
Thread graphs, linear rank-width and their
algorithmic applications

Robert Ganian ★

Faculty of Informatics, Masaryk University
Botanická 68a, Brno, Czech Republic

xganian1@fi.muni.cz

Abstract. Many NP-hard graph problems can be efficiently solved on
graphs of bounded tree-width. Several articles have recently shown that
the so-called rank-width parameter also allows efficient solution of most
of these NP-hard problems, while being less restrictive than tree-width.
On the other hand however, there exist problems of practical impor-
tance which remain hard on graphs of bounded rank-width, and even of
bounded tree-width or trees. In this paper we consider a more restrictive
version of rank-width called linear rank-width, analogously to how path-
width is obtained from tree-width. We first provide a characterization of
graphs of linear rank-width 1 and then show that on such graphs it is
possible to obtain better algorithmic results than on distance hereditary
graphs and even trees. Specifically, we provide polynomial algorithms for
computing path-width, dominating bandwidth and a 2-approximation of
ordinary bandwidth on graphs of linear rank-width 1.

Key words: rank-width, linear rank-width, thread graphs, bandwidth,
path-width.

1 Introduction

The introduction of tree-width by Robertson and Seymour [10] was a break-
through in the design of graph algorithms since it allowed efficient solution of
many NP-hard problems on all graphs having bounded tree-width. A lot of re-
search since then has focused on obtaining a width measure which would be
more general and still allowed efficient algorithms for a wide range of NP-hard
problems on graphs of bounded width. Clique-width was considered to be such
a parameter [2], however it turned out to have several disadvantages – most no-
tably it was not possible to compute clique-width k-expressions of input graphs,
which had a severe negative impact on the runtime of parameterized algorithms.
To this end, Oum and Seymour have proposed rank-width [9], which addresses
and solves all the problems of clique-width and possesses better algorithmic
properties (see e.g. [3, 4]).

★ This research has been supported by the Czech research grants 201/09/J021 and
MUNI/E/0059/2009.



But what about problems which are NP-hard even on graphs of bounded
tree-width or even on trees? Such problems exist and have practical importance,
yet rank-width is strictly less restrictive than tree-width and so it cannot help in
these cases. The parameter used most often for these exceptionally hard problems
is path-width, which is defined as tree-width with the additional requirement
that the tree-decomposition must form a path. However, path-width is extremely
restrictive – the graphs of path-width 1 are exactly paths.

In the article we study a new width measure called linear rank-width, defined
by an additional requirement on the rank-decomposition of graphs analogous
to the requirement path-width imposes on tree-decompositions. The goal is to
obtain a width measure which on one hand is less restrictive than path-width and
yet on the other hand allows efficient algorithms for problems which are hard on
graphs of bounded rank-width or even tree-width. We first provide a constructive
characterization of graphs having linear rank-width 1 (further referred to as
thread graphs), and then continue by providing positive algorithmic results on
this class of graphs.

The algorithmic section contains three new polynomial algorithms on thread
graphs, each solving some problem which remains hard on other severely restric-
tive classes of graphs. The first is a 2-approximation algorithm for the classical
bandwidth problem (NP-hard to 2-approximate even on trees [11]). A polyno-
mial algorithm for computing dominating bandwidth – a natural variation of
bandwidth – follows, as well as a proof that computing dominating bandwidth
on trees is NP-hard. The third algorithm computes the path-width of thread
graphs, the problem otherwise being NP-hard on weighted trees and graphs of
rank-width 1 [8].

2 Rank-width and linear rank-width

2.1 Rank-width

The usual way of defining rank-width is via the branch-width of the cut-rank
function. A set function f : 2M → ℤ is symmetric if f(X) = f(M ∖ X) for all
X ⊆ M . Given a symmetric function f : 2M → ℤ on a finite ground set M , a
branch-decomposition of f is a pair (T, �) of a subcubic tree T and a bijective
function � : M → {t : t is a leaf of T}. For an edge e of T , the connected
components of T ∖ e induce a bipartition (X,Y ) of the set of leaves of T . The
width of an edge e of a branch-decomposition (T, �) is f(�−1(X)). The width of
(T, �) is the maximum width over all edges of T . The branch-width of f is the
minimum of the width of all branch-decompositions of f .

