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Abstract. A new test of the proportional hazards assumption in the Cox model is proposed.

The idea is based on Neyman’s smooth tests. The Cox model with proportional hazards

(i.e. time-constant covariate effects) is embedded in a model with a smoothly time-varying

covariate effect that is expressed as a combination of some basis functions (e.g., Legendre

polynomials, cosines). Then the smooth test is the score test for significance of these artificial

covariates. Furthermore, we apply a modification of Schwarz’s selection rule to choosing the

dimension of the smooth model (the number of the basis functions). The score test is then

used in the selected model. In a simulation study, we compare the proposed tests with

standard tests based on the score process.

1. Introduction

We consider the Cox proportional hazards regression model (Cox, 1972) in the counting

process formulation of Andersen and Gill (1982) (see also Andersen, Borgan, Gill and Keiding,

1993)

λi(t) = Yi(t)λ0(t) exp{βTZi(t)}.

Here λi(t) is the intensity process of the i-th component of an n-variate counting process

N(t) = (N1(t), . . . , Nn(t))T, t ∈ [0, τ ], Yi(t) denotes the risk indicator process, Zi(t) is a p-

dimensional covariate (predictable process), λ0(t) stands for an unknown function (baseline

hazard) and β is a vector of unknown regression coefficients. Throughout this paper, we

assume that the conditions of Andersen and Gill (1982) guaranteeing certain asymptotic
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properties are satisfied. For simplicity, the time period is assumed to be finite (i.e., τ <∞);

we refer to Andersen and Gill (1982, Section 4) for an extension to the whole line (see also

Fleming and Harrington, 1991, Section 8.4).

The crucial assumption in the Cox model is proportionality of the effects of the covariates.

This means that the hazard ratio for two individuals does not depend on time, or, when the

covariates are time-dependent, it depends on time solely through the values of the covariates.

The proportional hazards assumption can be violated in many ways. One is when some of

the coefficients β1, . . . , βp vary with time. Another situation is when the regression model is

misspecified (the true model can be, e.g., Aalen’s additive regression) or when the supposed

stochastic structure is incorrect (the counting processes can actually be, for instance, renewal

processes) etc.

In the present paper, our aim is to test the proportional hazards assumption for the p-th

(say) covariate against the alternative of time-varying coefficient βp(t). Various methods for

detecting nonproportional hazards have been developed.

The most important (and most often used) inference tool is the score process

U1(t; β̂) =
n∑

i=1

∫ t

0
Zi(s)dNi(s)−

∫ t

0

∑n
i=1 Yi(s)Zi(s) exp{β̂TZi(s)}∑n

i=1 Yi(s) exp{β̂TZi(s)}
dN̄(s)

(where N̄ =
∑n

i=1Ni). Each of its p components reflects deviations from proportionality of

the respective covariate. Lin, Wei and Ying (1993) use tests of the Kolmogorov–Smirnov type

based both on components of the score process (for testing effects of individual covariates)

and on the whole vector of processes (overall assessment of fit). Other functionals of the

components, namely those leading to the test of the Anderson–Darling and Cramér–von

Mises type, are studied by Kvaløy and Neef (2004).

The test based on the score process is a test of time-constancy of the effect βp against

a general unspecified alternative of time-varying βp(t). Another approach is to test against

specific departures from proportionality (Cox, 1972; Andersen et al., 1993, Sec. VII.3.3).

Recall that we wish to test whether the effect of the p-th covariate is constant. Then we may

include a new time-dependent covariate g(t)Zip(t) (with g(t) being a nonrandom function)

into the model as follows

λi(t) = Yi(t)λ0(t) exp{βTZi(t) + γg(t)Zip(t)},
2



and test its significance (γ = 0 against γ 6= 0) by standard (partial likelihood based) methods.

Some frequent choices are g(t) = t or g(t) = log t.

A compromise between the two classic tests (global and directional) is represented by

Neyman’s smooth tests, which are the theme of this paper. The idea consists of testing

the null hypothesis against an alternative with a smoothly time-varying coefficient for the

covariate Zip(t). This means that under the alternative the effect of the covariate Zip(t) can

be expressed as a combination of several (say k) smooth functions ψ1(t), . . . , ψk(t) (and an

intercept, of course). (The choice of the smooth functions is discussed later on.) Thus, we

consider an alternative Cox model with k time-dependent covariates in the form

λi(t) = Yi(t)λ0(t) exp{βTZi(t) + θTψ(t)Zip(t)}

and test significance of the covariates ψ(t)Zip(t) (here ψ(t) = (ψ1(t), . . . , ψk(t))T). Explicitly,

our smooth test is the score test of

H0 : θ = 0 against H1 : θ 6= 0.

