs.
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energy tensor. If it exceeds the background energy density, then this would indicate
a violation of isotropy and signal an instability in the background solution which we
found in Sect.8.5.1.

Using the slow-roll scalar equation and our expression (8.160) for ¢', we find

_ 3 22
Vo Vop = MuH | 1nG (Sgn(¢) + u_)

= M*H (6mc1230 + sgn(u¢)\/l2c123a [M%, + (c13 + 3c2)m2]) .
(8.167)

We can substitute this directly into Eq.(8.92) to find one of the terms in the contri-
bution that this mode makes to T9;,

- cO M M m
T4 /T% >——— sgn(iup)v/o + /31230 ——
1237 H [y 1 g /M + «
x T()2"72 (—1;)2 (2N g3, (8.168)

We can now get a more quantitative handle on the argument made in Sect. 8.3.3.
Assuming v > 3/2, the exponential in (v — 3/2)N is likely to overwhelm the
other terms within the 50-60 or more e-folds that will occur after t;, which we
take to be near the start of inflation. While several terms in Eq. (8.168) are likely to
be several orders of magnitude smaller than unity, including M/H, m/ Mp,'7 and
possibly M /Mpy, it is unlikely that these could be so small as to overwhelm the
exponential terms and the gamma function. Hence, for v > 3/2, we expect that the
slow-roll background solution we found in Sect. 8.5.1 is unstable, rapidly dominated
by perturbations in the aether field generated by its coupling to the inflaton.

In Sect. 8.3.4 we found that v can surpass 3/2, even by several orders of magnitude,
if the aether VEV, m, is suitably small compared to the Planck scale. Armed with
a specific form for the potential, we now briefly clarify that argument and use it to
place constraints on the aether-scalar coupling parameter, (4.

Ifv > 3/2then A > 2, where A isdefined in Eq. (8.164). Itis not difficult to check
that this is the same as the A we discussed for a general potential, Eq. (8.70), which
we wrote in various forms in Sect. 8.3.4. There, we found that for A to be positive
we needed /¢ to be positive. With the Donnelly—Jacobson potential, we have an
expression for ¢, Eq. (8.160). From there we see that ¢ is only positive (assuming
uw < p.) when ug is negative. We will take p to be positive and then ask if ¢ can be
negative (the opposite case is trivial, as the theory has combined u — —u, ¢ - —¢
symmetry). This is not at all uncommon, and depends only on initial conditions. The
dynamics for this inflationary model are encapsulated in (¢, ¢) phase portraits for a

17 A requirement for v to be greater than 3/2 in the first place.
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range of /1//i. in Ref. [4]. Per Eq.(8.165), 1t/ is of order (m/Mp))o'/?. Because
observations suggest m < Mp; (see Sect.8.3.4), u should be very small compared
to i, even when o approaches unity. Hence, the phase portrait for 4 = 0 in Ref.
[4] will be very close to the dynamics we are interested in. In the exact u = 0 case,
there are as many inflating paths with ¢ < 0 as ¢ > 0, because when p = 0, the
equations for ¢ and é have combined ¢ — —¢ and p — —¢ symmetry. The next
phase portraits show a tendency, increasing with u, for inflating paths to live in the
¢ > 0 half of the phase plane. Since © < ., nearly half of all initial conditions
leading to viable inflation have u¢ < 0.

Considering each piece in A on an order-of-magnitude basis, and taking
sgn(ug) = —1, we have

M?

POy YU f‘/ e +3e |+ 06, (8.169)
H 3¢
~—~— ——

«l1 <1 20

Evidently, A will be greater than 2 if the smallness of m compared to the Planck
scale exceeds the (square of the) smallness of the scalar mass, M, compared to the

Hubble scale,
2«/3c
m (0)\/— ’

where we have assumed that m/Mp; < 1. While M /H should be small, there are no
limits on how small m / Mp; should be before the collider scale, and moreover, as dis-
cussed in Sect. 8.3.4, there are already likely to be stringent experimental constraints
on m/Mp (although these tend to depend on the ¢; not cancelling out in particular
ways).

The tachyonic instability discussed here and in Sect. 8.3 is absent when p and ¢
have the same sign. In this case, the coupling only serves to dampen aether pertur-
bations. For the Donnelly—Jacobson potential, what remains is effectively just m2¢?
inflation. If the signs of u and ¢ are different, or if we were to demand that inflation
be viable for all initial conditions, then the absence of this instability puts a very
strong constraint on the magnitude of p,

1l M\~
<2 — (=) . 8.171
H Ve 1MPl (H) ( )

(8.170)

From the background dynamics, we expect (M /H)* &~ 3¢+ O (m/Mp) ~ G(107%),
while the absence of gravitational Cerenkov radiation constrains m /Mp < 010~ 7,
in the absence of certain cancellations among the ¢;. Thus the constraint on u is of

the order
|l

5
H < O(107). (8.172)
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This should be compared to the previous strongest constraint on u, the flat-space
stability constraint discussed in Ref. [4] and Sect. 8.1,

% <+/2ci13 ~ 0O(1). (8.173)

8.6 Summary of Results

We have examined cosmological perturbations in a theory of single-field, slow-roll
inflation coupled to a vector field that spontaneously breaks Lorentz invariance,
looking both to explore the effects of such a coupling on inflationary cosmology and
to place constraints on it. The particular model is Einstein-aether theory, a theory of
a fixed-norm timelike vector called the “aether,” coupled to a canonical scalar field
by allowing its potential to depend on the divergence of the aether, 8 = V,u". In
a homogeneous and isotropic cosmology, 6 is related directly to the Hubble rate by
H = 6/3m. This construction allows H to play a role in cosmological dynamics
that it cannot in general relativity, where it is not a spacetime scalar. Moreover, it is
a fairly general model of coupling between a fixed-norm vector and a scalar field.
In particular, while many couplings can be written down which are not captured by
a potential V (6, ¢), all such terms have mass dimension 5 or higher and therefore
fall outside the scope of the low-energy effective theory. Similarly, Einstein-aether
theory is the most general low-energy theory which violates boost Lorentz invariance
in the gravitational sector [29].

Around a slow-roll inflationary background, this theory can possess a tachyonic
instability. The instability is present if the norm of the aether, effectively the Lorentz
symmetry breaking scale, is sufficiently small compared to the Planck mass, and the
aether-scalar coupling is suitably large. In this region of parameter space, assuming
a technical requirement on the initial conditions, scalar and vector perturbations both
grow exponentially, destroying the inflationary background. Demanding the absence
of this instability for generic initial conditions places a constraint on the coupling
which is significantly stronger than the existing constraints, which are based on the
stability of the perturbations around flat space and the viability of a slow-roll solution.
Hence this constraint is by far the strongest on an aether-scalar coupling to date, with
the assumption that the scalar drives a slow-roll inflationary period.

