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182 08 Praha 8

Czechia

david.kraus@matfyz.cz

Key Words: Cox model; goodness of fit; proportional hazards assumption; time-varying

coefficients.

ABSTRACT

The problem of testing whether an individual covariate in the Cox model has a propor-

tional (i.e., time-constant) effect on the hazard is dealt with. Two existing methods are

considered: one is based on the component of the score process and the other is a Neyman

type smooth test. Simulations show that when the model contains both proportional and

nonproportional covariates, these methods are not reliable tools for discrimination. A simple,

yet effective solution is proposed based on smooth modeling of the effects of the covariates

not in focus.

1. INTRODUCTION

Consider the Cox proportional hazards regression model (Cox, 1972) for right-censored

survival data in the form

λi(t) = Yi(t)λ0(t) exp{βTZi} (1)

(Andersen and Gill, 1982). Here λi(t) is the intensity process of the i-th component of

an n-variate counting process N(t) = (N1(t), . . . , Nn(t))T, t ∈ [0, τ ], Yi(t) denotes the risk

indicator process, Zi is a p-vector of covariates, λ0(t) stands for an unknown baseline hazard

function, and β is a vector of unknown regression coefficients.

In the Cox model the key assumption is proportionality of the effects of the covariates
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which means that the hazard ratio for two individuals does not depend on time. The as-

sumption is not satisfied, for instance, when some of the coefficients β1, . . . , βp varies with

time.

The aim of the paper is to study methods of assessment of the proportional hazards

assumption for a single covariate, say the p-th one. More specifically, we wish to test the

hypothesis that the coefficient βp is constant against the alternative of time-varying βp(t).

The problem of existing methods (namely score process based tests and Neyman-type

smooth tests, described later on) is that they cannot distinguish reliably which covariates are

proportional and which not. In models with both proportional and nonproportional covari-

ates, the hypothesis of proportionality is often rejected even for the proportional covariate,

that is, the size of the test dramatically exceeds the nominal level. Therefore, they serve

as a tool for the overall assessment of proportionality rather than for individual covariate

checks. I propose an improvement that consists of modeling the effects of the other covari-

ates, which are not of interest, as linear combinations of some smooth functions. This makes

the test more precise in identifying nonproportional covariates.

Section 2 surveys some of existing methods for the proportional hazards problem. Simu-

lation results of Section 3 warn against the use of the methods for testing proportionality of

individual covariates. In Section 4 I present my solution whose performance is investigated

through simulations in Section 5. The conclusions are summarised in Section 6.

2. EXISTING METHODS

2.1 TESTS BASED ON THE SCORE PROCESS

Lin et al. (1993) proposed to base tests on the score process

U(t; β̂) =
n∑

i=1

∫ t

0

ZidNi(s)−
∫ t

0

∑n
i=1 Yi(s)Zi exp{β̂TZi}∑n

i=1 Yi(s) exp{β̂TZi}
dN̄(s),

where N̄ =
∑n

i=1 Ni and β̂ is the maximum partial likelihood estimate of β, i.e., the solution

to U(τ ; β̂) = 0. Each component of the process reflects deviations from proportionality of the

respective covariate. If the assumption is satisfied, the component fluctuates around zero,
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otherwise it differs. Thus, one can either perform a global test of proportionality (using the

whole vector process) or assess validity of the assumption for an individual covariate (using

a single component). Lin et al. (1993) use tests of the Kolmogorov–Smirnov type based

on suprema of test processes. Other functionals, mainly those leading to the test of the

Anderson–Darling and Cramér–von Mises type, may be used.

The asymptotic distribution of the process n−1/2U(·; β̂) is generally intractable (the limit

is a Gaussian process which is neither a martingale nor a well-known process). Therefore,

Lin et al. (1993) proposed a simulation technique to approximate this distribution. The

technique is now commonly used. Alternatively, one may use the martingale transformation

of Khmaladze (1981), see Marzec and Marzec (1997) for its application to the score process.

