
Supplemental File: Second–Order Comparison of Gaussian

Random Functions and the Geometry of DNA Minicircles

This supplementary note contains additional plots and tables in Section 1. In addition,

Section 2 contains a more detailed study of the problem of comparing the complete spectrum,

extending the discussion in the last part of Section 3.2 in the main body of the paper.

1 Supplementary Figures and Tables

This section contains figures and a table not presented in the main body of the paper. The

first two figures contain plots of the projected aligned curves onto their principal axes of

inertia, including their superimposition. The third figure contains scree plots with respect to

the mixed eigenbasis for the two groups separately, as well as jointly. The last figure depicts

the Normal QQ plots of the Karhunen-Loève residuals, as described in the discussion section

of the paper.

Finally, a complete table containing the results of the simulations for level and power

corresponding to Section 4 is also given. In addition to the main test statistic proposed in

the paper, the complete table also presents simulations for the diagonal form of the statistic

(which compares only the eigenvalues). It is observed that when the difference lies only in

the eigenvalues, this test statistic performs more powerfully, as would be expected. However,

in the cases where differences also lie in the eigenfunctions, it is outperformed by the full

version of the test statistic.
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Figure 1: Projection of DNA curves on the first principal plane. Five removed outlying observations plotted in green.
Mean curves (yellow and cyan) computed without outlying observations.
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Figure 2: Coordinates of DNA curves on the principal axes of inertia. Five removed outlying
observations plotted in green. Mean curves (yellow and cyan) computed without outlying
observations.
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Figure 3: Empirical variances (scree plot), proportions and cumulative proportions of vari-
ance explained by components for the TATA (blue lines with circles) and CAP (red with
diamonds) group and for both groups together (black with squares).
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Figure 4: QQ plots corresponding to the centred Fourier coefficients when projecting onto the first four empirical
eigenfunctions for each sample of curves, respectively. The exact distribution of these quantities will not be Gaussian,
even if the processes are Gaussian. However, asymptotically, their distribution will be Gaussian. There do not appear
systematic deviations, except for the plot corresponding to the third Fourier coefficient in the TATA group, which seems
to suggest lighter upper tails as compared to the Gaussian.
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Table 1: Empirical rejection probabilities on the nominal level 5 %, sample size n1 = n2 = 50,
number of replications 5000 for A, 1000 for B–I. Here, uX = (vX ,wX) (resp. uY ) and K∗ is the
automatic truncation choice given by the penalised fit criterion.

K
Parameters Test 1 2 3 4 K∗

A uX = (12, 7, 0.5, 9, 5, 0.3) T 0.045 0.049 0.044 0.044 0.047
uY = (12, 7, 0.5, 9, 5, 0.3) T ∗ 0.051 0.056 0.057 0.056 0.059

T1 0.045 0.046 0.045 0.047 0.047
T ∗1 0.051 0.054 0.056 0.061 0.061

B uX = (14, 7, 0.5, 6, 5, 0.3) T 0.422 0.264 0.185 0.150 0.148
uY = (8, 7, 0.5, 6, 5, 0.3) T ∗ 0.443 0.315 0.223 0.174 0.175

T1 0.422 0.317 0.265 0.219 0.222
T ∗1 0.443 0.350 0.306 0.267 0.267

C uX = (15, 10, 0.5, 4, 3, 0.3) T 0.186 0.331 0.218 0.169 0.167
uY = (11, 6, 0.5, 4, 3, 0.3) T ∗ 0.201 0.366 0.269 0.207 0.208

T1 0.186 0.380 0.312 0.279 0.273
T ∗1 0.201 0.420 0.358 0.317 0.314

D uX = (12, 7, 0.5, 9, 3, 0.3) T 0.040 0.204 0.836 0.973 0.962
uY = (12, 7, 0.5, 2, 5, 0.3) T ∗ 0.047 0.221 0.848 0.984 0.980

