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Abstract. The Cox–Aalen additive-multiplicative intensity model of Scheike and Zhang

(2002) is considered. We study goodness-of-fit tests based on the stratified martingale resid-

ual process. Asymptotic distribution of the process is derived and the Kolmogorov–Smirnov

type test is constructed. Several ways of overcoming the problem of complexity of the limiting

distribution are discussed. The results are accompanied by a small Monte Carlo study.

1. Introduction

In survival analysis, regression models are used to explain occurence of events (failures) in
time by the influence of explanatory variables (covariates). Let Zi = {(Zi1(t), . . . , Zip(t))T, t ∈
[0, τ ]} be a vector of covariates (possibly time-dependent, i.e. predictable stochastic processes)
for the i-th observed individual, Yi be an indicator process (indicating by its value at time t
whether the i-th individual is at risk of the event) and λi be an intensity process of the
corresponding counting process Ni. Then the most popular model for the intensity process is
the Cox proportional hazards model of the form

λi(t) = Yi(t) exp{βT
0 Zi(t)}λ0(t),

where λ0 is an unknown baseline hazard function and β0 is a p-vector of unknown regression
parameters. Another frequently used model is the Aalen additive model

λi(t) = Yi(t)Xi(t)Tα(t)

with a vector of unknown functions α = {(α1(t), . . . , αq(t))T, t ∈ [0, τ ]} and a vector of
covariates Xi.

There are several ways of combining these two models. Lin and Ying (1995) suggested the
intensity process of the form

λi(t) = Yi(t)
{
g(γT

0 Xi(t)) + h(βT
0 Zi(t))λ0(t)

}
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with known functions g and h. Later Scheike and Martinussen (2002) followed this idea and
studied a model with

λi(t) = Yi(t)
{
Xi(t)Tα(t) + exp{βT

0 Zi(t)}λ0(t)
}
,

which allows for time-varying effects. A different approach was used by Scheike and Zhang
(2002). Their model, which is here called the Cox–Aalen model, follows the form

(1) λi(t) = Yi(t) exp{βT
0 Zi(t)}Xi(t)Tα(t), 0 ≤ t ≤ τ,

where (XT
i , Z

T
i )T is a (q+p)-vector of predictable covariates (usually Xi1 ≡ 1). Some compo-

nents of α(t) or Xi(t) can even be negative, provided the whole term Xi(t)Tα(t) is nonnegative
(an intensity always has to be nonnegative). Scheike and Zhang (2002) argue that this model
is the first step Taylor approximation of the model

(2) λi(t) = Yi(t) exp{βT
0 Zi(t)}λ(t,Xi(t))

of Dabrowska (1997). The model (2) can be used when one wants to assess the influence of
several covariates (treated proportionally) and wants to avoid possible incorrect conclusions
caused by omission or inadequate specification of effects of the other covariates which are
not in focus. However, the model (2) is too general and therefore its estimation is somewhat
complicated. On the contrary, the model of Scheike and Zhang (2002) with the Aalen ad-
ditive regression as the baseline is easier to estimate although it still preserves the flexible
nonparametric form with time-varying effects.

Scheike and Zhang (2002) suggested an estimation procedure and derived asymptotic prop-
erties of the estimators. Here we propose a test of goodness of fit.

For the Cox model many goodness-of-fit tests were developed. Among others we can
mention the tests on parameters, the tests of the proportional hazads assumption or the tests
on the functional form of a covariate (a survey of these tests can be found in Therneau and
Grambsch, 2000). Besides these tests focused on specific departures from the Cox model, there
are some global tests. One is based on the doubly cumulative hazard function (McKeague and
Utikal, 1991). Another approach is based on the martingale residual process. This approach
is here adapted for the situation of the Cox–Aalen model.

The idea was originated by Arjas (1988) who suggested a graphical procedure for assessing
goodness of fit of the Cox model. The method is based on comparison of observed and expected
number of failures within a given stratum. For each observed individual i ∈ {1, . . . , n} this
difference is expressed by the process M̂i = Ni − Λ̂i. Hence, if a stratum I ⊂ {1, . . . , n} is
chosen, the process ΞI =

∑
i∈I M̂i should fluctuate around zero. Let 0 ≤ T(I,1) ≤ T(I,2) ≤

· · · ≤ T(I,K) ≤ τ be ordered times of the actual failures in I. Then Arjas’s plots are plots of
the values

∑
i∈I Λ̂i(T(I,k)) against k =

∑
i∈I Ni(T(I,k)). The graph should be close to the line

with slope 1 when the fit is good, and should differ otherwise.
Asymptotic behaviour of the residual process was studied by Marzec and Marzec (1993).