Next, we address the issue of choosing k, the dimension of the smooth alternative. We

follow the idea of data-driven smooth tests that is due to Ledwina and coauthors; see, for

instance, Inglot, Kallenberg and Ledwina (1997), Kallenberg and Ledwina (1997) and refer-

ences therein. In their situation of testing goodness of fit of a parametric family, they consider

models with dimensions 1, . . . , d (for a chosen integer d) and use a modification of Schwarz’s

selection rule for selecting one of them. The test is then based on the score statistic for the

selected likely model. A similar approach is applied in our situation.

Before closing the introductory section, we must mention a completely different approach to

testing proportionality that was proposed by Martinussen, Scheike and Skovgaard (2002) (see

also Scheike and Martinussen, 2004). They consider an extended Cox model with time-varying

coefficients. Their test is a test of possibility of reduction of a nonparametric time-varying

Cox model to a semiparametric model with some effects being constant in time.

The structure of the paper is as follows. In Section 2 we develop the smooth test of

proportionality and establish asymptotic properties of the test statistic. Section 3 deals with

the data-driven version of the test based on Schwarz’s selection rule. In Section 4, our tests

are compared through simulations with tests based on the score process in various situations.

Results are summarised in Section 5, which closes the paper.
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2. Smooth tests

As mentioned in Introduction, the null model

(1) λi(t) = Yi(t)λ0(t) exp{βTZi(t)}

is embedded in

(2) λi(t) = Yi(t)λ0(t) exp{βTZi(t) + θTξi(t)},

where

ξi(t) = ψ(t)Zip(t), ψ(t) = (ψ1(t), . . . , ψk(t))T.

The functions representing smooth alternatives are chosen as some basis functions in trans-

formed (standardised, uniformised) time, i.e. in the form

ψj(t) = ϕj(Λ0(t)/Λ0(τ)), j = 1, . . . , k(3)

or

ψj(t) = ϕj(F0(t)/F0(τ)), j = 1, . . . , k.(4)

Here Λ0(t) =
∫ t
0 λ0(s)ds is the cumulative baseline hazard function and F0(t) = 1−exp{−Λ0(t)}

the corresponding distribution function. The smooth functions ϕj are some bounded func-

tions in L2[0, 1] such that {1, ϕ1, . . . , ϕk} is a set of linearly independent functions. Most

popular examples are the orthonormal Legendre polynomials on [0, 1] and the cosine basis

ϕj(u) =
√

2 cos(πju). There are many other possibilities, such as various spline bases, cell

indicators, ϕj(u) = uj , or other right-continuous functions with left-hand limits. For a dis-

cussion of the choice of the basis functions see, for instance, Inglot et al. (1997, p. 1227) in

the traditional goodness-of-fit framework, or Peña (1998a,b) for hazard based models.

Before developing the score test of θ = 0, we need to introduce the following basic notation.

Let us denote

S(j,k)(t;β, θ) =
n∑

i=1

Yi(t)Zi(t)⊗jξi(t)⊗k exp{βTZi(t) + θTξi(t)}

for j = 0, 1, 2, k = 0, 1, 2, j + k ≤ 2. As we are mainly interested in situations with θ = 0, we

simplify the notation and use S(j,k)(t;β) = S(j,k)(t;β, 0). The same applies to other functions

(processes) introduced later: whenever θ is dropped, it means that the function is evaluated
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at θ = 0. Furthermore, we set S(j) = S(j,0) (this notation agrees with that introduced by

Andersen and Gill, 1982).

Denote

C(t;β, θ) =
n∑

i=1

∫ t

0
[βTZi(s) + θTξi(s)]dNi(s)−

∫ t

0
log{S(0)(s;β, θ)}dN̄(s),

the logarithm of the partial likelihood in the k-dimensional model (2). Then C(τ ;β) :=

C(τ ;β, 0) is the log partial likelihood for the Cox model (1). The score process for this model

is

U1(t;β) =
∂

∂β
C(t;β) =

n∑
i=1

∫ t

0
Zi(s)dNi(s)−

∫ t

0

S(1)(s;β)
S(0)(s;β)

dN̄(s).

The estimate β̂ defined as the solution to

U1(τ ;β) = 0

is the maximum partial likelihood estimate in the null model (1) (or the restricted maximum

partial likelihood estimate in (2) under θ = 0). The score process for θ in the model (2) is

U2(t;β, θ) =
∂

∂θ
C(t;β, θ) =

n∑
i=1

∫ t

0
ξi(s)dNi(s)−

∫ t

0

S(0,1)(s;β, θ)
S(0)(s;β, θ)

dN̄(s).