T1 0.040 0.202 0.766 0.803 0.799
T ∗1 0.047 0.217 0.783 0.822 0.820

E uX = (12, 7, 0.5, 9, 3, 0.3) T 0.047 0.246 0.644 0.964 0.962
uY = (12, 7, 0.5, 3, 9, 0.3) T ∗ 0.055 0.267 0.686 0.976 0.975

T1 0.047 0.227 0.477 0.597 0.594
T ∗1 0.055 0.250 0.509 0.620 0.617

F uX = uY = (12, 7, 4, 0.5, 0.3, 0.1) T 0.257 0.693 0.909 1.000 1.000
δX = (0.15, 0.15, 0.15) T ∗ 0.273 0.706 0.916 1.000 1.000

T1 0.257 0.474 0.521 0.567 0.637
T ∗1 0.273 0.496 0.544 0.594 0.655

G uX = (12, 7, 0.5, 8, 6, 0.3) T 0.042 0.040 0.054 1.000 1.000
uY = (12, 7, 0.5, 8, 0, 0.3) T ∗ 0.047 0.048 0.068 1.000 1.000

T1 0.042 0.047 0.051 1.000 1.000
T ∗1 0.047 0.061 0.062 1.000 1.000

H uX = (12, 7, 0.5, 9, 5, 0.3) T 0.044 0.140 0.500 1.000 1.000
uY = (12, 7, 0.5, 0, 5, 0.3) T ∗ 0.049 0.154 0.520 1.000 1.000

T1 0.044 0.139 0.478 0.992 0.992
T ∗1 0.049 0.155 0.497 0.993 0.993

I Brownian motion versus T 0.719 0.608 0.483 0.377 0.493
Ornstein–Uhlenbeck process T ∗ 0.731 0.644 0.532 0.443 0.546

T1 0.719 0.627 0.547 0.476 0.551
T ∗1 0.731 0.666 0.596 0.542 0.595
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2 Comparing the Full Spectrum

The test procedure developed in the paper employs an optimal finite dimensional reduction

in order to regularise the problem of testing. This is motivated by a Parseval decomposition

of the Hilbert-Schmidt distance between the two operators,

‖RX −RY ‖2HS =
K∑
k=1

‖ (RX −RY )ϕkXY ‖2L2 + ε,

where ε can be made arbitrarily small by appropriate choice of K. By making such a choice,

the statistic will be (eventually) able to detect departures from the null hypothesis unless

one operator is contained within a ball of small radius centred at the other operator; in this

latter case, the test will still be able to detect the difference (eventually), except if this small

difference lies completely at the high frequency end of the spectrum (in which case, for all

practical purposes, the difference is irrelevant).

We are willing to tolerate this small level of “bias”, in order to control the overall type

II error of the problem. Comparison of the higher order terms of the operator spectrum

on the basis of a finite sample is an ill-defined estimation problem: the fast decay of the

spectrum means that we are attempting to compare extremely small quantities that have

variance roughly proportional to their magnitude. In addition, the estimators of higher order

eigenfunction will be characterised by very large integrated mean squared errors (available

bounds grow for fixedN depending inversely on the rate of decay of the spectrum). Therefore,

by trying to increase K in order to eliminate the small type II error introduced by the

truncation, we are in effect causing an overall blow-up of the type II error.

If one nevertheless wishes to compare even the finest differences in the spectrum, then

one needs to let K grow to infinity along with N , K = KN and modify the test statistic so

as to obtain a Gaussian limit. Regularisation now manifests itself by the imposition of an

allowed rate of growth of KN . That is, a rate of growth of K relative to N that does not

7



allow overwhelming instabilities due to the growing K. As one might expect, this growth

will depend inversely on the rate of decay of the true eigenvalues (a lot of data is required

to compare the finest details of the two procsses). Inevitably, in fact, this rate will be rather

slow due to the following:

(a) Although the truncation level will grow as KN , the number of terms being compared

is K2
N .

(b) While these K2 summation terms do become independent as N grows (allowing for a

CLT phenomenon) no mixing concept applies. In effect, this means that one has to look

at the convergence in distribution to independence of a random vector of increasing

dimension (= K2
N). For any fixed dimension, the weak convergence will be at a rate of

N−1/2. Therefore, if one wishes to use Lp norms in order to use the Hilbert structure

of the problem, KN must grow slow enough to allow the N−1/2 rate to compensate for

the K2
N rate of increase in dimension.