For a simple graph G, let AG[U,W ] be the bipartite adjacency matrix of
a bipartition (U,W ) of the vertex set V (G) defined over the two-element field
GF(2) as follows: the entry au,w, u ∈ U and w ∈ W , of AG[U,W ] is 1 if and
only if uw is an edge of G. The cut-rank function �G(U) = �G(W ) then equals
the rank of AG[U,W ] over GF(2). A rank-decomposition (see Figure 1) and
rank-width of a graph G is the branch-decomposition and branch-width of the
cut-rank function �G of G on M = V (G), respectively.

2



a b

c

d

e

e

d

b

c

a

(1 0 0 1)

(0 0 1 1)
(
0 0 1
1 0 0

) ⎛⎝1 0
0 1
0 0

⎞⎠

(1 1 0 0)

(0 1 1 0)

(1 0 0 1)

Fig. 1: A rank-decomposition of the graph cycle C5 incl. matrices at edges.

As already mentioned in the introduction, rank-width is closely related to
clique-width and more general than tree-width. Indeed:

Theorem 2.1. Let G be a simple graph, and pw(G), tw(G), cwd(G), rwd(G)
denote in this order the path-width, tree-width, clique-width, and rank-width of
G. Then the following holds

a) [9] rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1,
b) [7] rwd(G) ≤ tw(G) + 1 ≤ pw(G) + 1,
c) [folklore] tw(G) cannot be bounded from above by rwd(G), and pw(G) cannot

be bounded from above by tw(G).

Although rank-width and clique-width are “tied together” (one is bounded
if the other is bounded), there are two very good reasons to favor rank-width
over clique-width for algorithmic design. First, it is possible to design exponen-
tially faster algorithms by using rank-width instead of clique-width [3, 4]. Second,
clique-width algorithms need a so-called k-expression to run, while rank-width
algorithms require rank-decompositions. The difference is that while we cannot
compute k-expressions for clique-width efficiently, it is possible to compute a
rank-decomposition in polynomial (FPT to be precise) time if the rank-width is
bounded.

Theorem 2.2 ([6]). There is an FPT algorithm that, for a fixed parameter t
and a given graph G, either finds a rank-decomposition of G of width at most t
or confirms that the rank-width of G is more than t.

2.2 Linear rank-width

Based on Theorem 2.1 (b), a certain hierarchy of width parameters seems to
be present. Rank-width is the most general of the three parameters, though if
some problem is hard on rank-width one can try solving it on graphs of bounded
tree-width, and if that again fails then there is path-width. This relationship is
illustrated well in the following table:

paths trees cliques
path-width bounded unbounded unbounded
tree-width bounded bounded unbounded
rank-width bounded bounded bounded

3



The catch here is that many of the problems which are hard on tree-width
and trees tend to be solvable on cliques as well, not just paths. It is a natural
question to ask whether there exists a width parameter which remains capable of
solving problems hard on tree-width, but at the same time relaxes the restrictions
of path-width and achieves low values also on cliques. This is strong motivation
for linear rank-width.

Definition 2.3. A rank-decomposition (T, �) is linear if T is a caterpillar (i.e.
a path with pendant vertices). The linear rank-width of a graph G is the minimum
of the width of all linear rank-decompositions of G.

Since almost all degree 3 nodes correspond to a single vertex of G, we will
abuse the notation slightly and in these cases refer to the internal nodes by the
names of vertices in G. The only exceptions to this are the first and last internal
nodes of the decomposition, which are usually handled separately anyway.

a g

b c d e f

Fig. 2: An example of a linear rank-decomposition

Theorem 2.4. The linear rank-width of paths and cliques is 1, and the linear
rank-width of trees is not bounded by any constant.

Proof located in Appendix.

3 Thread graphs

The classes of graphs of rank-width 1, tree-width 1 or path-width 1 each pos-
sess interesting structural properties. For rank-width these are called distance
hereditary graphs, while for tree-width and path-width we speak of forests and
disjoint unions of paths respectively. In this section we introduce a new graph
class called thread graphs and prove that this is exactly the class of graphs which
have linear rank-width 1, answering a question asked by Oum at GROW 2009.
The nice structural properties of thread graphs are then used in the next section
for algorithmic design.

