
DVE and meanDVE Language Specification

January 3, 2011

Contents

1 The DVE Modeling Language 2
1.1 Example Model . 3
1.2 Short Explanation of Advanced Constructs 4

1.2.1 Typed Channels . 4
1.2.2 Committed States . 6

1.3 Concrete Syntax . 7
1.4 Dynamic Semantics . 11

1.4.1 Common Definitions and Conventions 12
1.4.2 Expressions . 12
1.4.3 Transitions . 13
1.4.4 System . 14

2 The meanDVE Modeling Language 17
2.1 Concrete Syntax . 17
2.2 Dynamic Semantics . 17

2.2.1 Common Definitions and Conventions 17
2.2.2 Model Semantics . 18

1

Chapter 1

The DVE Modeling Language

DiVinE provides support and tools for enumerative model checking (see Sections ?? and ??)
which is proper especially for verification of software and models of communication protocols.

Every modeling language has to correspond to systems which are supposed to be modeled
in it. Both software and communication protocols can consist of several processes running
in parallel which communicate using various types of synchronization and shared memory.
Different platforms and levels of abstraction can vary substantially in atomicity of instructions,
therefore it has to be possible to model an arbitrarily complex operation as atomic.

The language also has to respect types used in modeled systems. Usually, only integer
types and vectors of integers are taken into account because it is often necessary to abstract
from any more complex data to keep the state space reasonably small. If some of more
complex types are needed (e. g. real numbers), it has to solved using specialized verification
tools or tool extensions [2].

The DVE modeling language is designed to model concurrent systems composed from
processes. It provides communication by channels (special named elements for sending data
between processes) and shared variables. Using so called committed states it is possible to
create complex atomic operations.

The language has partially been derived from the modeling language of Uppaal [1], but
DVE is focused more on the expressibility of a model than on comfort of modeling, therefore
most of complex constructs and syntactic sugar have been omitted. Neither time properties
needed for modeling of timed systems can be expressed in the language. The language has
been designed as an intermediate language, hence writing models in it can be laborious
sometimes. Nonetheless, the language is sufficiently strong to represent most of the models
considered proper for our kind of verification.

The need for easier modeling in DVE (until a translation from a more congenial language
is made) caused a temporary solution in the form of combination of DVE with the m4 pre-
processor allowing designers to write succinct codes using macro definitions. It also allows
to define macros externally (from command line of m4) and thus, it is possible to instanti-
ate models with different parameters. We often use this parametrization to get models with
selected size of the state space.

The language also contains constructs supporting LTL model checking. It is possible to
define a process of special kind – property process. It differs syntactically only in two things:

• usage of channels is forbidden,

• usage of local variables of different processes is permitted.

2

CHAPTER 1. THE DVE MODELING LANGUAGE 3

It affects also the semantics – each transition of an ordinary process is synchronized with one
of transitions of property process. The synchronization implements the product of a modeled
system and a never claim automaton as described in Section ??

1.1 Example Model

Before a formal syntax and semantics is given, it is good to show the language on an intuitive
level. The easiest way to explain basic language constructs is to demonstrate them on a
simple example. The example is given here first as an description in words, then it is modeled
as a set of finite-state automata with variables and communication channels and finally, the
transcription to DVE is shown.

The example system can be described intuitively as an interaction of two objects: a man
and a drink dispenser. The man can work, get a money for his work and spend the money for
tea or coffee. The drink dispenser is composed from an electronic control unit and mechanic
parts which can break down. Altogether the system consists of three main parallel parts: the
man, the control unit and the mechanic parts.

The man can do following actions:

• be working (for money) – initial status

• go with earned money to the dispenser

• put money into the dispenser

• choose a drink and wait for its preparation

• take a drink, when it is prepared

• be happy, if the prepared drink is the chosen one

• be sad, if the prepared drink is different from the chosen one

• return to work, if he is happy

The control unit can do these actions:

• be ready and waiting for money and requests – initial status

• take money from the man

• order mechanic parts to prepare a drink, if one if chosen and money is paid

Finally, the mechanic parts are able to do the following:

• be ready for orders – initial status

• produce an ordered drink

• become ready again, if drink is taken away

CHAPTER 1. THE DVE MODELING LANGUAGE 4

The system is modelled using finite state automata with variables and communication
channels (the extension of finite automata by variables is obvious, a synchronization using
communication channels is described below). The model consists of three finite state machines
running in parallel depicted in Figure 1.1. Nodes stand for states of machines and transitions
for actions. Each action can consist from at most three parts:

• guard – the action can be executed only if guard is satisfied

• synchronization using channels (e. g. make!0) – the action is executed in parallel
with another action synchronized correspondingly (e. g. with make?product); the
transmission of value is optional