(c) This required “global convergence” to independence is regulated by the convergence

of the empirical eigenfunctions to the true ones; this in turn depends on the spacings

between the true eigenvalues: the rate of convergence of the Kth empirical eigenfunc-

tion behaves like N−1/2λ−1
K . Therefore, when we let K grow, it has to be at rate slow

enough, to allow N−1/2 to annihilate the blow-up of the inverse eigenvalues.

The above heuristics are made precise in the proof of the next theorem, which provides

a sufficient regularisation rate for asymptotically comparing the whole spectrum of infinite

rank processes.

Theorem 1. Let {Xn}n1
n=1 and {Yn}n2

n=1 be two collections of zero mean iid continuous

Gaussian random functions indexed by the interval [0, 1] and taking values in Rd, possessing

covariance operators RX and RY . Suppose that both operators are of infinite rank and have

distinct eigenvalues. Let R̂n1
X and R̂n2

Y denote the empirical covariance operators based on

8



{Xn}n1
n=1 and {Yn}n2

n=1. For N = n1 + n2, let R̂N
XY denote the empirical covariance operator

of the pooled collection, and {ϕ̂k,NXY }Nk=1 the corresponding eigenfunctions. Finally, let λ̂k,n1

X,XY ,

λ̂k,n2

Y,XY denote the empirical variance of the kth Fourier coefficient of {Xn}n1
n=1 and {Yn}n2

n=1,

respectively, with respect to the eigenfunctions {ϕ̂n,KXY }Nn=1. Assuming that E[‖X1‖4L2 ] < ∞,

E[‖Y1‖4L2 ] < ∞, and n1/N → θ ∈ (0, 1) as N = n1 + n2 → ∞, it follows that, under the

hypothesis H0 : RX = RY ,

SN :=
n1n2

2N
√
KN(KN + 1)/2

KN∑
i=1

KN∑
j=1

〈
(R̂n1

X − R̂n2
Y )ϕ̌i,NXY , ϕ̌

j,N
XY

〉2

−
√
KN(KN + 1)

2

w−→ N (0, 1),

as N →∞, for any KN ↑ ∞ such that K7
Nλ
−3/2
3KN/2

= o(
√
N), where

ϕ̌k,NXY =
ϕ̂k,NXY√

n1

N
λ̂k,n1

X,XY + n2

N
λ̂k,n2

Y,XY

.

Proof of Theorem 2. Let {ZNk} denote the triangular array of random variables defined as

ZNk :=
1√

KN(KN + 1)/2

(
n1n2

N

〈
(R̂n1

X − R̂n2
Y )ϕ̌

i(k),N
XY , ϕ̌

j(k),N
XY

〉2

− 1

)
, i(k) 6= j(k)

and

ZNk :=
1√

KN(KN + 1)/2

(
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌

i(k),N
XY , ϕ̌

i(k),N
XY

〉2

− 1

)
, otherwise,

where (i(k), j(k)) is the the kth element of the index array {(i, j) : i ≤ j ≤ KN}, when

enumerating row-wise. Clearly, for κN = KN(KN + 1)/2,

SN =

κN∑
k=1

ZNk.

9



Write ZN := (n1n2/N)1/2(R̂n1
X − R̂n2

Y ) and define

Z̃Nk :=

√
n1n2

N

〈
(R̂n1

X − R̂n2
Y )sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉]ϕ̌i(k),NXY , sgn[〈ϕ̌j(k),NXY , ϕ̌j(k)〉]ϕ̌j(k),NXY

〉
, i(k) 6= j(k)

and

Z̃Nk :=

√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉]ϕ̌i(k),NXY , sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉]ϕ̌i(k),NXY

〉
, otherwise,

where we use the notation ϕ̌k := λ
− 1

2
k ϕk. The corresponding natural filtration is denoted by

FN,k := σ(Z̃Nm; 1 ≤ m ≤ k), and notice that {ZNk} is also adapted to the filtration {FN,k}.

