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Summary. This supplementary document describes computational details of the proposed
methods and provides proofs of Propositions 1, 2, 3 and 4.

1. Computation

1.1. Preliminary steps
In most applications, functional data are observed at discrete time points and are possibly subject
to measurement error, so it is necessary to preprocess the raw data using smoothing techniques to
obtain functions or their derivatives. In the context of partially observed functional data, the mea-
surement time points are located only in observation periods Oi, while there are no measurements
in missing periods Mi. We assume that the measurement points are dense in the observation peri-
ods, so that it is possible to apply smoothing techniques to obtain the functional values of the ith
curve from the measured values of this curve. We use spline smoothing with a roughness penalty,
as described in Ramsay and Silverman (2005, Chapter 5), but other methods like kernel smoothing
can be used as well. In our experience, a simple approach works well: we apply the smoothing
procedure to all values measured for the ith curve but use the computed smooth curve only for
t ∈ Oi (ignoring it on Mi where measurements are not available to make it reliable).

In practice, the observation and missing periods are typically not given (because they are not
designed) and one needs to define them. For instance, one can define Mi to consist of the periods
before the first and after the last measurement time and of all gaps between two consecutive mea-
surement times that are larger than a certain threshold g. The value of g is the largest length of
intervals without measurements over which we are willing to smooth. The choice of g depends on
the particular setting; in general, if, for example, one considers K equidistant points in [0, 1] (e.g.,
K = 10) as the minimum reliable design for smoothing on the whole domain [0, 1], then g = 1/K
seems reasonable.

Sometimes, registration of functional data is needed. Shift registration (Ramsay and Silverman,
2005, Section 7.2) is easy to implement for incomplete functions: in the registration criterion the
sample mean of partially observed functions is computed by the method described in the next
subsection and the distance of each shifted curve from the sample mean is computed by numerical
integration over the observed period of the curve; the criterion is minimised by the Procrustes
method as usual. Methods based on warping can be modified similarly but further investigation of
their performance is needed.

1.2. Principal component analysis, functional reconstruction
For practical computation we must use finite dimensional representations of functions and opera-
tors. Two traditional approaches exist: we can use either basis expansions or evaluation on a grid
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of points. It is difficult to use the basis approach in our situation because incompletely observed
functions are available on different subsets of the time domain. The grid approach is more suited
for this type of data since it works directly with time arguments. Let tk = (k−0.5)/d, k = 1, . . . , d
be a fine grid of equidistant points on which all functions and kernels of integral operators will be
evaluated. Denote by xi the d-dimensional vector of values of Xi at points tk; this vector contains
missing values on components corresponding to tk ∈Mi while for tk ∈ Oi, its values are obtained
by evaluation of the spline representation of Xi. Denote by X the (n× d)-dimensional data matrix
with xi, i = 1, . . . , n in rows.

The vector m of values of the mean function µ on the grid is estimated by m̂ equal to the vector
of column means of X computed from available (not missing) data in each column. The covariance
kernel ρ of the operator R evaluated on the grid corresponds to the (d × d)-matrix R with entries
Rkl = ρ(tk, tl) and is estimated by the sample covariance matrix R̂ with entry R̂kl computed from
the data matrix X using all complete pairs of observations in columns k, l.

To estimate the eigenvalues and eigenfunctions, one performs eigen-decomposition of the ma-
trix R̂. Denote ∆ = 1/d, the distance between the points of the grid. If the eigenvalues and eigen-
vectors of R̂ are κ̂j and ûj , j = 1, . . . , d, then the eigenvalues of the operator R̂ are λ̂j = κ̂j∆ and
the corresponding eigenfunctions ϕ̂j evaluated on the grid are f̂j = ûj∆

−1/2. The observed part
β̂ijOi

= 〈XiOi
− µ̂Oi

, ϕ̂jOi
〉 of the jth principal score of the ith curve is computed by numerical

quadrature as β̂ijOi
= 〈xiOi

− m̂Oi
, f̂jOi

〉∆, where the latter inner product is the usual inner prod-
uct of vectors and the vectors with subscript Oi are subvectors of the original vectors consisting of
elements with indices k such that tk ∈ Oi.

Within the grid representation, the evaluation of an integral operator B in the sense of numerical
integration corresponds to matrix multiplication: for a function h, Bh is computed as Bh∆, where
the vector h and the matrix B are the values of h and of the kernel of B on the grid. From
a purely computational point of view, even linear operators that have no integral representation
may be represented by matrices. In particular, the identity operator I used in ridge regularisation
is represented by the matrix I equal to the identity matrix divided by ∆; indeed, its value at h is
Ih∆ = h, thus it maps the argument on itself. The regularised operator R̂

(α)
OiOi

is represented by

the matrix R̂
(α)
OiOi

= R̂OiOi
+αIOi

, where the subscriptOi denotes the submatrix corresponding to
grid points in Oi. Analogously, the operators R̂MiMi

, R̂MiOi
etc. are given by the corresponding

submatrices of R̂. Then the matrix representation of the prediction operator Â
(α)
i is computed as

Â
(α)
i = R̂OiMi

R̂
(α)−1
OiOi

∆−1. The regularised prediction of the missing part of the principal score
and of the missing part of the trajectory can be computed as

β̂
(α)
ij = 〈Â(α)

i (xiOi
− m̂Oi

)∆, f̂jMi
〉∆, x̂

(α)
iMi

= Â
(α)
i (xiOi

− m̂Oi
)∆ + m̂Mi

.