• effects – assignments to variables

The DVE code is a simple transcription of these automata to the text format.
The state space of the model has 26 states (see Figure 1.2). It is possible to verify that the

model satisfies that the man can never be sad, which is certainly the positive property of the
system (depending on the point of view of course). In spite of this good attribute the system
can get to the deadlock state (none of processes can do a transition), when the man does not
put in a money and requests a drink. This is surely unwanted hole in the specification and
subsequently also an unwanted property of the model. To repair the model it would suffice to
synchronize the transition of the control unit guarded by not money with the new transition
of the man allowing him to return from the waiting state. This change is intuitively the same
as reminding to the man to insert the money.

1.2 Short Explanation of Advanced Constructs

The previous section shows basic syntactic elements of the DVE language and the more
advanced ones are omitted there. For this reason they are briefly explained here. The detailed
semantics is given in Section 1.4.

1.2.1 Typed Channels

Typed channel is similar to the ordinary untyped channel (which is demonstrated in the
Section 1.1). The difference is two-fold:

• typed channel can have a (potentially compound) type,

• it can also be buffered (then the value transmission is asynchronous).

Here are four sample channels ordinary, simple, quick and deep declared as follows:

channel ordinary;
channel {byte} simple[0];
channel {byte,int} quick[0];
channel {byte,int} deep[4];

CHAPTER 1. THE DVE MODELING LANGUAGE 5

Man:

working

give_money

money = 1

(money>0)
in!

money = 0

wait

req!0
want = 0

req!1
want = 1

got

take?what

happy

(what==want)

sad

(what!=want)

process man {

byte what, want, money;

state working, give_money, wait, got, happy, sad;

init working;

trans

working ->give_money { effect money = 1; },

give_money->give_money { guard money>0; sync in!;

effect money = 0; },

give_money->wait { sync req!0; effect want = 0; },

give_money->wait { sync req!1; effect want = 1; },

wait ->got { sync take?what;},

got ->happy { guard what == want; },

got ->sad { guard what != want; },

happy ->working { };

}

Control unit:

ready in?
money = 1

request

req?choice
(choice==0 and money)

make!0
money=0

(choice==1 and money)
make!1

money=0
(not money)

process control_unit {

byte money, choice;

state ready, request;

init ready;

trans

ready ->ready { sync in?; effect money = 1; },

ready ->request { sync req?choice; },

request->ready { guard choice==0 and money;

sync make!0; effect money=0;},

request->ready { guard choice==1 and money;

sync make!1; effect money=0;},

request->ready { guard not money; };

}

Mechanic parts:

ready

produce

make?product take!product

error_st

make?product

make?product

process mechanic_parts {

byte product;

state ready, produce,

error_st;

init ready;

trans

ready -> produce

{ sync make?product; },

produce -> error_st

{ sync make?product; },

error_st -> error_st

{ sync make?product; },

produce -> ready

{ sync take!product; };

}

Figure 1.1: Finite state machines of a drink dispenser and their transcriptions to DVE

CHAPTER 1. THE DVE MODELING LANGUAGE 6

28 transitions between 26 states including 4 deadlock states (highlighted).

Figure 1.2: State space of the model of a drink dispenser

Channel ordinary is the same as channels in Section 1.1. It can transmit a value of
arbitrary type, the transmission causes a synchronization of a sender and a receiver of the
value.

Channel simple is almost the same as ordinary, but before the value is transmitted, it
is casted to byte (the type of simple).

Channel quick is very similar to simple, however it can transmit 2 values at one moment
(in this case the first value is casted to byte and the second to int).

Channel deep is of compound type, thus it can transmit two values at once in the same
manner as quick, but the transmission is asynchronous, which means that the value is inserted
to a buffer (if it is not full) and kept until some process picks it up. Elements are stored in
the buffer in FIFO order (buffers behave like queues).

Generally if a buffered channel is full, a transition sending a message to it cannot be exe-
cuted and if the buffer is empty, a transition receiving a message from it cannot be executed.
No message losses are permitted.

1.2.2 Committed States

To model more complex atomic operations simple assignments permitted in effects of transi-
tions are not sufficient. Sometimes a repetition is needed or even a synchronization between
processes. To protect other processes to interleave the operation with their own actions it is
possible to mark process states used in the operation as committed.