Finally, we will write ZNj := (ZN1, . . . , ZNj)
> (resp. Z̃Nj). We will show that

(A)
∑κN

k=1 E
[
ZNk1{|ZNk|≤1}|FN,k−1

] P−→ 0.

(B)
∑κN

k=1 Var
[
ZNk1{|ZNk|≤1}|FN,k−1

] P−→ 1.

(C)
∑κN

k=1 P[|ZNk| > ε|FN,k−1]
P−→ 0, ∀ ε > 0.

The conclusion will then follow from an “almost-martingale” central limit theorem for

triangular arrays, Shorack (5, Thm. 12.2). Fix some N , let d = κN , and let ζ ∼ Nd(0, I).

Letting d∞ denote the Kolmogorov metric, we obtain

d∞

(
Z̃Nd, ζ

)
≤ d∞

(
Z̃Nd,

{√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

)

+ d∞

({√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

, ζ

)

First we concentrate on the second term of the right hand side. From the proof of Theorem

1 and Pólya’s theorem we know that this term converges to zero. In fact, recalling that

R̂n1
X = n−1

1

∑ni

i=1 Xi (resp. R̂n2
Y ) and that the ϕk are the eigenfunctions of the common

covariance operator, the convergence can be seen to be due to the standard multidimensional

10



central limit theorem. We therefore have the following Berry-Esseen upper bound (e.g.

DasGupta (2, Cor. 11.1)),

d∞

({√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

, ζ

)
≤ Cd

1
4

√
N
.

Turning our attention to the first term in our triangle inequality, and letting νi(k) :=

sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉], we note that

E

∥∥∥∥∥Z̃Nd −
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

∥∥∥∥∥
1

=

=
d∑

k=1

E
∣∣∣∣Z̃Nk −√n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣
where, for every 1 ≤ k ≤ d we have

∣∣∣∣Z̃Nk −√n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣
=
∣∣∣〈ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY

〉
−
〈
ZN ϕ̌i(k), ϕ̌j(k)

〉∣∣∣
=
∣∣∣〈ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY

〉
− 〈ZNνi(k)ϕ̌

i(k),N
XY , ϕ̌j(k)〉+ 〈ZNνi(k)ϕ̌

i(k),N
XY , ϕ̌j(k)〉 −

〈
ZN ϕ̌i(k), ϕ̌j(k)

〉∣∣∣
=
∣∣∣〈ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY − ϕ̌j(k)

〉
+
〈
ZN

(
νi(k)ϕ̌

i(k),N
XY − ϕ̌i(k)

)
, ϕ̌j(k)

〉∣∣∣
=
∣∣∣〈ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY − ϕ̌j(k)

〉
+
〈
ZN ϕ̌j(k), νi(k)ϕ̌

i(k),N
XY − ϕ̌i(k)

〉∣∣∣
≤
∥∥∥ZNνi(k)ϕ̌

i(k),N
XY

∥∥∥
L2

∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)
∥∥∥
L2

+
∥∥ZN ϕ̌j(k)

∥∥
L2

∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)
∥∥∥
L2

≤ ‖ZN‖HS
∥∥∥νi(k)ϕ̌i(k),NXY

∥∥∥
L2

∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)
∥∥∥
L2

+ ‖ZN‖HS
∥∥ϕ̌j(k)∥∥L2

∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)
∥∥∥
L2

= ‖ZN‖HS
(∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)

∥∥∥
L2

+
∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)

∥∥∥
L2

)

Here we have used the Cauchy-Schwartz inequality and the fact that ZN is a bounded

11



operator. By the triangle inequality we now obtain

‖ZN‖HS
(∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)

∥∥∥
L2

+
∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)

∥∥∥
L2

)
≤ ‖ZN‖HS

(∥∥∥νj(k)ϕ̌j(k),NXY − νj(k)λ−1/2
j(k) ϕ̂

j(k),N
XY

∥∥∥
L2

+
∥∥∥νj(k)λ−1/2

j(k) ϕ̂
j(k),N
XY − ϕ̌j(k)