The root of the instability is the smallness of the aether VEV, m, compared to the
Planck mass. The noncoupled terms in the acther Lagrangian each have two factors
of u*, so these aether terms will come with a factor of (m/Mp;)? in the Einstein
equations. Terms involving two or more 6 derivatives of the scalar field potential
will also enter the Einstein equations with these factors or higher. However, terms
associated with the coupling Vg4, which only has one aether derivative, will only
have one power of m/Mp; and so will generically be larger (depending on the size
of Vyg4) than the other aether-related terms. In the aether equation of motion, this
coupling term will be a power of Mp)/m larger than the other terms for the same
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reason. When the coupling is sufficiently large, it is exactly this term that drives the
instability.

If the instability is absent, then observables in the CMB are unaffected by the
coupling at the level of observability of current and near-future experiments: the
corrections are smaller than ¢'(10~'3). This is due partly to the smallness of the
aether norm relative to the Planck scale, but is exacerbated by the presence of unusual
cancellations. Solving for the spin-0 perturbations order by order in the aether VEV,
m/Mpy, no isocurvature modes are produced at first order. This is unexpected, as
isocurvature modes are a generic feature of multi-field theories. Stronger yet, the
perturbations are completely unchanged at first order in m / Mp from the case without
any aether at all. This is largely a result of unexpected cancellations which hint at a
deeper physical mechanism.

It is unclear whether these unexpected conclusions hold to higher orders in
m/Mpy. At O(m?/M3,), several new coupling terms enter the perturbed Einstein
equations, Egs. (8.103)—(8.105), with a qualitatively different structure to the terms
which appear at &'(m/Mp;). The possibility therefore remains that the isocurvature
modes that one would expect from the multiple interacting scalar degrees of freedom
might re-emerge at this level. If they do, they would be severely suppressed relative
to the adiabatic modes.

Beyond perhaps an extreme fine-tuning, there does not seem to be a subset of
the parameter space in which observable vector perturbations are produced without
destroying inflation. Even if such modes could be produced, they do not freeze out
on superhorizon scales and are sensitive to the uncertain physics, such as reheating,
between the end of inflation and the beginning of radiation domination. Therefore
any observational predictions for vector modes would be strongly model-dependent.
Nonetheless, it should be stressed that the line between copious vector production
(that quickly overcomes the background) and exponentially decaying vector produc-
tion is so thin, as it depends on unrelated free parameters, that there is no reason to
expect this theory would realise it.

While we made these arguments for a general potential, we also looked at a
specific, simple worked example, the potential of Donnelly and Jacobson [4]. This
potential includes all dynamical terms at quadratic order, and amounts to m2¢?>
chaotic inflation with a coupling to the aether that provides a driving force. It contains
many of the terms allowed for the aether and scalar up to dimension 4.'® The constraint
this places on the coupling 1 = Vg,

|l m (M\~ i
— S2veei— | — S 0(1077), 8.174
wacle(H) S 0007 (8.174)

is stronger by several orders of magnitude than the the next best constraint [4],

180ne could also add a tadpole term proportional to ¢ and a term proportional to ¢26. The latter
would effectively promote the coupling pt to .+ const. X ¢, so during slow-roll inflation the effective
wn would still be roughly constant.
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% < \/26‘123 ~ ﬁ(l) (8175)

It is worth emphasising again the two conditions for our constraint to hold. First,
the scalar must drive a period of slow-roll inflation. Second, the instability can be
avoided if p and ¢ have the same sign. Consequently, the new constraint applies
only if we demand that inflation be stable for all initial conditions. If such a coupling
were to exist, this constraint could be seen as a lower bound on m, to be contrasted
to the many upper bounds on m in the literature.
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Chapter 9
Discussion and Conclusions

If it be true that good wine needs no bush, ’tis true that a good
play needs no epilogue; yet to good wine they do use good
bushes, and good plays prove the better by the help of good
epilogues.

Rosalind, As You Like It, Epilogue

Our concern throughout this thesis has been the use of cosmology as a laboratory
for testing gravity. In the first part, we focused on the theoretical and cosmological
implications of endowing the graviton with a finite mass, leading to theories either
of massive gravity, in which there is a single, massive graviton, or massive bigravity,
in which two gravitons, one massless and the other massive, interact with each
other. We have studied both of these variants, while focusing on bigravity as it is a
better setting for studying Friedmann-Lemaitre-Robertson-Walker cosmologies. In
the second part, we turned our attention to theories of gravity which violate Lorentz
invariance, using the early-Universe inflationary era to place constraints on Lorentz
violation. Below we will summarise in more detail the problems we have sought
to address and the results obtained in this thesis, before ending by examining the
implications of this work for future studies of modified gravity.

9.1 Problems Addressed in This Thesis

The expansion of the Universe is accelerating. If we assume that the Standard Model
of particle physics, perhaps augmented by one or more massive dark matter particles,
describes the matter content of the Universe, then general relativity and, indeed,
our intuitive notions of gravity suggest that the expansion should slow down, as
galaxies and dark matter particles exert their gravitational pulls on one another. To
accommodate the surprising acceleration, one must either give up on the assumption
that we are using the right description of matter, and introduce an “exotic” dark
energy, or explore the possibility that gravity is modified from general relativity at
extraordinarily large distances.
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198 9 Discussion and Conclusions

The simplest example of such a modification, which is to simply allow for a
nonzero cosmological constant, fails in one crucial respect: the cosmological con-
stant receives quantum corrections which are many orders of magnitude larger than
the value required to explain the accelerating Universe. This motivates theories of
modified gravity which self-accelerate and are fechnically natural, i.e., in which
whatever parameter value and theory structure lead to the accelerated expansion are
not destabilised by radiative corrections. Ghost-free massive gravity, particularly in
its bimetric form, appears to be such a theory: the special potential structure, neces-
sary to eliminate the dangerous Boulware-Deser ghost, and the small graviton mass
both seem to be stable against quantum corrections [1], while bigravity in particular
can easily accommodate self-accelerating solutions which are in as good agreement
with background observations as ACDM is [2—4].