Definition 3.1. A thread graph is a graph which can be constructed by gradually
creating vertices. Every new vertex is created with 3 attributes, as follows:

1. Passive (P) or Active (A);
2. Disconnect (D) or Join (J );
3. Normal or Reset (ℛ);

4



Each new vertex is either P or A and either D or J and additionally may or
may not be ℛ.

A D vertex is created without any incident edges. A J vertex on the other
hand is created with incident edges to all vertices which are currently A.

Finally, an ℛ vertex changes all previous A vertices to P. Every vertex is
normal (not ℛ) unless explicitly said otherwise.

1

2

3

4 5

6 7

8 9

10

Fig. 3: A thread graph created by the following sequence : AJ AD PJ AJ AJ AJℛ
AJ AD PJ AJ . The numbers capture the order of created vertices.

See Figure 3 for an example of a thread graph. Notice that for connected
thread graphs it is enough to consider AJ , AD, PJ , AJℛ vertices (any other type
of vertices disconnects the graph). Furthermore, it is a trivial observation that
any thread graph can be created by disjoint union of connected thread graphs
– simply by creating vertices in the same order they originally appeared in each
connected component. Our goal is to prove the following:

Theorem 3.2. A graph G has linear rank-width 1 if and only if G is a thread
graph.

Proof. First, assume G has linear rank-width 1. We will show how to create G
as a thread graph from its linear rank-decomposition of width 1 by induction on
the vertices of G in the order they appear in the linear rank-decomposition from
one of its ends to the other; our inductive assumption is that a created vertex is
A if and only if it still has some neighbour in G which we have not created yet.

We create the first vertex as A if and only if it is adjacent to some vertex in
G. Now whenever a new vertex v is created, we look at:

1. The bipartite adjacency matrix at the edge of the decomposition between
v and what we have already created. All the non-zero rows of the matrix
must be identical to keep the rank equal to 1, and so the column of v either
contains only zeros (in which case no edges are created and v is D) or contains
ones exactly at those rows which are active (v is J ).

2. The bipartite adjacency matrix at the edge between v and what we have yet
to create. First, v is A if and only if its row is non-zero (i.e. it has some future
neighbours). Second, if v is A then either its row is identical to the rows of
all previous A vertices – in which case v is normal – or all the previous A
vertices now have rows containing only zeros – in which case v is ℛ.

5



On the other hand, assume G is a thread graph. We may create a linear
rank-decomposition by ordering the vertices from one end (say the left) to the
other as they are created in the thread graph. Consider a bipartite adjacency
matrix at some edge between two internal nodes of the decomposition. Vertices
occurring as rows in the bipartite adjacency matrix are those we have created
so far in the thread graph, and each is either P or A at this point. Now the rows
corresponding to P vertices contain only zeros (since no new vertex can create
an edge to passive vertices) and the rows corresponding to A vertices are all
identical (new J vertices will create a column of ones at A vertex rows until a
ℛ vertex changes current A vertices to P). The width of such a decomposition is
one, which concludes the proof.

⊓⊔

Structural properties of thread graphs

We proceed by providing several useful structural properties of thread graphs.
A cluster is the set of vertices containing two consecutive ℛ vertices and all
vertices between them. Formally, let ℛi denote the i-th created ℛ vertex and
Ci be the set of vertices containing two consecutive ℛ vertices ℛi and ℛi+1 and
all vertices created between them. Although clusters may contain vertices of
arbitrary degree, they are fairly isolated from the rest of the graph:

Proposition 3.3. Given a thread graph G and a cluster Ci in G, the following
holds:

1. ℛi may only be adjacent to vertices in Ci and Ci−1
2. ℛi+1 may only be adjacent to vertices in Ci and Ci+1

3. vertices in Ci other than ℛi and ℛi+1 may only be adjacent to vertices in Ci.

Furthermore, we will always assume that all PD vertices are created first and
that the first and last created vertices are both ℛ (so that each vertex belongs
to some cluster). Now any thread graph is formed by a sequence of clusters. The
next step is to look at the structure of individual clusters.

Proposition 3.4. In any cluster of a thread graph, the following holds:

1. AJ vertices form a clique in G.
2. all PJ vertices are adjacent to every AJ and AD vertex created before them.
3. all AD vertices are adjacent to every AJ vertex created after them.
4. there are no other edges in the cluster other than those covered by the previous

cases.

