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Abstract

Sensor nodes situated spatially close to each other tend to have similar behaviour. The
neighbour-based detection technique is based on this principle and should provide means
for anomaly intrusion detection in wireless sensor networks without prior training. Recently,
this technique has been successfully applied to detect the fabricated information attack in
wireless sensor networks.

This work provides the analysis of the symptoms of jamming, hello flood, selective for-
warding, sinkhole, sybil, packet alteration and fabricated information attacks for the appli-
cability of the neighbour-based technique. Furthermore, a neighbour-based intrusion de-
tection system is designed and implemented for the operating system TinyOS. The intru-
sion detection system comes in two modifications – one with local knowledge of immediate
neighbours only and one involving information exchanged among 1-hop or 2-hop neigh-
bours. Collaboration is employed in order to refine information about the activity of neigh-
bouring nodes. The accuracy of the technique was evaluated in detection of jamming, hello
flood and selective forwarding attacks. Results of the simulations, namely the number of
false negatives, false positives and correct warnings, are involved in this work as well.

The results presented in this SVOČ were submitted as the author’s master thesis in Jan-
uary 2010. The topic was further researched and a publication involving the results from
this work will be submitted to a conference in May 2010. Furthermore, a comprehensive
technical report will be published in May 2010.
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Introduction

Wireless sensor networks are composed of tiny nodes that are supposed to provide some
physical measurements about their surroundings. They are left unattended in their hostile
environment and are not equipped with any tamper proof mechanisms. A malicious ad-
versary might be capable of compromising some of the nodes and even retrieve the cryp-
tographic material from them. Intrusion detection systems are deployed in wireless sensor
networks in order to secure them.

The neighbour-based intrusion detection technique is based on the principle that nodes
situated spatially close to each other tend to have similar behaviour. If a node does not tend
to behave similarly to its neighbouring nodes, it is considered an attacker. A neighbour-
based intrusion detection system is designed and implemented in this work. It is capable
of revealing selective forwarding, jamming and hello flood attacks. An effectiveness evalua-
tion of the proposed intrusion detection system, namely the number of false negatives, false
positives and correct warnings, using the simlator TOSSIM, is provided in this work as well.

The basic introduction to the topic of wireless sensor networks and their security issues
is provided in the first chapter.

A description of intrusion detection systems together with their classification can be
found in Chapter 2. It also discusses known implementations of the neighbour-based de-
tection technique.

The description of jamming, hello flood, selective forwarding, sinkhole, sybil, packet al-
teration and fabricated information attacks is summarized in the third chapter. It describes
symptoms and statistics which can be used by intrusion detection systems in order to re-
veal these attacks. Discussion on applicability of these statistics for implementation of a
neighbour-based intrusion detection system is included.

In the fourth chapter, design and implementation issues of our system are depicted. It
provides motivation for introducing the clustering method used in detections in the Collec-
tion tree protocol operating networks as well as for usage of collaboration with neighbours
which can refine statistics used for detections of the attacks.

The fifth chapter describes performed simulations in the TOSSIM simulator for TinyOS
networks. An effectiveness evaluation of the proposed intrusion detection system can be
found there. Deployment of our system and its configuration options are described in Chap-
ter 5 too.

We conclude this work in the last chapter and mention the possible future work.
The PowerTOSSIM plug-in for TOSSIM is used to simulate energy consumption of soft-

ware running on sensor nodes. The installation and usage instructions of PowerTOSSIM as
well as energy consumption estimation of our intrusion detection system are enclosed in the
appendix.
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Chapter 1

Wireless sensor networks

Wireless sensor networks are composed of a large number of tiny nodes that are used to mea-
sure some physical or environmental aspect of the hostile environment such as temperature,
sound, vibration or motion. These nodes are resource-constrained units that communicate
via a wireless medium and forward sensed data to the gateway node (depicted in Figure
1.1). The gateway node, so called base station, is the only connection with the other world
apart from the network itself. Wireless sensor networks serve as a bridge from the physi-
cal world to the computer system by providing measurements of physical properties of the
real world. Although wireless sensor networks were originally designed for the purpose of
military application, nowadays their field of application is much wider and they are being
used in civilian and industrial areas as well (healthcare applications, traffic control, home
automation, industrial process monitoring or wildlife monitoring).

The basic description of wireless sensor networks, sensor nodes and gateways, software,
main security aspects and depiction of security services used in wireless sensor networks is
provided in this chapter. Most of the information is gained from [1, 2, 3, 4].

leaf node

base station

internal node

Figure 1.1: Wireless sensor network depiction

Wireless sensor networks (WSNs) are homogeneous distributed ad-hoc networks. How-
ever, there are several important differences from the classical ad-hoc networks [5]. Firstly,
all of the nodes are independent and left unattended in their hostile environment without
the presence of a human user. Their computing resources and batteries are more constrained,
hence any of the nodes may fail to operate due to energy exhaustion. The application of a
WSN is very specific depending on what kind of aspect is being monitored by the network.
Furthermore, node density is much higher than in traditional ad-hoc networks. This is also
a consequence of the fact that a node might disappear from the network as stated above.
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1.1. SENSOR NODES AND GATEWAYS

Another important issue is security vulnerability of nodes deployed with no constraint of
physical access to them and hence they might be captured by an attacker or might fail to op-
erate. A WSN is highly distributed and its nodes are independent, self-configurable, capable
of establishing the routing subsystem without any priorly given infrastructure and able to
cooperate with each other.

A sensor network topology may be flat or hierarchical. In case of a hierarchical topology,
the network is divided into clusters. Each cluster has a cluster head node which is usually a
more powerful node. Cluster heads usually take some responsibilities for network mainte-
nance as for example intrusion detection systems can be installed on these nodes. However,
they become a single point of failure. In order to prevent this problem, flat sensor networks
are deployed.

1.1 Sensor nodes and gateways

Sensor nodes, often referred to as motes, are basic units of WSNs and are capable of pro-
cessing, collecting sensed data and communicating with their neighbours in the network.
A node consists of a sensor, micro-controller, memory unit, transceiver and power source.
A variety of sensor types is used depending on the application of the network. They might
monitor radiation, temperature, light, movement, sound, humidity, pressure, etc. An ana-
logue signal received by a sensor is digitalized and sent to the processing unit. There are
several choices for wireless transmission. Optical communication is rarely used due to the
requirement of line-of-sight among communicating nodes and inconvenient broadcasting.
Sensor nodes usually make use of the ISM band for the radio wave transmission and op-
erate with communication frequencies between 433 MHz and 2.4 GHz. For this purpose, a
transceiver, which is a unit capable of both transmitting and receiving a radio signal, forms a
part of every node. Different types of batteries and capacitors are used as power sources for
sensor nodes. They might be classified by the type of the electrode, their size, whether they
are re-chargeable or not. Some motes are able to renew their batteries using solar energy or
thermo-generators.

There is a wide variety of manufactures of both sensor and gateway nodes as for example
Moteiv. The intrusion detection system implemented in this work can be compiled for the
Moteiv’s Tmote Sky node. Tmote Sky comes with 8 MHz Texas Instruments MSP430 F1611
micro-controller, 10 kB of RAM and another 48 kB of flash memory. The micro-controller is
a 16-bit RISC ultra low power processor which runs with extremely low active and sleep
energy consumption. IEEE 802.15.4 compliant Chipcon Wireless Transceiver operates at the
ISM 2.4 GHz frequency band with a data rate of 250 kbit/s. The mote has integrated humid-
ity, temperature and light sensors [6].

A gateway node, usually referred to as a base station, provides a connection to the outer
world, most commonly to the Internet. It is a much more powerful device than a sensor node
and its energy resources are more long-lasting too. It serves as a collector of the measured
values and security alerts from the motes in the network it is governing. Since the base
station is connected to the Internet, it is maintained by a human user. As an example, the
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1.2. SOFTWARE

current configuration of the Stargate NetBridge from Crossbow Technology, Inc. is the Intel
IXP420 XScale processor with a frequency of 266 MHz, 32 MB RAM, 2 GB flash disk and one
wired Ethernet port. It runs the Debian Linux operating system [7].

1.2 Software

Wireless sensor networks run specialized operating systems for which applications can be
written. Contiki, Mantis, BTnut, SOS and Nano-RK are some of the operating systems that
allow for writing application programmes in the C language [1]. The most commonly used
operating system in wireless sensor networks is TinyOS [8]. The TinyOS operating system
is an embedded, open-source, component-based operating system for wireless sensor net-
works. It is written in a dialect of the C language – the nesC programming language. NesC
provides an event-based programming model where programmes are composed of event
handlers and tasks. The TinyOS project [9] was rooted at the University of California, Berke-
ley. Nowadays, an international consortium, the TinyOS Alliance, supports the academic
and industrial community of TinyOS developers and contributors. The current version of
TinyOS is 2.1.0.

For the purpose of the WSN development and simulating TinyOS networks, a discrete
event simulator, called TOSSIM, was created at the University of California, Berkeley. TOSSIM
scales to thousands of motes and compiles directly from the TinyOS source code. The appli-
cations written in nesC for TinyOS are built into the compilation. TOSSIM is run on personal
computers. PowerTOSSIM was created originally at the Harvard University [10]. It is used
to simulate power consumption of each node in the simulation.

There comes the Dissemination protocol (DIP) and the Collection tree protocol (CTP) as
a part of the TinyOS distribution. The first one is used for establishing eventual consistency
on a variable shared by all the nodes in the network. The CTP is used to collect data at the
base station (root of the tree) from any node. If all the nodes send data periodically, the CTP
creates heavy traffic as every internal node has to forward each packet it receives up the
tree. A data aggregation protocol can be used on top of or instead of the CTP in order to
decrease the number of sent packets and hence prolong the battery lifetime. However, no
data aggregation protocol implementation can be found in the current TinyOS distribution.