The expansion histories predicted by bigravity can be very close to ACDM and
to each other. To break this degeneracy, it is necessary to go beyond the FLRW
assumption and consider the evolution of perturbations. In so doing, we can derive
predictions for the formation and growth of cosmic structure, and thereby open up
new avenues of testing the theory. This is especially important now, as the advent
of next-generation galaxy surveys like EUCLID will allow observations of structure
formation to place constraints on modified gravity and dark energy comparable to or
exceeding those from purely geometric observations. Moreover, by expanding our
study to linear perturbations we can test the stability of the FLRW solutions. Indeed,
results in the literature prior to the work undertaken in this thesis had found evidence
for cosmological instabilities in massive bigravity [5-7]. It is therefore crucial to
undertake a detailed analysis of precisely when cosmological solutions in bigravity
are and are not linearly stable.

The presence of two metric tensors in a theory brings with it significant conceptual
challenges. In general relativity, the metric tensor is not just a dynamical field which
obeys a particular equation of motion. It has a deep physical role as the geometry
of spacetime. In a bimetric theory, where there is a second dynamical metric and in
which the action treats both metrics on equal footing (up to parameter interchanges),
there is a danger of demoting the metric from its geometric office. In most studies of
bigravity, this issue is swept under the rug by only coupling matter to one metric. This
can be identified as the physical metric, as matter follows its geodesics, while the
other is simply a rank-2 tensor coupled to it in order to modify gravity. The geometric
appearance of this second metric, such as the fact that its kinetic term is given by the
Ricci scalar, is then something of a coincidence, not a sign that we should assign any
particular geometric interpretation to this field. These considerations immediately
raise the question of whether matter can be consistently coupled to both metrics,
and, if so, whether we must give up on a geometric understanding of gravity in the
process.

Turning towards early times and high energies, Lorentz invariance is one of the
most fundamental ingredients in the best-tested physical theories, but may have to be
given up in order to resolve the seemingly-intractable problem of quantum gravity.
Lorentz violation is very well constrained in the Standard Model [8], but much less
so in other sectors of physics, such as gravity, inflation, and dark matter. In this thesis
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we have sought to improve our understanding of the first two, by allowing a Lorentz-
violating vector field to couple both to the metric and to a slowly-rolling scalar field.
Such interactions would be expected to arise if physics is Lorentz-violating, barring
some symmetry forbidding them, and so an exploration of inflationary dynamics and
perturbations can provide a strong test of the effects and sizes of such couplings.

9.2 Summary of Original Results

9.2.1 Massive Gravity and Bigravity

Chapters 3 and 4 dealt with cosmological perturbation theory in singly-coupled mas-
sive bigravity. In Chap. 3 we set up the formalism for perturbations and investigated
the linear stability of FLRW solutions. By employing a carefully-selected gauge in-
tended to ease the process of integrating out auxiliary degrees of freedom, we reduced
the ten Einstein and conservation equations to a system of two equations for the two
independent, dynamical perturbation variables. At small scales, the coefficients of
this system become effectively constant, allowing us to determine the eigenfrequen-
cies of the system and thereby identify stable and unstable models. Only one corner
of bigravity, the infinite-branch f; 84 model, turns out to be linearly stable at all times.

In Chap.4 we applied our perturbation formalism to observations, studying the
evolution of structure in the subhorizon and quasistatic approximation. This limit
is applicable for most modes observable on linear scales and is of great utility for
deriving testable predictions, as it reduces many differential equations to algebraic
ones. In bigravity, this allows us to directly relate every metric perturbation to the
density contrast, §, which in turn obeys an evolution equation that can be solved
numerically. Doing this, we obtained predictions for structure growth for each one-
and two-parameter bimetric model with viable background evolution, written in terms
of three common modified-gravity parameters: the growth rate and index, f and y;
the modification to Newton’s constant, Q; and the anisotropic stress, n. Note that the
quasistatic approximation, necessary to ensure that time derivatives of the fields drop
out, under the assumption that they are of order Hubble, is not always applicable for
unstable models. In these cases, the results can be applied (up to possible changes
in initial conditions for the growth rate) at later times when modes are stable. The
predictions hold straightforwardly for the stable infinite-branch g; 84 model, where
we find large deviations from general relativity, which should be easily measurable
by EUCLID, at all times and for all parameters. This provides a rare example of a
modified-gravity model which can be unambiguously ruled out against ACDM.

In Chaps. 5-7 we deal with doubly-coupled bigravity from both observational and
theoretical standpoints. In Chap. 5 we studied a simple example of a theory in which
the coupling of matter to both metrics removes any notion of an effective physical
metric for all but the simplest fields. As an example of the new structures which might
need to be used to describe spacetime in such a theory, we showed that the dynamics
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of point-particles can be described in terms of a Finsler manifold, a non-Riemannian
structure in which there is an effective metric which depends, in addition to the two
gravitational metrics, on the particle’s own velocity.

The particular double coupling studied in Chap. 5 suffers from the Boulware-Deser
ghost and therefore should be seen as a toy model, rather than a potentially-realistic
description of the Universe [9, 10]. An improvement can be made by coupling matter
to a specially-selected effective metric for which the ghost seems to reappear only at
energies outside the domain of validity of the theory [10]. This new double coupling
formed the basis of Chaps.6 and 7. In the former, we studied the effects of this
coupling in bigravity, deriving the Friedmann equations, comparing the simplest
models to data, and investigating certain special parameter régimes. These models
can agree well with observations; if they have improved stability properties, they will
increase the space of cosmologically-viable bimetric models.

In the latter chapter, we investigated this double coupling in the context of single-
metric massive gravity. This theory famously suffers from a no-go theorem ruling out
dynamical, flat FLRW solutions around a Minkowski reference metric [11]. Other
choices of spatial curvature or reference metric lead to instabilities [12—17]. The no-
go theorem is circumvented by the double coupling [10], but we found that there is
still a serious problem in comparing these theories to observations. The avoidance of
the no-go theorem relies crucially on the use of fundamental fields as the sources for
Einstein’s equations. The usual description of matter on large scales by an effective
fluid, such as pressureless dust, is insufficient and, in the absence of any other fields,
leads back to nondynamical cosmologies just as in singly-coupled massive gravity.
This can only be avoided either by adding new degrees of freedom, such as a scalar
field, or by treating dust as a field. We examined in further depth the case in which
a scalar field is added to the theory, coupling it to the effective metric in order to
unlock dynamical solutions. If the matter fluid also couples to the effective metric,
then significant pathologies arise due to the highly-constrained nature of the theory. If
it couples instead to the gravitational metric, one can indeed obtain sensible late-time
acceleration, but for many parameter choices it is driven as much by the scalar field’s
potential as it is by the massive graviton. This is because the avoidance of the no-go
theorem requires the scalar field to have a potential, and the theory’s constraints force
it to evolve along the potential in a fixed way throughout cosmic history.