The score test for θ = 0 is based on the quantity U2(τ ; β̂) := U2(τ ; β̂, 0). Asymptotic

properties of the score test in the Cox model are well-known (Andersen and Gill, 1982): the

score U2(τ ; β̂) turns out to be asymptotically normal.

We need to investigate its asymptotic variance in order to be able to form a quadratic χ2

statistic. By Taylor’s expansion around the true value β0, U2(τ ; β̂) may be written as

(5) U2(τ ; β̂) = U2(τ ;β0)−D(τ ;β∗)(β̂ − β0),

where D(t;β) = − ∂
∂βTU2(t;β) and β∗ lies on the line segment between β0 and β̂. Next

we may use the identity β̂ − β0 = J(τ ; β̃)−U1(τ ;β0), which follows from Taylor’s expansion

U1(τ ; β̂)−U1(τ ;β0) = −J(τ ; β̃)(β̂−β0) and the fact U1(τ ; β̂) = 0; here J(τ ;β) = − ∂
∂βTU1(τ ;β)

stands for the information matrix and β̃ is again on the line segment between β0 and β̂.

Inserting this into (5) we obtain

(6) n−1/2U2(τ ; β̂) = n−1/2U2(τ ;β0)− {n−1D(τ ;β∗)}{nJ(τ ; β̃)−}{n−1/2U1(τ ;β0)}.

Consequently, the key step is to study weak convergence of the martingale n−1/2U(t;β0) =

n−1/2(U1(t;β0), U2(t;β0))T and convergence in probability of the other quantities in (6). It
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may be shown that n−1/2U(t;β0) converges weakly to a continuous zero-mean Gaussian mar-

tingale with covariance matrix denoted

σ(t;β0) =

σ11(t;β0) σ12(t;β0)

σ21(t;β0) σ22(t;β0)

 .

Besides, the matrices n−1D(τ ;β∗) and n−1J(τ ; β̃) converge in probability to σ21(τ ;β0) and

σ11(τ ;β0), respectively. Therefore, n−1/2U2(τ ; β̂) is asymptotically normal with zero mean

and variance

v(τ ;β0) = σ22(τ ;β0)− σ21(τ ;β0)σ11(τ ;β0)−1σ12(τ ;β0).

Let

V (τ ; β̂) = Σ22(τ ; β̂)− Σ21(τ ; β̂)Σ11(τ ; β̂)−Σ12(τ ; β̂),

where 1
nΣ(τ ; β̂) (with corresponding submatrices) is a consistent estimator of σ(τ ;β0). Finally,

the score statistic for testing θ = 0 is

(7) Tk = U2(τ ; β̂)TV (τ ; β̂)−U2(τ ; β̂),

which is asymptotically χ2
k-distributed as n → ∞. Obviously, the null hypothesis is rejected

if Tk is significantly large. The number of degrees of freedom equals the rank of the limiting

covariance matrix which is k by the assumptions of Andersen and Gill (1982) and by linear

independence of the basis functions, see also Andersen et al. (1993, p. 503).

The estimator 1
nΣ(τ ; β̂) of σ(τ ;β0) is obtained by plugging β̂ into the quadratic variation

of n−1/2U(·;β0). Explicitly,

Σ11(t;β) = [U1(·;β)](t) =
n∑

i=1

∫ t

0

[
Zi(s)−

S(1)(s;β)
S(0)(s;β)

]⊗2

dNi(s),

Σ22(t;β) = [U2(·;β)](t) =
n∑

i=1

∫ t

0

[
ξi(s)−

S(0,1)(s;β)
S(0)(s;β)

]⊗2

dNi(s),

Σ21(t;β) = [U2(·;β), U1(·;β)](t)

=
n∑

i=1

∫ t

0

[
ξi(s)−

S(0,1)(s;β)
S(0)(s;β)

][
Zi(s)−

S(1)(s;β)
S(0)(s;β)

]T

dNi(s).

The score test statistic Tk can be easily computed in existing software (like the survival

package in R).
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The time transformation in the smooth functions ψj(t) (in (3) or (4)) depends on the

unknown cumulative baseline hazard function Λ0(t). In practice, we have to estimate it. The

Breslow estimator is

Λ̂0(t) =
∫ t

0

dN̄(s)

S(0)(s; β̂)
.

By uniform consistency of this estimator it follows that the weak limit of the score is the same

as if we knew Λ0.