1.3 Security

Security of wireless sensor networks is an important factor of their use as in any other type
of network. Information confidentiality, authentication, integrity, availability and freshness
are required to be achieved. Graceful degradation is required as well which ensures that
in case that a small number of nodes is compromised, the rest of the network is able to
carry on its duty and continue functioning. The traditional cryptography is usually used to
achieve these properties in classical networks. Research in this field is ongoing for wireless
sensor networks too. However, there are several problems that make use of cryptography
more complicated. In the first place, it is constrained capability of a node and requirement
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1.3. SECURITY

for its price to be as low as possible (networks consist of thousands of nodes). The ad-hoc
infrastructure-less nature of sensor networks makes the problem more challenging as well
because there is no trusted central authority there. Furthermore, nodes are left unattended
and because of their desired low price, they cannot have any tamper resistant or reaction
mechanisms built in them. An adversary is then able to capture a node, retrieve its crypto-
graphic material and be aware of its internal state and control its communication with the
rest of the network [4].

As described in [4], there are several attacker types considered in wireless sensor net-
works. A passive attacker is only able to read ongoing communication, gather it, analyse
and possibly extract cryptographic keys using cryptography analysis. Defence against a pas-
sive attacker is usually the encryption of data traffic. On the other hand, there is an active
attacker which can also alter or inject new messages into the network communication. They
are able to destroy some messages as well. An active attacker can perform external or inter-
nal attacks (we talk of a malicious outsider or insider respectively). External attacks are run
by an attacker that does not compose a part of the network. Employing encryption mecha-
nisms is not enough here and security is enhanced by authentication and synchronization
mechanisms. An internal attacker is a legitimate mote in the network and has access to all
of the mote’s key material. That is why cryptographic techniques cannot help defending
against internal attacks. An intrusion detection system (IDS) has to be used in the network.
An IDS monitors behaviour of the nodes in the network and alerts the gateway node in case
there is a suspect of an internal attacker. Finally, attackers may be divided based on the type
of the device they use. Mote-class attackers misuse motes to run their attacks. Laptop-class
attackers use more powerful devices with higher radio transceiver power and longer battery
life-time.
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Chapter 2

Intrusion detection systems

A wireless sensor network is deployed without a predefined infrastructure and left unat-
tended. It is required for a WSN to be inherently autonomous. This involves being able to
react on certain unusual events and reconfigure the network without human assistance or as
little assistance as possible. To achieve the self-reconfigurability property, a situation aware-
ness mechanism needs to be installed in the network so it is aware of the unusual events
which the WSN should react on. A situation awareness mechanism has to be lightweight
because of limited computational and battery resources of tiny nodes [11].

Intrusion detection systems are installed in order to detect internal attackers in networks.
As stated in [11], “the major task of an IDS is to monitor computer networks and systems
to detect these eventual intrusions in the network, alert users after specific intrusions have
been detected, and finally, if possible, reconfigure the network and mark the root of the
problem as malicious”. A classification of different types of intrusion detection systems and
description of components of an IDS for WSNs is given in this chapter. At its end, two
approaches how to implement a neighbour-based intrusion detection system that is able to
monitor several network properties at a time are presented.

In classical networks, intrusion detection systems are mainly situated on powerful main-
frames of network segments and are able to process efficiently all data coming from the seg-
ment on which they operate. Unfortunately, there are no such devices in the case of WSNs. It
must be decided how to take the advantage of redundancy in means of the number of nodes
and how to deal with low-performance processing. It is essential to find optimal distribu-
tion of performance, battery saving and robustness. Moreover, an access to the mainframes
in classical networks can be physically limited which makes them a reliable source of in-
formation. As opposed to this advantage, information gained from IDSs running on sensor
nodes needs to be filtered because of possible presence of malicious adversaries.

Authors of [11] use a metaphor that a WSN should be able to heal itself by which they
mean that a WSN should be self-reconfigurable. They liken a wireless sensor network to a
living body where nodes are cells of the body and a base station is the brain. In such reason-
ing, network’s malicious intruders, the nodes captured by an attacker, represent diseases
and viruses. This metaphor is good because the way by which diseases are discovered in
living bodies is the same as in intrusion detection systems for wireless sensor networks. An
IDS monitors network’s behaviour and looks for symptoms of diseases, possible attacks.
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2.1. IDS CLASSIFICATION

2.1 IDS classification

The description of different kinds of IDS classification based on [4] are summarized in this
section.

There are generally two types of intrusion detection – anomaly detection and signature
(sometimes denoted as misuse) detection. A difference can be seen in the way they discover
malicious nodes. Any unusual behavioural deviations in the network opposed to its normal
behaviour is announced as an anomaly in case of the anomaly detection. An IDS of such a
type has to be able to learn about the normal behaviour of the network. There is usually a
start-up phase, often denoted as a training phase, of an IDS for this purpose and the IDS only
gathers information about normal flow for some period of time. It has to be ensured that no
intruders exist in the network during this phase which might be hard to achieve. “Signature
based detection techniques match the known attack profiles with suspicious behaviours”
as stated in [12]. For this purpose, attack footprints have to be defined for each type of the
attack that should be recognized by the IDS.

Both anomaly and signature based IDSs have their pros and cons. A signature based
detection is very effective in revealing known attacks whose patterns are defined in the
IDS. However, it fails completely to uncover unknown attacks. They can be recognized by
an anomaly detection though. Unfortunately, such an IDS requires training to learn what
a normal traffic flow looks like and if network’s dynamics have changed, the IDS has to
be re-trained. Employing both detection techniques should provide an effective detection
mechanism for a sensor network. Additionally, a specification detection is sometimes intro-
duced as the third type of IDSs. It is very similar to an anomaly detection, however, the set
of rules is defined a priori and so no training phase is involved. This work deals with the
neighbour-based intrusion detection which is a specific type of the anomaly detection. The
neighbour-based detection technique is well-described later in this chapter.

From another point of view, intrusion detection systems might be classified depending
on their collaboration abilities into collaborative and non-collaborative (also referred to as
distributed and stand-alone respectively). In case of a distributed IDS, a false information
filtering system should be implemented as the IDS may collaborate with IDSs running on
nodes captured by an adversary. Reputation schemes are often employed for this purpose.
Stand-alone detection systems do not suffer with these problems. On the other hand, there
might not be enough information gathered locally to decide some types of attacks. We de-
signed and implemented both collaborative and non-collaborative modifications of an IDS
for flat wireless sensor networks. More information is available in Chapter 4.

Collaborative IDSs are categorized as peer-to-peer and hierarchical. Peer-to-peer IDSs
create high communication overhead. Hence, information should be distributed just in a
small neighbourhood around a node. Hierarchical IDSs assume existence of nodes which
take responsibilities of cluster heads which brings the problem of a single point of failure.
An attacker who captures just a few nodes which are actually the cluster heads paralyses
functioning of an IDS for the whole network. The IDS proposed in this work belongs to the
peer-to-peer category of IDSs.
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2.2. BLUEPRINT OF AN INTRUSION DETECTION SYSTEM ARCHITECTURE

Moreover, there is a question on which node an IDS should be actively running at some
point in time. The authors of [5] suggest to use the method of spontaneous watchdogs. Then,
an IDS is installed on every node. When there is communication on a medium, one of the
possible watchdogs (see Figure 2.1) for the communication is chosen to be active. A set of
possible watchdogs is composed of all the nodes which are able to hear the communication.
The selection of the active watchdog is implemented by a random choice in [5]. However,
other implementations let possible watchdogs monitor the network in turn.

A B

C

node off the 
communication
monitored node 
(the forwarder)

possible watchdog

Figure 2.1: Depiction of the set of possible watchdogs for messages sent from A to C

2.2 Blueprint of an intrusion detection system architecture

There is a blueprint of an IDS architecture for WSNs described in [11]. It was adopted for
design of the IDS proposed in this work. The authors claim that such a system would ful-
fil following properties: full network coverage, simplicity, usefulness, and extensibility. In
other words, the system would cover the entire data flow in the network, be simple enough
in order to run on limited motes, detect most attacks which it would be designed for and
it would be possible to implement new mechanisms to detect new forms of attacks easily
without the need to re-build the existing system.

The authors suggest to build the IDS as a powerful agent running on a base station
and a lightweight agent running on every node. The base station agent would have access
to information from all the nodes in the network gained using an appropriate collection
protocol. On the other hand, agents running on nodes can operate only with the information
from their neighbourhood. However, this information is very rich due to a wireless nature
of communication. Every node upon receiving any message has to examine if it is destined
to the node itself or some other node. Then, each node has information about all the data in
its neighbourhood, not only data whose destination it is.

Furthermore, node agents are formed from local and global agents. The first one is re-
sponsible for monitoring local information on a node (measured value from its own sensor,
carrier sensing time on a medium, etc.). The global agent analyses the information flow in its
neighbourhood. It should be possible to turn off any of the agents in order to reduce battery

8



2.3. NEIGHBOUR-BASED INTRUSION DETECTION TECHNIQUES

consumption.
Both global and local agents should consist of a data acquisition component which gath-

ers data from the packets or sensors (see Figure 2.2). This data is processed for further anal-
ysis. The processed data is stored using a statistics component. A detection component uses
the information stored by the statistics component and analyses the symptoms of attacks.
The symptoms of chosen attacks which poses the highest security risks needs to be inte-
grated into the detection component. Results of detections are held in an alert database.
Nodes are marked as suspicious or malicious there. Finally, a collaboration component can
be activated when communication with other parts of the system or neighbourhood is nec-
essary.

messagesDetectionStatistics Alert DB Collaboration

Data acquisition

Figure 2.2: IDS component model

2.3 Neighbour-based intrusion detection techniques

2.3.1 Insider attacker detection scheme

The insider attacker detection scheme is presented in [13]. Basic ideas from the paper which
were a source of inspiration for this work are summarized in this section. The authors say
that the insider attacker detection scheme explores the spatial correlation in neighbourhood
activities and contrary to other anomaly detection schemes it requires no prior training.
The algorithm is localized which means that information is exchanged only in the limited
neighbourhood. The main contribution of the paper, apart from the requirement of no prior
training, to this work is that it presents a scheme that is generic. It can monitor many aspects
of sensor network behaviour at one time. The way this is accomplished will be described in
more detail in following paragraphs.