9.2.2 Lorentz-Violating Gravity

In Chap. 8 we studied Einstein-aether theory, a general low-energy model of boost
violation in the gravitational sector, during inflation. Einstein-aether is a vector-tensor
theory in which a vector field, or aether, couples to gravity nonminimally while a
Lagrange multiplier imposes the constraint that it be fixed-norm and timelike. This
spontaneously picks out a preferred frame at each point in spacetime.

If such a field exists, it should also be coupled to a scalar inflaton, unless forbidden
by symmetries of either field. In the case of single-field, slow-roll inflation, this does
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not appear to be the case. We showed that all operators up to mass dimension 4
coupling the scalar to the aether can be included simply by allowing the scalar’s
potential to depend on the divergence of the aether. This model had previously been
introduced as a way of allowing the cosmic dynamics to depend directly on the
Hubble rate, which is not a spacetime scalar in general relativity.

We derived the cosmological perturbations for Einstein-aether theory coupled in
this way to a scalar field, and calculated the evolution of spin-0 and spin-1 perturba-
tions during inflation. In both cases, sufficiently large couplings lead to a tachyonic
instability for nearly half of all inflationary trajectories. Demanding the absence of
this instability for all initial conditions leads to new constraints on the size of the
aether-scalar coupling which is at least five orders of magnitude stronger than the
previous best constraint.

9.3 Qutlook

What is the next step for modified gravity? Progress on both the observational and
theoretical fronts is due to be made over the next decade. Upcoming data from
EucLID, the Dark Energy Survey, and the Square Kilometre Array, among others,
will measure both the geometry and the structure of our Universe with unprecedented
precision. This will allow for more precise tests of modified gravity, especially in the
régime of perturbations. Euclid, for example, will be able to measure the anisotropic
stress, 1, within about 10 % if it is not strongly scale-dependent [18]. Recall from
Chap. 4 that the one linearly stable bimetric model, the infinite-branch 8, 4 model,
has an anisotropic stress that deviates from GR by at least 30 %, and as much as
50 %, at all times. Clearly we are on the verge of entering a new experimental era in
modified gravity.

On the theoretical side, much more remains to be done. The dark energy problem
has not yet reached the status of mass generation in the Standard Model, in which the
Higgs mechanism was for decades a clear frontrunner solution, or inflation, where a
single, slowly-rolling scalar field is the consensus best available framework. There is
no “theory to beat” in modified gravity and dark energy. Observationally, a cosmolog-
ical constant is simple and fits the available data, but its theoretical issues may be too
problematic to overcome. The simplest extension of general relativity is, in a sense,
scalar-tensor theories, but none of these theories has emerged as being clearly better
than the rest; instead, we have the Horndeski theory, an extremely general framework
that covers all scalar-tensor theories with second-order (i.e., healthy) equations of
motion [19]. While massive gravity and bigravity are closely related to Horndeski
theory—the helicity-0 mode of the massive graviton in the decoupling limit is of the
Horndeski form—they are ultimately a qualitatively different approach to modify-
ing general relativity. So is Einstein-aether, and any number of other theories with,
e.g., higher dimensions or nonlocality. None of these has emerged as a front-runner;
ideally, we would demand self-acceleration, technical naturalness, agreement with
observations, and some degree of aesthetic virtue. While massive gravity, and its
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bimetric extension in particular, checks off many of these boxes, the difficulty in
obtaining stable cosmological solutions in all but a handful of nonminimal models
continues to provide impetus to find something better.

Itis impossible to guess what developments may emerge out of the aether.! Science
is notorious for pulling out its most significant discoveries when least expected and
when the research of the day seemed not to be leading up to them at all. However, we
can make some educated guesses as to which directions may soon be extended and,
perhaps, provide fertile ground for new opportunity. Recently, healthy scalar-tensor
theories beyond Horndeski have been discovered [20-22]. The presence of nontriv-
ial constraints means that, while the equations of motion contain higher derivatives,
the propagating degrees of freedom obey second-order equations. As discussed in
Sect. 6.4.1, a partially-massless theory of gravity would immediately satisfy practi-
cally all of the requirements we would impose on a theory of modified gravity, as its
gauge symmetry would both determine and protect a small value of the cosmolog-
ical constant. Whether a partially-massless theory in fact exists has been a topic of
intense debate, with no resolution reached to date [23-28]. If a theory is found which
possesses the partially-massless symmetry nonlinearly around all backgrounds, it
would unquestionably be a boon for modified gravity.

Let us examine some of the possible directions opened up by the work described
in this thesis. In Chap. 3, we found that most of the bimetric models with viable cos-
mological backgrounds suffer from an instability at early times, leaving behind only
a rather small and nonminimal corner of the parameter space. This means that, for
any given mode, linear perturbation theory breaks down. It means nothing more and
nothing less. At the moment this is a technical rather than a fundamental difficulty.
While the instability may signal a breakdown of the background, it may also be the
case that the instability is cured at higher orders. It is already known that nonlinear ef-
fects make spatial gradients of the helicity-0 mode of the massive graviton shallower;
this is the Vainshtein mechanism which eliminates the fifth force and reduces physics
to general relativity in regions like the solar system [29]. It is conceivable that similar
effects will work to cure the large time derivatives of cosmological perturbations at
higher orders. However, this will require either a study of higher-order perturbation
theory in bigravity or the development of a more sophisticated treatment of nonlinear
effects. Going to higher orders is not simple, as the complicated theory even at linear
order shows. Even then, there is no guarantee that a Vainshtein-like mechanism, or
any other effect which would cure the instability, would arise at second order. Note
that N-body simulations, which are commonly used to study modified-gravity effects
in highly nonlinear régimes, usually rely on the quasistatic approximation which fails
precisely in these unstable models. Indeed, by taking the quasistatic approximation,
one could never have discovered the instability: the quasistatic equations, presented
in Chap. 4, show no sign of the instability as the relevant terms are taken to vanish.
Instead we needed, in Chap. 3, to use the full cosmological perturbation equations
from the start. To date, only tentative steps have been taken towards removing the
dependence on the quasistatic limit, and only for a very simple class of scalar-tensor

'Pun intended.
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theories with few of the complications of massive bigravity [30, 31]. It seems, then,
that understanding whether the cosmological instability dooms most bimetric mod-
els and, if not, how to calculate observables will require the development of new
methods to better understand nonlinear perturbations.