Finally, our algorithms also require information about the order and at-
tributes of created vertices in thread graphs. This information can be computed
from any thread graph in polynomial time (the proof is located in the Appendix).

Theorem 3.5. For a thread graph G, it is possible to compute in polynomial
time a creating sequence for G.

6



4 Algorithmic applications

4.1 Computing bandwidth

Now that we have some knowledge of the structure of graphs of linear rank-width
1, it is time to look at whether it is possible to solve hard problems on this class
of graphs. Let us begin with the bandwidth problem.

Definition 4.1. Given a graph G and a one-to-one mapping f : V →
{1, . . . ∣V ∣}, the bandwidth of f is defined as the maximum difference between
the labels of vertices sharing an edge. The bandwidth of G, denoted by bwd(G)
is then the minimum bandwidth over all such f .

Bandwidth has many applications in theory as well as practice, ranging from
networking to biology (see e.g. [12] or the dedicated survey [1]). Unfortunately,
it turns out that computing the bandwidth of graphs is extremely hard. Even
on trees, approximating bandwidth within some constant factor is NP-hard and
the best known polynomial-time approximation bound is O(log2.5n) [5]. Before
giving the main result of this section, we first need a few technical results:

Proposition 4.2. The bandwidth of a clique Kn is n− 1 and the bandwidth of
a bipartite clique Kn,m is the minimum of n+ m

2 − 1, n
2 +m− 1 (rounded up).

Lemma 4.3. Consider a bipartite graph G = ({s1 . . . sn} ∪ {u1 . . . um}, E) with
the following structure on E:

1. every vertex has degree at least 1.
2. {si, uj} ∈ E implies {si+1, uj} ∈ E.
3. {si, uj} ∈ E implies {si, uj−1} ∈ E.

Then mapping si to i and uj to n+ j results is a 2-approximation of the optimal
bandwidth of G.

Proof. Consider an arbitrary si adjacent to u1, u2 . . . uj . By our mapping, the
bandwidth of edges incident to si is n−i+j (induced by {si, uj}). The subgraph
induced by sk (k ≥ i) and ul (l ≤ j) is a complete bipartite graph Kn−i+1,j , and
by Proposition 4.2 the optimal bandwidth of this subgraph is at least min(n−
i+ j

2 ,
n−i−1

2 + j). But n− i+ j ≤ 2 ⋅min(n− i+ j
2 ,

n−i−1
2 + j), concluding our

proof. ⊓⊔

Theorem 4.4. There exists a polynomial time algorithm for 2-approximation
of bandwidth on thread graphs.

Proof. We may assume that our thread graph is connected, since the band-
width of a disconnected graph equals the maximum of its connected compo-
nents. Proposition 3.3 tells us that any thread graph is a sequence of clusters.
Our mapping will follow the sequence of clusters and in each cluster Ci is defined
as follows (see Figure 4 for an illustration):

7



1. PJ → p . . . q − 1 in the order of creation, p being the first free number.
2. ℛi → q.
3. AD ∪ AJ → q + 1 . . . r in the order of creation.
4. ℛi+1 is mapped in cluster Ci+1; if Ci is the last cluster, then ℛi+1 is simply
r + 1.

PJ i ℛi

AD i & AJ i
PJ i+1 ℛi+1

Fig. 4: Order of vertices for bandwidth 2-approximation

Now it is necessary to prove that the bandwidth of this mapping cannot be
greater than twice the optimal bandwidth. Every edge belongs to some cluster
of G, and so we may look at the bandwidth induced by edges of an arbitrary
cluster Ci with ai PJ vertices, bi AD vertices and ci AJ vertices.

Consider the edges incident to ℛi. For those between ℛi and PJ vertices,
each PJ vertex is adjacent to ℛi and so the optimal bandwidth cannot be less
than ai

2 – in our mapping the greatest bandwidth induced by these edges is ai
and so the approximation holds. There are no edges between ℛi and AD vertices.
The bandwidth induced by the remaining edges incident to ℛi is maximized at
the edge between ℛi and ℛi+1 and equals bi + ci + ai+1 + 1, however ℛi+1 has
at least bi + ci + ai+1 + 1 neighbours (all AJ and AD vertices in this cluster, ℛi

and PJ vertices in the next cluster are adjacent to ℛi+1) and so this again does
not break the 2-approximation. For the same reason, the 2-approximation holds
for the bandwidth induced by edges between AJ and AD vertices and ℛi+1. PJ
vertices in this cluster cannot be adjacent to ℛi+1, and so all edges incident to
ℛi+1 or ℛi are problem-free.

