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SUMMARY

This supplementary file contains proofs of Proposition 1, Corollary 1, Proposition 2, Theo-
rem 1 and a technical lemma needed in the proof of Theorem 1. Equations in this supplement
are numbered (S1), (S2), . . . ; equation numbers such as (1), (2), . . . or (A1), (A2), . . . refer to the
main body of the paper.

PROOF OF PROPOSITION 1
It suffices to prove that the finitely-valued objective functional M(P;R, µ) given in equa-

tion (2) in the paper admits a unique minimizer on the space of Hilbert–Schmidt operators acting
onH. By the triangle inequality, monotonicity and convexity of ρ we have that

EP(ρ[‖P(X;µ)− {λR + (1− λ)R′}‖]− ρ{‖P(X;µ)‖})
≤ EP[ρ{λ‖P(X;µ)−R‖+ (1− λ)‖P(X;µ)−R′‖} − ρ{‖P(X;µ)‖}]
≤ λEP[ρ{‖P(X;µ)−R‖} − ρ{‖P(X;µ)‖}]
+ (1− λ)EP[ρ{‖P(X;µ)−R′‖} − ρ{‖P(X;µ)‖}]

for any λ ∈ [0, 1] and arbitrary Hilbert–Schmidt operators R,R′. Notice that since ρ is strictly
increasing, the first inequality is strict unless P(X;µ)−R and P(X;µ)−R′ are collinear
almost surely. Equivalently, the inequality is strict whenever the distribution of P(X;µ) is not
concentrated on the line {tR + (1− t)R′ : t ∈ R}.

We now investigate what this condition means geometrically in the spaceH. First, notice that
as the rank of P(X;µ) is 1, the rank of tR + (1− t)R′ has to be 1 also. Now we distinguish
two cases.

First, if R,R′ are collinear, then the line is of the form {αR : α ∈ R}, which by the condition
on the rank is {αu⊗ u : α ∈ R} for some u ∈ H. Since P(X;µ) is positive semidefinite, we
in fact have {αu⊗ u : α ≥ 0}. Thus, the operator P(X;µ) lying on this line is equivalent to X
lying on the line {µ+ βu : β ∈ R}.

Second, if R,R′ are not collinear, then operators of the form tR + (1− t)R′ have rank 1 for
at most two values of t. To see this, notice that the rank condition implies that for all i < j,

det

{
t

(
Rii Rij

Rji Rjj

)
+ (1− t)

(
R′ii R

′
ij

R′ji R
′
jj

)}
= 0,

whereRij = 〈ei,Rej〉,R′ij = 〈ei,R′ej〉. This system of quadratic equations has at most two so-
lutions. Thus, the set {tR + (1− t)R′ : t ∈ R} reduces at most to the set {α1u1 ⊗ u1, α2u2 ⊗
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u2} for some nonnegative α1, α2 and some u1, u2 ∈ H. Hence, the operator P(X;µ) belonging
to this set is equivalent to X belonging to the set of at most four points {µ± β1u1, µ± β2u2}.

Therefore, if the distribution P is not concentrated on a line or on four points, the objective
function to be minimized is strictly convex. It follows that the minimum of the functional exists
and is unique.

PROOF OF COROLLARY 1
The empirical version of the functional defining the dispersion operator is the expectation with

respect to the empirical distribution P̂. Under our assumptions on P, the empirical distribution P̂
is almost surely not concentrated on a line or on four points. Therefore, strict convexity, and thus
existence and uniqueness, follows with probability 1 by applying Proposition 1 to the empirical
distribution P̂. Consistency then follows from strict convexity and the consistency of µ̂, using
standard arguments.

PROOF OF PROPOSITION 2
Consider R of the form

∑∞
k=1 δkϕk ⊗ ϕk for some sequence δ1, δ2, . . . We will prove that

such an operator solves the estimating equation (5) showing that R and C have the same set of
eigenfunctions, and that the sequence δ1, δ2, . . . satisfies the condition (6).