Throughout Chaps.5-7 we circled the question of how to construct a healthy,
doubly-coupled bimetric theory, i.e., a sensible physical theory that treats both met-
rics on entirely equal footing. Two options immediately jump to mind. One is to
simply include minimally-coupled matter Lagrangians for each metric with the same
matter, as we studied in Chap. 5 and was introduced in Ref. [32]. This was later shown
to reintroduce the Boulware-Deser ghost at arbitrarily-low energies [9, 10]. Another
possibility is to couple matter to the nonlinear generalisation of the massless mode,

1

2 2
BN Y (M gy + M7 fu) . 9.1
g f

7y

Such a coupling was both introduced and shown to possess the Boulware-Deser ghost
in Ref. [33].

In Chap. 6 we discussed the only known double coupling in which the ghost does
not re-emerge at low energies, introduced in Ref. [10] and derived separately and
extended to multimetric setups in Ref. [34]. While, as we have shown in Chap.6
and 7, this coupling leads to a rich phenomenology, the status of the ghost has been
somewhat contentious and it is not yet clear exactly at which scale it appears [10, 35,
36]. The consensus seems to be that the mass of the ghost is at least at the strong-
coupling scale of the theory, and possibly parametrically larger. If the latter, then one
could argue that this is ghost-free taken as an effective field theory, since the ghostly
operators are outside the theory’s régime of validity [10, 36]. Indeed, it is not hard to
conceive of the ghost being cured by higher-energy operators which, by definition,
are ignored below the strong-coupling scale. However, even if the effective theory is
healthy, the nonlinear massive gravity we are using might not correctly describe it.>
Consider, as a very simple example, the fourth-order equation of motion

€X' +i+wx=0. (9.2)

This has a ghost, by virtue of Ostrogradsky’s theorem, and if the limit e — 0 is taken
in the equation of motion, the ghost disappears as the equation becomes second-
order. However, if we take the same limit in the solutions to Eq.(9.2), we do not
obtain the correct solutions to the second-order equation of motion: the extra two
modes do not decouple from the theory.?> For more details on this example, we refer
the reader to Sect. 9.3 of [37].

2We thank Angnis Schmidt-May for helpful discussions on the following points.

3More precisely, for nonzero k the frequency of the additional modes goes to infinity in the limit
€ — 0, and the actual value of the limit is not well-defined. In a theory where all modes have positive
energy, infinite-frequency modes are impossible to excite with finite energy. An infinite-frequency
negative-energy mode, which is what we have here, would however become even easier to produce
[37].
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It is therefore not clear whether the presence of a ghost in doubly-coupled massive
gravity and bigravity, even if we assume it is not excited at the energy scales for which
we are solving, would lead to the same solutions as the ghost-free low-energy theory
would. This should not be a problem with the FLRW solutions, for which the absence
of the ghost at all scales has been proven [10], but is a sign that we need to continue to
search for a doubly-coupled theory which is truly free of the Boulware-Deser ghost.
At present it is unclear whether such a theory exists and, if so, what form it will take.
If the coupling is not defined by minimally coupling matter to an effective metric,
then the problems and potential solutions discussed in Chap.5 may turn out to be
quite relevant.

However, a bird in the hand is worth two in the bush, and if we momentarily set
aside our pining for a fully ghost-free doubly-coupled theory, we will notice that
we have a double coupling, discussed in Chap.6, which at the very least is good
for cosmological solutions. Circumstantial evidence suggests that the new matter
coupling should allow for cosmologically-stable models in a much larger region of
the parameter space than the singly-coupled theory does. Recall from Chap. 3 that the
instability which plagues most singly-coupled models appears specifically for small
y. This is a problem in any finite-branch model (and most models only have viable
solutions on the finite branch) because the quartic equation (2.58) requires y = 0 at
early times. We have seen that in the doubly-coupled theory, y starts at 8/« and hence
is always nonzero if y. # 0. While the modified Einstein equations will change the
perturbation behaviour, if the rule of thumb that instabilities occur for small y holds,
then double coupling should open up many more stable models. Moreover, recall,
cf. equation (3.32), that the B, model is always stable in singly-coupled bigravity.
The problem with this model is that it is ruled out by observations and theoretical
conditions at the background level. In the doubly-coupled theory, the 8, model has
an acceptable background as long as 8/« is above a threshold value, cf. Fig.6.2.
Finally, in one simple example, when y = y, at all times and as a result the metrics
are proportional, we know that the perturbations must be well-behaved. We found
that the effective Friedmann equation in this case reduces to that of ACDM. It can,
moreover, be shown that for any solutions to the doubly-coupled theory in which g,,v
and f,v are related by a conformal factor, the theory reduces to general relativity,*
and that this equivalence to general relativity extends to linear perturbations [38].
This implies that the perturbations around the conformal cosmological solutions we
have found must be the same as in general relativity, and hence are stable. A full
investigation of the cosmological perturbations in this theory is therefore very well
motivated in the search for cosmologically-viable models of bigravity.

We are all in the gutter, but some of us are looking at the stars.
Oscar Wilde, Lady Windermere’s Fan

“In particular, matter couples only to the massless spin-2 field.
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Appendix A
Deriving the Bimetric Perturbation
Equations

God does not care about our mathematical difficulties. He
integrates empirically.
Albert Einstein

In Sect.3.1.1 we presented the full linearised Einstein and fluid conservation equa-
tions for massive bigravity in a general gauge and without making a choice of the
time coordinate (i.e., with a general lapse). Since these equations are arrived at by a
fairly lengthy calculation, in this appendix we detail their derivation.

The perturbations of the Einstein tensor are standard and can be found in, e.g.,
Ref. [1]. In order to calculate the fluid conservation equations we only need to know
the linearised Christoffel symbols. For the g metric, these are
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Note that in background, only T'§y, T'Y;, and Ty ; are nonzero. Similarly we can find

the f-metric Christoffel symbols, f‘{jp,
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The bulk of the work lies in calculating the perturbations of the mass term. We
will focus on deriving the linearised field equations, i.e., calculating the matrices

Y(ﬁ)v, rather than the second-order action. The metric determinants to linear order
are
det g = —N?a® (1 + E, +3A, + V?B,), (A3)
det f =—X*Y®*(1+E;+3A;+ V°By). (A4

The matrix X = /g~! f is defined in terms of the two metrics as

X¥, X0, = g" fo. (AS5)
Its background value is simply
X% =x,
Xij = y8ij. (A6)

Using this we can solve Eq. (A.5) to first order in perturbations to find

0, — 1
Xo—x 1+2AE .