2.2 SMOOTH TESTS

Another way of testing proportionality is based on the parametric modeling of the time-

varying effect. The procedure consists of introducing new artificial time-dependent covariates

and testing their significance. The original idea dates back to Cox (1972) who used one new

covariate. See also Grambsch and Therneau (1994). Here I shall work with an extension

described in Kraus (2007) which is inspired by Neyman’s smooth goodness-of-fit tests. The

original model (1) is embedded in the k-dimensional model

λi(t) = Yi(t)λ0(t) exp{βTZi + θTϕ(F0(t)/F0(τ))Zip}, (2)

where F0 is the distribution function associated with the baseline hazard λ0 (in practice,

F0 is replaced by an estimator F̂0), and ϕ = (ϕ1, . . . , ϕk)
T are some bounded functions in

L2[0, 1] such that {1, ϕ1, . . . , ϕk} is a set of linearly independent functions (for instance, the

orthonormal Legendre polynomials on [0, 1] or the cosine basis ϕj(u) =
√

2 cos(πju)).

The smooth test of proportionality is then a test of significance of the new covariates

ϕ1(F0(t)/F0(τ))Zip, . . . , ϕd(F0(t)/F0(τ))Zip, i.e., a test of θ = 0 against θ 6= 0. The partial

likelihood score test is most convenient as it does not involve estimating θ. The test statistic

is asymptotically χ2-distributed with k degrees of freedom. A data-driven version using

a BIC-like selection rule for the choice of k has been considered in Kraus (2007).
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3. WARNING AGAINST INDIVIDUAL COVARIATE TESTS

It may be misleading and dangerous to draw conclusions about proportionality of indi-

vidual covariates from the tests of the previous section in models with multiple covariates.

To illustrate this, I performed a simulation study.

Let us consider three models, both of which have two covariates. In the first model of

the form

λ(t) = exp{0.7Z1 + 0.3Z2} (3)

both covariates have proportional effects. The other two models have one covariate (Z1)

with a nonproportional effect and one (Z2) proportional. The models follow the form

λ(t) = exp{0.5tZ1 + Z2 − 8} (4)

and

λ(t) = exp{β(t)Z1 + Z2 − 8}, (5)

where β(t) = 0.4+0.7×1[1.2,2](t). The coefficient of Z1 in (4) is monotonic, whereas in (5) it

is not. In both models the variables Z1, Z2 are jointly normal with expectation 4, variance 1

and various values of correlation ρ. Censoring times were U(0, 5) distributed in the models

(3) and (4) (giving for all of the values of correlation the censoring rate about 24 % and 45 %

in (3) and (4), respectively) and constant equal to 5 in the model (5) (about 31 % censoring).

I repeatedly generated samples of n = 200 observations and estimated rejection prob-

abilities. The number of Monte Carlo runs in each situation was 5000 giving estimates of

rejection probabilities with standard deviation at most
√

0.5× (1− 0.5)/5000 = 0.007. The

smooth test (denoted in the tables as Tk) was used with the dimension k = 3, 4, 5, 6. The

Kolmogorov–Smirnov (KS), Cramér–von Mises (CM), and Anderson–Darling test were per-

formed using the simulation approximation of Lin et al. (1993) (with 1000 simulated paths

of the score process).

Results for the model (3) are reported in Table 1 (results for Z1 are given only, for Z2

they are similar). The null hypothesis of proportionality is satisfied and the estimates of
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Table 1: Estimated rejection probabilities on the nominal level of 5 % for the covariate Z1

in the model λ(t) = exp{0.7Z1 + 0.3Z2} with cor(Z1, Z2) = ρ.

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

T3 0.054 0.057 0.055 0.050 0.055

T4 0.052 0.057 0.060 0.050 0.059

T5 0.053 0.055 0.055 0.054 0.059

T6 0.060 0.055 0.055 0.056 0.059

KS 0.054 0.051 0.053 0.050 0.052

CM 0.052 0.044 0.050 0.049 0.052

AD 0.050 0.043 0.046 0.047 0.050

rejection probabilitites are close to the nominal level of 5 %, so everything seems to be all

right.

Results for the models (4) and (5) are shown in Tables 2 and 3 (results for Z2 which

satisfies the null hypothesis are reported only). As the hypothesis of proportionality of Z2

is valid, the figures in Tables 2 and 3 should be close to the nominal level of 5 %. However,

it turns out that in some cases the level is dramatically exceeded. Some of the figures are

really alarming, especially (but not only) in the case of highly associated covariates.