Which transformation ((3) or (4)) should we use? For survival data (i.e., for counting

processes with at most one jump) I prefer the transformation (4) based on the baseline

distribution function F0. The reason is as follows. If we use the transformation (3), periods

with highly increasing Λ0(t) (i.e., high λ0(t)) are mapped to larger periods in [0, 1] than

periods with moderate increase of Λ0(t). This is reasonable, and it is the purpose of the

time transformations. However, if such a period with high λ0(t) occurs late on the time line

(where ‘late’ means that the cumulative intensity Λ0(t) is large, i.e., there is only a small

probability of surviving so long), then the actual proportion of observations in such a period

will be much lower than the proportion of the corresponding period in [0, 1]. In other words,

late periods with high λ0(t) may be overrepresented in the domain of the smooth functions.

Moreover, a typical feature of the Breslow estimator is that it has several large jumps at the

end, and thus again the end of the time period may receive much larger weight in [0, 1] than

is adequate. Consequently, the shape of the smooth functions may not be fully exploited with

the time transformation (3), and it is better to use (4). On the other hand, however, if the

data consist of repeated events (such as observations of (possibly nonhomogeneous) Poisson

processes), one may consider using the transformation (3) because the intensity Λ0 is a more

proper characteristic of the stochastic structure than the distribution function F0.

We close this section by a practical comment. If the covariates are time independent, it is

suitable to compute the baseline distribution at the covariate means. It then describes the

behaviour of a typical observation.

3. Data-driven version of the test

Smooth tests presented up to now were score tests of θ = 0 against θ 6= 0 in the k-

dimensional model (2), where k was fixed (chosen prior to testing). Simulations (reported

in Section 4) show that the proper choice of k plays an important role. If we choose k too
7



large, we test against a superfluously complex alternative. It contains redundant covariates

which do not contribute to the test statistic markedly but increase the number of degrees of

freedom (and, hence, critical values). This causes a loss of power.

The idea of data-driven tests consists of choosing out of d alternative models (with increas-

ing dimensions) one that describes the data well but is not too large. Then the smooth test

is performed in this model.

The idea dates back to Ledwina (1994) who applied the Bayesian information criterion

(BIC, Schwarz’s selection rule) to the task of testing uniformity (or other single distribution).

Later, Inglot et al. (1997) and Kallenberg and Ledwina (1997) extended this method to

composite hypotheses. In the Cox model, Abrahamowicz, MacKenzie and Esdaile (1996) em-

ployed the Akaike information criterion (AIC) for choosing the dimension. However, they did

not investigate asymptotic distribution of the test statistic when the dimension was selected

by the AIC. In Peña (2003), a modification of Schwarz’s rule was considered in a different

hazard based model.

Let d be the maximal dimension of the alternative model. The considered models are

λi(t) = Yi(t)λ0(t) exp{βTZi(t) + θ1ξi1(t) + · · ·+ θkξik(t)}, k = 1, . . . , d.

Schwarz’s rule in its traditional form selects among the d models the one whose penalised

(partial) log-likelihood is largest. The log partial likelihood is penalised by subtracting k
2 log n.

Since the rule based on the partial likelihood requires optimisation of the partial likelihood

function for all d models, it may be computationally inconvenient. Instead, we will use

a modified rule based on the score statistic. Let Tk be the score statistic defined in (7) for

the k-dimensional alternative. Then the selection rule is

(8) S = arg max
k∈{1,...,d}

{Tk − k log n}.

The statistic of the data-driven test is TS .

For a fixed dimension k, we have seen that the statistic Tk of the smooth test is approxi-

mately χ2
k-distributed. Now we find asymptotic distribution of the statistic with dimension

selected by Schwarz’s rule. The lemma that follows states that under the null the selection

rule is asymptotically concentrated in 1, the smallest possible dimension.

Lemma 1. Under H0, Pr[S = 1] −−−→
n→∞

1.

8



Proof. It suffices to show that Pr[S = k] −−−→
n→∞

0 for k = 2, . . . , d (because Pr[S = 1] =

1−
∑d

k=2 Pr[S = k]). This is apparent from

Pr[S = k] ≤ Pr[Tk − k log n ≥ T1 − log n] = Pr[Tk/ log n− T1/ log n ≥ k − 1] −−−→
n→∞

0,

where the convergence holds because of the weak convergence of Tj to a nondegenerate (χ2
j -

distributed) variable for any j (and, hence, convergence in probability of Tj/ log n to 0). �

Consequently, we have the following result.

Theorem 1. Under H0, TS
D−−−→

n→∞
χ2

1.

Proof. Immediately follows from Lemma 1. �

Kallenberg and Ledwina (1997) point out that the χ2
1 approximation of the null distribution

of TS is often inaccurate. Typically, when this approximation is used, the test considerably

exceeds its prescribed nominal level. The same problem is present in our situation, see

simulations in Section 4. Kallenberg and Ledwina (1997, p. 1097) (see also Kallenberg and

Ledwina, 1995) derived a much more accurate approximation. Here we adapt their ideas to

our setting.