The bandwidth induced by edges between AJ and AD vertices is strictly lower
than the bandwidth of the edge between ℛi+1 and ℛi, so the last remaining case
to argue are the edges between PJ and AJ / AD vertices. Consider the subgraph
induced by PJ , AJ , AD and ℛi. We may ignore the edges between AJ , AD
and ℛi since these have already been dealt with and also ignore vertices which
have degree 0 in this subgraph – the resulting subgraph is bipartite with s1 . . . sn
being PJ vertices in the order of creation and u1 . . . um being ℛi, AJ and AD
vertices in the order of creation. Now it is a trivial consequence of Proposition
3.4 that all neighbours of si must also be neighbours of si+1 and all neighbours
of uj must also be neighbours of uj−1. So, due to Lemma 4.3, we see that the
edges incident to PJ also induce a 2-approximation of the optimum bandwidth.

Since in our mapping no edge in G may induce a bandwidth greater than
twice the lowest possible bandwidth, computing a 2-approximation is merely a
question of first constructing this mapping (which can be done in linear time
once we have access to the creating sequence as per Theorem 3.5) and then
running through all edges and finding the maximum bandwidth with respect to
this mapping.

⊓⊔

8



4.2 Dominating bandwidth

While bandwidth is a well-known problem, in this subsection we introduce a
related problem called dominating banwidth. We believe the idea behind the
problem is simple and at the same time natural: while in ordinary bandwidth
each vertex of a graph is assigned its own value, in dominating bandwidth we
allow areas of the graph which are “close” – distance 2 – to be assigned the
same value. This may have practical applications in communication (i.e. con-
structing an array of communicating relays with bandwidth restrictions, each
relay covering the surrounding areas), but our main goal here is to show that
there exist interesting problems which are NP-hard on trees and at the same
time polynomially solvable on thread graphs.

Definition 4.5. The dominating bandwidth problem for a given graph G and a
minimum dominating set X ⊆ V (G) of G is the problem of computing a mapping
f : V → {1, . . . ∣X∣} such that:

1. each v ∈ X receives a unique label.
2. each u ∈ V (G)−X receives the same label as some u-neighbour v ∈ X.
3. the bandwidth of f (defined as the maximum difference between the labels of

vertices sharing an edge) is minimized.

Remark 4.6. One could also define the problem differently – to compute a min-
imum dominating set and a mapping f such that the bandwidth is minimized.
Both problems are hard on trees, however our definition requires consideration
of all possible minimum dominating sets and so makes the result of Theorem 4.8
stronger.

Theorem 4.7. The dominating bandwidth problem is NP-hard on trees.

See Appendix for proof. On the other hand, computing the dominating band-
width of thread graphs is not hard. In fact:

Theorem 4.8. The dominating bandwidth of thread graphs is 1.

Proof. Again we may assume that our thread graph G is connected, since the
bandwidth of disconnected graphs equals the maximum of their connected com-
ponents. First let us look at the provided minimum dominating set X. Any
cluster Ci may contain at most two dominating vertices – all vertices in Ci and
vertices adjacent to Ci are dominated by ℛi and ℛi+1. Similarly, any subsequent
clusters Ci and Ci+1 may contain at most three dominating vertices, since choos-
ing ℛi, ℛi+1 and ℛi+2 dominates both clusters and all their neighbours. Finally,
it is a trivial observation that if v, u ∈ X are both dominating, then they cannot
both be AD or both be PJ (again due to minimality of X).

Consider a linear ordering of vertices in X, where for v ∈ Ci and u ∈ Cj ,
v < u if:

1. i < j, or
2. i = j and v is PJ , or

9



3. i = j and u is AD.
4. i = j and both u and v are AJ and u was created after v.

Let us construct f to match the linear ordering on X. Since each cluster has
at most two dominating vertices and each edge belongs to some cluster, the
bandwidth of edges between dominating vertices is one. Non-ℛ vertices do not
have neighbours outside a given cluster and so the same argument applies and
it is sufficient to choose the label of any adjacent dominating vertex to preserve
a bandwidth of 1.