LI YN
X,_x+yN(y81Fg x0; Fy),
i I X . i

X0:x+y;(yaFf—xaFg),

. 1 o1
X/ y[(1+§AA)5’j+§a’ajAB] (A7)
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The trace of this is
1 1 1_,
[X]=x 1+5AE +y|3 1+5AA +§V AB|. (A.8)

Similarly we can solve for the matrix Y = /f~1g, although we do not write its
components here as they can be found by simply substituting (N, a, ¢) with (X, Y, ¢)
and vice versa.!

We now need the matrices X? and X and their traces in order to compute the
matrices appearing in the mass terms of the Einstein equations. For X? we find

(X»% =x>(1 + AE),

X2, = % (y3: F, — x8;Fy)

(X*o = % (vO'Fy = xd'Fy),

O ) =y [(1+ A4S + 070, AB]. (A9)
with trace

[X*] =21+ Ef — E) + Y’ [30 + AA) + V2AB].  (A.10)

XH% =x? (1 )

X3 is given by

Y
X’ = I (x +y- ) (yoi Fg — xd; Fy),
i X i i
(XYoo= — (yo'Fy —x0'F),
. 3
X3 =y (1+§AA) 8’j+§8’8jAB], (A.11)
with trace
3 3 3 3 3,
[XP] = ° 1+2AE +y°|3 1+§AA +§VAB ) (A.12)

Y? and Y? can be determined trivially from these.

11t may also be calculated explicitly or by using the fact that Y is simply the matrix inverse of X,
which can be easily inverted to first order.
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Having calculated these we can determine the matrices (n)v(\/ —-1£) and

Y(,,(V f~1g). Two helpful intermediate results are

1
3 (IX1? = [X2]) = *[3(1 + AA) 4+ V2AB]

1 1
+xy [3 (1 +3 (AA + AE)) + EVZAB} ,
(A.13)

N

(IXP = 3[X][X?] 4 2[X7]) = y° (1 + %AA + %VZAB)
+ xy? (3 (1 + AA+ %AE) + VZAB) .
(A.14)

To obtain those intermediate results and the 0—0 and i—j components of the Y matri-
ces, it saves a lot of algebra to write the traces, 0—0 components, and i—j components
of the various X matrices in terms of

=X, ¢y =3y,

1 1 1 A 1. 1.
81 = =AE, 8 =-AA+-V?AB, &' =[=0'09;, — =8 .V*)AB. (A.15
1 ) 2 ) +6 3 (2 J 6 J ) ( )

Finally, the matrices Y(Z)v(‘/ g1 f) defined in Eq. (2.41) are given by

Vi (Vo) =0t (A.16)

e n=0_0:

olvef) = [ (1+;AA)+%V2AB],

(l)z N lf)=x+yN yaF xa,-Ff),
(1)0 V8~ lf):x—i—ya yaFf—xaF)

\/ﬁ)z (1+ AE)aij

1 R ,
—2y|:(l+EAA)S’j—i-1(8’jV2—8’8J)ABi|, (A.17)
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(A.18)

en=>2
Y00 (\/ﬁ) =y’ [3(1 +AA) + V?AB],
Yoy (‘/ﬁ) - _xz—sy§ (0 Fy = x0iFy)
Y (\/ﬁ) - _xz—i)yg (Yo' Fy = xd'F)
+2xy [(1 + %(AA + AE)) 8+ i (6, V2 —0'9)) AB} ’
en=3
)2 Fown o
Yiso (‘/ﬁ) - xfyz (v Fy = xd'Fy),
)= o (0 oo ]

(A.19)

Plugging these into the field Eqs. (2.39) and (2.40), we obtain the full perturbation

equations presented in Sect.3.1.1.
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Appendix B

Explicit Solutions for the Modified
Gravity Parameters

As discussed in Sect. 4.2, the modified gravity parameters Q and 7 in singly-coupled
massive bigravity have the Horndeski form,

1+ k*hy
=hh|{———),. B.1
1 2(1+k2h5) (B.1)

1+ k%hy
=h{—]). B.2
Q l(1—}-kzh3) -2

while the growth of structures can be written in these terms as

.. 10d%
S+ms— L29Ps o, (B.3)
20 M

Hence the five h; coefficients allow us to determine all three modified gravity
parameters we consider in Chap. 4. They are given explicitly by

1
m= (B.4)
(L+5%) (B1 +3B3y* + (682 — 2B4) > + 3 (B1 — B3) ¥?)
hy=— , (B.3)
—Bi + BB2 — Ba) Y5 + (681 — 9B3) y* + (3o — 1582 +2B4) 3 + (383 — TB1) y2
y? 3

=Ty [/f%ﬂ + (4B283 — 2B3B4) YO +3 (281 — 3B3) B3Y° + (4BoB3 — 198283 — BaBs +2B1B4) ¥*

+ (=3B% — 1883 — 683 +4BoP2 +2B284) > +3((Bo — 382) B3 + B1 (Bs — 5B2)) »°

+ (=78} +2B3B1 +2(Bo — 3B2) B2) y — B1 (Bo + B2) } (B.6)

2
hy = Z? [wzm" +2 (385 — BaB2 — 3 (B1 —283) B3) ¥ + (B1 (62 — 4B4) +3B3 (=2Bo + 92 + Ba)) v*

+2 (387 — 28381 + 1883 + 982 — 3B0B2 — 3B2B4) ¥° + (37P1B2 + 27B3P2 — 9PoB3 — 9B1B4) ¥*

+2(1087 = 38381 — 3 (Bo — 3B2) B2) ¥ + 31 (Bo +ﬂz>], B.7)
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hs = —£ % [4ﬁ§ﬂ§y” + B3 (24Bap3 + (983 — 883) Ba + 383 (1983 — 8B1) pa) y'°
+2 (1885 — 12843 + (11783 — 36p185 + 287) B3 + 683 (4B1 + 583) Pap2
+83 (9983 — 818182 + 188783 — 36283 — 12B0BaBs — 8B1587)) °
— (7283 (B2 — Ba) BT + (=7283 + 72843 + (11783 — 1683) B2 + B3 (8584 — T280)) P
+983 (—6083 + 8Bop3 + 12843 — 9683 B2 + 19B0 B3 + 5P3P4)) ¥*
—2(36B387 — (5487 — 36B42 + 69p7 + 887) B}
—285 (12382 — 76842 + 3 (1383 + B4 (B0 + B»))) A1
—3 (7285 — 36B4 B3 + (255p2 +4B3) B3 — 21B3Bafr — 9B + 683 B3
B0 (—1283 +4BaB3 — 93B3 P2 +3P384))) ¥’
+ (24 (362 — 2B4) B} + B3 (=72B0 + 5078, — T1P4) B}
+ (87683 — 5086453 + 60082 B2 + 4883 B2 — 383 Ba + Po (—7257 + 48Bap2 — 6963)) By
+363 (248283 + (=22863 + 16842 + 9B3) fo + 962 (4863 — 4pap2 — 73))) »°
+2 (188} + 458387 + (47783 — 36B0B2 — 170842 + 1453 + 9B3) B}
+383 (12682 — 42802 + 642 — 363 + 2Pops) B
+6 (Bo — 362) B2 (— 1587 + 3BoB2 +2B4B2 + 663)) y°
+ (44182 = T9B4) B + B3 (—33P0 — 882 + 334) B
+ (64883 — 156p0p3 — 60Bs 7 + 97 B2 + 9B0B3) B1 + 36 (Bo — 3B2) B3 Bs) ¥*
+2B1 (3987 — 268387 + (16783 — 15482 + 1583 — 3B (B2 + o)) B1 — 12B0283) ¥°
+ B1 (3683 +9B1B3P2 + 3P0 (387 — 5BsP1 — 4B3) + BT (1128, — 9B4)) ¥*