The basic idea is that neighbouring nodes in some area which are physically close to each
other should be dealing with similar network traffic and provide similar values from their
sensors. Then, it is possible to look at the set of attributes for some spatially correlated group
of nodes and nominate these nodes which differ significantly in some aspect as attackers.

According to the network model from [13], the node x is able to listen to messages com-
ing to its neighbour xi no matter whether or not it is involved in the communication. The
node x creates a model of network behaviour of the node xi as a q-component attribute
vector f(xi) = (f1(xi), f2(xi), . . . , fq(xi))T with each component describing an xi’s activity
in one aspect. The component fj represents actual monitoring results of some behavioural
aspect of the node xi for each and fixed j. For example, it might be a measured value from
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2.3. NEIGHBOUR-BASED INTRUSION DETECTION TECHNIQUES

the sensor, the number of dropped packets per burst period, packet delivery ratio per some
period of time, etc. Behavioural aspects are chosen as appropriate and quantifiable proper-
ties which represent statistics that are used to evaluate symptoms of attacks which should
be detected by the IDS. The authors assume that for any local area of normal sensor nodes
xi, all f(xi) follow the same multivariate normal distribution.

The data acquisition component of the node x gathers information from its neighbour-
hood and creates the set F (x) = {(f(xi) = (f1(xi), f2(xi), . . . , fq(xi))T |xi ∈ N(x)} of at-
tribute vectors, where N(x) is the set of neighbours of the node x. This set of attributes is
broadcast within the neighbourhood N(x) and is taken as a source of statistics for the de-
tection component. This approach eliminates the need of the training phase and storing its
results permanently in the database of the detection component of the IDS. In each period,
the normal behaviour of a node is defined as the “centre” of the set F (x).

According to [13], the detection component of the insider attacker detection scheme
marks malicious intruders after studying the data set F (x). Actually, each node possesses
the data set of sets {F (xi)|xi ∈ N(x)}. This fact is not taken into account in [13] and it is not
clear what happens with the data sets F (xi) which were broadcast. The paper follows with
assuming only the data set F (x).

Malicious attackers are considered nodes which are further from the “centre” of the set
F (x) than the threshold t0. Details on a computation of the Mahalanobis distance using
Orthogonalized Gnanadesikan-Kettenring estimators can be found in [13] as well as the de-
termination of the threshold t0. The paper continues with a description of a voting protocol
for the final decision about malicious nodes. Different nodes mark the attacker based on
information from different neighbourhoods. A node has to be considered an intruder by a
majority of its neighbours in order to be excluded from routing tables, reported in the alert
database and announced to the base station.

The authors assume that the network on which the insider attacker detection system can
be installed is operating a data aggregation protocol. This assumption is important because
it ensures that traffic loads in some neighbourhood are correlated. We will try to extend
our solution onto networks operating the Collection tree protocol. This will be achieved by
employing clustering (see Section 4.4). Furthermore, the implemented IDS that was tested in
the discussed paper is programmed to reveal a single attack – fabricated information attack
(a malicious node alters the information gained from its sensor). The tests were provided
using only synthetic data. We would like to find out what other attacks can be revealed
by the proposed scheme (see Chapter 3) and implement an IDS which can detect most of
them. Nodes programmed as malicious will be involved in these tests conducted using the
TOSSIM simulator. As mentioned in the text above, there is an open question what happens
with the data set of sets {F (xi)|xi ∈ N(x)} gathered by the collaboration component. Hence,
we provide results for several collaborating options and compare them (see Section 4.5).
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2.3.2 Group-based intrusion detection scheme

The full description of the group-based intrusion detection can be found in [12]. The de-
tection component of this scheme is very similar to the insider attacker detection scheme.
There is even a comparison of simulation results with the insider attacker detection at the
end of the paper. The group-based intrusion detection scheme is said to be more precise
in marking malicious nodes as attackers and its false alarm rate is lower at the same time.
Additionally, it consumes less energy. These satisfying results come from the way nodes are
grouped. When the IDS agents are started, preferably after the network start-up, a grouping
algorithm is initiated. It is an initial phase after which agents are ready to detect intruders.

The grouping algorithm starts with some nodes sending grouping requests after waiting
a random period of time. If a node receives such a grouping request, it joins the group only
if it is spatially close enough and its sensed values of the physical environment are similar to
the root node of the grouping request. Nodes that are not grouped wait a random amount of
time to initiate another grouping request (hence, they become the roots of these new groups).
The thresholds limiting the maximal distance between nodes in some group and the group’s
root node and the maximal deviation of their sensed values have to be defined accordingly
to the nature of the network and its application.

Each group is divided into several subgroups which monitor the entire group in turn in
order to reduce battery consumption. The data acquisition components of nodes of active
subgroups work the same as in the case of the previously mentioned IDS. However, a set of
attribute vectors F (x) is not broadcast among the group neither the subgroup. The detection
mechanism processes F (x) locally and makes its decision about outliers (malicious nodes)
in the group (again, the same principle and mathematics functions are used as in the case of
the IDS mentioned in the previous section). No majority voting follows. If an IDS agent finds
an attacker, it alerts the entire group with a warning message about the attacker. If there are
more such messages, the entire group wakes up and all of the nodes monitor the agitator
and the proposed malicious node. If abnormal behaviour is detected in any of these two, the
base station is alerted and the actual malicious node is excluded from routing tables.

The authors of the paper include the list of attacks (together with information that needs
to be collected for their detection) which are suitable for their scheme. The list can be seen in
Table 2.1. However, they implemented their IDS only for the fabricated information attack.
Although they tested it on real data, the presence of the attacker was introduced only by
noise addition to this data. As far as the list of attacks is concerned, we will point out that
there is no need to use the neighbour-based detection technique to reveal packet alteration
in Section 3.6. Furthermore, detection of a sinkhole attack based on a high packet receiving
rate would provide inaccurate detection results as there may be sinkholes which are not
malicious in a network too (see Section 3.4). As mentioned before, the authors implemented
their IDS to reveal the fabricated information attack. Hence, they programmed the grouping
algorithm to group according to the correlation of values measured by nodes’ sensors. If a
generic IDS capable of revealing several attacks at a time should be implemented, it is not
clear how to group nodes effectively.
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Collected information Attack
sensor sensed data fabricated information attack
packet sending rate jamming

packet dropping rate selective forwarding
packet mismatch rate packet alteration
packet receiving rate sinkhole attack

packet sending power hello flood attack

Table 2.1: Attacks whose detection is possible with the neighbour-based detection technique
and statistics needed to reveal them
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Chapter 3

Attacks

There are different types of attackers and many types of attacks they are able to perform.
We focus on active external and internal attackers (insiders) as they are able to run more
convenient attacks and the intrusion detection system is deployed to defend against these
attacks. An IDS is used to differentiate among trusted nodes and attackers as they might
form a legitimate part of the network. In this chapter, the basic description and symptoms
of chosen attacks are introduced.

Symptoms of attacks are very important for the study of intrusion detection systems for
WSNs. An IDS may determine an internal attacker in the network based on the pre-defined
symptoms of known attacks. This work deals with jamming, hello flood, selective forward-
ing, sinkhole, sybil, packet alteration and fabricated information attacks. The description of
these attacks is outlined here based on [14, 15, 16]. This chapter also discusses whether some
of the symptoms mentioned for each attack are appropriate to be used for implementation
of a neighbour-based IDS as described in the previous chapter (Section 2.3.1).

3.1 Jamming

Jamming is interfering with the radio frequency used by nodes for their communication.
It is performed by deliberate transmission of radio signals. It is used to conduct a denial of
service attack as nodes cannot communicate at all while a jamming attack is ongoing (Figure
3.1). Nodes consider their communication media to be in use, or they believe some node is
transmitting and so they remain in a receiving mode the whole time. A jamming attack is
caused by a device which is usually referred to as a jammer. It might be a sensor node or
some other device able to interfere with the radio frequency of the wireless sensor network.
We may distinguish among various types of jamming attacks and jammers. Among the ones
that may be the most effective are constant, deceptive, random and reactive jammers [17].

A constant jammer continually emits a radio signal without respecting any medium ac-
cess protocol. In this case, other nodes never find the medium idle. A deceptive jammer
uniformly injects regular packets without any gap so other nodes stay in the receiving mode
most of the time. A random jammer emits or is asleep to reduce battery consumption. It
switches these two states in a random manner. Random jamming may be implemented by
both constant and deceptive jammers. A reactive jammer emits only when there is commu-
nication on the medium. It is harder to detect than the previous techniques and again it may
be implemented by both constant and deceptive jammers.
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3.1. JAMMING

jammed region
jammed node

jammer
node out of the 
jammed region

Figure 3.1: Jamming - jammed nodes cannot communicate with their neighbours

Several symptoms might be used to identify jamming. A short overview of these tech-
niques is given in the next paragraph. However, they are not always suitable for every type
of jammer. More details on identifying jamming attacks can be found in [17, 18].

A received signal strength indicator might be used to detect jamming because the distri-
bution of signal strength is affected by the jammer being active. The basic approach where
an average signal strength value is compared to the threshold calculated from the ambient
noise level is rather limited. A more convenient technique uses signal strength spectral dis-
crimination. Unfortunately, statistics based on signal strength magnitude are only suitable
for identifying constant and deceptive jammers. Signal strength distribution is not affected
in such a manner by reactive and random jammers as they alter the sleeping and emitting
states which simulate the behaviour of a normal node.