First, we write

H(x) = Pr[TS ≤ x] = Pr[T1 ≤ x, S = 1] + Pr[T2 ≤ x, S = 2] + Pr[TS ≤ x, S ≥ 3],

where the third term on the right-hand side can be neglected under H0. The event [S = 1]

is approximated by [T1 − log n ≥ T2 − 2 log n] = [T2 − T1 ≤ log n]. Similarly, [S = 2] is

approximated by [T2 − T1 ≥ log n].

Before we proceed, we need to investigate the asymptotic distribution of (T1, T2 − T1)T.

We do it under the assumption that the bases are nested in the sense that the (k + 1)-

dimensional basis contains the k-dimensional one and one more function. The variables

T1, T2 are functions of the score U2(τ ; β̂) that is asymptotically distributed as a bivariate

normal vector (R1, R2)T with variance matrix v = v(τ ;β0). Denote elements of v as
(

a b
b c

)
and ρ = b/

√
ac. The distribution N(0, v) of (R1, R2)T can be obtained from two independent

standard normal variables G1, G2: if R̃1 =
√
a[

√
1− ρ2G1 + ρG2] and R̃2 =

√
cG2, then

(R̃1, R̃2) ∼ (R1, R2). Thus, T1 is asymptotically distributed as R2
1/a ∼ R̃2

1/a = [
√

1− ρ2G1 +

ρG2]2 =: T∞1 . Similarly, asymptotic distribution of T2 is that of (R1, R2)v−1(R1, R2)T ∼
9



(R̃1, R̃2)v−1(R̃1, R̃2)T =: T∞2 . Straightforward but tedious computations yield that T∞2 −

T∞1 = [ρG1 −
√

1− ρ2G2]2. Finally, since ρG1 +
√

1− ρ2G2 and ρG1 −
√

1− ρ2G2 are

independent standard normal, we obtain that (T1, T2 − T1)T is asymptotically distributed as

a vector of two independent χ2
1 variables.

Now we can study H(x). We will treat H(x) separately for x ≤ log n, log n < x < 2 log n

and x ≥ 2 log n.

For x ≤ log n,

Pr[T2 ≤ x, S = 2] .= Pr[T2 ≤ x, T2 − T1 ≥ log n] = 0,

because T1 ≥ 0 a.s. Thus

H(x) .= Pr[T1 ≤ x, T2 − T1 ≤ log n] .= [2Φ(
√
x)− 1][2Φ(

√
log n)− 1], x ≤ log n.

If x ≥ 2 log n,

Pr[T2 ≤ x, S = 2] .= Pr[T2 ≤ x, T2 − T1 ≥ log n] .= Pr[T2 − T1 ≥ log n].

Motivation for the latter approximation is as follows. Rewrite

(9) Pr[T2 ≤ x, T2 − T1 ≥ log n] = Pr[T2 − T1 ≥ log n]− Pr[T2 > x, T2 − T1 ≥ log n].

As T2 − T1 is approximately χ2
1 distributed, we have

(10) Pr[T2 − T1 ≥ log n] .= 2(1− Φ(
√

log n)) .= 2
ϕ(
√

log n)√
log n

=
2√
2π

n−1/2

√
log n

(here we use the well-known fact 1− Φ(t) ∼ ϕ(t)/t for t→∞, where Φ and ϕ stand for the

standard normal distribution function and density, respectively). Similarly

(11) Pr[T2 > x, T2 − T1 ≥ log n] ≤ Pr[T2 > x] ≤ Pr[T2 > 2 log n] .= exp{−1
22 log n} = n−1.

In (10) and (11), the use of the approximations of the tail probabilities by the tail probabilities

of the limiting χ2 distributions is correct, see Woodroofe (1978). Hence Pr[T2 − T1 ≥ log n]

converges to zero much slower than Pr[T2 > x, T2−T1 ≥ log n], and thus the latter probability

may be neglected in (9). Therefore, finally,

H(x) .= Pr[T1 ≤ x, T2 − T1 ≤ log n] + Pr[T2 − T1 ≥ log n]

.= [2Φ(
√
x)− 1][2Φ(

√
log n)− 1] + 2[1− Φ(

√
log n)], x ≥ 2 log n.
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For x between log n and 2 log n Kallenberg and Ledwina (1995) suggested to linearize as

follows

H(x) .= H(log n) +
x− log n

log n
[H(2 log n)−H(log n)], log n < x < 2 log n.