Example:

CHAPTER 1. THE DVE MODELING LANGUAGE 7

with committed process states: without committed process states:

Figure 1.3: State spaces of the example with and without committed states

process set_parameters

{

int result;

state start, finish;

init start;

trans

start->start

{ sync param!3; },

start->finish

{ sync return?result;},

start->start { };

}

process computing_power_of_2

{

int result=1;

int exponent;

state receive, compute, send;

commit compute;

init receive;

trans

receive->compute { sync param?exponent; },

compute->compute { guard (exponent!=0);

effect result=2*result,

exponent=exponent-1; },

compute->send { guard (exponent==0); },

send ->receive { sync return!result;

effect result=1; };

}

Process set parameters sends an exponent x to process computing power of 2 and it
computes 2x. In this case x = 3 and computing power of 2 sends back number 8. Process
computing power of 2 contains committed state compute. It means that computation of the
power is an atomic action, hence it is not possible to interleave the computation with the
third transition of set parameters which is otherwise always executable.

This observation is demonstrated in Figure 1.3, where the left picture is a state space of
the model given above and the right one shows a state space of the same model, but without
committed states. In the second case in almost all states it is possible to execute the third
transition of set parameters, which brings on many self-loops.

Intuitively, committed states are prior to other states. If developer guarantees that always
at most one process is in committed state, then a sequence of transitions from committed
states of one process cannot be interleaved by actions of other process.

1.3 Concrete Syntax

Concrete syntax of DVE modeling language is given by the following set of recursive equations
together with operator precedences making the syntax analysis unambiguous (see Table 1.1).
Equations marked with � have a dynamic semantics defined in 1.4, the rest of equations have
only static semantics (declarations of variables, channels, etc.):

In the following text:

id, id1, id2 stand for terminal symbols from
{a, . . . , z, A . . . , Z, } · {0, . . . , 9, a, . . . , z, A . . . , Z, }∗,
number stand for terminal symbols from {0, . . . , 9}+.

The entire system consists of declarations, definitions of processes and a definition of a
type of the system.

CHAPTER 1. THE DVE MODELING LANGUAGE 8

DVE ::= Declaration ProcDefList System �

It is possible to declare variables or channels.
Declaration ::= ε | Declaration VariableDecl | Declaration Channels

Variables can be of two different integer types. They can also be scalar or vector. Keyword
Const may be used in a declaration of constant.

VariableDecl ::= TypeName DeclIdList ;
Const ::= ε | const

TypeName ::= Const TypeId
TypeId ::= int | byte

DeclIdList ::= DeclId | DeclIdList , DeclId
DeclId ::= id VectorDecl VarInit

VectorDecl ::= ε | [number]

It is possible to initialize variables using operator =. Vector variables can be initialized by
a vector of values written as {value1, value2, . . . , valuen}.

VarInit ::= ε | = Initializer
Initializer ::= Expr | { VectorInitList }

VectorInitList ::= VectorInit | VectorInitList , VectorInit
VectorInit ::= Expr

Channels are typed or untyped. Element sent through a typed channel may consist of
several items of different types. Typed channels can also be buffered (the size of buffer is
given by a positive integer).

Channels ::= channel ChannelDeclList ; |
channel { TypeList } TypedChannelDeclList ;

ChannelDeclList ::= ChannelDecl | ChannelDeclList , ChannelDecl
ChannelDecl ::= id

TypedChannelDeclList ::= TypedChannelDecl |
TypedChannelDeclList , TypedChannelDecl

TypedChannelDecl ::= id [number]
TypeList ::= TypeId | TypeList , TypeId

Processes are identified by a unique name. They consist of local variable declarations,
a list of process states, a list of accepting process states, a list of committed process states,
declaration of an initial state and a list of transitions.

ProcDefList ::= ProcDef ProcDefList �
ProcDef ::= process id { ProcBody } �

ProcBody ::= ProcLocalDeclList States �
InitAndCommitAndAccept Transitions �

First, local variables are declared.
ProcLocalDeclList ::= ε | ProcLocalDeclList VariableDecl

Second process states are declared and some of them are marked to have a special type
(initial, committed and accepting).

CHAPTER 1. THE DVE MODELING LANGUAGE 9

States ::= state StateDeclList ;
StateDeclList ::= StateDecl | StateDeclList , StateDecl

StateDecl ::= id
InitCommitAndAccept ::= Init | Init CommitAndAccept |

CommitAndAccept Init
Init ::= init id ;

CommitAndAccept ::= Commit Accept | Accept Commit |
Accept | Commit

Accept ::= accept AcceptList
AcceptList ::= id ; | id , AcceptList

Commit ::= commit CommitList
CommitList ::= id ; | id , CommitList

Third the list of transitions follows. A transition leads from one process state to another
and further it may contain a guard, a synchronization and effects.