A carrier sensing protocol is used to tell whether a node is allowed to transmit over the
media. If a node never finds the media idle, it cannot transmit and may assume that the
network is being jammed. A carrier sensing time metric is suitable only when the media
access protocol of the sensor network tells whether a channel is idle upon a fixed threshold.

The packet delivery ratio drops suddenly to almost zero when a node is jammed. In
the case of congestion, it does not drop so suddenly and even though the delivery ratio is
very low in a congested network, it’s not as close to zero as it is in the case of a jammed
network. The delivery ratio may tell congestion from jamming and is useful for revealing all
the jamming scenarios. However, it is prone to be inaccurate due to battery failure or other
network dynamics which may suddenly lead to packet delivery inability. The delivery ratio
can be estimated both as received acknowledgements per sent packets on the side of a sender
or as the number of packets which passed the cyclic redundancy check per received packets
on the receiver’s side.

In order to eliminate falsely announced jammings, a combination of the methods de-
scribed above can be used. Energy exhaustion may lead to a false alarm in the case of the
packet delivery ratio symptom. If the packet delivery ratio method is combined with the
signal strength consistency check, false positives are reduced. Very low packet delivery ra-
tio and low signal strength imply that a node’s neighbour is malfunctioning due to battery
depletion. However, when there is a packet delivery ratio close to zero and on the other
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hand signal strength is high, a jamming attack is ongoing in the wireless sensor network
with highest probability.

The last method, actually the combination of two of them, should provide the most re-
liable way to reveal jamming. It is even suitable for all of the jamming scenarios defined
in this section. Unfortunately, the delivery ratio is meant to be compared with a predefined
threshold (a number close to zero). From this point of view, the neighbour-based technique
would not be convenient to use (it compares the delivery ratio values among the nodes
in the neighbourhood and that is not intended by the packet delivery ratio method). The
neighbour-based detection scheme described in the previous chapter is determined to serve
as a global agent (see Section 2.2) – it monitors the behaviour of its neighbourhood (not
the node running the IDS agent itself). That is why detection based on carrier sensing time
cannot also be implemented. Carrier sensing time is a statistic appropriate for monitoring
by local agents. We exclude monitoring of the distribution of signal strength because of the
same reason.

A packet sending rate is easy to monitor and simple assumption would suggest that
a node which sends an abnormal amount of packets is one that produces jamming [12].
We can definitely detect deceptive jammers by monitoring the packet sending rates of the
neighbouring nodes. However, it depends on the jammer’s implementation and the network
protocol used whether detection of random and reactive jammers is possible.

3.2 Hello flood attack

Routing protocols usually prefer the shortest or the most reliable path to the base station.
Hello packets (sometimes also referred to as advertisements or beacons) are sent out by
a new node in the network in order to inform other nodes that they can possibly route
their messages via the new node. If a malicious node possesses a long-range antenna, it can
broadcast hello packets claiming good connection to the base station. These hello packets
will be received by the nodes which cannot reach the adversary back as they do not have
such a strong antenna (Figure 3.2). The affected part of the network becomes paralysed as
no messages are routed out of it.

Nodes which are close to the attacker may notice that received signal strength indicator
values of messages delivered from the attacker are abnormally high. This detection method
can be implemented using the neighbour-based detection technique. Nodes will keep statis-
tics of average signal strengths of received messages from their neighbours and compare
them with the averaged value of these statistics. A node having its average signal strength
significantly higher will be announced as the hello flood attacker.

3.3 Selective forwarding

A compromised node (an attacker) drops packets instead of forwarding them further in a
multi-hop routing system in case of a selective forwarding attack (Figure 3.3). An attacker
may drop all of the incoming packets (also denoted as black hole attack) or selectively drop
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radio range of    
the attacker

node unable to 
reach the attacker

attacker

node close to 
the attacker

Figure 3.2: Hello flood - nodes which cannot reach the attacker will choose it for their parent
most probably, hence paralysing themselves

only specific packets (coming from a specific source, having a certain destination, containing
certain payload data, etc.). In the second case, it is harder to detect and several statistics have
to be stored by an IDS to check.

614 packets

150 packets

120 packets

30 packets

930 packets

leaf node

attacker

internal node

A

Node A should forward 1110 
packets and send 30 of its own

Figure 3.3: Selective forwarding

A high packet dropping rate can be used to identify nodes that conduct selective for-
warding [19]. It is estimated as the ratio between the number of sent packets and the num-
ber of received packets over a period of time. This ratio may be kept as an overall number
of transmitted packets or just for packets coming from a specific source, having a certain
destination, etc.

The approach from [20] does not only take into consideration packets being dropped by a
malicious node. At the same time, the intrusion detection system checks whether a packet is
sent to a legitimate neighbour of the monitored node. Otherwise, it assumes that the packet
was forwarded by a malicious node to a mismatched location on purpose. In order to make
this technique work, the form of a hello packet (used to establish routing tables when a
new node is added to the network) has to be changed so each node is able to derive its 2-
hop neighbours from it. This requirement makes this mechanism harder to implement than
in the case of packet dropping rate monitoring. The protocol for finding out node’s 2-hop
neighbours would mean another communicational and computational overhead for tiny
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nodes. The described neighbour-based intrusion detection is supposed to be a lightweight
agent and is not considered to provide such a functionality.

On the other hand, the packet dropping rate is an appropriate metric that can be used
to monitor the network behaviour of a node’s neighbourhood in the neighbour-based IDS.
Nodes that are in spatial correlation (according to the insider attacker detection described in
the previous chapter) should be dealing with a similar traffic load and network dynamics.
The packet dropping rate should be similar as well and if a node drops packets in extreme
numbers, it is probably malicious.

3.4 Sinkhole attack

A sinkhole node is one where most of the traffic is reflected to (Figure 3.4). According to a
routing protocol, it is the one claiming extremely good connection to the base station in its
neighbourhood. An attacker tries to create a sinkhole node from the one that is captured by
them. Afterwards, more serious attacks can be run using this node. Depending on which
routing algorithm is used, an attacker tries to fake routing protocol’s metrics which define
the best path to the gateway so most of its neighbours, preferably all, set the captured node
as their parent node. An IDS may identify nodes which claim a suspiciously high-quality
connection to the gateway and are the only such nodes in their neighbourhood. This tech-
nique cannot identify a sinkhole which is started at the beginning of a network’s existence
because the sinkhole’s neighbours will claim good connection via the sinkhole node as well.
The extreme difference in the apparent quality of the connection will not be noticeable.

sinkhole

base station

internal node

leaf node

Figure 3.4: Sinkhole – all the traffic from this network region is routed via the sinkhole

If the packet receiving rate of some node is extremely high, it might be suspected of being
an attacker [12]. However, this symptom does not differentiate natural sinkholes which may
exist depending on network topology. Furthermore, the packet receiving rate of surrounding
nodes will become high as well because they will gain very good connection to the base
station via the sinkhole node. This approach is considered very limited and not suitable for
intrusion detection techniques.

Although a malicious node may claim that its connection to the gateway is better than
it actually is, nodes in its neighbourhood do not have to change their parents straight away
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(this depends on a routing protocol, e.g. the CTP in TinyOS is designed this way). An at-
tacker has to downgrade the quality of other nodes’ connections in this case. A malicious
node may spoof fake root update packets impersonating its neighbours. The authors of [21]
suggest that this form of sinkhole attack may be revealed by an IDS which observes whether
senders of root update packets are in the neighbourhood of the node running the IDS. If not
or if they are even sent by the node running the IDS itself (possible when the packet’s header
is altered), some node is running the sinkhole attack in the network.

This technique effectively reveals attackers that try to downgrade the quality of other
nodes’ connections. If some node finds out that another node spoofs packets, it should alert
other nodes about this immediately. It does not matter what the common behaviour of the
neighbourhood is. From this point of view, this technique is not suitable for the neighbour-
based intrusion detection. Unfortunately, no other technique that could be used is known.

3.5 Sybil attack

A sybil node is one that is claiming multiple identities. An attacker that owns these identi-
ties may take advantage in voting protocols or create routing paths for their own benefits.
Communication with sybil nodes may be direct or indirect. In direct communication, the
compromised node communicates with the other nodes in charge of all of its identities. In
indirect communication, the sybil node claims that it communicates with nodes that actually
do not exist. Sybil identities might be fabricated or stolen. A sybil attack can be performed
simultaneously or non-simultaneously depending on whether the sybil node uses its iden-
tities at once or over time.

A sybil node may be revealed by location testing which is based on the principle that
some number of cooperating nodes are able to estimate another node’s location based on
some measurements. If they find out that two nodes are located at the same position, a sybil
attack is most likely being conducted by an attacker.

The technique using the received signal strength indicator is described in [22, 23]. Three
cooperating nodes measure the signal strength upon receiving a message (Figure 3.5). After
exchanging obtained values, the ratio is measured from them and stored in a database of
neighbours. A unique ratio value determines the unique position of a node. A similar ap-
proach is published in [24] too. Location testing is based on measuring the time difference
of arrival of packets among cooperating nodes instead of the received signal strength.