∥∥∥
L2

+
∥∥∥νi(k)ϕ̌i(k),NXY − νi(k)λ−1/2

i(k) ϕ̂
i(k),N
XY

∥∥∥
L2

+
∥∥∥νi(k)λ−1/2

i(k) ϕ̂
i(k),N
XY − ϕ̌i(k)

∥∥∥
L2

)
= ‖ZN‖HS

(
(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + λ

−1/2
j(k)

∥∥∥νj(k)ϕ̂j(k),NXY −ϕj(k)
∥∥∥
L2

+(λ̂
−1/2
i(k) − λ

−1/2
i(k) ) + λ

−1/2
i(k)

∥∥∥νi(k)ϕ̂i(k),NXY −ϕi(k)
∥∥∥
L2

)

where we have used the simplified notation

λ̂i(k) =

√
n1

N
λ̂
i(k),n1

X,XY +
n2

N
λ̂
i(k),n2

Y,XY .

We now apply the inequality given in Bosq (1, Lem. 4.3) and obtain

‖ZN‖HS
(

(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + (λ̂

−1/2
i(k) − λ

−1/2
i(k) ) + λ

−1/2
j(k)

∥∥∥νj(k)ϕ̂j(k),NXY −ϕj(k)
∥∥∥
L2

+ λ
−1/2
i(k)

∥∥∥νi(k)ϕ̂i(k),NXY −ϕi(k)
∥∥∥
L2

)
≤ ‖ZN‖HS

(
(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + (λ̂

−1/2
i(k) − λ

−1/2
i(k) )

λ
−1/2
j(k) 2

√
2 max

{
(λj(k)−1 − λj(k))−1, (λj(k) − λj(k)+1)

−1
}
‖R̂N

XY −RX‖HS

+ λ
−1/2
i(k) 2

√
2 max

{
(λi(k)−1 − λi(k))−1, (λi(k) − λi(k)+1)

−1
}
‖R̂N

XY −RX‖HS
)

Recapitulating, we have obtained

∣∣∣∣Z̃Nk −√n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣
≤ ‖ZN‖HS

(
(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + (λ̂

−1/2
i(k) − λ

−1/2
i(k) )

λ
−1/2
j(k) 2

√
2 max

{
(λj(k)−1 − λj(k))−1, (λj(k) − λj(k)+1)

−1
}
‖R̂N

XY −RX‖HS

12



+ λ
−1/2
i(k) 2

√
2 max

{
(λi(k)−1 − λi(k))−1, (λi(k) − λi(k)+1)

−1
}
‖R̂N

XY −RX‖HS
)

Now we take expectations on both sides, expand the right hand side, and repeatedly apply

the Cauchy-Schwartz inequality (with respect to the mean-square norm) to obtain

E
∣∣∣∣Z̃Nk −√n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣
≤
√

E ‖ZN‖2HS
√

E(λ̂
−1/2
j(k) − λ

−1/2
j(k) )2 +

√
E ‖ZN‖2HS

√
E(λ̂

−1/2
i(k) − λ

−1/2
i(k) )2

+λ
−1/2
j(k) 2

√
2 max

{
(λj(k)−1 − λj(k))−1, (λj(k) − λj(k)+1)

−1
}√

E ‖ZN‖2HS
√

E‖R̂N
XY −RX‖2HS

+λ
−1/2
i(k) 2

√
2 max

{
(λi(k)−1 − λi(k))−1, (λi(k) − λi(k)+1)

−1
}√

E ‖ZN‖2HS
√

E‖R̂N
XY −RX‖2HS

We note first that, by Minkowski’s inequality,
√

E ‖ZN‖2HS is bounded above for all N ,

by definition of the random operator ZN . Next,
√

E(λ̂−1
i(k) − λ

−1
i(k))

2 and
√

E(λ̂−1
i(k) − λ

−1
i(k))

2

are, asymptotically in N , of the order of O(λ
−1/2
i(k) N

−1/2) and so are also of the order of

O(λ
−1/2
i(d) N

−1/2), when k ≤ d. This can be seen by applying the Delta method to the CLT

given in Dauxois et. al (3, Prop. 8). Finally,

√
E‖R̂N

XY −RX‖2HS is asymptotically of the

order of O(N−1/2) by the CLT in Hilbert Space (Bosq (1, Thm 2.7)).