Under certain conditions they showed that the limiting distribution of n−1/2ΞI is that of
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a continuous zero-mean Gaussian process. Later, Marzec and Marzec (1997) presented some
generalisations and used a transformation of the limiting process to a martingale which enables
construction of the Kolmogorov–Smirnov type test. The idea of Arjas’s plots and stratified
residual processes was successfully used by Volf (1996) also for the Aalen additive model.

In the situation of the Cox–Aalen model of (1), the stratified martingale residual process
has the form

(3) ΞI(t) =
∑
i∈I

(Ni(t)− Λ̂i(t)) =
∑
i∈I

∫ t

0

[
dNi(s)− Yi(s) exp{β̂TZi(s)}Xi(s)TY −(β̂, s)dN(s)

]
(the notation is explained in Section 2).

The paper is organised as follows. In Section 2 we recapitulate basic facts about the model
as stated in Scheike and Zhang (2002) and introduce the notation. Section 3 establishes
asymptotic properties of the residual process. Section 4 is devoted to the study of several
testing procedures. In Section 5 a simulation study is presented.

2. Notation, previous results and assumptions

First, we recall the notation and the results of Scheike and Zhang (2002). We work in the
standard counting process framework: N = (N1, . . . , Nn)T is a multivariate counting process
with components having intensities λi of the form (1), Λ = (Λ1, . . . ,Λn)T (with Λi =

∫
λi) is

its compensator and M = (M1, . . . ,Mn)T (with Mi = Ni−Λi) is a martingale. The counting
process background is general enough to allow e.g. for recurrent events on the same individual
(i.e. possibly more than one jump of the corresponding process Ni) and repeated entering
and leaving the riskset (i.e. the indicator process Yi can switch between the values 1 and 0
repeatedly). For more details on counting processes see Andersen, Borgan, Gill and Keiding
(1993).

The cumulative hazard function A(t) =
∫ t
0 α(s)ds and the parameter β0 need to be esti-

mated. As suggested by Scheike and Zhang (2002), β0 is estimated by β̂ which is given as
the solution to the score equation U(β, τ) = 0, where U(β, ·) is the score process of the form

(4) U(β, t) =
∫ t

0

[
Z(s)T − Z(s)TY (β, s)Y −(β, s)

]
dN(s).

Here

Y (β, t) =
(
Y1(t) exp{βTZ1(t)}X1(t), . . . , Yn(t) exp{βTZn(t)}Xn(t)

)T
,

Z(t) =
(
Z1(t), . . . , Zn(t)

)T
, Y −(β, t) = [Y (β, t)TW (β, t)Y (β, t)]−1Y (β, t)TW (β, t),

and the weight matrix W (β, t) = diag[w1(β, t), . . . , wn(β, t)] is diagonal with elements of the
form wi(β, t) = exp{−βTZi(t)}/hi(t), where hi are some functions not depending on β. Note
that for β = β0 we have

U(β0, t) =
∫ t

0

[
Z(s)T − Z(s)TY (β0, s)Y −(β0, s)

]
dM(s).
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The estimation procedure of Scheike and Zhang (2002) consists of two steps:

(1) Solve the score equations to obtain β̂.
(2) Estimate dA(t) by the weighted least squares principle by dÂ(t) = Y −(β̂, t)dN(t).

Initial estimates β̂ and dÂ(t) are computed with the choice hi ≡ 1. The maximum likelihood
weights have hi(t) = Xi(t)Tα(t). They can be estimated by smoothing dÂ(t) to obtain α̂(t)
and setting hi(t) = Xi(t)Tα̂(t). Now the steps (1) and (2) can be repeated to find final
estimates of β0 and dA(t).

Let us use some further notation which comes from Scheike and Zhang (2002). They
introduced

S(j)(k)(β, t) =
n∑

i=1

Yi(t)Zi(t)⊗jXi(t)⊗k exp{βTZi(t)}kwk
i (β, t) exp{βTZi(t)}Xi(t)T, j+k ≤ 2,

which is understood as a linear operator on q-vectors when the dimensions do not match for
matrix multiplication (i.e. when j + k = 2). For j = k = 1 an additional transposition is
needed, so let

S(1)(1)(β, t) =
n∑

i=1

Yi(t)wi(β, t) exp{βTZi(t)}Xi(t)Zi(t)T exp{βTZi(t)}Xi(t)T.