Both location testing methods need a group of nodes to exchange some information. This
information is used for a simple computation whose result is a determination of the loca-
tion of the node which they exchanged the information about. Each node has a table of such
locations of the nodes in its neighbourhood. Both techniques do not look for a property of
network behaviour which should not vary noticeably for a node in some group of neigh-
bouring nodes. This is the reason why it cannot be used for the studied neighbour-based
IDS. Unfortunately, we do not know any other technique that could be implemented.
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Figure 3.5: Received signal strength indicator location testing of sybil attack

3.6 Packet alteration

An attacker might be interested in spoofing or altering packets of other nodes (Figure 3.6)
in order to misuse a routing algorithm, have an advantage in voting protocols or change
measured values sent by sensor nodes to the base station.

message: {id= 13; from=A;  
payload: temperature=23}

message: {id=13; from=A; 
payload: temperature=14}

attacker

node

Figure 3.6: Packet alteration

Monitoring of spoofed packets can be provided in a similar way as is described in this
chapter in the section dedicated to sinkhole attacks and revealing fake beacons (Section 3.4).
The basic assumption is that a node should be able to hear only packets that have originated
in its neighbourhood. If they have originated elsewhere, they are spoofed packets.

In order to detect alteration of data, an IDS has to store overheard packets in the buffer,
wait until appropriate nodes forward them and compare whether the payloads are the same
for the forwarded packets and the packets stored in the buffer. The presence of an attacker
that alters or spoofs packets is noticed immediately. There is no need to use techniques such
as the neighbour-based detection technique to find out if it is common to deliberately alter
packets in the node’s neighbourhood. Deliberate alteration should always be considered as
an attack.

3.7 Fabricated information attack

A malicious node might send fallacious measured values which would not reflect the reality
of its surroundings to the base station. There is an assumption that these values provided
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by nodes from a close neighbourhood should usually vary just slightly (Figure 3.7). When
values in node’s surroundings are compared and an IDS finds out that the node provides
extremely different results, it is suspected of being captured by an attacker. Simulations
of both insider attacker and group-based intrusion detection schemes were run to monitor
usage of this statistic. The description and results of the simulations can be found in [13, 12]
respectively.

19 °C

17.5 °C

17 °C

20 °C
leaf node

base station

internal node

19.5 °C
8.5 °C

attacker

Figure 3.7: Fabricated information attack – values from trusted nodes vary just slightly

3.8 Neighbour-based detection of the attacks

Several symptoms that can be used by the detection component of an IDS to identify jam-
ming, hello flood, selective forwarding, sinkhole, sybil, packet alteration and fabricated in-
formation attacks were presented in the previous sections. Unfortunately, not all of them are
suitable for the neighbour-based detection technique. The reasons for this assumption were
given above.

In order to reveal the jamming attack, the packet sending rate is an appropriate statistic
for the neighbour-based IDS discussed in this work. The hello flood attack can be detected
by monitoring the received signal strength indicator readings of nodes in the neighbourhood
of the node running the IDS agent. The packet dropping rate may identify a malicious ad-
versary that selectively drops packets instead of forwarding them according to the routing
protocol. Regrettably, no appropriate statistics for neighbour-based detection were found
for disclosing the sinkhole or sybil attack. Although the packet alteration attack is easy to
recognize, the means by which this is done is not suitable for this work. Finally, the attack
based on providing fallacious measured values has already been implemented by the au-
thors of [13, 12]. The implementation of the appropriate statistics depicted here is described
in detail in the next chapter where our neighbour-based IDS is presented.
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Chapter 4

IDS design and implementation

This chapter describes the design of the intrusion detection system that has been imple-
mented for the purpose of this research. The IDS uses the neighbour-based intrusion de-
tection technique (as described in Chapter 2) and it serves as a global agent which means
that it monitors its neighbouring nodes and does not monitor the behaviour of the node
running the IDS agent itself. The neighbour-based detection technique as described in pre-
vious chapters is an anomaly detection technique and the normal behaviour (contrary to
anomaly) is defined as actual common behaviour of the neighbourhood. It is assumed that
non-malicious (referred to as trusted or fair) nodes always prevail in a neighbourhood over
the malicious ones. The decomposition and design of the IDS is mostly based on [11] (see
Chapter 2). The IDS comes in two modifications. The first one is built to operate over the Col-
lection tree protocol [25, 26] and the other one to be run on networks with an aggregation
protocol.

This chapter starts with the depiction of the IDS component model and the description of
the technique used to process promiscuously overheard communication of the neighbour-
ing nodes. It describes how each of the statistics is measured and what other mechanisms
are needed to do so. A clustering technique is introduced as the consequence of unsatisfy-
ing detection results of selective forwarding and jamming in the CTP operating networks.
Finally, implementation of collaboration among neighbouring nodes is described.

4.1 IDS component model

The component model is adopted from [11] and its depiction is summarized in Section
2.2. The IDS is composed of data acquisition, statistics, detection, collaboration and alert
database components (Figure 4.1).

The data acquisition component is adopted from [27] and its detailed description can
be found there. It introduces AMTap interface which provides three events: onReceive(
message_t* msg, ...), onSnoop(message_t* msg, ...), onSend(message_t*
msg, ...). The events are signalled on receiving a message (in case its destination is this
node), on snooping a message (this occurs if the node can hear the message, however, the
message is not destined to the node itself) and on sending a message by the node. It is pos-
sible to gain information about communication involving the node itself or communication
of its neighbours by writing handlers for these events.
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Figure 4.1: IDS component model

The database of the node’s neighbours stores the information gained by the data acquisi-
tion component over some predefined period of time τ (this would usually be the detection
period). It is held in the statistics component. Its size is limited due to space and computation
efficiency.

We denote the node running the IDS agent as ai (i = 1, s). The node ai monitors its direct
neighbours N(ai) = {ni1, ..., nimi}. The number s denotes the total number of nodes in a
network and mi denotes the number of neighbours of the node ai. Each record about the
neighbour nij (j = 1,mi) in the database of ai has these attributes (active message address
serves as a unique identification):

• active message address

• average received signal strength (SS)

SS(nij) is the average received signal strength of the node nij received at ai per τ

• packet receiving rate (PRR)

PRR(nij) is the number of packets (per τ ) which were snooped or sent by ai and
destinated to nij

• packet sending rate (PSR)

PSR(nij) is the number of packets (per τ ) which were snooped or received by ai and
originated in nij

• packet forwarding rate (PFR)

PFR(nij) is the number of packets (per τ ) which were snooped or sent by ai and
destinated to nij and ai observed nij to forward them

• packet dropping rate (PDR)

PDR(nij) is the number of packets (per τ ) which were snooped or sent by ai and
destinated to nij and ai did not observe nij to forward them within the predefined
time period ϕ
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• the number of packets announcing congestion (PAC)

PAC(nij) is the number of packets (per τ ) which were snooped or received by ai and
originated in nij and their congestion notification bits were set to 1

Although most of this information is available from the message which comes as a param-
eter of the AMTap events, we need to place a packet store unit into the data acquisition
component in order to keep track of which packets are being forwarded or dropped. The
main functionality of the packet store unit is encapsulated as a database of minimal unique
identifications of messages that have been snooped or sent by the node running the IDS
and have not been forwarded by their destination nodes yet. A message is erased from the
packet store when it has been forwarded. PFR(nij) is increased. In case the packet store is
full, the oldest message is erased. PDR(nij) is increased at this time. The situation when
the destination node has not forwarded the message after the predefined time period ϕ has
elapsed is considered a packet dropping event as well.

The data acquisition component is running continuously as a daemon process on each
node running the IDS. It acquires information that is stored in the statistics component. The
detection component accesses this information later there. The detection component pro-
vides means to run the detection of malicious nodes which is started periodically. We denote
this period as τ . Optionally, the detection component may use the collaboration component
so the nodes share their neighbour databases (this would occur just before running the de-
tection itself) or their detection results.

Detected malicious nodes are supposed to be announced to the neighbouring nodes and
the base station and stored in the alert database. An appropriate response action should be
initiated (e.g. excluding malicious nodes from the routing tables). However, this work does
not deal with response mechanisms. Detected malicious nodes are only announced via the
alert database. The alert database is implemented to output statements in the console when
running the TOSSIM simulation. The alert statement would describe malicious nodes and
ongoing attacks.

4.2 Ambiguous collisions and low gain mode monitoring

The problem that is caused by ambiguous collisions in watchdog monitoring IDSs is well-
described in [27] and the solution presented there is also used in this work. The problem is
especially significant when detecting selective forwarding. Ambiguous collisions may occur
in several forms. The one that can be prevented is depicted in Figure 4.2. The node D is a
watchdog for communication from the node A to the node C which is mediated via the node
B. D needs to know whether B forwards the message to C. Unfortunately, just before B sends
the message to C, the node E (which is out of the radio range of B) sends a message to the
node F. Eventually, D is not able to receive any of the two messages and may consider that
B dropped the message.

Although it is not possible to eliminate all of the ambiguous collisions, the number of
their occurrence can be lowered by suppressing weak signals. This is achieved by lowering
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Figure 4.2: Ambiguous collision

the sensitivity of the receiver on the CC2420 chip. The implementation of this functionality
for the TOSSIM simulator is adopted from [27]. Lowering receiver’s sensitivity is depicted
in Figure 4.2 as the red inner circle. The monitoring with suppression of weak signals en-
abled will be referred to as low gain mode monitoring. On the other hand, high gain mode
monitoring will denote no change to the sensitivity of the receiver.

4.3 Detections

After detection period τ has elapsed since the last detection, the detection is started. At this
time, statistics (the set of records about the neighbours {ni1, ..., nimi} from the neighbours
database of the node ai) are obtained from the statistics component. The statistics may be
optionally exchanged in the neighbourhood (see Section 4.5). Once they are processed and
stored for detection, the statistics component’s database is cleared and data acquisition for
the next detection round can begin. The packets waiting for forwarding in the packet store
are not touched at all and wait for processing in the next detection round.