What remains are the ℛ vertices, which may have neighbours in two clusters.
If the clusters contain two or less dominating vertices, it suffices to choose the
label of any of them (they will have labels f(x) and f(x)+1). On the other hand,
if the clusters contain three dominating vertices in total – the maximum possible
– then they must be assigned labels f(x), f(x) + 1 and f(x) + 2, so choosing
f(x)+1 certifies that the bandwidth will remain 1; the second dominating vertex
of the three will always be adjacent to our ℛvertex due to it being J in the second
cluster or Ain the first (otherwise it would contradict the linear ordering), so this
choice is indeed valid and the proof is finished.

⊓⊔

4.3 The path-width problem

The final algorithm in this section is a polynomial time algorithm for computing
the path-width of thread graphs.

Definition 4.9. A path-decomposition of a graph G = (V,E) is a path P =
(T,A) where the nodes T are subsets of V (also called bags) such that the fol-
lowing holds:

1. Each vertex v ∈ V appears in some bag.
2. For every edge {v, w} there exists a bag containing both v and w.
3. For every vertex v ∈ V , the bags containing v induce a subpath in P (the

interpolation property).
The width of the path-decomposition P = (T,A) equals the cardinality of the
largest bag in T minus one. The path-width of G, denoted by pwd(G), is the
minimum width over all path decompositions of G.

Path-width itself is a powerful (albeit extremely restrictive) width parameter.
However, computing path-width is a hard problem – it remains NP-hard even
when restricted to weighted trees and distance hereditary graphs (graphs of
rank-width 1) [8]. This is another example of a problem where the linearity
restriction helps: it is in fact possible to compute the path-width of graphs of
linear rank-width 1 in polynomial time.

Lemma 4.10. It is possible to compute the path-width of a connected thread
graph G consisting of a single cluster in polynomial time. The computed minimal
path-decomposition will furthermore have the property that ℛ1 is present in the
first bag and ℛ2 in the last bag.

10



ℛ1, AJ , AD1 . . . ADj , PJ 1

ℛ1, AJ , AD1 . . . ADj , PJ 2

ℛ1, AJ , AD1 . . . ADj , PJ i

ℛ1, AJ , ℛ2, PJ i+1 . . . PJ p, AD1 . . . ADj

AJ , ℛ2, PJ i+1 . . . PJ p, ADj+1

AJ , ℛ2, PJ i+1 . . . PJ p, ADa

Fig. 5: Optimal path-decomposition for connected thread graphs with p PJ and a AD
vertices; See Appendix for proof.

Theorem 4.11. There exists a polynomial time algorithm for computing the
path-width of thread graphs.

Proof. Our input graph G may again be assumed to be connected, since the
path-width of disconnected graphs equals the maximum of their components.
Then G is formed by a sequence of clusters and for each cluster we may compute
a minimal path-decomposition with the appropriate ℛ vertices in the first and
last bag. The path-width of G equals the maximum of the path-width of its
clusters, since sequencing path-decompositions for the clusters results in a path-
decomposition for the whole G. ⊓⊔

5 Conclusion

The main contribution of the article may be summarized in two main points.
First, it gives a constructive characterization of graphs of linear rank-width 1 and
provides insight into the structure of such graphs, which we call thread graphs.
This new graph class contains paths and cliques, but is also much more general.
Second, the article uses the obtained results in the design of new polynomial
algorithms for bandwidth, dominating bandwidth and path-width on thread
graphs. Each of these problems remains hard on other well-known classes of
graphs, such as distance hereditary graphs and trees. Further research in this
area should focus on possible parameterized algorithms on linear rank-width –
it is not clear whether or how our polynomial algorithms might be extended to
graphs of bounded linear rank-width.

11



Acknowledgment
The author wishes to thank Jan Obdržálek for his contribution and help in

characterizing graphs of linear rank-width 1.

References

1. P. Chinn, J. Chvátalová, A. Dewdney, and N. Gibbs. The bandwidth problem for
graphs and matrices—a survey. J. Graph Theory, 6:223–254, 1982.

2. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Appl. Math., 101(1-3):77–114, 2000.

3. R. Ganian and P. Hliněný. Better polynomial algorithms on graphs of bounded
rank-width. In IWOCA’09, volume 2874 of LNCS, pages 266–277. Springer, 2009.