Now by definition of i(k) and j(k), we have that i(d)[i(d) + 1]/2 = j(d)[j(d) + 1]/2 = d,

so that it holds that

λi(k) = λ√8d+1−1
2

≥ λ 3
√

d
2

.

Combining all the above, we arrive at

E
∣∣∣∣Z̃Nk −√n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣ = O
(
λ
−3/2

3
√
d/2
N−1/2

)
.

so that

E

∥∥∥∥∥Z̃Nd −
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

∥∥∥∥∥
1

= O
(
λ
−3/2

3
√
d/2
N−1/2d

)
.
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Letting dW denote the L1-Wasserstein distance between two probability measures, we have

(e.g. Gibbs & Su (4)),

d∞(GN,d, HN,d) ≤ (1 + ‖hN,d‖∞)
√
dW (GN,d, HN,d)

≤ (1 + ‖hN,d‖∞)

√√√√E

∥∥∥∥∥Z̃Nd −
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

∥∥∥∥∥
1

= (1 + ‖hN,d‖∞)O
(
λ
−3/4

3
√
d/2
N−1/4d1/2

)
.

where HN,d is the distribution function of
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

, GN,d is

the distribution function of Z̃Nd, and hN,d is the density function of HN,d. But hN,d is the

density of a difference of two independent random vectors, each of which is in turn the sum

of n1 and n2 iid random vectors, respectively. Thus, letting h
[1]
d and h

[2]
d be the respective

densities, and by symmetry, we have,

‖hN,d‖∞ = ‖h[1]
d,n1
∗ . . . ∗ h[1]

d,n1︸ ︷︷ ︸
n1 times

∗ h[2]
d,n2
∗ . . . ∗ h[2]

d,n2︸ ︷︷ ︸
n2 times

‖∞ ≤ ‖h[1]
d,n1
∗ . . . ∗ h[1]

d,n1︸ ︷︷ ︸
n1 times

‖1‖h[2]
d,n2
∗ . . . ∗ h[2]

d,n2︸ ︷︷ ︸
n2 times

‖∞

= ‖h[2]
d,n2
∗ . . . ∗ h[2]

d,n2︸ ︷︷ ︸
n2 times

‖∞

Now it is immediate that

‖h[2]
d,n2
∗ . . . ∗ h[2]

d,n2
‖∞ ≤ ‖h[2]

n2
∗ . . . ∗ h[2]

n2
‖∞,

where h
[2]
n2 is the marginal density of

√
n1n2

2N

〈
( 1
n2

X1)ϕ̌i(1), ϕ̌j(1)

〉
. But it must the case that

‖h[2]
n2 ∗ . . . ∗ h

[2]
n2‖∞ be bounded above, since

∑n2

i=1

√
n1n2

2N

〈
( 1
n2

Xi)ϕ̌i(1), ϕ̌j(1)

〉
is a sequence of

variables with diffuse laws converging weakly to a non-degenerate Gaussian.

We are thus in a position to conclude that

d∞

(
Z̃Nd, ζ

)
= O

(
λ
−3/4

3
√
d/2
N−1/4d1/2

)
. (1)
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Now recall that, with probability one,

E
(
ZNk1{|ZNk|≤1}|FN,k−1

)
=

∫ +∞

−∞

1
√
κN

(
x2 − 1

)
1{|x2−1|≤

√
2κN}F eZNk| eZN,k−1

(dx|Z̃N,k−1)

where he have used standard notation for conditional distribution functions. It follows that,

given ζ a standard Gaussian random variable,

E
(
ZNk1{|ZNk|≤1}|FN,k−1

)
− E

(
1
√
κN

(ζ2 − 1)1{|ζ2−1|≤√κN}

)
=

∫ +∞

−∞

1
√
κN

(
x2 − 1

)
1{|x2−1|≤

√
2κN}F eZNk| eZN,k−1

(dx|Z̃N,k−1)