Transitions ::= ε | trans TransitionList ; �
TransitionList ::= Transition | TransitionList , TransitionOpt �

Transition ::= id1 -> id2 { Guard Sync Effect } �

A little of syntactic sugar: It is possible to omit the starting process state in a transition,
if it is the same as in a transition immediately preceding the transition.

TransitionOpt ::= -> id { Guard Sync Effect } | Transition �

A guard is simply an expression (semantically it is the condition to be fulfilled, when a
transition is executed).

Guard ::= ε | guard Expr ; �

A synchronization can be either plain or it can transmit a value. Synchronization can
transmit a value also to the buffer, although the transmission is asynchronous and no syn-
chronization between processes happens in fact.

Sync ::= ε | sync SyncExpr ; �
SyncExpr ::= id ! SyncValue | id ? SyncValue �

SyncValue ::= ε | Expr | { ExprList } �
ExprList ::= Expr | ExprList , Expr �

Effects consist of lists of assignments.
Effect ::= effect EffList ; �

EffList ::= Assignment | EffList , Assignment �
Assignment ::= Expr = Expr �

DVE has an universal expressions used in initializations of variables, guards, synchro-
nizations and effects. They may contain nullary operators (constants, variables, etc.), unary
operators (unary minus, Boolean negation and bitwise negation) and binary operators (plus,
minus, bitwise shifts, Boolean operators, etc.). The expressions are defined recursively and
for the unambiguous interpretation table in Table 1.1 is needed.

CHAPTER 1. THE DVE MODELING LANGUAGE 10

Table 1.1: Operators sorted by precedence from the lowest to the highest:

1. imply Boolean implication
2. or, and Boolean or, and
3. |, &, ^ bitwise or, and, xor
4. == ! = integer equality, integer non-equality
5. < <= >= > stands for integer relations <,≤,≥, >
6. << >> left bit shift, right bit shift
7. − + subtraction, addition of integers
8. ∗ / % multiplication, division, modulo of integers
9. − ~ not unary minus, bitwise not, boolean not
10. () [] . -> parentheses, element of vector selection,

”process at state” test, variable of process

Expr ::= false | true | number | id | id [Expr] | �
(Expr) | UnaryOp Expr | �
Expr1 < Expr2 | Expr1 <= Expr2 | �
Expr1 == Expr2 | Expr1 ! = Expr2 | �
Expr1 > Expr2 | Expr1 >= Expr2 | �
Expr1 + Expr2 | Expr1 − Expr2 | �
Expr1 ∗ Expr2 | Expr1 / Expr2 | �
Expr1 % Expr2 | �
Expr1 & Expr2 | Expr1 | Expr2 | �
Expr1 ^ Expr2 | �
Expr1 << Expr2 | Expr1 >> Expr2 | �
Expr1 or Expr2 | Expr1 and Expr2 | �
Expr1 imply Expr2 | �
id1 . id2 | id1 −> id2 | id1 −> id2 [Expr] �

UnaryOp ::= - | ~ | not �

A system can be declared as synchronous or asynchronous. One of processes may be
marked as a property process (process implementing the never claim automaton).

System ::= system SystemType �
SystemType ::= async ProcProperty ; | sync ProcProperty ; �

ProcProperty ::= ε | property id �

There are also additional constraints put on the source code:

1. All symbols (processes, variables, channels or process states) must be declared.

2. Symbols (processes, variables, channels or process states) cannot be of the same name
in the same scope of view (e. g. local variable A is in a conflict with global variable A,
but it is not in a conflict with another local variable A declared in a different process).

3. The type of symbol has to correspond to the usage (e. g. it is not possible to use
channel as variable) – there are many restrictions given by this rule:

CHAPTER 1. THE DVE MODELING LANGUAGE 11

(a) In context of Init, Accept, Commit, Transition and TransitionOpt there id must be
a declared process state

(b) In context of Expr → id, id must be a scalar variable

(c) In context of Expr → id [Expr], id must be a vector variable

(d) In context of Expr → id1 . id1, id1 must be a process and id2 must be a process
state

(e) In context of Expr → id1 −> id2 or id1 −> id2 [Expr], id1 must be a process and
id2 must be a variable (scalar or vector).

4. Scalar variable cannot be initialized with a vector value and vector variable cannot be
initialized with a scalar value.

5. Array size has to be at least 1 and at most 2147483647.

6. The left side of an assignment has to be a scalar variable or an element of a vector
variable

7. In context of both SyncExpr → id ? SyncValue and SyncValue → Expr, Expr has to be
a scalar variable or an element of a vector variable (and similarly for SyncValue → {
ExprList }).