4. R. Ganian and P. Hliněný. On parse trees and Myhill–Nerode–type tools for
handling graphs of bounded rank-width. Discrete Appl. Math., 2009. To appear.

5. A. Gupta. Improved bandwidth approximation for trees and chordal graphs. J.
Algorithms, 40(1):24–36, 2001.

6. P. Hliněný and S. Oum. Finding branch-decomposition and rank-decomposition.
SIAM J. Comput., 38:1012–1032, 2008.

7. S. il Oum. Rank-width is less than or equal to branch-width. J. Graph Theory,
57(3):239–244, 2008.

8. R. Mihai and I. Todinca. Pathwidth is np-hard for weighted trees. In FAW, volume
5598 of LNCS, pages 181–195. Springer, 2009.

9. S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Com-
bin. Theory Ser. B, 96(4):514–528, 2006.

10. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7(3):309–322, September 1986.

11. W. Unger. The complexity of the approximation of the bandwidth problem. In
IEEE Symposium on Foundations of Computer Science, pages 82–91, 1999.

12. Q. Zhu, Z. Adam, V. Choi, and D. Sankoff. Generalized gene adjacencies, graph
bandwidth, and clusters in yeast evolution. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 6(2):213–220, 2009.

12



Appendix

Proof of Theorem 2.4:

For cliques, we simply construct a linear rank-decomposition by adding ver-
tices in an arbitrary order – all bipartite adjacency matrices will be filled with
1s. For paths it suffices to introduce vertices in the same order as they appear
on the path. The matrices will then always contain a single row with a single 1
and the rest being rows filled with 0s.

For trees, assume there exists a minimal number c such that all trees have
linear rank-width at most c. Thus there exists a tree Tc such that it has linear
rank-width c and contains at least 2 vertices. We show it is possible to construct
a tree Tc+1 such that its linear rank-width is greater than c, contradicting the
minimality of c. So, let Tc+1 consist of a single vertex r connected by c+ 2 edges
to any vertex of c+ 2 copies of Tc.

Now assume there exists a c-width linear rank-decomposition of Tc+1. Let
us look at the order of vertices as they appear from the end of the linear
rank-decomposition which is farther from r. We say that a copy of Tc is in-
complete if some but not all of its vertices have appeared so far in the linear
rank-decomposition. Notice that if there were more than c incomplete copies of
Tc at any point in the rank-decomposition, the width of the decomposition would
exceed c. Since the linear rank-width of Tc is c, it also cannot happen that some
Tc is completed while any other Tc is incomplete (an incomplete copy of Tc will
increase the rank of the matrix by at least 1).

However, after the first Tc is completed, if we try to complete a second Tc then
a bipartite adjacency matrix of rank c+ 1 has to be present at some edge of the
decomposition – since Tc has linear rank-width c, the submatrix between vertices
of the second copy of Tc must have rank c at some edge of the decomposition,
and additionally there will be a unique ”1” entry between r and the vertex of
the first Tc it is connected to. Now, three cases may occur: Either the vertex in
the second Tc connected to r is a column, or it is a row and all its neighbours in
Tc are rows, or it is a row and at least one of its neighbours in Tc is a column.
In each of these cases the rank of the matrix goes up by one, thus concluding
our proof. ⊓⊔

Proof of Theorem 3.5:

Since any disconnected thread graph may be created by sequencing the creat-
ing sequences of its connected components, we may assume that G is connected.
The first step is to check for every vertex whether deleting it disconnects the
graph – if it does, then it is a ℛ vertex. Since G is connected, all ℛ vertices are
automatically AJ , and all ℛ vertices form a path.

This way we have identified all ℛ vertices except for the first and last (which
are also the first and last vertices of the creating sequence). While there exists
a non-trivial method for determining the first and last ℛ vertices, it is possible

13



to simply try all neighbours of the endpoints of the path of ℛ vertices by brute
force in polynomial time.

Once we have all the reset vertices ordered, we proceed by identifying the
creating sequence of each cluster. Assume we have completed Ci−1. Then all
neighbours of ℛi which are not in Ci−1 are PJ iff they are not adjacent to ℛi+1

(otherwise they are AJ ). Finally, all neighbours of ℛi+1 which are not adjacent
to other ℛ vertices are AD iff they are adjacent to some PJ or AJ vertex in Ci.