For k = 0, S(j) denotes S(j)(0). Let

(5) ΣU (β, t) =
∫ t

0

[
Z(s)T − S(1)(β, s)Y −(β, s)

]
diag[dN(s)]

[
Z(s)T − S(1)(β, s)Y −(β, s)

]T
.

Next denote

(6) ΣJ(β, t) = − ∂

∂β
U(β, t) =

∫ t

0
S(2)(β, s)Y −(β, s)dN(s)

−
∫ t

0
S(1)(β, s)[S(0)(1)(β, s)]−1S(1)(1)(β, s)Y −(β, s)dN(s),

where the last equality is thanks to the fact

(7)
∂

∂β
Y −(β, t)v = −[S(0)(1)(β, t)]−1S(1)(1)(β, t)Y −(β, t)v

for any n-vector v (which is shown in Scheike and Zhang, 2002). We can use Taylor’s expansion
of U(·, τ) around β0 to get the equality

(8) n−1/2U(β0, τ) = n−1ΣJ(β∗, τ){n1/2(β̂ − β0)},

which will be used later.
Scheike and Zhang (2002) found certain conditions under which they proved large sample

properties of β̂ and Â. These conditions are similar to those of Andersen and Gill (1982)
for the Cox model. Particularly, the conditions guarantee positive definiteness of the matrix
σJ(β0, τ) (defined later on) and uniform convergence in probability of n−1S(j)(k) to some
uniformly continuous bounded functions s(j)(k) on B × [0, τ ] for some neighbourhood B of
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β0. Moreover, for simplicity, the covariates are assumed to be bounded (which yields the
Lindeberg condition needed in the proofs).

Let us now consider a stratum I and define

S
(j)(k)
I (β, s) =

∑
i∈I

Yi(t)Zi(t)⊗jXi(t)⊗k exp{βTZi(t)}kwk
i (t) exp{βTZi(t)}Xi(t)T

(with the same convention for S(1)(1)
I as for S(1)(1)). By |I| we denote the number of elements

of I. In addition to the conditions C1–C4 of Scheike and Zhang (2002) we assume

C5. |I|/n→ r as n→∞ (for some r ∈ (0, 1)),
C6. |I|−1S

(j)(k)
I and s

(j)(k)
I satisfy the same convergence and regularity conditions C2, C3

as n−1S(j)(k) and s(j)(k).

Let 1I be an n-vector with the i-th element indicating whether the i-th observation belongs
to the stratum I. Further, we need to denote

B(β, t) =
∫ t

0

[
1T

I − S
(0)
I (β, s)Y −(β, s)

]
diag[dN(s)]

[
1T

I − S
(0)
I (β, s)Y −(β, s)

]T
,

C(β, t) =
∫ t

0

[
Z(s)T − S(1)(β, s)Y −(β, s)

]
diag[dN(s)]

[
1T

I − S
(0)
I (β, s)Y −(β, s)

]T
,

D(β, t) =
∫ t

0
S

(1)
I (β, s)Y −(β, s)dN(s)

−
{∫ t

0
S

(0)
I (β, s)[S(0)(1)(β, s)]−1S(1)(1)(β, s)Y −(β, s)dN(s)

}T

,

b(β, t) = r

∫ t

0
s
(0)
I (β, s)α(s)ds− 2r2

∫ t

0
s
(0)
I (β, s)[s(0)(1)(β, s)]−1s

(0)(1)
I (β, s)α(s)ds

+ r2
∫ t

0
s
(0)
I (β, s)[s(0)(1)(β, s)]−1[s(0)(2)(β, s)α(s)][s(0)(1)(β, s)]−1s

(0)
I (β, s)Tds,

c(β, t) = r

∫ t

0
s
(1)
I (β, s)α(s)ds− r

∫ t

0
s(1)(β, s)[s(0)(1)(β, s)]−1s

(0)(1)
I (β, s)α(s)ds

− r

∫ t

0
[s(1)(1)(β, s)α(s)]T[s(0)(1)(β, s)]−1s

(0)
I (β, s)Tds

+ r

∫ t

0
s(1)(β, s)[s(0)(1)(β, s)]−1[s(0)(2)(β, s)α(s)][s(0)(1)(β, s)]−1s

(0)
I (β, s)Tds,

d(β, t) = r

∫ t

0
s
(1)
I (β, s)α(s)ds− r

{∫ t

0
s
(0)
I (β, s)[s(0)(1)(β, s)]−1s(1)(1)(β, s)α(s)ds

}T

,

σU (β, t) =
∫ t

0
s(2)(β, s)α(s)ds−

∫ t

0
s(1)(β, s)[s(0)(1)(β, s)]−1[s(1)(1)(β, s)α(s)]ds

−
∫ t

0

{
s(1)(β, s)[s(0)(1)(β, s)]−1[s(1)(1)(β, s)α(s)]