The covariance operator V̂i for the missing trajectory is obtained as

V̂i = R̂MiMi − Â
(α)
i R̂OiOiÂ

(α)T
i ∆2

and the variance for the score is v̂2ij = 〈f̂jMi , V̂if̂jMi〉∆2.
The effective degrees of freedom can be computed directly using the series in (9) truncated

at d terms, with the eigenvalues λ̂OiOik of R̂OiOi obtained from the eigenvalues of the matrix
R̂OiOi

like in the case of those of R̂ discussed above. Alternatively, one can use the matrix trace
formula trace(R̂

(α)−1
OiOi

R̂OiOi∆
−1)∆. The computation of the residual sum of squares for scores
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is straightforward; in the case of trajectories, the squared norms of functions are computed as the
squared norms of vectors, multiplied by ∆.

The generalised cross-validation score can be minimised numerically by a Newton-type itera-
tive procedure. In particular, we use the method “L-BFGS-B” available in the function optim in
the R package (R Core Team, 2013). For the reliability of the optimisation procedure, we found it
useful to scale the input parameters: the minimisation is run with (xi −m)/s in place of xi (and,
consequently, with R̂/s2 in place of R̂, λ̂OiOij/s

2 in place of λ̂OiOij etc.); once the optimal value
of α is found, it is multiplied by s2 to return to the original scale and perform other computations
with original data. The value s2 = λ̂OiOi1 works well. The evaluation of the generalised cross-
validation score can be unstable for very small values of α. Therefore, we run the minimisation
routine with a lower limit for α, namely with α0 = max(ε1/2, α∗), where ε is the value of machine
epsilon and α∗ is such that the effective degrees of freedom equal n/4 (which is a reasonable upper
bound for the number of free parameters). We initialise the iterative procedure with α equal to
max(λ̄OiOi

, α0) where λ̄OiOi
is the average of the eigenvalues λ̂OiOij .

2. Proofs

2.1. Proof of Proposition 1
We use the notation Zi = Xi − µ.

For part (a), denote µ̄(t) = J(t)µ(t) and write

E ‖µ̂−µ‖2 ≤ E(‖µ̂− µ̄‖+ ‖µ̄−µ‖)2 = E ‖µ̂− µ̄‖2 + 2E(‖µ̂− µ̄‖‖µ̄−µ‖) +E ‖µ̄−µ‖2. (1)

The first term on the right-hand side of (1) equals

E

∥∥∥∥ J∑n
i=1Oi

n∑
i=1

OiZi

∥∥∥∥2 = n−2
∫ 1

0

n∑
j=1

n∑
k=1

E

(
n2J(t)

(
∑n
i=1Oi(t))

2
Oj(t)Zj(t)Ok(t)Zk(t)

)
dt

= n−2
∫ 1

0

n∑
j=1

E

(
n2J(t)Oj(t)

(
∑n
i=1Oi(t))

2

)
EZj(t)

2dt,

where the last equality follows from the independence of (O1, . . . , On) and (Z1, . . . , Zn), and from
the independence of Zj and Zk for j 6= k. Rewrite the first expectation in the integrand as

E

(
n2J(t)Oj(t)

(
∑n
i=1Oi(t))

2
1[n−1

∑n
i=1 Oi(t)>δ1]

)
+ E

(
n2J(t)Oj(t)

(
∑n
i=1Oi(t))

2
1[n−1

∑n
i=1 Oi(t)≤δ1]

)
.

For all t ∈ [0, 1], the first summand is bounded from above by δ−21 while the second summand is
dominated by n2 supt∈[0,1] P (n−1

∑n
i=1Oi(t) ≤ δ1). Hence we see that

E ‖µ̂− µ̄‖2 ≤ n−1
{
δ−21 + n2 sup

t∈[0,1]
P

(
n−1

n∑
i=1

Oi(t) ≤ δ1
)}

E ‖Z1‖2 = O(n−1).

For the last term in (1), we obtain∫ 1

0

E(J(t)− 1)µ(t)2dt =

∫ 1

0

P

( n∑
i=1

Oi(t) = 0

)
µ(t)2dt
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≤ sup
t∈[0,1]

P

(
n−1

n∑
i=1

Oi(t) ≤ δ1
)
‖µ‖2

= O(n−2).

The second term on the right-hand side of (1) is dominated by 2(E ‖µ̂− µ̄‖2)1/2(E ‖µ̄−µ‖2)1/2 ≤
O(n−1). Putting these results together completes the proof of part (a).