The reason is that the score process method and the smooth method are valid only

under the assumption of time-constancy of the effects of all the other covariates. When

proportionality is violated for some (nuisance) covariate that is not of interest, the techniques

become unreliable. The procedures can indicate that proportionality is not valid but are not

capable to distinguish which covariate is ‘guilty’ and which not. This phenomenon has been

previously pointed out, e.g., by Scheike and Martinussen (2004, pp. 58–59). My simulations

show that the problem is serious even if the covariates are independent which was not seen

so markedly in their simulation study.

4. IMPROVEMENT
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Table 2: Estimated rejection probabilities on the nominal level of 5 % for the proportional

covariate Z2 in the model λ(t) = exp{0.5tZ1 + Z2 − 8} with cor(Z1, Z2) = ρ.

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

T3 0.136 0.070 0.063 0.118 0.265

T4 0.125 0.068 0.067 0.116 0.231

T5 0.116 0.066 0.064 0.105 0.212

T6 0.112 0.067 0.065 0.098 0.190

KS 0.149 0.061 0.085 0.181 0.382

CM 0.157 0.057 0.080 0.192 0.430

AD 0.149 0.053 0.076 0.186 0.425

Table 3: Estimated rejection probabilities on the nominal level of 5 % for the proportional

covariate Z2 in the model λ(t) = exp{β(t)Z1 + Z2 − 8} (β(t) = 0.4 + 0.7 × 1[1.2,2](t)) with

correlation ρ between Z1 and Z2.

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

T3 0.091 0.068 0.086 0.152 0.297

T4 0.085 0.060 0.078 0.142 0.276

T5 0.086 0.060 0.072 0.136 0.256

T6 0.078 0.058 0.075 0.128 0.244

KS 0.055 0.069 0.099 0.210 0.392

CM 0.052 0.068 0.101 0.200 0.373

AD 0.053 0.066 0.095 0.188 0.341
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The tests for individual covariates work correctly provided the model is correct for all

the other covariates. Therefore, a simple idea seems to be reasonable: make the model for

all the other covariates correct enough to remove or diminish the influence of their potential

nonproportionality on the test. This means to model the time-varying effects of the other

covariates. To this end, I use smooth functions similarly as in Neyman’s smooth tests.

Recall that the aim is to test proportionality of the p-th covariate.

Instead of the original model

λi(t) = Yi(t)λ0(t) exp

{
p∑

j=1

Zijβj

}
, (6)

the null model now follows the form

λi(t) = Yi(t)λ0(t) exp

{
p−1∑
j=1

Zij

(
βj +

dj∑
k=1

θjkϕk(F0(t)/F0(τ))

)
+ Zipβp

}
, (7)

which allows for smoothly time-varying coefficients of all the covariates but the p-th one.

This large model is an ordinary Cox model with artificial time-dependent covariates and

with parameters β1, . . . , βp and θjk, j = 1, . . . , p − 1, k = 1, . . . , dj. The unknown time-

transformation F0 is estimated from the original model (6) and viewed as given when working

with the large model (7). That is we in fact work with

λi(t) = Yi(t)λ0(t) exp

{
p−1∑
j=1

Zij

(
βj +

dj∑
k=1

θjkϕk(F̂0(t)/F̂0(τ))

)
+ Zipβp

}
. (8)

The proposed test procedure is as follows. First, one estimates the coefficients in the

large model (8) by the standard partial likelihood method and then performs some of the

tests mentioned in Section 2. That is either the test based on the component of the score

process corresponding to Zip in (8), or the smooth test which is the score test of significance

of θp1, . . . , θp,dp in

λi(t) = Yi(t)λ0(t) exp

{
p−1∑
j=1

Zij

(
βj +

dj∑
k=1

θjkϕk(F̂0(t)/F̂0(τ))

)

+ Zip

(
βp +

dp∑
k=1

θpkϕk(F0(t)/F0(τ))

)}
.
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Here in the Zip-part F0 is replaced either by F̂0 (the same as for the Zi1, . . . , Zi,p−1-part) or

by F̃0 computed from (8) (which is closer to the true distribution).

The tests are carried out in the same way as in the original versions of the tests: for

the score process based test the simulation approximation can be used, and the distribution

of the statistic of the smooth test is approximated by the χ2
dp

distribution. A data-driven

choice of dp is possible.