8. Expressions id1 . id2, id1 −> id2 and id1 −> id2 [Expr] are permitted only in a
property process and processes used in these expressions has to be declared before the
property process

9. The number of items transmitted simultaneously through a single channel must corre-
spond to the declaration (in case of typed channels) or the first use of the channel (in
case of untyped channels)

1.4 Dynamic Semantics

In this section a dynamic semantics of DVE source is set up. A static semantics is omitted
for simplicity reasons (e. g. semantics of declarations is not explained) and it is be referred
only using the intuition given in the Section 1.1. Equations of the concrete syntax in Section
1.3 needed for dynamic semantics are marked with �.

First, several common notions are defined in 1.4.1. The dynamic semantics is given al-
most exclusively by transitions of processes. Therefore denotational semantics of transitions
is given in Section 1.4.3. Transitions contain a lot of expressions. For this reason denota-
tional semantics of expressions is defined in Section 1.4.2. Finally, the small step dynamic
operational semantics of the entire DVE system is described in Section 1.4.4 using semantics
of transitions and states of processes.

One may notice, that no abstract syntax is given here to make the definition of semantics
easier. But, as the abstract syntax would be almost precisely the same as the concrete syntax
excluding terminal symbols, the semantics is defined directly for the concrete syntax. This
way we also avoid the need for definition of correspondence between abstract and concrete
syntax.

CHAPTER 1. THE DVE MODELING LANGUAGE 12

2 3*

Expr

2 3*

Expr1

Expr

+

2 3*

Expr1

Expr

+

1 2

Expr

+

Figure 1.4: Example of relation � between expressions

1.4.1 Common Definitions and Conventions

Definition 1.4.1. L(N) is the language of all terms derivable from non-terminal N .

Remark 1.4.2. Convention: The name of a non-terminal in lower case letters denotes a term
from a language given by the non-terminal. E. g. guard, guard1, guard′ denote terms from
L(Guard).

Definition 1.4.3. Let t1 and t2 are trees. Then t1 � t2, if and only if t1 is a subtree of t2.
Let w1 and w2 are words. Then w1 � w2, if and only if t1 � t2 and t1, t2 are syntax trees

of w1, w2.

Remark 1.4.4. E. g. 2 ∗ 3 � 1 + 2 ∗ 3, but 1 + 2 � 1 + 2 ∗ 3 (see Figure 1.4) because multipli-
cation has a higher priority than addition.

Definition 1.4.5. System state σ is a function mapping:

• scalar variable name to its value (names of variables are always understood in context
of current scope of their visibility); pr :: id denotes a variable id in context of process
pr,

• vector variable name to the vector of values indexable by integers; pr :: id denotes a
variable id in context of process pr,

• process name to the name of its current state,

• channel name to the list of vectors of values contained in it (for unbuffered channels
too - it is needed for the easy assembling of value transmission to the semantics of DVE
system).

Remark 1.4.6. In the following text σ, σ′, . . . stand for a system state.

1.4.2 Expressions

The denotation semantics of all terms from L(Expr) is defined as follows (the semantics of
used operator symbols can be found in Table 1.1):

JfalseK(σ) = 0
JtrueK(σ) = 1
JnumberK(σ) = number
JidK(σ) = σ(id)

CHAPTER 1. THE DVE MODELING LANGUAGE 13

Jid [expr]K(σ) = σ(id)(JexprK(σ)) . . . id is vector variable and JexprK(σ) is an index to it
J(expr)K(σ) = JexprK(σ)
Junary op exprK(σ) = unary op JexprK(σ) . . . unary op ∈ {−, ˜, not}
Jexpr1 binary op expr2K(σ) = Jexpr1K(σ) binary op Jexpr2K(σ)
. . . binary op ∈ {<, <=, ==, ! =, >, >=, +, −, ∗, /, %, &, |, ˆ, <<, >>, or, and, imply},
relational and Boolean operators (e. g. == or or) return always 0 or 1.

Jid1 . id2K(σ) =

{
1 σ(id1) = id2 . . .which means: process id1 is in its state id2

0 otherwise

The following is the same as JidK(σ) and Jid [expr]K(σ) except for the context of process,
where the name of variable is interpreted:
Jid1 -> id2K(σ) = σ(id1 :: id2)
Jid1 -> id2 [expr] K(σ) = σ(id1 :: id2)(JexprK(σ)) . . . id2 is vector variable and JexprK(σ) is
an index to it

Remark 1.4.7. Because the current implementation contain only a poor type system (8-bit
unsigned and 16-bit signed integer), the evaluation of expressions is made in the following
the way: arguments of an operator are first casted to the 32-bit signed integers and then
the corresponding standard C++ operator is applied. This will be fixed in the future (see
Chapter ??).