We investigate the coordinates of the left-hand side of (5), with the aim of showing that the
values 〈

ϕj ,EP

[
ρ′{‖R −P(X;µ)‖}
‖R −P(X;µ)‖

{R −P(X;µ)}
]
ϕk

〉
(S1)

are zero for all j, k. By the orthonormality of ϕ1, ϕ2, . . . , we have that

‖R −P(X;µ)‖2 =

∥∥∥∥∥
∞∑
k=1

δkϕk ⊗ ϕk −
∞∑
j=1

∞∑
k=1

λ
1/2
j λ

1/2
k βjβkϕj ⊗ ϕk

∥∥∥∥∥
2

=
∑
k

(δk − λkβ2k)2 +
∑
k 6=j

λjλkβ
2
j β

2
k.

First, we compute the off-diagonal coordinates with j 6= k. The first summand in (S1) is zero
because 〈ϕj ,Rϕk〉 = 0. To show that the second summand in (S1) is zero, we use the fact that,
by assumption, the sequence {siβi}∞i=1 with si = (−1)1{i=j} has the same joint distribution as
{βi}∞i=1. Compute

Ajk =

〈
ϕj ,EP

[
ρ′{‖R −P(X;µ)‖}
‖R −P(X;µ)‖

P(X;µ)

]
ϕk

〉
= E

(
ρ′[{
∑

i(δi − λiβ2i )2 +
∑

i 6=l λiλlβ
2
i β

2
l }1/2]

{
∑

i(δi − λiβ2i )2 +
∑

i 6=l λiλlβ
2
i β

2
l }1/2

λ
1/2
j λ

1/2
k βjβk

)

= E

{
ρ′([
∑

i{δi − λi(siβi)2}2 +
∑

i 6=l λiλl(siβi)
2(slβl)

2]1/2)

[
∑

i{δi − λi(siβi)2}2 +
∑

i 6=l λiλl(siβi)
2(slβl)2]1/2

λ
1/2
j λ

1/2
k sjβjskβk

}
= −Ajk.

Thus, Ajk = 0. Therefore, the operator R is diagonalized by the same functions ϕ1, ϕ2, . . .
as C . By computing the diagonal coordinates with j = k in (5) we obtain (6).
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A TECHNICAL LEMMA

LEMMA 1. Under the assumptions of Theorem 1,

(a) the linear operator D(P;µ) defined in equation (A1) is a bijection of H onto itself, it is
bounded and has bounded inverse,

(b) the linear operator D(P;R, µ) defined in equation (A2) is a bijection of HS(H,H) onto
itself, it is bounded and has bounded inverse.

Proof. We prove part (a); the proof of part (b) is similar. The proof uses and extends the steps
of the proof of Lemma 1 (iii) of Gervini (2008) modified for the present context of general ρ and
generalized to the case of infinitely many components in the Karhunen–Loève expansion.

Recall that

D(P;µ) = EP

[
ρ′(‖X − µ‖)
‖X − µ‖

I +

{
ρ′′(‖X − µ‖)
‖X − µ‖2

− ρ′(‖X − µ‖)
‖X − µ‖3

}
P(X;µ)

]
;

see the appendix of the main body of the paper. To show that D(P;µ) is a bijection, we need
to find for any h ∈ H a unique element f ∈ H such that D(P;µ)f = h. The set of orthonor-
mal eigenfunctions {ϕk}∞k=1 of C can be extended to an orthonormal basis of H by possibly
adding some functions {ψk}qk=1 with q finite or infinite or zero. It is then enough to verify
the relation D(P;µ)f = h in terms of the Fourier coefficients of both sides with respect to
the basis {ϕk}∞k=1 ∪ {ψk}qk=1, i.e., to show that 〈D(P;µ)f, ϕk〉 = 〈h, ϕk〉 for all k = 1, 2, . . .
and 〈D(P;µ)f, ψk〉 = 〈h, ψk〉 for all k = 1, . . . , q. As 〈D(P;µ)f, ϕk〉 = 〈f,D(P;µ)ϕk〉 and
〈D(P;µ)f, ψk〉 = 〈f,D(P;µ)ψk〉, we first investigate D(P;µ)ϕk and D(P;µ)ψk.