The detection component computes centre values as average SS, PSR and PRR for all
nodes but the one with the maximum and the one with the minimum values (denoted as
AV G∗ as opposed to AV G for general average function). These average values form com-
ponents of the centre values vector (q-component vector as defined in Section 2.3.1). Eventu-
ally, the detection engine is called and the statistics together with the centre values vector are
passed to it for evaluation. Depending on the IDS modification, running over the CTP or an
aggregation protocol, a detection rule and a threshold value (δ) for each attack are chosen.
When an aggregation protocol is used, the centre values vector contains all needed informa-
tion. For the case of the CTP, another average values are calculated using the clustering unit
(called by the detection component) for each cluster.

In order to be able to evaluate efficiency of an implementation of some detection tech-
nique, terms false positives and false negatives will be used. The approach from [28] is
adopted and detailed definitions of these terms can be found there. The term false posi-
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tive will refer to any alert warning of a node which is not malicious, hence it is accused
falsely. The number of false positives will be the number of all such alert warnings for a
detection period (note that there can be several alert warnings announcing the same node).
On the other hand, if a malicious node is not announced by the IDS agent monitoring it,
the situation is considered false negative because the presence of the attacker was evaluated
falsely negative. Again, several false negatives may refer to the same node. Furthermore,
the number of nodes falsely accused as malicious is always lower or equal to the number of
false positives and expresses how many different nodes were announced by falsely positive
alerts. When the IDS is tested, the number of attackers involved in the network is known,
hence the number of attackers that were not revealed by at least one IDS agent can be calcu-
lated. It is equal to the difference of the number of attackers in the network and the number
of attackers revealed at least by one IDS agent. The number of alerts about malicious nodes
will denote only to correct alert warnings when the IDS marks a malicious node as mali-
cious. Hence, false positives are not counted in this number.

Different detection rules and thresholds are used when running the IDS in networks with
an aggregation protocol and the CTP. First of all, network dynamics as PSR or PRR are very
correlated in case of an aggregation protocol, however, they differ significantly for nodes
situated at different levels of the CTP tree or for nodes whose number of children vary to a
considerable degree. Secondly, PDR and PFR can be monitored only in the case of the CTP.
In order to be able to monitor these properties in networks with an aggregation protocol,
the IDS would have to know the way messages are aggregated. That is not intended in this
work.

4.3.1 Detections in networks with an aggregation protocol

In case of the IDS for the aggregation protocol operating networks, a rule is evaluated for
each neighbour nij in the set of statistics gathered by ai. If nij satisfies the rule, an alert is
signalled using the alert database. The rules are:

Rule 4.1: Hello flood attack

SS(nij)−AV G∗(SS(ni1), ..., SS(nimi)) > δSS

Rule 4.2: Deceptive and random jamming

PSR(nij)−AV G∗(PSR(ni1), ..., PSR(nimi)) > δPSR

Rule 4.3: Selective forwarding attack

AV G∗(PSR(ni1), ..., PSR(nimi))− PSR(nij) > δPSR−MIN
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A hello flooder is the node which SS is significantly higher than it is common among its
neighbours. We are able to detect a jammer (deceptive or random) if it emits more messages
than it is common in its neighbourhood. In the case of the selective forwarding attack, a
node which leaves out some of the burst periods is believed to be a dropper. This can be
noticed when the PSR of some node is lower than its neighbours’ PSRs.

The thresholds values δSS , δPSR and δPSR−MIN are identified empirically by the network
administrator so the numbers of false positives and false negatives are bearable (see Chapter
5 for more information).

4.3.2 Detections in networks with the Collection tree protocol

In case of having the IDS installed on nodes of a network using the CTP, detection of the
hello flood is done the same way as in networks with an aggregation protocol, Rule 4.1.

We are able to detect deceptive and random jamming. The rule for detection of random
jamming will be defined later in this text (Section 4.4.2), the deceptive jamming rule is the
same as the one from the previous section, Rule 4.2.

The rule for detection of selective forwarding can be based on comparing the percentage
of the dropped packets. The percentage of the dropped packets will be denoted as packet
dropping ratio. It is defined as the ratio of the PDR and receiving rate of packets that were
supposed to be forwarded (denoted as PFR∗, computed as PDR+ PFR).

Rule 4.4: Selective forwarding attack
PDR(nij)
PFR∗(nij)

−AV G( PDR(ni1)
PFR∗(ni1) , ...,

PDR(nimi
)

PFR∗(nimi
)) > δPDR

However, there are several problems to face. Even though the rules’ definitions are reason-
able and express the nature of the attacks, finding threshold values so the trade-off of false
positives and negatives is bearable might be difficult. Several reasons can be provided to
explain this and a change of the way the rules are applied may make results better.

First of all, for the case of selective forwarding, there are ambiguous collisions which
falsely increase PDRs for internal nodes of the CTP tree. Even though we decrease the
number of their occurrence by low gain mode monitoring, they cannot be omitted totally. It
should be noted that ambiguous collisions are not an issue for networks with an aggregation
protocol because the data traffic is much lower there.

Secondly, and this applies to both jamming and selective forwarding, neighbour-based
detection is based on the principle that neighbouring nodes deal with similar sensor read-
ings, network dynamics, etc. However, this is not true for several metrics describing network
flow which a node deals with in the CTP. PRRs differ significantly for nodes spatially close
to each other if they lie at different levels of the CTP tree or have a different number of chil-
dren (see Figure 4.3). Furthermore, PS, PFR and hence PDR are implied by the value of
PRR. This assumption means that we may achieve better results if we partition neighbours
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into several groups according to their PRR and detect selective forwarding in these groups.
We refer to this method as to clustering and its detailed description can be found in the next
section.

1170 packets

30 packets

120 packets

60 packets

30 packets

30 packets

30 packets
30 packets

930 packets

leaf node

base station

internal node

Figure 4.3: PRRs may differ for nodes in a close neighbourhood

Finally, it is hard to keep track of the actual value of the PRR for some node. The known
value is usually only partial. However, knowledge of the PRR is crucial for application of
the clustering method and, as it will be shown, for revealing random and reactive jamming
too. It can be seen in Figure 4.4 that only the subgroup of nodes monitoring the node C is
able to hear the most significant amount of the traffic that is received by C and no node
is able to know the actual value of its PRR (even if no collision occurs). Collaboration of
nodes can be employed in order to refine the information about the PRR. Implementation
of nodes collaboration in the proposed IDS is discussed later in this chapter.

4.4 Clustering

The clustering method is used for detection of both selective forwarding and jamming at-
tacks. It customizes the neighbour-based detection technique for the CTP for which different
traffic loads are typical for nodes positioned at different levels of the tree.

4.4.1 Selective forwarding

The detection of selective forwarding can be implemented using Rule 4.4 defined in the
previous section. A naive approach is to apply the rule for every node in the set of the
statistics. If the rule is passed by the given inputs, the node is announced as malicious.
However, due to ambiguous collisions, nodes are considered to drop packets even if this is
not the case and hence the number of false positives might be high.

The naive method described above was implemented and simulated on a network of 224
nodes set to low gain mode monitoring with the threshold of -88 dB. A node in this configu-
ration had approximately 28 neighbours, however, only the subset of 20 of these neighbours
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Figure 4.4: No IDS agent knows the actual PRR of the node C

with the highest PRRs was monitored due to the limited memory space and computational
power of a node. Nodes sensed the temperature using their sensors and sent the measured
value to the base station every 16 seconds (it is the shortest sending period tested for the
CTP by its authors in [25]). No attackers were involved in the network. Detections were
held every 304 seconds (τ ) and tested the selective forwarding attack having δPDR set at
10 %. This means that if the common dropping ratio is d % in a node’s neighbourhood, the
node is allowed to drop up to d+ 10 % of packets.

Six detection rounds were evaluated in 10 simulations. The first detection round always
provided significantly worse results than the other detection rounds due to the inconsis-
tency of a network flow which is caused by the creation and stabilization of the CTP tree.
If only the results of the other five detection rounds are averaged, the detection technique
outputs 22.4 false positives accusing 7.32 different nodes as malicious per detection round.
The averaged results of the 10 test rounds can be seen in Figure 4.5 and are referred to as
normal detection.

The results are quite unsatisfying. In order to decrease the number of false positives,
δPDR could be increased. However, this would have negative effect on the number of false
negatives (especially in the case of attackers that drop only a minor part of the traffic routed
through them).

We should take into account that for the nodes lying at different levels of the CTP tree,
PRRs differ significantly even if they are spatially correlated. Furthermore, PSR, PFR and
hence PDR are implied by the value of PRR. After analysing traffic flowing via nodes that
are falsely announced as malicious and the traffic in their neighbourhood, we may identify
that there are usually three groups of nodes in some neighbourhood. There is a group of
nodes receiving the highest amount of traffic (approximately 1300 packets per node) hav-
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Figure 4.5: Normal and clustering detection of selective forwarding in a CTP network com-
parison

ing a lot of messages forwarded and some being dropped (we refer to packet dropping
according to the IDS observation which does not necessarily mean the actual dropping of
the packet only that the IDS did not observe the packet being forwarded). Then, there is
a group of nodes which receives just a fraction of the number of messages (approximately
280 packets per node) received by the first group. These nodes do not tend to drop so many
packets as the previous group. The last group could be defined as nodes that are not for-
warders or forward just a very small amount of messages (approximately 100 packets per
node). It is important to note that if the IDS notices such a node to drop just a couple of
packets, the percentage of the dropped packets goes quite high.

We conclude that it might be convenient to apply the detection rule and compute the
centre values over the first and the second group separately (as the nodes within each group
are more correlated) instead of doing so over the whole set of neighbours. We do not need
to evaluate nodes from the third group as they are not supposed to forward significant
amounts of traffic so they are not of any interest to the attacker. We implement this idea
using the k-means clustering method [29] with k set to 3, hence we refer to it as clustering.
For the case of selective forwarding, clustering is done according to the nodes’ PRRs.