Remark 1.4.8. The usage of variables unary op and binary op is not type correct, but it is used
this way because the correspondence between operators and their syntactic representation is
obvious.

1.4.3 Transitions

Process transitions change a system state in three ways:

1. changes a process state to the ending process state of the transition,

2. changes a content of buffers of channels.

3. changes values of variables,

The semantics of transitions follows the division depicted above.
Let transition ≡ id1 -> id2 {guard sync effect} and effect ≡ assignment1, . . . , assignmentn.

1. Jid1 -> id2K(σ) = σ[parent(transition)/id2]

2. JsyncK(σ) =

σ

if sync ≡ ε

σ[idch/idch · σ(syncvalue)]
if sync ≡ sync idch!syncvalue

σ[idch/tail(idch), syncvalue/head(idch)]
if sync ≡ sync idch?syncvalue

CHAPTER 1. THE DVE MODELING LANGUAGE 14

3. JassignmentK(σ) =

Jidvar/JexprvalueK(σ)K(σ)
if assignment ≡ idvar = exprvalue

Jidvar(JexprindexK(σ))/JexprvalueK(σ)K(σ)
if assignment ≡ idvar[exprindex] = exprvalue

Remark 1.4.9. The definition of JsyncK(σ) is little simplified by ignorance of structure of
syncvalue because it can be empty or it can be a tuple of values of various types. The
transmission of such values through channels is defined in a natural way - item by item -
technical details are omitted.

Finally,

JtransitionK(σ) = σ′ where

• σ′ = JassignmentnK(Jassignmentn−1K(. . . Jassignment1K(σ2) . . .))
(if n = 0, then σ′ = σ2)

• σ2 = JsyncK(σ1)

• σ1 = Jid1 -> id2K(σ)

1.4.4 System

Small step operational semantics of the DVE system strongly depends on the semantics of
transitions. System state changes in each step using a semantics of several transitions.

Transitions can be either enabled or disabled depending on a state of the system. A
transition is understood to be enabled precisely if it is permitted to execute effects of this
transition in a given system state (i. e. the process owning the transition is in a proper state,
guard of the transition is satisfied and optional synchronization can be performed).

For this purpose functions PartEnabled and SyncReceiving are defined in the following
paragraphs. PartEnabled returns true if and only if the transition leads from the current
process state and its guard is satisfied. Function SyncReceiving returns a set of processes
receiving a data from the given transition through a common channel in a single transition
of the system. Now formal definitions follow:

Let States denote the set of system states of and

parent(transition) = 〈name of process, where transition is defined〉.

For the simplicity reasons we abstract from the difference between L(Transition) and
L(TransitionOpt). Anyway the only difference is, that transitions described by terms from
L(TransitionOpt) have no starting process state. This missing state is then assumed to be
equal to the starting state of the preceding transition in the transition list.

Then the types of mentioned functions are:

PartEnabled : L(Transition)× States→ Boolean

SyncReceiving : L(Transition)× States→ 2L(Transition)

CHAPTER 1. THE DVE MODELING LANGUAGE 15

Let transition ≡ id1 -> id2 { guard sync effect } and let dve denote a fixed source of DVE
system code, such that transition � dve.

Then PartEnabled(transition, σ) =

• true if (guard ≡ ε or JguardK(σ) 6= 0) and Jparent(transition).id1K(σ) 6= 0.

• false otherwise.

Function SyncReceiving is defined separately for 2 cases:

1. If sync = ε or sync = sync id!. . . 1 , then SyncReceiving(transition, σ) = ∅

2. If sync = sync id?. . . 1 and id is not a buffered channel, then

SyncReceiving(transition, σ) = {transition’ | transition′ � dve∧
parent(transition′) 6= parent(transition)∧
PartEnabled(transition′)∧
sync′ � transition′ ∧ sync′ ≡ sync id!. . . }

Transitions can be also prioritized or not, depending on their starting process state.

Definition 1.4.10. Let function Prioritized : L(Transition)× States→ Boolean is defined
as follows:

Prioritized(t, σ) =

true if the starting process state id1 of transition t is declared

as committed and Jparent(t).id1K(σ) 6= 0,

false otherwise.

Furthermore, transitions can require synchronization or not.

Definition 1.4.11. Let function SyncReq : L(Transition) → Boolean is defined as follows:

SyncReq(t) =

false t ≡ id1 -> id2 { guard effect }

. . . i. e. part with synchronization is missing

true otherwise

Dynamic operational semantics of the entire source code is defined as follows:

1. If the system is declared as asynchronous without property - i. e. system async � dve,
then its semantics is defined as follows:

σ1
t−→ σ2 ⇔ t ∈ L(Transition), t � dve ∧ PartEnabled(t, σ) ∧ ¬SyncReq(t)∧

JtK(σ1) = σ2 ∧ (Prioritized(t, σ1)∨
@t′ ∈ L(Transition) : Prioritized(t′, σ1))

1We only care of id denoting a channel and a type of synchronization, the value transmission does not
matter. Moreover, the matching of counts of transmitted values is guaranteed by the syntax analysis.