−
∫ +∞

−∞

1
√
κN

(
x2 − 1

)
1{|x2−1|≤

√
2κN}Fζ(dx)

=

∫ +∞

−∞

1
√
κN

(
x2 − 1

)
1{|x2−1|≤

√
2κN}

[
F

eZN,k−1eZNk| eZN,k−1
− Fζ

]
(dx)

with the alternative notation F
eZN,k−1eZNk| eZN,k−1

(x) ≡ F eZNk| eZN,k−1
(x|Z̃N,k−1). From (1) we have that

for ζ ∼ Nk(0, I), d∞(Z̃Nk, ζ) = O
(
λ
−1/3

3
√
d/2
N−1/4k1/2

)
, so by Lemma 1 (see below), given any

z ∈ Rk−1,

sup
x∈R

∣∣∣F zeZNk| eZN,k−1
(x)− Fζ(x)

∣∣∣ = O
(
λ
−3/4

3
√
d/2
N−1/4k1/2

)
and so given z ∈ Rk−1

∫ +∞

−∞

1
√
κN

(
x2 − 1

)
1{|x2−1|≤

√
2κN}

[
F zeZNk| eZN,k−1

− Fζ
]

(dx) = O
(
λ
−3/4
3
√
κN/2

N−1/4k1/2κ
1/4
N

)
.

Consequently, for {ζk} an iid sequence of standard Gaussian variables, and for all ω ∈ Ω,

κN∑
k=1

[
E
[
ZNk1{|ZNk|≤1}|FN,k−1

]
− E

[
1
√
κN

(ζ2
k − 1)1{|ζk|≤

√
κN}

]]
= O

 κ
7/4
N

N1/4λ
3/4
3
√
κN/2

 = O

 K
7/2
N

N1/4λ
3/4
3
√
κN/2


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And, since

K7
Nλ
−3/2
3
√

2KN (KN +1)

2

≤ K7
Nλ
−3/2
3KN

2

= o
(√

N
)
,

it follows from our assumptions that the quantity above converges to zero almost certainly.

But, on the other hand,

∣∣∣∣∣
κN∑
k=1

E
[
ZNk1{|ZNk|≤1}|FN,k−1

]∣∣∣∣∣
≤

∣∣∣∣∣
κN∑
k=1

[
E
[
ZNk1{|ZNk|≤1}|FN,k−1

]
− E

[
1
√
κN

(ζ2
k − 1)1{|ζk|≤

√
κN}

]]∣∣∣∣∣
+

∣∣∣∣∣
κN∑
k=1

E
[

1
√
κN

(ζ2
k − 1)1{|ζk|≤

√
κN}

]∣∣∣∣∣
with the last term obviously converging to zero as N →∞ so that condition (A) is fulfilled.

We now turn our attention to condition (B). By definition:

κN∑
k=1

Var
[
ZNk1{|ZNk|≤1}|FN,k−1

]
=

κN∑
k=1

E
[
Z2
Nk1{|ZNk|≤1}|FN,k−1

]
−

κN∑
k=1

E2
[
ZNk1{|ZNk|≤1}|FN,k−1

]
That the second term converges to zero almost surely follows from our proof of condition

(A). Hence, it suffices to concentrate on the first term. Following the same steps as with

(A), we may write

∫ +∞

−∞

(x2 − 1)
2

2κN
1{|x2−1|≤

√
2κN}

[
F zeZNk| eZN,k−1

− Fζ
]

(dx) = O

 K
3/2
N

N1/4λ
3/4
3
√
κN/2


This in turn imples that, with probability one,

κN∑
k=1

[
E
[
ZNk1{|ZNk|≤1}|FN,k−1

]
− E

[
1
√
κN

(ζ2
k − 1)1{|ζk|≤

√
κN}

]]
N→∞−→ 0.
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Finally, we see that

κN∑
k=1

E
[
Z2
Nk1{|ZNk|≤1}|FN,k−1

]
=

κN∑
k=1

[
E
[
Z2
Nk1{|ZNk|≤1}|FN,k−1

]
− E

[
1

2κN
(ζ2
k − 1)21{|ζk|≤

√
κN}

]]

+

κN∑
k=1

E
[

1

2κN
(ζ2
k − 1)21{|ζk|≤

√
κN}

]

with the last term clearly converging to 1 almost certainly. This establishes condition (B).