Let us summarise the results: for the distribution function of the test statistic TS we use

the approximation

(12) H(x) = Pr[TS ≤ x]

.=


[2Φ(

√
x)− 1][2Φ(

√
log n)− 1], x ≤ log n,

H(log n) + x−log n
log n [H(2 log n)−H(log n)], x ∈ (log n, 2 log n),

[2Φ(
√
x)− 1][2Φ(

√
log n)− 1] + 2[1− Φ(

√
log n)], x ≥ 2 log n.

4. Simulation study

We investigate performance of the proposed tests through simulations. Our tests are

compared with standard tests based on various functionals of the score process (of the

Kolmogorov–Smirnov, hereafter KS, Cramér–von Mises, CM, and Anderson–Darling, AD,

type). The standard tests were thoroughly examined by Kvaløy and Neef (2004) (throughout

this section refered to as KN) in an extensive simulation study. For the sake of ease of com-

parison, we illustrate the behaviour of our tests in the same models. These include survival

data where the proportionality assumption is satisfied, as well as models with both monotonic

and nonmonotonic hazard ratios.

To clarify the terminology, we recall that by the ‘score tests’ we mean the smooth tests

based on the score vector U2(τ ; β̂) (with the test statistic Tk or TS). On the contrary, by the

term ‘score process based tests’ we mean the tests of the KS, CM and AD type. By using the

word ‘process’ we stress that the test employs the whole path of the score process U1(·; β̂).

The smooth tests with both a fixed and data-driven choice of the number of basis functions

are compared (we consider d = 3, 4, 5, 6, which is either the dimension for the smooth test

or the maximum dimension for the data-driven version). The choice of the basis of functions

does not seem to be of great importance; the Legendre polynomial basis leads to slightly

higher power in some cases and is therefore used in all simulations. The time transformation

for the basis functions is in the form (4).
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For the null distribution of the data-driven test statistic TS we consider both the χ2
1 ap-

proximation and the improved approximation (12) presented in the previous section.

For the tests based on the whole score process, the simulation technique of Lin et al. (1993)

is used (the method consists of generating a sample from the asymptotic distribution of the

score process; the size of the sample is 1000 everywhere).

All tests are performed on a nominal level of 5 %. The number of repetitions of Monte Carlo

simulations is 20 000 under the null hypothesis and 5000 under alternatives and in models

with two covariates. Thus the standard deviations of the estimated rejection probabilities in

Table 1 are about
√

0.05× 0.95/20000 .= 0.002 (at most
√

0.5× 0.5/20000 .= 0.004). The

standard deviations of the estimates in the other tables are at most
√

0.5× 0.5/5000 .= 0.007.

The simulations and computations are carried out in R. We use the default random number

generator which is ‘Mersenne Twister’.

First, we consider a model with one covariate whose effect is proportional. The hazard

function follows the form λ(t) = 2 exp(Z), the covariate Z is U(0, 1) distributed, both without

censoring and with U(0, 1) censoring times. The model is the same as in Case 1 of KN. Results

are reported in Table 1. The fixed-dimension test preserves the prescribed level. For the data-

driven test, the χ2
1 approximation cannot be used since the nominal level is highly exceeded.

The improved approximation based on H of (12) works quite satisfactorily for the sample

size n = 100. Therefore, in the remaining simulations we use only this approximation and

not the χ2
1 one. The tests based on the score process with simulated critical values preserve

the level as well. Note that in models with one covariate we could use asymptotic critical

values (based on the corresponding functionals of the Brownian bridge which is the weak

limit of the score process in models with one covariate), however in that case particularly the

Kolmogorov–Smirnov type test is too conservative; see KN for details.

Now we proceed to two models not satisfying the proportional hazards assumption. In

the first one the effect of the covariate varies monotonically in time, the hazard function is

λ(t) = 2 exp(4tZ), with Z uniformly distributed on (0, 1), without censoring (Case 1 of KN)

as well as with U(0, 1) censoring. The model with nonmonotonic hazard ratios has the hazard

function λ(t) = 2 exp(β(t)Z) with β(t) = − log 4 + 1[0.3,0.6](t) log 4, Z is U(0, 2) distributed,

without censoring and with censoring at 1.2 (Case 2 of KN). Estimated rejection probabilities

are given in Table 2.
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Table 1. Estimated sizes of the tests in the model λ(t) = 2 exp(Z) with Z

being U(0, 1) distributed, without censoring and with U(0, 1) censoring (giv-

ing a 30 % censoring rate). Figures based on 20 000 Monte Carlo repetitions

(standard deviation of the estimates about 0.002).