CHAPTER 1. THE DVE MODELING LANGUAGE 16

σ1
t1,t2−→ σ2 ⇔ t1, t2 ∈ L(Transition), t1, t2 � dve∧

PartEnabled(t1, σ) ∧ PartEnabled(t2, σ)∧
t2 ∈ SyncReceiving(t1, σ) ∧ Jt1K(Jt2K(σ1)) = σ2∧
((Prioritized(t1, σ1) ∧ Prioritized(t2, σ1))∨
@t′ ∈ L(Transition) : Prioritized(t′, σ1))

2. If the system is declared as asynchronous with property - i. e.

system async property idprop � dve,

then its semantics is defined in the following way:

σ1
t,tp−→ σ2 ⇔ t, tp ∈ L(Transition), t, tp � dve ∧ parent(t) 6= parent(tp) = idprop∧

PartEnabled(t, σ) ∧ PartEnabled(tp, σ) ∧ ¬SyncReq(t)∧
JtK(σ1) = σ2 ∧ (Prioritized(t, σ1)∨

@t′ ∈ L(Transition) : Prioritized(t′, σ1))

σ1
t1,t2,tp−→ σ2 ⇔ t1, t2, tp ∈ L(Transition), t1, t2, tp � dve ∧ parent(tp) = idprop∧

parent(t1) 6= idprop ∧ parent(t2) 6= idprop

PartEnabled(t1, σ) ∧ PartEnabled(t2, σ) ∧ PartEnabled(tp, σ)
t2 ∈ SyncReceiving(t1, σ) ∧ Jt1K(Jt2K(σ1)) = σ2∧
((Prioritized(t1, σ1) ∧ Prioritized(t2, σ1))∨
@t′ ∈ L(Transition) : Prioritized(t′, σ1))

3. Let p1, . . . , pn ∈ L(Process) denote all processes of interpreted DVE system dve (i.e.
∀i : pi � dve). If the system is declared as synchronous - i. e.

system sync procproperty � dve,

then its semantics is defined as follows:

σ1
t1,...,tn−→ σ2 ⇔ ∀i, 1 ≤ i ≤ n : ti ∈ L(Transition) ∧ ti � pi ∧ PartEnabled(transition)

Chapter 2

The meanDVE Modeling Language

2.1 Concrete Syntax

Concrete syntax of meanDVE Modeling language follows the one of DVE [3] (or Chapter 1)
with only the syntax of transitions augmented in the following way:

Transitions ::= ε | trans TransitionList ;
TransitionList ::= Transition | TransitionList , TransitionOpt

Transition ::= id1 –-> id2 { Guard Sync Effect Cost Time }

Cost (or weight) of a given transition, semantically representing the computational com-
plexity of the transition:

Cost ::= ε | cost number number ;

And finally time, specifying how many time units does the transition last:
Time ::= ε | time number ;

2.2 Dynamic Semantics

There are various combinations of model properties that are meaningless, but by specifying
them as exceptions we would decrease the readability of syntactic rules, e.g. property process
transitions are not allowed to have either cost or time specified.

2.2.1 Common Definitions and Conventions

Definition 2.2.1. L(N) is the language of all terms derivable from non-terminal N .

Definition 2.2.2. Let t1 and t2 are trees. Then t1 � t2, if and only if t1 is a subtree of t2.
Let w1 and w2 are words. Then w1 � w2, if and only if t1 � t2, where t1, t2 are syntax

trees of w1, w2.

Definition 2.2.3. System state σ is a function mapping:

• scalar variable name to its value,

• vector variable name to the vector of values indexable by integers,

• process name to the name of its current state,

17

CHAPTER 2. THE MEANDVE MODELING LANGUAGE 18

• channel name to the list of vectors of values contained in it.

Let Σ be the set of all states.

Definition 2.2.4. Mean Büchi automaton (BA) is Am = (Q, δ, F, s), where

• Q ⊆ Σ set of states,

• δ ⊆ Q× (Q+ × N)×Q transition function,

• F ⊆ Q set of accepting states,

• s ∈ Q initial state.