We define ai’s clusters as the subsets Cik (k = 1, 3) of the set of neighbours N(ai) =
{ni1, ..., nimi}. At the same time, N(ai) =

⋃
Cik and ∅ =

⋂
Cik. The size of the cluster Cik is

referred to as mCik
and the members of Cik can be addressed by Cik(n) where n = 1,mCik

.
Then, the detection rule for selective forwarding is as follows:

Rule 4.5: Selective forwarding attack (clustering)
PDR(nij)
PFR∗(nij)

−AV G( PDR(Cik(1))
PFR∗(Cik(1)) , ...,

PDR(Cik(mCik
))

PFR∗(Cik(mCik
))) > δPDR ∧ nij ∈ Cik ∧ k > 1

The sets of statistics of all the detection rounds gained from the simulations described in
the paragraphs above are used to obtain results of detections that employ the described
clustering method (different results would be gained if the simulations were run again). The
average number of nodes in the first and the second cluster was 4. The cluster containing
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the nodes which forward the least part of the traffic had an approximate size of 10 nodes. As
predicted, we achieved the lowering of the number of false positives (from 22.4 to 11.4) and
the number of nodes falsely announced as malicious is lower (3.02 nodes opposed to 7.32)
when clustering was used for the detection (again, averaged values are computed from all
the detection rounds but the first one). The comparison of results can be seen in Figure 4.4.
Furthermore, the results did not fluctuate and the detection with clustering achieved better
result in every single detection round of every simulation.

Detection using clustering becomes a part of a default configuration of the proposed IDS
when installed on networks operating the CTP. It is possible to turn off this feature when
needed. There is no need to use clustering for the detection in networks with an aggregation
protocol because the nodes in these networks should receive and send approximately the
same amount of traffic.

4.4.2 Jamming

The motivation for searching for more advanced techniques for revealing jamming is the
same as in the previous section for the case of selective forwarding. Nodes at different levels
of the CTP tree send different amounts of traffic even though they lie close to each other. If
we consider the network from the simulations described in the previous section, it is com-
mon that the PSRs of the 20 neighbouring nodes vary from 1,000 to 20 and for some nodes it
even goes up to 3,000 or 4,000 (still having leaf nodes with 20 packets sent per the detection
period in the neighbourhood).

4.4.2.1 Deceptive jamming

Firstly, we consider deceptive jamming where the jammer is sending packets one after an-
other without considering the medium access (MAC) protocol. In this scenario, nodes that
are jammed are the ones within the radio range of the jammer. However, their effort to reach
the idle medium grows exponentially and hence they may paralyse their neighbours as well.
Furthermore, they are not able to hear any other messages from other nodes because of the
jamming. If the average value of all the PSRs in the set of the statistics gathered by the
IDS were computed, the number of false positives would be high in the case there were no
jammers in the network (nodes which forward 4,000 packets per detection period would
be announced as the jammers). Clustering will be used to differentiate the group of nodes
which detection will be held on. This will be the union of the two clusters of the nodes
having the highest PSRs. The clusters (created according to the nodes’ PSRs) are joined
together because their average sizes are quite small (2.5 and 2.7 nodes). The other cluster of
the nodes whose PSRs are low will not go through the detection (approximately 13 nodes
in this cluster). The detection rule for the deceptive jamming, Rule 4.2 stated in Section 4.3.2.,
can be reformulated as stated below:

Rule 4.6: Deceptive jamming attack (clustering)
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PSR(nij)−
AV G(PSR(Ci1(1)), ..., PSR(Ci1(mCi1)), PSR(Ci2(1)), ..., PSR(Ci2(mCi2))) > δPSR

∧ nij ∈ Ci1 ∪ Ci2

10 simulation tests were run to identify the number of false positives for the case of revealing
deceptive jamming using clustering disabled and clustering enabled detections. The config-
uration of the network and the IDS was the same as in the previous section. δPSR was set to
2,000 packets. It should be noted that a deceptive jammer in used simulation configuration
produces up to 60,000 messages per detection round.

The achieved results (the average of all detection rounds but the first one) were 5.78 false
positives in contrast to 23.56 (when clustering was not used). Approximately less than one
node (0.78) per test round was announced as malicious when clustering was used (it was
1.14 in the other case). The results per detection round can be seen in Figure 4.6.
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Figure 4.6: Normal and clustering detection of deceptive jamming in a CTP network com-
parison

4.4.2.2 Random jamming

We would like to be able to detect another type of jammer as well. It is said to be more
convenient as it injects packets into the traffic only at the time when other nodes are trans-
mitting - a reactive jammer. Random jamming is quite similar, a jammer transmits randomly
over time (not obeying MAC protocol) and so it happens to collide at least with some of the
traffic. We focus on random jamming in our simulations. However, the method proposed
here should be able to reveal reactive jamming too.

Although a random jammer does not create a heavy amount of redundant traffic, we
may assume that the messages which are sent by this jammer are not the forwarded mes-
sages based on some messages received by the attacker from its CTP children. Hence, if a
percentage ratio of received to sent messages is computed, it should be significantly lower
in case of a malicious node. A new rule is defined for revealing random jamming based on
so called received to sent ratio:
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Rule 4.7: Random jamming
PRR(nij)
PSR(nij)

−AV G(PRR(ni1)
PSR(ni1) , ...,

PRR(nimi
)

PSR(nimi
) ) > δPRR

PSR

Rule 4.7 could be used for detecting deceptive jamming too. However, as it will be shown
later, this rule introduces much more false positives than the one defined for revealing de-
ceptive jammers (hence, it is better to have a separate and very effective rule (Rule 4.6) for
this case).

When revealing random jamming, clustering is employed again. We search for nodes
producing some amount of messages which causes collisions. Hence, we cluster the set of
the statistics according to the PSRs of its members and exclude the nodes sending the least
amount of packets from detection (approximately 13 nodes). Furthermore, the two clusters
with the neighbours with the highest PSRs are joined together (the sizes of these clusters
are 2.5 and 2.7 nodes on average). Otherwise separate clusters would be too small and an at-
tacker having its received to sent ratio low would influence the common received to sent ra-
tio heavily. In such a case, the attacker might be evaluated falsely negative because it would
be common to have low received to sent ratio in its cluster. Simulations were performed
again the same way and in the same configuration as described in Section 4.4.1 which was
dedicated to the selective forwarding attack. δPRR

PSR
was set to 65 %. No attacker was involved

in the network. Elimination of the false positives and nodes falsely accused as malicious by
using clustering is confirmed again as shown in Figure 4.7. Rule 4.7 is adapted to clustering
as follows:

Rule 4.8: Random jamming attack (clustering)
PRR(nij)
PSR(nij)

−AV G(PRR(Ci1(1))
PSR(Ci1(1)) , ...,

PRR(Ci1(mCi1
))

PSR(Ci1(mCi1
)) ,

PRR(Ci2(1))
PSR(Ci2(1)) , ...,

PRR(Ci2(mCi2
))

PSR(Ci2(mCi2
)) ) > δPRR

PSR

∧ nij ∈ Ci1 ∪ Ci2

As mentioned before, the IDS does not know the exact PRRs about its neighbours. Un-
fortunately, the known values are often not even close to it. Knowledge of the PRRs of
node’s neighbours is a precondition for the application of the method described in the pre-
vious paragraph. The collaboration component is described in the next section. It is imple-
mented in order to gain more accurate information of the node’s neighbourhood.

4.5 Collaboration

Collaboration is used for the information exchange between the IDS agents running on dif-
ferent nodes. It is implemented in order to extend the number of neighbours passed for
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Figure 4.7: Normal and clustering detection of random jamming in a CTP network compar-
ison

detection. This is needed when there is not enough nodes monitored by a single IDS agent
(the network density is low) and it helps to reveal node’s other neighbours which cannot be
monitored directly as they are two hops away from it. Hence, it collaborates with its 1-hop
neighbours – neighbouring nodes exchange the statistics they gathered. Alternatively, this
can be done with nodes that are two or more hops away from the node running the IDS
agent. This means of collaboration may be used for detection in sparse networks operating
the CTP as well as an aggregation protocol. However, collaboration might be needed even
in dense networks, as mentioned in the previous section, for example when the IDS needs
to know the most exact information about the PRRs of its neighbouring nodes. In this case,
it is implemented in order to refine actual statistics of the IDS agent.

Collaboration has both its pros and cons. If we consider a network with attackers, in-
formation received from neighbours might be influenced by their presence. A reputation
scheme should be build in order to filter such information. We will not implement any rep-
utation scheme protocol in this work and will assume that received information is correct.
Unfortunately, even then, collaboration may have negative effects. Presence of inaccurate
statistics is increased after exchanging such statistics. On the other hand, statistics might be
refined based on the knowledge of node’s neighbours. According to our aim, we need to de-
cide if the IDS should prefer information coming from its neighbouring nodes (which might
be richer in some context) or its own knowledge. Furthermore, received statistics can be
joined together with node’s own statistics or can be used only to refine them. In the second
case, the number of neighbours would not grow.

The collaboration component, as designed in this work, starts exchanging messages at
the moment when detection is supposed to occur (detection is rescheduled after collabo-
ration has finished). The local statistics are stored in the collaboration database and so the
statistics component can be restarted to gather new statistics. Collaboration messages are
broadcast to 1-hop neighbours in several packets, each describing two monitored nodes. On
receiving such a message, the IDS agent stores the records the message is carrying into the
collaboration database. The exchange message period ends after predefined time. After this
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time, nodes discard any collaboration messages until the actual detection round finishes. All
the received statistics are joined together and with the IDS agent’s own ones.