Finally, we concentrate on condition (C). By definition,

P[|ZNk| > ε|FN,k−1] = 1− E [1 {|ZNk| < ε} |FN,k−1]

= 1 +
(
E
[
1
{
|ζ2 − 1| < ε

√
κN
}]
− E [1 {|ZNk| < ε} |FN,k−1]

)
−E

[
1
{
|ζ2 − 1| < ε

√
κN
}]

=
(
E
[
1
{
|ζ2 − 1| < ε

√
κN
}]
− E [1 {|ZNk| < ε} |FN,k−1]

)
+ P[|ζ2 − 1| > ε

√
κN ]

It is clear from our analysis of (A) and (B) that

κN∑
k=1

(
E
[
1
{
|ζ2 − 1| < ε

√
κN
}]
− E [1 {|ZNk| < ε} |FN,k−1]

) a.s.−→ 0.

Finally, we have

κN∑
k=1

P[|ζ2 − 1| > ε
√
κN ] = κNP[|ζ2 − 1| > ε

√
κN ] = O

κNe−(1+ε
√
κN)

1/2(
1 + ε

√
κN
)1/4

 N→∞−→ 0

by the tail decay properties of the Gaussian distribution. This completes the proof.

Lemma 1. Assume that Fn is a sequence of distribution functions on Rd converging weakly
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to a standard Gaussian distribution function Φd, at a rate εn in the Kolmogorov distance,

sup
x∈Rd

|Fn(x)− Φd(x)| = O(εn).

Letting d = p+ q, and given y ∈ Rq, we have

sup
x∈Rp

|Fn(x|y)− Φq(x)| = O(εn).

Proof. By definition, and by our uniform bound, given any y ∈ Rq we have that

sup
x∈Rp

|Fn(x|y)Fn(y)− Φp(x)Φq(y)| = sup
x∈Rp

|Fn(x,y)− Φd(x,y)| = O(εn).

Now divide across by Φq(y), and obtain

sup
x∈Rp

∣∣∣∣Fn(x|y)
Fn(y)

Φq(y)
− Φp(x)

∣∣∣∣ = O(εn) (2)

By assumption of the theorem, it must also be that

|Fn(y)− Φq(y)| = O(εn).

In turn, this implies that ∣∣∣∣Fn(y)

Φq(y)
− 1

∣∣∣∣ = O(εn), (3)

for if this were not the case, for every α > 0 and M ≥ 1, there would exist and m ≥M such

that ∣∣∣∣Fm(y)

Φq(y)
− 1

∣∣∣∣ > α

Φq(y)
|εm|,

or equivalently, for every α > 0 and M ≥ 1, there would exist and m ≥M such that

|Fm(y)− Φq(y)| > α|εm|,
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which would contradict the fact that supu |Fn(u)− Φq(u)| ∈ O(εn).

Now conditions (2) and (3) allow us to complete the proof by applying the triangle

inequality:

d∞ (Fn(·|y),Φp) ≤ d∞

(
Fn(·|y),

Fn(y)

Φq(y)
Fn(·|y)

)
+ d∞

(
Fn(y)

Φq(y)
Fn(·|y),Φp

)

since

d∞

(
Fn(·|y),

Fn(y)

Φq(y)
Fn(·|y)

)
= sup

x∈Rp

∣∣∣∣Fn(x|y)− Fn(y)

Φq(y)
Fn(x|y)

∣∣∣∣
=

∣∣∣∣1− Fn(y)

Φq(y)

∣∣∣∣ sup
x∈Rp

|Fn(x|y)|

=

∣∣∣∣1− Fn(y)

Φq(y)

∣∣∣∣ = O(εn)
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