Definition 2.2.5. Several type-definition of support functions:

• parent : L(Transition)→ L(Process)

• PartEnabled : L(Transition)× States→ Boolean

• SyncReceving : L(Transition)× States→ 2L(Transition)

• Prioritised : L(Transition)× States→ Boolean

• SyncReq : L(Transition)→ Boolean

Remark 2.2.6. For t ∈ L(Transition) let t.c denote q ∈ Q : (cost a b � t ∧ q = a
b) ∨ q = 0

and t.t denote n ∈ N : time n � t ∨ n = 1.

2.2.2 Model Semantics

In the following we will construct BA Am for meanDVE model M inductively:

1. initial state s := σ ∈ Q,

2. if σ ∈ Q, t ⊆ Q+ × N, σ′ ∈ δ(Q, t), then σ′ ∈ Q,

3. if property idprop �M and accept σ(idprop) � idprop, then σ ∈ F

4. nothing else is in Q and F .

Then Am = (Q, δ|Q×(Q+×N)×Q, F, s), where δ ⊆ Σ× (Q+×N)×Σ is a transition function
satisfying

1. if system async ; �M

δ(σ1, q, n, σ2)⇔ (∃t ∈ L(Transition) : t �M ∧
PartEnabled(t, σ1) ∧
¬SyncReq(t) ∧
JtK(σ1) = σ2 ∧
(Prioritised(t, σ1) ∨ @t′ ∈ L(Transition) : Prioritised(t′, σ1)) ∧
q = t.c ∧
n = t.t) ∨

(∃t1, t2 ∈ L(Transition) : t1, t2 �M ∧

CHAPTER 2. THE MEANDVE MODELING LANGUAGE 19

PartEnabled(t1, σ1) ∧
PartEnabled(t2, σ1) ∧
t2 ∈ SyncReceiving(t1, σ1) ∧
Jt1K(Jt2K(σ1)) = σ2∧
((Prioritised(t1, σ1) ∧ Prioritised(t2, σ1)) ∨
@t′ ∈ L(Transition) : Prioritised(t′, σ1)) ∧

q = t1.c + t2.c ∧
n = max{t1.t, t2.t})

2. if system async property idprop ; �M

δ(σ1, q, n, σ2)⇔ (∃t, tp ∈ L(Transition) : t, tp �M ∧
parent(t) 6= parent(tp) = idprop ∧
PartEnabled(t, σ1) ∧
PartEnabled(tp, σ1) ∧
¬SyncReq(t) ∧
JtK(σ1) = σ2 ∧
(Prioritised(t, σ1) ∨ @t′ ∈ L(Transition) : Prioritised(t′, σ1)) ∧
q = t.c ∧
n = t.t) ∨

(∃t1, t2, tp ∈ L(Transition) : t1, t2, tp �M ∧
parent(tp) = idprop ∧
parent(t1) 6= idprop ∧
parent(t2) 6= idprop ∧
PartEnabled(t1, σ1) ∧
PartEnabled(t2, σ1) ∧
PartEnabled(tp, σ1) ∧
t2 ∈ SyncReceiving(t1, σ1) ∧
Jt1K(Jt2K(σ1)) = σ2 ∧
((Prioritised(t1, σ1) ∧ Prioritised(t2, σ1)) ∨
@t′ ∈ L(Transition) : Prioritised(t′, σ1)) ∧

q = t1.c + t2.c ∧
n = max{t1.t, t2.t})

3. if system sync �M and {p1, . . . , pm} := {p|p ∈ L(Process), p �M}

δ(σ1, q, n, σ2)⇔ ∃ti, . . . , tm ∈ L(Transition) : (∀i, 1 ≤ i ≤ m : ti � pi ∧
PartEnabled(ti)) ∧
Jt1K(Jt2K(. . . JtnK(σ1) . . .)) = σ2 ∧
q =

∑
1≤i≤m ti.c ∧

n = max1≤i≤m{ti.t}

Bibliography

[1] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on Uppaal.
In SFM, pages 200–236, 2004.

[2] Yirng-An Chen and Randal E. Bryant. Phdd: an efficient graph representation for floating
point circuit verification. In ICCAD ’97: Proceedings of the 1997 IEEE/ACM interna-
tional conference on Computer-aided design, pages 2–7, Washington, DC, USA, 1997.
IEEE Computer Society.

[3] Pavel Šimeček. DiVinE: Distributed Verification Environment. PhD thesis, Faculty of
Informatics, Masaryk University Brno, 2006.

20

	The DVE Modeling Language
	Example Model
	Short Explanation of Advanced Constructs
	Typed Channels
	Committed States

	Concrete Syntax
	Dynamic Semantics
	Common Definitions and Conventions
	Expressions
	Transitions
	System

	The meanDVE Modeling Language
	Concrete Syntax
	Dynamic Semantics
	Common Definitions and Conventions
	Model Semantics