We begin by exploring the structure of the operator D(P;µ). We can rewrite

EP

{
ρ′(‖X − µ‖)
‖X − µ‖3

P(X;µ)

}
= EP(ε̃⊗ ε̃),

where

ε̃ =
ρ′(‖X − µ‖)1/2

‖X − µ‖3/2
(X − µ) =

∞∑
k=1

λ
1/2
k

ρ′(‖X − µ‖)1/2

‖X − µ‖3/2
βkϕk =

∞∑
k=1

λ̃
1/2
k β̃kϕk (S2)

with

λ̃k = λk EP

{
ρ′(‖X − µ‖)
‖X − µ‖3

β2k

}
,

β̃k =
ρ′(‖X − µ‖)1/2

‖X − µ‖3/2
βk

/[
EP

{
ρ′(‖X − µ‖)
‖X − µ‖3

β2k

}]1/2
.

Thus, we need to find the covariance operator of ε̃. The series expansion (S2) of ε̃ is a Karhunen–
Loève expansion because the coefficients β̃k have zero mean and unit variance and are uncorre-
lated (which follows from the fact that the distribution of {βk} is invariant under the change of
the sign of any component). Therefore, since EP(‖ε̃‖2) <∞, which follows immediately from
the assumption that

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
<∞,
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the operator of interest, as the covariance operator of ε̃, takes the form

EP

{
ρ′(‖X − µ‖)
‖X − µ‖3

P(X;µ)

}
=

∞∑
k=1

λ̃kϕk ⊗ ϕk =

∞∑
k=1

EP

{
ρ′(‖X − µ‖)
‖X − µ‖3

λkβ
2
k

}
ϕk ⊗ ϕk.

Using analogous arguments for

ε̇ =
ρ′′(‖X − µ‖)1/2

‖X − µ‖
(X − µ),

we can show that

EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2

P(X;µ)

}
=
∞∑
k=1

EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2

λkβ
2
k

}
ϕk ⊗ ϕk.

Hence, we finally obtain D(P;µ) in the form

D(P;µ) = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
I

+
∞∑
k=1

EP

[{
ρ′′(‖X − µ‖)
‖X − µ‖2

− ρ′(‖X − µ‖)
‖X − µ‖3

}
λkβ

2
k

]
ϕk ⊗ ϕk.

Therefore, for k = 1, 2, . . . we have

D(P;µ)ϕk = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
ϕk + EP

[{
ρ′′(‖X − µ‖)
‖X − µ‖2

− ρ′(‖X − µ‖)
‖X − µ‖3

}
λkβ

2
k

]
ϕk

and, for k = 1, . . . , q, we have

D(P;µ)ψk = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
ψk.

Thus, we obtain

〈D(P;µ)f, ϕk〉 = νk〈f, ϕk〉 (k = 1, 2, . . . ),

〈D(P;µ)f, ψk〉 = η〈f, ψk〉 (k = 1, . . . , q),

where

νk = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
+ λk EP

[{
ρ′′(‖X − µ‖)
‖X − µ‖2

− ρ′(‖X − µ‖)
‖X − µ‖3

}
β2k

]
(k = 1, 2, . . . )

and

η = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
.

So f , the candidate for D(P;µ)−1h, should have Fourier coefficients 〈f, ϕk〉, 〈f, ψk〉 satisfying
the system of equations

νk〈f, ϕk〉 = 〈h, ϕk〉 (k = 1, 2, . . . ), η〈f, ψk〉 = 〈h, ψk〉 (k = 1, . . . , q).