The proposed approach practically works as is observed in the simulation study in the

next section. To justify it theoretically one would have to let d1, . . . , dp−1 tend to infinity at

a suitable rate as n grows. The convergence must be fast enough to control the approximation

error but not too fast to guarantee stability of estimation. It calls for further research to give

conditions under which the Zip-component of the score process computed in (7) converges to

a zero-mean Gaussian process. A similar problem was previously considered by Murphy and

Sen (1991) who dealt with a histogram sieve estimator in the Cox model with time-varying

coefficients.

5. SIMULATIONS

The aim of the Monte Carlo study is to explore whether the proposed improvement works

(i.e., whether the level is preserved) and how it influences the power.

The design of the study is the same as in Section 3. The tests were used with various

numbers of smooth functions describing the effect of the covariate that is not tested (various

values of d2 for tests of Z1 and d1 for Z2). Results for the models (3), (4) and (5) are

displayed in Tables 4, 5 and 6.

Table 4 shows that the proposed modification works correctly in the situation where even

the original test (without smooth modeling of the other covariates) was valid. In Tables 5

and 6, results for Z2 show that the prescribed level of 5 % is preserved when the effect of

the covariate Z1 is modeled smoothly. In the models of the study, it was enough to use two

smooth functions because the time-varying coefficient of Z1 has a relatively simple form in

both models. Generally, it may be necessary to use more basis functions.

The power results for Z1 show that if one uses more smooth functions than necessary,
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Table 4: Estimated rejection probabilities on the nominal level 5 % in the model λ(t) =

exp{0.7Z1 +0.3Z2} with cor(Z1, Z2) = ρ. Various numbers of smooth functions for the other

covariate.

Z1 Z2

d2 = 0 d2 = 2 d2 = 3 d2 = 4 d1 = 0 d1 = 2 d1 = 3 d1 = 4

ρ
=

0

T3 0.054 0.057 0.058 0.058 0.056 0.060 0.062 0.063

T4 0.052 0.061 0.064 0.063 0.057 0.059 0.059 0.060

T5 0.053 0.061 0.065 0.064 0.054 0.058 0.060 0.062

T6 0.060 0.062 0.064 0.065 0.057 0.060 0.060 0.062

KS 0.054 0.057 0.055 0.053 0.051 0.051 0.050 0.050

CM 0.052 0.053 0.052 0.050 0.049 0.047 0.049 0.046

AD 0.050 0.050 0.049 0.048 0.048 0.047 0.048 0.046

ρ
=

0.
5

T3 0.055 0.063 0.064 0.066 0.054 0.059 0.063 0.064

T4 0.060 0.065 0.068 0.066 0.052 0.056 0.057 0.060

T5 0.055 0.062 0.064 0.066 0.056 0.059 0.059 0.060

T6 0.055 0.061 0.061 0.062 0.054 0.058 0.058 0.056

KS 0.053 0.055 0.056 0.056 0.057 0.060 0.059 0.058

CM 0.050 0.055 0.057 0.054 0.053 0.052 0.049 0.051

AD 0.046 0.052 0.054 0.055 0.050 0.046 0.047 0.050

ρ
=

0.
9

T3 0.055 0.058 0.055 0.059 0.048 0.051 0.057 0.058

T4 0.059 0.058 0.060 0.058 0.054 0.054 0.058 0.061

T5 0.059 0.060 0.061 0.061 0.051 0.051 0.056 0.057

T6 0.059 0.063 0.064 0.064 0.056 0.054 0.054 0.055

KS 0.052 0.053 0.054 0.051 0.056 0.052 0.053 0.049

CM 0.052 0.050 0.051 0.052 0.050 0.045 0.051 0.049

AD 0.050 0.047 0.048 0.050 0.048 0.041 0.043 0.046
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Table 5: Estimated rejection probabilities on the nominal level 5 % in the model λ(t) =

exp{0.5tZ1 + Z2 − 8} with cor(Z1, Z2) = ρ. Various numbers of smooth functions for the

other covariate.