No censoring Censoring U(0, 1)

n = 50 n = 100 n = 50 n = 100

d = 3 TS (H) 0.060 0.050 0.057 0.050

TS (χ2
1) 0.117 0.088 0.117 0.091

Td 0.057 0.057 0.052 0.054

d = 4 TS (H) 0.063 0.051 0.058 0.051

TS (χ2
1) 0.120 0.089 0.119 0.091

Td 0.056 0.057 0.049 0.053

d = 5 TS (H) 0.064 0.052 0.059 0.051

TS (χ2
1) 0.120 0.089 0.119 0.091

Td 0.056 0.057 0.045 0.052

d = 6 TS (H) 0.064 0.052 0.059 0.051

TS (χ2
1) 0.120 0.090 0.119 0.092

Td 0.054 0.054 0.042 0.049

KS 0.052 0.051 0.053 0.057

CM 0.048 0.047 0.050 0.050

AD 0.044 0.046 0.044 0.047

In Table 2 we can see the importance of choosing the number of the basis functions properly.

If Neyman’s tests with fixed dimensions d = 3, 4, 5, 6 are used, we observe that the power

typically decays as the dimension increases. The reason is obvious: Since the model is well

described with one or two basis functions, including additional redundant basis functions

(artificial covariates) does not increase the score test statistic dramatically, but, on the other

hand, increases critical values (degrees of freedom increase). The results show that the data-

driven choice of the dimension based on the modification of Schwarz’s selection is a suitable

remedy that is worthwhile. The power is stable for various values of the maximal dimension d.
13



Table 2. Estimated powers of the tests in the model λ(t) = 2 exp(4tZ)

(monotonic HR), where Z is U(0, 1) distributed, without censoring and with

U(0, 1) censoring (leading to a 31 % censoring percentage), and in the model

λ(t) = 2 exp(β(t)Z) with β(t) = − log 4 +1[0.3,0.6](t) log 4 (nonmonotonic HR),

where Z is U(0, 2) distributed, without censoring and with censoring at 1.2

(33 %). Sample size n = 100. Figures based on 5000 Monte Carlo repetitions

(standard deviation of the estimates about 0.007).

Monotonic hazard ratio Nonmonotonic hazard ratio

No censoring Censoring U(0, 1) No censoring Censoring at 1.2

d = 3 TS 0.369 0.194 0.622 0.619

Td 0.353 0.192 0.695 0.569

d = 4 TS 0.370 0.195 0.628 0.622

Td 0.316 0.168 0.665 0.542

d = 5 TS 0.370 0.195 0.632 0.623

Td 0.289 0.155 0.679 0.503

d = 6 TS 0.370 0.195 0.632 0.623

Td 0.272 0.143 0.648 0.472

KS 0.378 0.211 0.470 0.288

CM 0.432 0.234 0.411 0.240

AD 0.432 0.233 0.444 0.296

In comparison to the score process based tests, our test is less powerful for detecting

monotonic deviations from proportionality but more powerful for detecting nonmonotonic

hazard ratios.

Now we examine models with two covariates such that one covariate (Z1) has a nonpro-

portional effect (both monotonic and nonmonotonic) while the effect of the other covariate

Z2 is proportional.

The model with a monotonic coefficient of Z1 follows the form λ(t) = exp(0.5tZ1 +Z2−8).

The covariates Z1, Z2 are jointly normally distributed, both have expectation 4 and variance 1,

their correlation is ρ (various values are considered). Censoring times are drawn from the

U(0, 5) distribution. This model corresponds to Case 4 of KN. The second model is λ(t) =
14



Table 3. Estimated rejection probabilities for both covariates in the model

λ(t) = exp(0.5tZ1+Z2−8), where Z1, Z2 are jointly normal with expectation 4,

variance 1 and correlation ρ, censoring times with the U(0, 5) distribution

(about 45 % censoring). Sample size n = 100. Figures obtained from 5000

Monte Carlo simulations (standard deviation of the estimates about 0.007).

ρ = 0.3 ρ = 0.5 ρ = 0.7

Z1 Z2 Z1 Z2 Z1 Z2

d = 3 TS 0.344 0.056 0.320 0.055 0.271 0.066

Td 0.346 0.055 0.323 0.056 0.262 0.072

d = 4 TS 0.345 0.057 0.320 0.058 0.272 0.068

Td 0.306 0.054 0.280 0.057 0.228 0.070

d = 5 TS 0.345 0.058 0.321 0.058 0.273 0.068

Td 0.281 0.054 0.261 0.056 0.204 0.064

d = 6 TS 0.345 0.058 0.321 0.058 0.273 0.068

Td 0.251 0.056 0.237 0.057 0.187 0.058

KS 0.409 0.051 0.391 0.070 0.348 0.105

CM 0.471 0.047 0.452 0.069 0.398 0.115

AD 0.466 0.040 0.442 0.059 0.387 0.106

exp(β(t)Z1 + Z2 − 8), where the nonmonotonic effect of Z1 is of the form β(t) = 0.4 + 0.7×

1[1.2,2](t). The covariates Z1, Z2 have the same distribution as in the previous model. Results

of testing proportionality for both of the covariates in the two models are displayed in Tables 3

and 4.