Now that each vertex in the cluster has its attributes, determining the cre-
ating sequence is simple. Whenever a PJ vertex is not adjacent to any not-yet-
added AJ or AD vertices, we create it – otherwise, we create an AJ or AD vertex
which has the lowest number of remaining PJ neighbours. Determining which of
these AJ or AD vertices to create first then depends on the edges between them;
a AD vertex is created before a AJ one iff there is no edge between them.

⊓⊔

Proof of Theorem 4.7:

The proof is a reduction from the bandwidth problem on trees. Given an input
tree T for the bandwidth problem, we construct a tree T ′ by first subdividing
every edge of T twice and then adding a pendant vertex to each leaf. There exists
a single minimum dominating set X on T ′, and X = V (T ). The bandwidth
problem on T is then exactly the same as the dominating bandwidth problem
on T ′ – each v ∈ V (T ′) − X is adjacent to precisely one dominating vertex so
these must have the same bandwidth value, and two vertices of T are adjacent
in T iff two vertices of T ′ which are neighbours of some dominating vertices are
adjacent.

⊓⊔

Proof of Lemma 4.10:

It is a well known fact that all vertices in a clique must be in some bag of
P , so there exists some bag B containing all AJ vertices together with ℛ1 and
ℛ2. Thus pw(G) must be at least ∣B∣, however it may also be much larger –
for example AD and PJ vertices could form an arbitrarily large bipartite clique
together.

If there were no edges between AD and PJ vertices, we could create a path-
decomposition of width ∣B∣ by having one bag B, on one side for each PJ vertex
a bag containing the PJ vertex and B − {ℛ2} and on the other the same for
AD vertices without ℛ1. So, assume there is some PJ vertex v and AD vertex u
such that {u, v} ∈ E. This implies that u was created before v, and so each AJ
vertex is adjacent to v (it was created before v) or to u (it was created after u).
Then there exists some bag Bu = B ∪ {u} or Bv = B ∪ {v}. Indeed, either B
is between u and v in the path-decomposition, in which case one of the vertices
needs to “travel” to meet the other, or u and v lie on the same side from B in
the decomposition, but then each vertex of B must “travel” to u or v.

14



Now let us consider some set of AD vertices X and PJ vertices Y of those
vertices which appear in some bag with B. If X and Y contain all AD and
PJ vertices, then for any such path-decomposition P we may create a path
decomposition P ′ as follows:

1. Trivially alter P so that each bag introduces at most one new vertex.
2. Find the vertex z ∈ X ∪ Y which appears last in some bag of P .
3. Remove ℛ2 (if z is PJ ) or ℛ1 (if z is AD ) from all bags containing z.

The width of P ′ is at most that of P , and so we may assume that X ∪ Y do not
contain all AD and PJ vertices.

So let there be some PJ vertex q /∈ Y (the proof for AD q /∈ X is analogous).
Then the closest bag to q on any such path-decomposition containing B, all
bags between them and the first bag containing q contain all neighbours of q by
interpolation, and no other bags with q are necessary. More importantly though,
any PJ vertex q′ created before q now has all its neighbours in the bag containing
q, and so we may simply create a new bag next to that one with q′ instead of
q – this takes care of all edges incident to q′, so no other bags containing q′ are
necessary and the size of the newly created bag may not increase the width of
the path-decomposition. Thus it is safe to assume that if q /∈ Y (X for AD), then
all q′ created before (after) q are not in Y (X) either.

Now finally we can give the algorithm for computing path-width. At the top
level, we loop through at most ∣V ∣ possible choices for Y , each corresponding
to the first 
 = 1 . . . ∣PJ ∣ vertices not being in Y . For each 
 we minimize X
by only assuming neighbours of the first 
 PJ vertices are in X. Since every
vertex in Y is adjacent to every vertex in X now (remember that PJ vertices
in Y were created after 
) and every vertex in X is present in the nearest bag
to 
 containing B, there is a bag containing X, Y and B in the decomposition.
Additionally, all other vertices may be dealt with without increasing the width
of the decomposition (as per q′ in the previous paragraph), and therefore the
path-width of G is the minimum of ∣X∣+ ∣Y ∣+ ∣B∣ over all choices of 
.

⊓⊔

15