}T
ds

+
∫ t

0
s(1)(β, s)[s(0)(1)(β, s)]−1[s(0)(2)(β, s)α(s)][s(0)(1)(β, s)]−1s(1)(β, s)Tds,
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σJ(β, t) =
∫ t

0
s(2)(β, s)α(s)ds−

∫ t

0
s(1)(β, s)[s(0)(1)(β, s)]−1s(1)(1)(β, s)α(s)ds.

3. Asymptotic properties of the martingale residual process

Theorem 1. The residual process n−1/2ΞI of (3) converges weakly in D([0, τ ]) to a zero-mean
continuous Gaussian process ξI(·) = γ1(·)− d(β0, ·)TσJ(β0, τ)−1γ2(τ), where γ = (γ1, γ

T
2 )T is

a (1 + p)-dimensional zero-mean continuous Gaussian martingale with covariances given by

cov(γ1(u), γ1(t)) = b(β0, u ∧ t), cov(γ2(u), γ2(t)) = σU (β0, u ∧ t),

cov(γ2(u), γ1(t)) = c(β0, u ∧ t).

The functions σJ(β0, t) and σU (β0, t) can be estimated uniformly consistently by n−1ΣJ(β̂, t)
and n−1ΣU (β̂, t) given by (6) and (5), respectively. Uniformly consistent estimates of b(β0, t),
c(β0, t) and d(β0, t) are n−1B(β̂, t), n−1C(β̂, t) and n−1D(β̂, t), respectively.

Proof. To prove the theorem, we first find a martingale representation of the residual process
ΞI and then apply Rebolledo’s central limit theorem (Andersen and Gill, 1982, Theorem I.2).

Rewrite

(9) ΞI(t) =
∑
i∈I

Mi(t)−
∫ t

0
S

(0)
I (β̂, s)Y −(β̂, s)dN(s) +

∫ t

0
S

(0)
I (β0, s)α(s)ds.

By Taylor’s expansion in the first integral on the right hand side around β0 we obtain

(10)
∫ t

0
S

(0)
I (β̂, s)Y −(β̂, s)dN(s) =

∫ t

0
S

(0)
I (β0, s)Y −(β0, s)dN(s)

+
[∫ t

0

∂

∂β

{
S

(0)
I (β, s)Y −(β, s)dN(s)

}∣∣
β=β̃

]T

(β̂ − β0),

where β̃ is on the line segment between β0 and β̂. Using (7), we compute∫ t

0

∂

∂β

{
S

(0)
I (β, s)Y −(β, s)dN(s)

}∣∣
β=β̃

=
∫ t

0
S

(1)
I (β̃, s)Y −(β̃, s)dN(s)

−
{∫ t

0
S

(0)
I (β̃, s)[S(0)(1)(β̃, s)]−1S(1)(1)(β̃, s)Y −(β̃, s)dN(s)

}T

= D(β̃, t).

Further note that α(s) = Y −(β0, s)λ(s). Therefore the first term in (10) and the last term in
(9) collect together into an integral w.r.t. M . Put

Γ1(t) =
∫ t

0

[
1T

I − S
(0)
I (β0, s)Y −(β0, s)

]
dM(s).

We can finally write

(11) n−1/2ΞI(t) = n−1/2Γ1(t)− {n−1D(β̃, t)}T{n1/2(β̂ − β0)}.
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Moreover, if the matrix ΣJ(β∗, τ) is invertible (which is, however, not necessary for the proof),
then, denoting Γ2 = U(β0, ·) and using (8), we get

(12) n−1/2ΞI(t) = n−1/2Γ1(t)− {n−1D(β̃, t)}T{nΣJ(β∗, τ)−1}{n−1/2Γ2(τ)}.