Let us notice the behaviour of the tests for Z2 (whose effect is proportional). Generally,

the smooth tests (both data-driven and fixed-dimension) seem to preserve the level better

than the score process based tests. When the proportional covariate Z2 is highly correlated

with the nonproportional covariate Z1, the score process based tests exceed the prescribed

nominal level. This behaviour occurs starting with ρ = 0.5. Concerning the smooth tests,

this problem is apparent too, but rather for very high ρ = 0.7 when the effect of Z1 is

nonmonotonic. Therefore, the power results for Z1 in Tables 3 and 4 should be looked at with

caution especially for high values of ρ.
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Table 4. Estimated rejection probabilities for both covariates in the model

λ(t) = exp(β(t)Z1 +Z2− 8) with β(t) = 0.4 + 0.7× 1[1.2,2](t), where Z1, Z2 are

jointly normal with expectation 4, variance 1 and correlation ρ, with constant

censoring at 5 (giving about 31 % censoring). Sample size n = 100. Figures

based on 5000 Monte Carlo repetitions (standard deviation of the estimates

about 0.007).

ρ = 0.3 ρ = 0.5 ρ = 0.7

Z1 Z2 Z1 Z2 Z1 Z2

d = 3 TS 0.344 0.052 0.322 0.059 0.288 0.097

Td 0.336 0.057 0.319 0.068 0.275 0.095

d = 4 TS 0.348 0.053 0.327 0.060 0.290 0.098

Td 0.330 0.058 0.309 0.062 0.257 0.091

d = 5 TS 0.349 0.054 0.328 0.060 0.291 0.098

Td 0.312 0.057 0.294 0.057 0.242 0.082

d = 6 TS 0.349 0.054 0.328 0.060 0.292 0.098

Td 0.293 0.056 0.283 0.058 0.234 0.078

KS 0.330 0.055 0.336 0.074 0.307 0.124

CM 0.298 0.055 0.309 0.068 0.301 0.124

AD 0.277 0.050 0.284 0.065 0.274 0.110

As for Z1, a similar behaviour as in the one covariate situation of Table 2 is observed: in

some cases the power of the fixed-dimension smooth test slightly decays as the dimension

increases (however, one has to take into account the standard deviations of the estimates)

whereas the power of the data-driven test is stable. Since the nominal level is not satisfied

when there is high association, comparison of powers of the smooth tests and the score process

based tests is possible only for low correlation between the covariates (ρ = 0.3). The standard

tests based on the score process are more powerful for detecting monotonically time-varying

effects (see Table 3). In the nonmonotonic situation of Table 4, both kinds of tests behave

similarly.
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5. Conclusion and discussion

The simulation study showed that the proposed smooth test and its data-driven version

could be a reasonable alternative to the traditional tests of the proportional hazards assump-

tion based on functionals of the score process. In our simulations, the new test was typically

more powerful against alternatives with nonmonotonic hazard ratios. Monotonic hazard ra-

tios were, per contra, better detected by the score process based tests. Although the new

procedure does not universally dominate the standard methods, I believe that the proposed

approach is worth studying.

For the traditional goodness-of-fit problem there have been proposed various modifications

of data-driven tests. Janssen (2003, see further references therein) points out that the penalty

with log n may be too heavy under local alternatives despite certain optimality properties un-

der intermediate alternatives shown in several papers by Ledwina and coauthors. He suggested

to use a selection rule equal to the maximum of Schwarz’s rule and a prescribed minimal di-

mension of the alternative. Claeskens and Hjort (2004) considered tests based on a selection

rule that chooses the alternative among all possible nonempty subsets of {ϕ1, . . . , ϕd} (in

contrast to the standard BIC which chooses one of the d nested alternatives). Inglot and Led-

wina (2004) used a combination of the BIC and AIC based on a threshold rule. Extensions

of these approaches to censored lifetime data problems may be investigated further.

Another challenge is to improve smooth tests to be more capable to distinguish which

covariates are proportional and which not. In Tables 3 and 4 we have seen that in some

situations our smooth tests as well as the score process tests are not reliable for such a dis-

crimination. Research on this issue is in progress, some recent results are presented in Kraus

(2006).
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