+267 (1187 = 3B3p1 + 1283) v + 367 (o +ﬂz>], (B.8)

where we have introduced two additional coefficients, /¢ and /7, defined as

o = 3m*a® (1+ %) (B1 + Bay* +2823) (B + Babay® + (363 — Buba — 3 (B1 — 283 ) »*

+(B1B2 + 12832 — 3PoB3 — 28184) y* + (382 + BaB1 — 3 (Bo — 3B2) B2) y* + 5B1B2y) . (B.9)
py — BLEY QP+ sy (3B0y° + 3% (3825 (2 = 5) + B3 (3= 92) — Bay (2 —2)) + B (65* = 7y2 — 1))
- o _
(B.10)

While this notation is inspired by Refs. [1, 2], we have defined £, ¢ 7 differently.
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Appendix C
Transformation Properties

of the Doubly-Coupled Bimetric Action

Here we describe the transformation properties of the action (6.1) and how they deter-
mine the number of physically-relevant parameters for the doubly-coupled bigravity

theory discussed in Chap. 6.

C.1 Rescaling the Action

Let us write the action as

M2 M3
s=-% [an/mdetgr @) - 5 [ dxy/=ETR ()
+m* M / d'xy/=detgV (Ve fiB) + / d*x /= det ger- Loy (gerr, )

where

v(Verip) = 3 hen (Ve

,lf)

is the usual dRGT interaction potential and satisfies

V=detgV (Ve fi ) = /= det 7V (Vi Bun)

Due to this property, the action is invariant under
guv(_)f/ws Mger’ o < B,

since the effective metric
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85T = a?g, + 208 X% + B fr (C.5)

is also invariant under this transformation, as shown below. Because the overall
scaling of the action is unimportant, there is a related transformation which keeps
the action invariant, but only involves the ratio of M, and M,

M, My M\ Ms\" My . Mg,
Sy Ouv Ny Juvs s n >\ 7 —ns s e .
Mfgﬂ < M, Jo (M ¢ M P Mga < Mfﬂ

g g .
(C.6)

These transformations reflect a duality of the action since they map one set of solu-
tions, with a given set of parameters, to another set of solutions.

Not all of the parameters My, My, o, B, and B, are physically independent. In
effect, we can rescale these parameters, together with g,, and f,,, to get rid of
either M, and My or o and 8. In the end, only the ratio between M, and M, or «
and B, together with §,, are physically meaningful. The two parameter choices are
physically equivalent and can be mapped to one another. We now describe the two
scalings that give rise to the two parameter choices.

Under the scalings

8w = @ s S = B e M} — &M,
n
M3 — B>M3, m* — o*m?, Bn — (é) B (C.7)
o

the effective metric becomes

8 = g + 28 XY + fun (C.8)

while the action becomes
M? M3
S = —Tg/d“x./— det gR (g) — Tf/d“xw/—detfR f)
4
+ szg / d*x/—detg Z,Bnen (\/g—lf)
n=0
+ / d4xv —det geffﬁn (geffv CD) . (C9)

The effective metric is thus uniquely defined in this parameter framework, while the
ratio between M, and M/ is the free parameter (in addition to the §,). For this choice
of scaling, the action is invariant under

vy <> f;w» ﬂn - ﬂ47ny Mg <> Mf, (ClO)
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or, more generally,

f 8 8
If, ll‘lstead, we apply the Scallllgs

M? M? Ms\"
8uv — M—Cgfg;w, f;w — M_egf;w’ Bn — (_f) Bns
g f

M,
m? M? M2
m? — mz—[‘l, o’ — —2’*’0{2, B> — —;/32, (C.12)
Meff Meff Meff

then the effective metric is still of the form (C.5), while the action becomes

2

+ m*MZ%; / d4x\/Teth4:,3n€n (\/ﬁ)

n=0

+ / d*x/— det gt L (geir, @) . (C.13)

2 2
s= - [ dtxy/=dergr @) - 25 [ate/md TR ()

For this choice of scaling, only the ratio between « and S, together with the §,,, is
physically important (the effective coupling M2, can be absorbed in the normalisation
of the matter content). Under this form, the action is invariant under

8uv <> f;uu ,Bn - ,847n7 o <> ,3 (C14)

To move from the framework with M, and M to the one with & and B, one simply
performs the rescaling

Mesz Mesz
Mg% g a2’ sz‘ g2 8uv = 07 8uv,
al” szez“
flw — :Bzf/w’ Bn — (E) B> m* — Tﬁ (C.15)

Each of the parameter frameworks has its advantages. In the M, and M, frame-
work, there is a unique effective metric, and it is the relative coupling strengths that
determine the physics. In the « and g framework, we have one single gravitational
coupling, Mgff, and the singly-coupled limits are more apparent in the effective met-
ric. Note that the ratio between « and 8 only appears in the matter sector, whereas
in the M, and M, formulation their ratio appears in both the matter sector and

interaction potential.
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C.2 Symmetry of the Effective Metric

In this section, we show that the effective metric is symmetric under the interchanges

8uv <> fuvs a < . (C.16)