We need to establish the joint weak convergence of the martingale n−1/2Γ = n−1/2(Γ1,ΓT
2 )T

to the zero-mean continuous Gaussian martingale γ of the theorem.
One can compute

〈n−1/2Γ1〉(t) = n−1

∫ t

0

[
1T

I − S
(0)
I (β0, s)Y −(β0, s)

]
diag[λ(s)]

[
1T

I − S
(0)
I (β0, s)Y −(β0, s)

]T
ds

= n−1

∫ t

0
S

(0)
I (β0, s)α(s)ds− 2n−1

∫ t

0
S

(0)
I (β0, s)[S(0)(1)(β0, s)]−1S

(0)(1)
I (β0, s)α(s)ds

+ n−1

∫ t

0
S

(0)
I (β0, s)[S(0)(1)(β0, s)]−1[S(0)(2)(β0, s)α(s)][S(0)(1)(β0, s)]−1S

(0)
I (β0, s)Tds

Pr−−−→
n→∞

b(β0, t).

Further, due to Scheike and Zhang (2002) we have

〈n−1/2Γ2〉(t) = n−1

∫ t

0

[
Z(s)T − S(1)(β0, s)Y −(β0, s)

]
diag[λ(s)]

×
[
Z(s)T − S(1)(β0, s)Y −(β0, s)

]T
ds

Pr−−−→
n→∞

σU (β0, t).

Similarly

〈n−1/2Γ2, n
−1/2Γ1〉(t) = n−1

∫ t

0

[
Z(s)T − S(1)(β0, s)Y −(β0, s)

]
diag[λ(s)]

×
[
1T

I − S
(0)
I (β0, s)Y −(β0, s)

]T
ds = n−1

∫ t

0
S

(1)
I (β0, s)α(s)ds

− n−1

∫ t

0
S(1)(β0, s)[S(0)(1)(β0, s)]−1S

(0)(1)
I (β0, s)α(s)ds

− n−1

∫ t

0
[S(1)(1)(β0, s)α(s)]T[S(0)(1)(β0, s)]−1S

(0)
I (β0, s)Tds

+ n−1

∫ t

0
S(1)(β0, s)[S(0)(1)(β0, s)]−1[S(0)(2)(β0, s)α(s)]

× [S(0)(1)(β0, s)]−1S
(0)
I (β0, s)Tds

Pr−−−→
n→∞

c(β0, t).

Therefore the only thing that remains to be verified to establish the convergence n−1/2Γ D−→
γ is the Lindeberg condition. This condition is satisfied thanks to the assumption of bound-
edness of the covariates.

Eventually, for β̄ Pr−→ β0 it can be shown by using Lenglart’s inequality that n−1ΣJ(β̄, t) →
σJ(β0, t) and n−1D(β̄, t) → d(β0, t) uniformly (in t ∈ [0, τ ]) in probability. Hence the proposed
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weak convergence n−1/2ΞI → ξI follows by the continuous mapping theorem. The consistency
results for b, c, σU can be derived in a similar fashion as for d and σJ . �

Note that S(j)(k)(β, t)α(t) = S(j)(k−1)(β, t) and S
(j)(k)
I (β, t)α(t) = S

(j)(k−1)
I (β, t) for the

maximum likelihood weights. If the ML weights are estimated, then s(j)(k)(β, t)α(t) =
s(j)(k−1)(β, t) and s

(j)(k)
I (β, t)α(t) = s

(j)(k−1)
I (β, t). Hence the variances and covariances in

Theorem 1 simplify, since c = d and σJ = σU .

4. Testing procedures

A graphical technique, an analogue of the residual plots of Arjas (1988), has already been
explained in Section 1. In this section we describe some visual and mainly numerical methods
of investigation of the martingale residual process. A direct use of the asymptotic distribution
is not possible. This is caused by its complexity, since Theorem 1 states that ξI , the weak
limit of n−1/2ΞI , is a continuous zero-mean Gaussian process with the covariance function

cov(ξI(t), ξI(u)) = b(β0, t)− d(β0, t)TσJ(β0, τ)−1c(β0, u)− d(β0, u)TσJ(β0, τ)−1c(β0, t)

+ d(β0, t)TσJ(β0, τ)−1σU (β0, τ)σJ(β0, τ)−1c(β0, u)

for 0 ≤ t ≤ u ≤ τ . Thus it is seen that ξI is distributed neither as a martingale nor as
a process with a known distribution. Therefore we cannot straightforwardly use for instance
the Kolmogorov–Smirnov type test.

We show how the distribution of ξI reduces in a special case and then we describe how
some approximations and transformations can be applied in the general situation.

4.1. The case of one dichotomous covariate in the Cox part. Let us consider the case
of a one-dimensional covariate in the Cox part of the model (i.e. p = 1). Suppose that this
covariate is time independent with only two possible values (z0, z1) and put I = {i : Zi = z1}.
In the framework of the Cox model this special situation was studied by Marzec and Marzec
(1993) (see also Wei, 1984). They showed that the residual process weakly converges to
a time-transformed Brownian bridge. We derive a similar result for the Cox–Aalen model
here.