To be able to write 〈f, ϕk〉 = 〈h, ϕk〉/νk, we need to show that νk (k = 1, 2, . . . ) and η are
nonzero and finite. Then, f will be uniquely determined by the formula

f =

∞∑
k=1

〈h, ϕk〉
νk

ϕk +

q∑
k=1

〈h, ψk〉
η

ψk
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provided that f is a well-defined element ofH, that is,

‖f‖2 =
∞∑
k=1

〈h, ϕk〉2

ν2k
+

q∑
k=1

〈h, ψk〉2

η2
<∞. (S3)

We assumed that η <∞ and we immediately see that η > 0 because ρ is strictly increasing.
We now deal with νk (k = 1, 2, . . . ). We will show that there exist 0 < a ≤ b <∞ such that
νk ∈ [a, b] for all k = 1, 2, . . .

First we establish the lower bound a. Using the Karhunen–Loève expansion (S2) we can
rewrite

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
= EP(‖ε̃‖2) =

∞∑
k=1

λ̃k =
∞∑
k=1

λk EP

{
ρ′(‖X − µ‖)
‖X − µ‖3

β2k

}
. (S4)

Each term in the series on the right hand side of (S4) is obviously positive and by finiteness of
the left hand side it is finite, and thus the differences

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
− λk EP

{
ρ′(‖X − µ‖)
‖X − µ‖3

β2k

}
, (S5)

which appear in the expression for νk, are positive and bounded away from zero by a constant a.
The remaining term

λk EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2

β2k

}
(S6)

appearing in νk is nonnegative as ρ′′ ≥ 0 because ρ is convex. It follows that νk ≥ a for all
k = 1, 2, . . .

Now we find the upper bound b. By applying the same idea as in (S4) to ε̇, we obtain

EP{ρ′′(‖X − µ‖)} =
∞∑
k=1

λk EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2

β2k

}
. (S7)

In view of (S7), the terms (S6) are smaller than or equal to EP{ρ′′(‖X − µ‖)}. The differences
(S5) are smaller than

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
.

Therefore, we have that νk ≤ b for all k = 1, 2, . . . with

b = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
+ EP{ρ′′(‖X − µ‖)}.

Finally, it remains to show (S3), which is now straightforward because

‖f‖2 =
∞∑
k=1

〈h, ϕk〉2

ν2k
+

q∑
k=1

〈h, ψk〉2

η2
≤
∑∞

k=1〈h, ϕk〉2 +
∑q

k=1〈h, ψk〉2

min(a, η)
=

‖h‖2

min(a, η)

<∞.

This shows that f is a well defined element ofH and thus the linear operator D(P;µ) is a bijec-
tion ofH onto itself. It also shows that the inverse D(P;µ)−1 is a bounded operator. Hence also
the operator D(P;µ) is bounded by the bounded inverse theorem or by direct verification. �
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Remark: As νk are bounded away from zero and bounded from above, the operator D(P;µ) is
only a small perturbation of a multiple of the identity. This gives an intuitive explanation why it
inherits its bijectivity and boundedness.

PROOF OF THEOREM 1
It is enough to prove the weak convergence of n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2). The weak con-

vergence of the vector with components Sl will then follow directly from Slutsky’s theorem.
The continuous mapping theorem and Slutsky’s theorem will then establish the weak conver-
gence of the statistic T . Applying a Taylor expansion (Nelson, 1969, Theorem 6, p. 12) of
B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) around the true values of the parameters yields

n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) = n1/2B(P̂1, P̂2, an;R, µ1, µ2)

+D1(P̂1, P̂2, an;R
�, µ�1, µ

�
2)n

1/2(R̂ −R)

+ a1/2n D(P̂1;R
�, µ�1)n

1/2
1 (µ̂1 − µ1)

− (1− an)1/2D(P̂2;R
�, µ�2)n

1/2
2 (µ̂2 − µ2),

(S8)

where

D1(P1,P2, a;R, µ1, µ2) =
∂

∂R
B(P1,P2, a;R, µ1, µ2)

= aD(P1;R, µ1)− (1− a)D(P2;R, µ2)

and

D(P;R, µ) =
∂

∂R
G (P;R, µ), D(P;R, µ) =

∂

∂µ
G (P;R, µ).