In order to do this, we take advantage of the fact that g,,,X% is symmetric, i.e.,
gX = XTg, as shown in Ref. [1]. We will find it useful to discuss the metrics in
terms of their vielbeins, since we are dealing with square-root matrices and vielbeins
are, in a sense, “‘square roots” of their respective metrics. We use Greek letters for
spacetime indices and Latin letters for Lorentz indices. The g- and f-metric vielbeins
are defined by

v = Napeyel, (C.17)
fuv = nap L4 LY, (C.18)

while the inverse metrics are given by g"’ = n“el/e} and similarly for f*'. The
vielbeins of g are inverses of the vielbeins for g,,,, et e, = §; and efe} = &}, and
again similarly for the f},, vielbeins.
We will assume the symmetry condition (also called the Deser-Van Nieuwen-
huizen gauge condition)
el Ly, = e, Ly, (C.19)

where Lorentz indices are raised and lowered with the Minkowski metric. It is likely,
though it has not yet been proven, that this condition holds for all physically-relevant
cases. In four dimensions, it holds when g~! f has a real square root (proven in Ref.
[2], where it was conjectured that this result is valid also in higher dimensions).
Assuming this condition, then it has been shown [3] that the square-root matrix is
given by

Xt =elLe. (C.20)
The inverse of this is clearly
(XThE = Lies, (C.21)
since then
XEEX Y = e LY e = ele® = 8. (C.22)

The form of the inverse then implies

(x/f‘lg)f1 =Vg'f, (C.23)

which will be a useful property when showing the symmetry of the effective metric.
We also have
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b
8ua X, = equeney L) = eq, LY. (C.24)
In order to show that ¢X = X7 g, we must thus have

equLl = eq L, (C.25)

w

Notice that this is not exactly the same as Eq. (C.19), since in the first case we
contract over spacetime indices, whereas here we contract over Lorentz indices. The
two symmetry conditions are, however, equivalent, as discussed in detail in [4].

An alternative way of seeing that gX = X7 g is as follows. Since

f1aX$ = L9 L€y LY = L Lya€l L) = f,o X5, (C.26)

we have
fX=x"y. (C.27)

But f = gX?, so Eq. (C.27) can also be written gX? = X" gX?2, which implies
gX =XTg. (C.28)
Using this property it is straightforward to show that the effective metric is sym-

metric under the interchange of the two metrics. The effective metric we study was
introduced in Ref. [5] in the form

8N = o?guy + 20B80(u X% + B fruv- (C.29)

Due to the symmetry property (C.28), we can write this without the explicit sym-
metrisation,
ngnf = azg/w + Zaﬂgrxuxg + ﬂzfuu- (C.30)

Suppose now that we do the transformation

guw < fuw, a < B (C.31)
The effective metric becomes
g = &gy + 208110 (V1Y + B2 frn- (C.32)

eff

This can be brought into the original form for g,

using the matrix property

f (\/g”f)_1 =gg 'f (\/g”f)_l =gve'f. (C.33)

Combining this with Eq. (C.23) we get
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fVflg=¢Vve'f. (C.34)

Applying this to Eq. (C.32) we see that the effective metric is invariant under the
duality transformation (C.31). This ensures that the entire Hassan-Rosen action treats
the two metrics on entirely equal footing when matter couples to gfflf . Note that this
duality does not hold for the single-metric (dARGT) massive gravity as it is broken by
the kinetic sector.
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Appendix D
Einstein-Aether Cosmological Perturbation
Equations in Real Space

In this appendix, we present the real-space equations of motion for the linear cosmo-
logical perturbations in Einstein-aether theory coupled to a scalar field as described
in Chap. 8.

We have for the v = 0 component of the aether field Eq. (2.77)

"
— 6(c13 + 262) A2 D + 6 (a—) @
a
+ A [Q2c1+ )V i+ c3(V i+ B ) + 36 +3Q2ci3 + ) V]
—c3(®'; = B, + V') —ca(VY, 4+ 30") + a*8he
1 _ " ) )
+ 3 Vo [6 (”— — 2%2) O+ 34(P + W) —30' + 2V — v“i]
P :

3 _ " )
— 2 Vg (“— - 2%2) (BW — 340+ V')
2a a

1 a (7 2/ / (7 2/
+ T [Vog (@' @ — 8¢') — Vogpd'86]

1. _ ) "
5 Viog [¢’(3qf’ —3HD+V ) +3 (“— - 2%2) 5¢] =0, (D.1)

a

and the v = i component is
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o o a// a//
- [2—2%2 - = (—) + ¢ (— (Bi — V)
m m a a
o
+ (€1 + 5P+ 2e1(V] = B)]
m

1 . : :
+ 5(—C3 +e) B! —aVij! —enV!y;

. o
’ ’ ’ 1 ”
—ci3h ]i,j +CI(D,,' — —2\1{1- _CI(B,' — [/i )

1 _ "
+ 5 Vo [3 (“——2%2) (Bi — Vi) = 3V, + 3400, ,j]
a
la - -,
+ EZV% (¢'(Bi — V;) — 8¢,;) = 0. (D.2)

The combined aether-scalar stress energy tensor (2.81) has perturbations

2

5T = 2%{ —3(cis +36) %D + cra” [a(B' - V)]

+ (e +3e) AV +30) + ¢ o)
1 27 7 / (7
+ — (97D — ¢'8¢" — aVyd¢)

3m* - : 3 .
S Vs (W = 3HO V) + = Vaghs, D3)

2

7% = 2% [[—2(613 +3¢2)” + (Bea + ¢3) (%)] (Vi — Bj)

—cia? [az(Vi’ — Bl-’)]/ —cia " (a® ;)
1 ; ) .
+—(—Cl +c3) [(Bi -Vl — (B — Vj),ij]}

a//

- —¢ 8¢+ — o Ve)e (— - 2%2) (V; — B) + %%W(w — B)),
(D.4)

2 "
8T'; = 2’”—2 ’(613 + 3c2) [%2 -2 (a—)] P8 ; — (c13 + 3¢) HD'S
a a

‘ T i |
+a? [az(csz,kcslj + (c13+3c) W8 + 5013(‘/1’1, HVi 2hl/j):| ]

2 "
+ Z V|3 (2 - 2%) ® 34V a2 (a® 3V + v’ik))’}
a

- —Vgge (“— - 2%2) (3W =30+ V*,)
a
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+ — [Vop B8 + 8¢ — §'®) + Vigpd'86)

I oS3

+

[

2 /7
Voos (3 (% — 2%2) 8¢ +¢' BV — 34D+ v",k))] 8.
(D.5)

Q

We can do a consistency check by choosing V (0, ¢) = %/392 + V(¢). This
corresponds to pure &-theory, with ¢, rescaled to ¢, + 8, and a scalar field coupled
only to gravity. The cosmological perturbations in that model are presented in [1].
Our equations agree with the literature in this limit, as we would expect.
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