In this special setup we observe that

(13) s(j)(k)
I = zj

1s
(0)(k)
I , s(1)(k) = r(z1− z0)s(0)(k)

I + z0s
(0)(k), s(2) = r(z2

1 − z2
0)s

(0)
I + z2

0s
(0).

In this subsection, let us assume the use of the maximum likelihood weights (or their es-
timates). Recall that with these weights we have s(j)(k)α = s(j)(k−1) as well as s(j)(k)

I α =
s
(j)(k−1)
I and σJ = σU . Using this fact and inserting from (13) into the expressions of the

functions c, d, σJ , we conclude after some computations that

c(β, t) = (z1 − z0)b(β, t), d(β, t) = (z1 − z0)b(β, t), σJ(β, t) = (z1 − z0)2b(β, t).

Hence it is immediately seen that the covariance function of the limiting process ξI is

cov(ξI(t), ξI(u)) = b(β0, t)[1− b(β0, u)/b(β0, τ)], 0 ≤ t ≤ u ≤ τ.
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Thus

ξI(·)
D= [b(β0, τ)]1/2W 0(b(β0, ·)/b(β0, τ)),

where W 0 = {W 0(t) : 0 ≤ t ≤ 1} is the Brownian bridge.
We can construct the Kolmogorov–Smirnov type test based on the test statistic

sup0≤t≤τ |ΞI(t)|/[B(β̂, τ)]1/2, which is asymptotically distributed as the well-known random
variable sup0≤t≤1 |W 0(t)|. A significantly large value of the statistic leads to the rejection of
the hypothesis that the data come from the model (1).

4.2. The simulation approximation. Return now to the general situation. We shall de-
scribe how to approximate the asymptotic distribution of the martingale residual process
through simulations. The simulations can be performed to obtain a sample from the limiting
distribution, and hence to assess both graphically and numerically how unusual the observed
residual process is. Our approach is based on the idea of Lin, Wei and Ying (1993).

In (12) we have found the martingale representation of the residual process of the form

ΞI(t) =
∫ t

0

[
1T

I − S
(0)
I (β0, s)Y −(β0, s)

]
dM(s)

−D(β̃, t)ΣJ(β∗, τ)−1

∫ τ

0

[
Z(s)T − Z(s)TY (β0, s)Y −(β0, s)

]
dM(s).

The limiting distribution can be approximated by plugging in the consistent estimate β̂ in
place of β0, β̃, β

∗, and by replacing the martingale increments dMi(t) by their simulated values.
For the martingales Mi, i = 1, . . . , n it holds that EMi(t) = 0 and varMi(t) = E[Mi(t)2] =
E Λi(t) = ENi(t). Therefore Lin et al. (1993) suggested to approximate Mi by M̃i = GiNi (i.e.
M̃ = diag[G]N), where G = (G1, . . . , Gn) is a random sample of standard normal variables
independent of the data. Finally, we obtain the approximation

Ξ̃I(t) =
∫ t

0

[
1T

I − S
(0)
I (β̂, s)Y −(β̂, s)

]
diag[G]dN(s)

−D(β̂, t)ΣJ(β̂, τ)−1

∫ τ

0

[
Z(s)T − Z(s)TY (β̂, s)Y −(β̂, s)

]
diag[G]dN(s).

It can be shown (by means similar to that of Lin et al., 1993) that the asymptotic distri-
bution of n−1/2Ξ̃I is equal to that of n−1/2ΞI , i.e. the distribution of ξI . Thus, generating
repeatedly a standard normal sample G and computing Ξ̃I , we obtain a sample from the
desired limiting distribution. We can visually assess goodness-of-fit by plotting ΞI together
with an appropriate number of simulated Ξ̃I . To test the hypothesis numerically we generate
an adequately large number of realisations of Ξ̃I and estimate critical values or the p-value.

Note that the simulation of the asymptotic distribution is conditional on the data and
therefore we do not obtain universal critical values of this distribution. In other words, the
test is not distribution-free and we have to carry out the simulations for each particular data
set separately. This can result in higher computational demands.
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4.3. The transformation method. Another way of overcoming the problem with com-
plexity of the asymptotic distribution of the residual process is based on the transformation
idea of Khmaladze (1981). In the framework of testing whether a random variable follows
a parametric form of the distribution, he suggested a transformation of empirical processes
with plugged-in estimated parameters in order to obtain a well-known asymptotic distribution
which does not depend on the distribution of the data. The idea was then used by Andersen,
Borgan, Gill and Keiding (1993, VI.3.3.4) for testing goodness of fit of parametric models for
intensities and by Marzec and Marzec (1997) for assessment of the Cox model.