The proof of part (b) is similar. Rewrite

R̂ −R = (R̂ − Ř) + (Ř − R̄) + (R̄ −R), (2)

where Ř and R̄ are integral operators with kernels

ρ̌(s, t) =
I(s, t)∑n
i=1 Ui(s, t)

n∑
i=1

Ui(s, t)Zi(s)Zi(t),

and ρ̄(s, t) = I(s, t)r(s, t). The first term on the right-hand side of (2) reflects the effect of estima-
tion of the mean. By direct computation, we see that

E ‖R̂ − Ř‖22 = E

∫
[0,1]2

I(s, t){µ̂st(s)− µ(s)}2{µ̂st(t)− µ(t)}2dsdt

= E

∫
[0,1]2

I(s, t)

(
∑n
i=1 Ui(s, t))

4

( n∑
i=1

Ui(s, t)Zi(s)

)2( n∑
i=1

Ui(s, t)Zi(t)

)2

dsdt.

Developing the sums in the integrand and using the independence of the functions and observation
indicators and the Cauchy–Schwarz inequality, we can show that the above quantity is dominated
by

n−2
∫
[0,1]2

E

(
n2I(s, t)

(
∑n
i=1 Ui(s, t))

2

)
{(EZ1(s)4 EZ1(t)4)1/2 + ρ(s, t)2}dsdt ≤ O(n−2),

where the last inequality is due to the fact that the first expectation in the integrand is bounded by
δ−22 +n2 sup(s,t)∈[0,1]2 P (n−1

∑n
i=1 Ui(s, t) ≤ δ2), which can be shown by manipulations similar

to those in part (a). Next, analogously to part (a) we obtain for the second and third term on the
right-hand side of (2) that

E ‖Ř − R̄‖22 ≤ n−1
{
δ−22 + n2 sup

(s,t)∈[0,1]2
P

(
n−1

n∑
i=1

Ui(s, t) ≤ δ2
)}

E ‖Z1 ⊗ Z1 −R‖22

= O(n−1)

(here ⊗ denotes the tensor product) and E ‖R̄ − R‖22 ≤ O(n−2). Combining these bounds we
obtain the assertion of part (b).

2.2. Proof of Proposition 2
Lemma 4.2 of Bosq (2000) and the inequality between the operator norm and Hilbert–Schmidt
norm yield that |λ̂j − λj | ≤ ‖R̂ − R‖∞ ≤ ‖R̂ − R‖2 for all j. The first result then follows
from part (b) of Proposition 1. For the second part, Lemma 4.3 of Bosq (2000) gives the inequality
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‖ϕ̂j − ŝjϕj‖ ≤ aj‖R̂ − R‖∞, where aj is a constant depending on the eigenvalue spacings.
Note that this lemma is formulated in Bosq (2000) for fully observed functions but an inspection
of the proof shows that the inequality holds for any two compact linear operators in place of R̂, R.
This inequality, the dominance of the Hilbert–Schmidt norm over the operator norm and part (b) of
Proposition 1 complete the proof.

2.3. Proof of Proposition 3
Rewrite

β̂
(αn)
ijMi

− βijMi
= (β̂

(αn)
ijMi

− β̃ijMi
) + (β̃ijMi

− βijMi
)

and use Theorem 1 to obtain the first part of the proposition. Compute

v2ij = var(β̃ijMi − βijMi) = 〈ϕjMi ,RMiMiϕjMi〉 − 〈ϕjMi ,RMiOiR
−1
OiOi

ROiMiϕjMi〉.

The convergence in probability of 〈ϕ̂jMi , R̂MiMi ϕ̂jMi〉 to 〈ϕjMi ,RMiMiϕjMi〉 is a direct conse-
quence of Propositions 1 and 2. The last term in the expression for v2ij and the corresponding term

in the estimator v̂2ij equal 〈ãij ,ROiOi ãij〉, 〈â
(αn)
ij , R̂OiOi â

(αn)
ij 〉, respectively. In their difference

〈â(αn)
ij , (R̂OiOi

−ROiOi
)â

(αn)
ij 〉+ (〈â(αn)

ij ,ROiOi
â
(αn)
ij 〉 − 〈ãij ,ROiOi

ãij〉),

the convergence of the second term to zero was shown in the proof of Theorem 1. For the first term
we compute

|〈â(αn)
ij , (R̂OiOi

−ROiOi
)â

(αn)
ij 〉| ≤ ‖R̂OiOi

−ROiOi
‖∞‖â(αn)

ij ‖2

≤ OP (n−1/2)α−2n ‖R̂OiMi
‖2∞

→ 0.

This completes the proof of the consistency of v̂2ij . The remaining assertions are obvious.

2.4. Proof of Proposition 4
We can rewrite X̂(αn)

iMi
− XiMi

= (X̂
(αn)
iMi

− X̃iMi
) + (X̃iMi

− XiMi
). Due to Theorem 2, the

L2-norm of the first term on the right-hand side converges to 0 in probability. The second term is
the limiting stochastic process. The consistency of the covariance estimator can be proven like in
the proof of Proposition 3. The assertion for the Gaussian case follows immediately from the fact
that the limiting process is a linear function of Xi.
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