Z1 Z2

d2 = 0 d2 = 2 d2 = 3 d2 = 4 d1 = 0 d1 = 2 d1 = 3 d1 = 4

ρ
=

0

T3 0.771 0.690 0.685 0.683 0.136 0.061 0.060 0.062

T4 0.726 0.644 0.638 0.640 0.125 0.062 0.059 0.061

T5 0.698 0.611 0.612 0.609 0.116 0.064 0.059 0.061

T6 0.663 0.577 0.574 0.576 0.112 0.059 0.055 0.059

KS 0.797 0.738 0.735 0.736 0.149 0.048 0.050 0.050

CM 0.855 0.808 0.809 0.810 0.157 0.047 0.048 0.047

AD 0.861 0.813 0.817 0.814 0.149 0.045 0.047 0.046

ρ
=

0.
5

T3 0.657 0.626 0.625 0.615 0.063 0.063 0.062 0.059

T4 0.605 0.582 0.577 0.572 0.067 0.060 0.060 0.060

T5 0.566 0.536 0.534 0.533 0.064 0.059 0.061 0.060

T6 0.529 0.494 0.498 0.494 0.065 0.056 0.059 0.061

KS 0.698 0.675 0.672 0.674 0.085 0.060 0.053 0.052

CM 0.774 0.754 0.748 0.746 0.080 0.055 0.051 0.049

AD 0.777 0.758 0.755 0.754 0.076 0.053 0.048 0.047

ρ
=

0.
9

T3 0.467 0.238 0.235 0.225 0.265 0.071 0.063 0.061

T4 0.414 0.210 0.200 0.200 0.231 0.068 0.066 0.062

T5 0.374 0.181 0.182 0.179 0.212 0.064 0.063 0.061

T6 0.341 0.164 0.174 0.165 0.190 0.061 0.059 0.059

KS 0.554 0.266 0.254 0.263 0.382 0.075 0.059 0.057

CM 0.633 0.340 0.325 0.334 0.430 0.070 0.054 0.052

AD 0.641 0.336 0.323 0.335 0.425 0.061 0.049 0.048
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Table 6: Estimated rejection probabilities on the nominal level 5 % in the model λ(t) =

exp{β(t)Z1 + Z2 − 8} (β(t) = 0.4 + 0.7 × 1[1.2,2](t)) with cor(Z1, Z2) = ρ. Various numbers

of smooth functions for the other covariate.

Z1 Z2

d2 = 0 d2 = 2 d2 = 3 d2 = 4 d1 = 0 d1 = 2 d1 = 3 d1 = 4

ρ
=

0

T3 0.662 0.569 0.547 0.569 0.091 0.051 0.053 0.052

T4 0.676 0.630 0.608 0.612 0.085 0.052 0.052 0.048

T5 0.651 0.612 0.595 0.594 0.086 0.051 0.056 0.049

T6 0.634 0.599 0.587 0.579 0.078 0.053 0.059 0.052

KS 0.596 0.605 0.612 0.617 0.055 0.053 0.052 0.049

CM 0.525 0.541 0.538 0.546 0.052 0.049 0.047 0.048

AD 0.559 0.567 0.563 0.567 0.053 0.047 0.048 0.046

ρ
=

0.
5

T3 0.570 0.539 0.499 0.483 0.086 0.050 0.052 0.052

T4 0.569 0.529 0.497 0.485 0.078 0.052 0.048 0.052

T5 0.534 0.511 0.481 0.467 0.072 0.051 0.050 0.050

T6 0.516 0.495 0.464 0.449 0.075 0.054 0.053 0.052

KS 0.603 0.577 0.559 0.559 0.099 0.053 0.052 0.051

CM 0.568 0.541 0.527 0.525 0.101 0.053 0.049 0.051

AD 0.553 0.521 0.510 0.505 0.095 0.050 0.049 0.048

ρ
=

0.
9

T3 0.452 0.200 0.172 0.149 0.297 0.057 0.058 0.060

T4 0.436 0.200 0.179 0.145 0.276 0.060 0.068 0.064

T5 0.412 0.200 0.177 0.152 0.256 0.065 0.068 0.065

T6 0.394 0.195 0.175 0.150 0.244 0.063 0.067 0.062

KS 0.541 0.261 0.242 0.238 0.392 0.075 0.063 0.057

CM 0.522 0.261 0.239 0.233 0.373 0.060 0.055 0.053

AD 0.481 0.209 0.196 0.191 0.341 0.051 0.052 0.053
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the decrease of power is not dramatic. The factor that prevents us from including very large

numbers of basis functions (i.e., new artificial covariates) is the sample size.

6. SUMMARY

I have shown that it is not advisable to use tests derived under the proportional hazards

assumption for testing proportionality of individual covariates. The remedy based on mod-

eling possibly time-varying effects of the other covariates which are not in focus has been

shown to work by simulations.
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