Here we will find the compensator of ξI , say ξ̄I , and use the empirical counterpart ΨI of
the martingale ψI = ξI − ξ̄I as a basis for testing. The process ψI should be a martingale
with respect to the filtration generated by ξI , i.e. with respect to Gt = σ{γ(s), s ≤ t; γ2(τ)},
t ∈ [0, τ ]. As d(β0, ·)TσJ(β0, τ)−1γ2(τ) is measurable w.r.t. G0, we only need to compensate γ1.
The compensator of γ1, say γ̄1, can be derived rather heuristically as follows (cf. Andersen
et al., 1993, VI.3.3.4, pp. 464–466). Since the process γ is a Gaussian martingale, it has
independent increments and (dγ1(t), γ2(τ)−γ2(t))T is jointly normally distributed. Therefore

E[dγ1(t)|γ(s), s ≤ t; γ2(τ)] = E[dγ1(t)|γ2(τ)− γ2(t)]

= cov{dγ1(t), γ2(τ)− γ2(t)}[var{γ2(τ)− γ2(t)}]−1[γ2(τ)− γ2(t)]

= c(β0, dt)TθU (β0, t)−1[γ2(τ)− γ2(t)],

where θU (β, t) = σU (β, τ)− σU (β, t). Hence a natural candidate for the compensator of γ1 is

γ̄1(t) =
∫ t

0
E[dγ1(s)|γ(u, u ≤ s; γ2(τ)] =

∫ t

0
[γ2(τ)− γ2(s)]TθU (β0, s)−1c(β0, ds), t ∈ [0, τ ].

The compensated residual process is then

ψI(t) = γ1(t)−
∫ t

0
[γ2(τ)− γ2(s)]TθU (β0, s)−1c(β0, ds).

Formal verification of the fact that ψI is actually a Gaussian martingale (with variance func-
tion b(β0, ·)) is analogous to the proof of Lemma 3.2 of Marzec and Marzec (1997). Finally,
the empirical counterpart of ψI can be

(14) ΨI(t) = ΞI(t)−
∫ t

0
[U(β̂, τ)− U(β̂, s)]TΘU (β̂, s)−1C(β̂, ds)

with ΘU (β, t) = ΣU (β, τ)− ΣU (β, t).
Now we shall investigate when n−1/2ΨI really converges to ψI . Let us confine ourselves

to the interval [0, τ − δ] (for a small δ > 0). On this interval the weak convergence can be
studied easily, whereas on the whole interval [0, τ ] it becomes difficult because of the matrix
inversion (since ΘU (β̂, s) is close to zero for s close to τ). Some additional mild conditions to
guarantee the convergence on [0, τ ] were found by Marzec and Marzec (1997) in the case of
the Cox model.

By Taylor’s expansion of (14) around β0, we obtain
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(15) n−1/2ΨI(t) = n−1/2Γ1(t)− n−1/2

∫ t

0
[U(β0, τ)− U(β0, s)]TΘU (β̂, s)−1C(β̂, ds)

− n1/2(β̂ − β0)T
[
n−1D(β̃, t)− n−1

∫ t

0
ΘJ(β∗, s)ΘU (β̂, s)−1C(β̂, ds)

]
,

where ΘJ(β, t) = ΣJ(β, τ)−ΣJ(β, t). Now the limiting process is equal to ψI , if the last term
in (15) vanishes asymptotically. This happens when c = d and σU = σI , which is satisfied
when we use the ML weights, as mentioned in Section 3. However, the efficient iterative
estimation procedure requires solving the score equations repeatedly. Since this is the most
time consuming part of the computation, it would be preferable to avoid this iteration. It is
not necessary to perform this iterative estimation in order to achieve c = d and σU = σI . It
suffices to use consistent estimates of the ML weights both in the score equation and in the
LS estimator. Therefore we suggest another estimation procedure:

(1) Estimate dA by the nonweighted least squares as if the model were Aalen’s model
(without the Cox part covariates). Smooth this estimate dÃ to obtain α̃.