See the Appendix in the main body of the paper for explicit formulae.
We now turn to develop certain asymptotic representations for µ̂1, µ̂2 and R̂. Using the Taylor

expansion, law of large numbers and consistency of µ̂1 we get

0 = n
1/2
1 G(P̂1; µ̂1) = n

1/2
1 G(P̂1;µ1) + D(P̂1;µ

†
1)n

1/2
1 (µ̂1 − µ1)

= n
1/2
1 G(P̂1;µ1) + D(P1;µ1)n

1/2
1 (µ̂1 − µ1) + oP (1),

where the term oP (1) is due to the fact that we replace D(P̂1;µ1) by its limit D(P1;µ1). From
this and an analogous expansion for µ2 we obtain

n
1/2
1 (µ̂1 − µ1) = −D(P1;µ1)

−1n
1/2
1 G(P̂1;µ1) + oP (1),

n
1/2
2 (µ̂2 − µ2) = −D(P2;µ2)

−1n
1/2
2 G(P̂2;µ2) + oP (1).

(S9)

The existence of the bounded inverse operators in the above equations, as well as of other in-
verse operators appearing later in the proof, is shown in Lemma 1. The Taylor expansion of the
estimating score for R around the true values is

O = n1/2G (P̂1, P̂2, an; R̂, µ̂1, µ̂2) = n1/2G (P̂1, P̂2, an;R, µ1, µ2)

+D0(P̂1, P̂2, an;R
‡, µ‡1, µ

‡
2)n

1/2(R̂ −R)

+ a1/2n D(P̂1;R
‡, µ‡1)n

1/2
1 (µ̂1 − µ1)

+ (1− an)1/2D(P̂2;R
‡, µ‡2)n

1/2
2 (µ̂2 − µ2),
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where D0(P1,P2, a;R, µ1, µ2) = aD(P1;R, µ1) + (1− a)D(P2;R, µ2). This yields

n1/2(R̂ −R) = −D0(P1,P2, a;R, µ1, µ2)
−1

{n1/2G (P̂1, P̂2, an;R, µ1, µ2) + a1/2n D(P1;R
‡, µ‡1)n

1/2
1 (µ̂1 − µ1)

+ (1− an)1/2D(P2;R
‡, µ‡2)n

1/2
2 (µ̂2 − µ2)}

+ oP (1);

(S10)

here again the term oP (1) is present because we replace the empirical distributions by their
theoretical counterparts in D0 and D.

The different Taylor expansions we have used contain various elements denoted by �, †, ‡

which lie on the line segments between the true and estimated corresponding parameters. We
will replace all of these elements by the true values of the parameters. Due to the consistency
of the estimators, the difference between a quantity at the true value of the parameters and at
a value on the line segment between the true value and the estimator converges in probability to
zero. Moreover, the quantities involving elements marked with �, † or ‡ are always multiplied by
a term that is bounded in probability (by its convergence in distribution which will be seen later).
Hence, the change we make by replacing the elements marked with �, † or ‡ by their true values
is asymptotically negligible. The reason for doing this is that we obtain simpler formulas.

Denote

H1(P1,P2, a;R, µ1, µ2) = I−D1(P1,P2, a;R, µ1, µ2)D0(P1,P2, a;R, µ1, µ2)
−1,

H1(P1,P2, a;R, µ1, µ2) = H1(P1,P2, a;R, µ1, µ2)D(P1;R, µ1)D(P1;µ1)
−1,

H2(P1,P2, a;R, µ1, µ2) = I+D1(P1,P2, a;R, µ1, µ2)D0(P1,P2, a;R, µ1, µ2)
−1,

H2(P1,P2, a;R, µ1, µ2) = H2(P1,P2, a;R, µ1, µ2)D(P2;R, µ2)D(P2;µ2)
−1,

where I stands for the identity operator on HS(H,H). Inserting (S9) and (S10) into (S8), we
obtain

n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) = a1/2n H1(P1,P2, a;R, µ1, µ2)n
1/2
1 G (P̂1;R, µ1)

− a1/2n H1(P1,P2, a;R, µ1, µ2)n
1/2
1 G(P̂1;µ1)

− (1− an)1/2H2(P1,P2, a;R, µ1, µ2)n
1/2
2 G (P̂2;R, µ2)

+ (1− an)1/2H2(P1,P2, a;R, µ1, µ2)n
1/2
2 G(P̂2;µ2)

+ oP (1).