(2) Set wi(β, t) = exp{−βTZi(t)}/(Xi(t)Tα̃(t)) and find β̂ by solving the score equations.
(3) Obtain final estimates dÂ of dA by the weighted least squares principle with wi(β̂, t) =

exp{−β̂TZi(t)}/(Xi(t)Tα̃(t)).

Nevertheless, our computational experience shows that even if we find only the initial esti-
mates β̂ and dÂ as described in Section 2 (i.e. we do not perform either the efficient estimation
or the above suggested procedure), the results are still quite good (almost identical). This
corresponds to the fact that the initial estimates and the efficiently weighted ones do not
differ notably (see Scheike and Zhang (2002) and references therein).

Finally, the Kolmogorov–Smirnov type test statistic sup |ΨI(t)|/{B(β̂, τ)}1/2 is asymptot-
ically distributed as the variable sup |W (t)| (where W denotes the Brownian motion).

5. Simulations

We performed a small simulation study in order to investigate performance of the proposed
tests. We generated survival data following various models with various censoring patterns
and estimated the Cox–Aalen model of the form

λi(t) = {α1(t) + α2(t)Xi} exp{β1Zi}.

Under the null hypothesis H0 the samples came from the distribution with the intensity

λi(t) = {0.5 + 0.2tXi} exp{0.5Zi},

where Xi was uniformly distributed on [0, 1] and Zi had the standard normal distribution.
Then two alternatives with additional covariates were considered: H1 with

λi(t) = {0.5 + 0.2tXi + 0.7tX∗i } exp{0.5Zi},

where X∗i had the alternative distribution on {0, 1} with probability 0.5, and H2 having

λi(t) = {0.5 + 0.2tXi} exp{0.5Zi + 0.7Z∗i }
11



Table 1. Empirical sizes of the two tests on the nominal level of 0.05

I = {i : Xi > 0.5} I = {i : Zi > 0}
n = 100 n = 200 n = 100 n = 200

Without Simulation 0.043 0.043 0.051 0.060
censoring Transformation 0.067 0.054 0.073 0.047

Censoring Simulation 0.044 0.049 0.052 0.047
U[0, 5] (31 %) Transformation 0.054 0.064 0.053 0.058

Censoring Simulation 0.056 0.071 0.045 0.044
U[0, 2.5] (51 %) Transformation 0.041 0.056 0.013 0.009

Table 2. Empirical powers of the two tests on the nominal level of 0.05

H1 H2

n = 100 n = 200 n = 100 n = 200
Without Simulation 0.726 0.979 0.889 0.995
censoring Transformation 0.739 0.972 0.887 0.994

Censoring U[0, 5] Simulation 0.553 0.879 0.794 0.980
(H1 25 %, H2 24 %) Transformation 0.553 0.871 0.777 0.971

Censoring U[0, 2.5] Simulation 0.313 0.633 0.664 0.955
(H1 45 %, H2 42 %) Transformation 0.304 0.621 0.661 0.945

with Z∗i having the same distribution as X∗i in the previous situation. The covariates were
generated independently. Three censoring schemes were considered: no censoring, moderate
censoring (with censoring times having the uniform distribution on [0, 5]) and heavy censoring
(with uniform censoring times on [0, 2.5]). The censoring times were mutually independent
and independent of the survival times and of the covariates. The corresponding censoring
rates are indicated in the tables. The sample sizes were n = 100 and 200. For the null
hypothesis, stratification with respect to both covariates was studied, i.e. the stratum was
first I = {i : Xi > 0.5} and then I = {i : Zi > 0}. Under the alternatives, the data
were stratified with respect to the missing covariate: I = {i : X∗i = 1} under H1, and
I = {i : Z∗i = 1} under H2.

Under the null hypothesis as well as under the alternatives, we generated the sample,
estimated the model and tested goodness of fit. Two tests were performed: the test of
Subsection 4.2 based on the simulation approximation (with 2000 realisations of the residual
process) and the test of Subsection 4.3 based on the transformation. This was repeated 1000
times and empirical levels and powers of the tests on the nominal level of 0.05 were computed.
Since the estimation of the model is highly time-consuming, we were able to carry out only
1000 repetitions in each situation, so our results give only a broad image of behaviour of the
tests.
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Table 1 reports the sizes of the tests in the above mentioned situations under H0. It is seen
that the tests maintain approximately their nominal significance levels which is not seriously
affected by censoring. Table 2 confirms that the tests have good power against the alternatives
H1 and H2 of missing covariates. When censoring is present, the power decreases. There is
no important difference between the two versions (simulation and transformation) of the test.
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