The term oP (1) is due to the fact that we have replaced the quantities marked with �, †, ‡ by their
true counterparts.

By the central limit theorem for Hilbert spaces (Bosq, 2000, Theorem 2.7), the operators
n
1/2
1 G (P̂1;R, µ1), n

1/2
1 G(P̂1;µ1) jointly converge in distribution to a zero-mean Gaussian ran-

dom variable in HS(H,H)×H. The asymptotic covariance operator of n1/21 G (P̂1;R, µ1), i.e.,
an operator on operators onH, can be estimated by the empirical covariance J(P̂1; R̂, µ̂1), where

J(P;R, µ) = EP

([
ρ′{‖P(X;µ)−R‖}
‖P(X;µ)−R‖

{R −P(X;µ)} − G (P;R, µ)

]⊗2)
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with the notation A ⊗2 = A ⊗A for A ∈ HS(H,H), the asymptotic covariance operator of
n
1/2
1 G(P̂1;µ1), i.e., an operator onH, can be estimated by J (P̂1; µ̂1), where

J (P;µ) = EP

[{
ρ′(‖X − µ‖)
‖X − µ‖

(µ−X)−G(P;µ)
}⊗2]

with f⊗2 = f ⊗ f for f ∈ H, and the asymptotic cross-covariance operator of n1/21 G (P̂1;R, µ1)

and n1/21 G(P̂1;µ1), i.e., an operator fromH to operators onH, can be estimated by J(P̂1; R̂, µ̂1),
where

J(P;R, µ) = EP

([
ρ′{‖P(X;µ)−R‖}
‖P(X;µ)−R‖

{R −P(X;µ)} − G (P;R, µ)

]
⊗
{
ρ′(‖X − µ‖)
‖X − µ‖

(µ−X)−G(P;µ)
})

.

Similarly, n1/22 G (P̂2;R, µ2), n
1/2
2 G(P̂2;µ2) jointly converge in distribution to a zero-mean

Gaussian random element with covariance estimators analogous to those mentioned above for
the sample from P1. As the samples are independent, all four random variables jointly converge
in distribution.

Finally, it follows by Slutsky’s theorem that the test operator n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) is
asymptotically distributed as a zero-mean Gaussian operator whose covariance operator can be
consistently estimated by

W(P̂1, P̂2, an; R̂, µ̂1, µ̂2) = anW1(P̂1, P̂2, an; R̂, µ̂1, µ̂2)

+ (1− an)W2(P̂1, P̂2, an; R̂, µ̂1, µ̂2),

where

W1(P1,P2, a;R, µ1, µ2)

= H1(P1,P2, a;R, µ1, µ2)J(P1;R, µ1)H1(P1,P2, a;R, µ1, µ2)
∗

− H1(P1,P2, a;R, µ1, µ2)J(P1;R, µ1)H1(P1,P2, a;R, µ1, µ2)
∗

−H1(P1,P2, a;R, µ1, µ2)J(P1;R, µ1)
∗H1(P1,P2, a;R, µ1, µ2)

∗

+H1(P1,P2, a;R, µ1, µ2)J (P1;R, µ1)H1(P1,P2, a;R, µ1, µ2)
∗

with ∗ denoting adjoint operators, and W2(P1,P2, a;R, µ1, µ2) is defined analogously with
H2,H2 in place of H1,H1, respectively, and P2 instead of P1 in J, J,J .
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