It is common that several IDS agents running on neighbouring nodes monitor the same
node. Several records describing the same node can be found in the collaboration database
then. The one with the highest PRR is kept in our IDS. It is presumed that a node usually
knows only about part of the messages received by its neighbour (see Figure 4.4). However,
it cannot know about messages that were not sent to its neighbour. Hence, the node which
heard the highest amount of the packets is the one possessing the most accurate information
about the neighbour’s PRR. The resulting set is passed to the detection engine for detection.

There is 2-hop neighbours collaboration implemented too. It is done in two rounds. The
first one is the same as described in the previous paragraph. When having all the statistics
joined together, they are said to be the statistics gathered by the actual IDS agent and sent
out again the same way. The proposed IDS comes in three modifications – the one without
collaboration and two with it – namely the 1-hop and 2-hop collaboration.

We would like to know whether the collaboration component eliminates occurrence of
false positives when revealing random jamming. Assumption is that it may do so due to
more precise information about the PRRs of the monitored nodes. However, the number
of false positives may be multiplied by accepting falsely alert positive statistics from other
nodes at the same time. Simulations of 224 nodes as described in Section 4.4.1 were executed
having δPRR

PSR
set to 60 % (hence a node is allowed to have the received to sent ratio of 60 %

less then it is common in its neighbourhood). It was found out that the number of false
positives decreased to 32.66 (from 69.42 when collaboration was not used). It may look like
the threshold is too vague, however, it is chosen empirically based on observations about
received to sent ratios of non-malicious nodes. The number of nodes announced was 16
instead of 31.52 for the stand-alone detection. The comparison of the two approaches per
each detection round can be seen in Figure 4.8.
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Figure 4.8: Stand-alone and 1-hop collaboration detection of random jamming in a CTP net-
work comparison

Unfortunately, even when the proposed collaboration component was used, the num-
ber of false positives is quite high and hence detection results are inaccurate. The aim of
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the collaboration component was to gain richer information about the number of received
packets by the node’s neighbours. This was achieved just partially. If additional information
about packets’ origins is stored for each packet, the statistics received from collaborating
neighbours could be joined together in better fashion and detection results might get bet-
ter too. The actual PRR of a node would be composed of all the PRRs gained using the
collaboration component instead of taking the maximum value (current approach). Unfor-
tunately, this solution is too expensive as the node’s unique address is 16 bits long and there
are twenty neighbours being monitored. Memory requirements of storing the PRRs of the
neighbourhood of the node running the IDS would increase from 0.4375 kB to 140 kB which
is not bearable. Even if a hash table is used, memory of size of 28 kB would be needed.
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Chapter 5

Simulations and results

This chapter starts with brief instructions how to deploy our intrusion detection system on
Tmote Sky hardware or TOSSIM simulator. Description of performed simulations in net-
works involving malicious nodes and the results from these simulations follow. Depiction
of several optional IDS’ settings and their influence on performance of the IDS can be found
in this chapter as well.

5.1 Deployment of the IDS

The proposed IDS can be incorporated into any wireless sensor network application. How-
ever, its performance depends on the configuration of the IDS and the actual network. The
IDS can be configured before compiling by defining macros in the application’s Makefile.
Description of these configuration options can be found in the Makefile.template (dis-
abling and enabling of clustering, collaboration or low gain monitoring). Furthermore, the
detection period, low gain monitoring threshold, maximum number of monitored neigh-
bours and thresholds used in detections can be set in Ids.h.

We only mention here that disabling hardware address recognition is necessary for the
IDS to function. Otherwise the transceiver would reject packets that are not destined to
it, hence the IDS agent would not be able to monitor its neighbourhood. Disabling hard-
ware address recognition can be done by adding the following rule to the application’s
Makefile.

CFLAGS += -DCC2420_NO_ADDRESS_RECOGNITION

The path to the IDS source code has to be added there too:

CFLAGS += -I$(IDS_DIR)

Finally, the application can be compiled for Tmote Sky mote or for simulating using
TOSSIM. After a node is booted, the IDS starts up – data acquisition of network traffic begins
and the first detection is scheduled. Detection and AlertDb channels can be added in
order to see detection outputs and alerts while simulation is running in TOSSIM. This is
done by calling addChannel(channel, output) on the Tossim object in C++ or Python
source code which manages the simulation. File pointer or standard output can be provided
as the output parameter.

36



5.2. SIMULATING INTRUSION DETECTION IN NETWORKS WITH ATTACKERS

C++ Tossim* t = new Tossim(NULL);
t->addChannel("Detection", stdout);

Python >>> t = Tossim([])
>>> t.addChannel("Detection", sys.stdout)

5.2 Simulating intrusion detection in networks with attackers

Results from simulations of networks including malicious nodes are summarized in this
section. Firstly, simulations of a network with an aggregation protocol are described. CTP
operating network simulations follow.

5.2.1 Networks with an aggregation protocol

The way data is aggregated is not matter to the functionality of our IDS. Hence, it was suffi-
cient to alter the CTP for the purpose of simulating an aggregation protocol. The forwarding
engine was disabled and so each node sent only its own values up the network tree. As the
number of packets sent in the network was lowered, less retransmissions were needed and
less collisions occurred while monitoring.

A network of 224 nodes set to low gain mode monitoring with the threshold of -88 dB
was used for simulations. A node in this configuration had approximately 28 neighbours,
however, only the subset of 20 of these neighbours with the highest PRRs was monitored.
Nodes sent the measured values from their sensors to the gateway every 8 seconds. The
detection period τ was set to 304 seconds. The collaboration component was not used.

Six detection rounds were evaluated in 5 simulations for each attack. We wanted to know
the number of false positives, nodes falsely accused as malicious, false negatives and num-
ber of alerts about malicious nodes. Five attackers were involved in each simulation. We
tested hello flood, jamming and selective forwarding attacks. The threshold values differen-
tiating malicious and trusted nodes were defined empirically.

The terms false positives, false negatives, nodes falsely accused as malicious and the
number of alerts about malicious nodes have already been explained in Section 4.3.

5.2.1.1 Hello flood attack

A hello flood attacker was implemented as a node whose signal strength is 40 dB stronger
than it would be if a normal node was used situated at the same place in the network. δSS

was set to 30 dB which means that a node having its SS higher by more than 30 dB than the
average value for its neighbourhood will be announced as an attacker.

The IDS was able to recognize all of the attackers and produced 92 to 98.2 alerts on aver-
age per detection round having 0 false positives. 824.6 to 966.2 false negatives were recorded
on average per detection round. This is understandable. Messages from an attacker are re-
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ceived by its neighbourhood with an extremely strong signal and nodes in this neighbour-
hood are able to reveal the attacker. However, there are a lot of nodes which are spatially
far away from the attacker still receiving its messages with the SS value not so high any
more. These nodes cannot point out the malicious node as the attacker. Furthermore, the
radio range of the attacker is big and so there are plenty of such nodes.

5.2.1.2 Jamming

Five jammers were sending messages randomly at least every 1.5 seconds but not more
often than every second. All of them were successfully revealed by their neighbours when
δPSR was set to 100 messages. This means that the PSR of a node cannot be higher by more
than 100 messages from the average PSR of the node’s neighbourhood. The attackers were
announced in 71 to 78 alerts on average in every detection round. No false positives and no
false negatives occurred.

5.2.1.3 Selective forwarding

In our scenario, a selective forwarder is a node which omits its every other burst period.
The IDS revealed all of the five selective forwarders having produced no false positives and
false negatives. Malicious nodes were announced using 80 to 83 messages on average per
detection round. δPSR−MIN was set to 10 packets.

5.2.2 Networks with the Collection tree protocol

The simulation environment for the CTP operating network is very similar to the one de-
scribed in the section dedicated to networks with an aggregation protocol. The only differ-
ences are that nodes send messages containing values from their sensors every 16 seconds
(the shortest sending period tested for the CTP by its authors in [25]) and, of course, the
CTP is used to deliver these messages to the gateway. Clustering as it was described in the
previous chapter is used for detection of deceptive and random jamming and selective for-
warding attacks. Ten tests will be provided for each attack this time as the results tend to
fluctuate more. Results from simulations of networks with hello flood attackers, deceptive
and random jammers and selective forwarders will be shown in this section. The results
are stated as average values per detection round excluding the very first one which usually
provides quite bad detection results as the CTP network tree is not stable at this time yet.

First of all, we tried to estimate appropriate threshold values by running simulations
without attackers. We focused on eliminating the number of false positives when setting
the thresholds. Ten simulations in the described configuration were run with no attackers.
The output of these simulations was used to find out the occurrence of errors introduced
by individual attack-revealing methods. For the case of hello flood attack, the error is the
number by which node’s SS differs from the signal strength centre value. We define the
error as the difference in node’s PSR and sending rate centre value in case of deceptive
jamming. The difference in the node’s packet dropping ratio and common dropping ratio
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and the difference in the node’s received to sent ratio and the common received to sent ratio
are the errors in case of selective forwarding and random jamming respectively. The results
can be seen in Figure 5.1. According to these results we define individual thresholds (δSS ,
δPDR and δPRR

PSR
) for each of the relevant type of an attack.
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Figure 5.1: Occurrences of errors when detecting attacks (Error-axis gauge is in red for the
case of deceptive jamming, in black for the other attacks)

5.2.2.1 Hello flood attack

The implementation of the hello flood attacker is the same as in the case for the networks
with an aggregation protocol. δSS was set to 22 dB this time (see Figure 5.1). The IDS was
supposed to reveal 5 attackers and succeeded in detecting all of them having no false posi-
tives at all. Attackers were announced in 244.25 warnings on average per detection round.
The number of false negatives went up extremely (754.7 on average per detection round)
again as in the case of the hello flood attack in the network with an aggregation protocol.
The explanation of this behaviour can be found in Section 5.2.1.1. The results are pictured in
Figure 5.2.

5.2.2.2 Deceptive jamming

The deceptive jammer is implemented as a node that after booting starts emitting packets
without obeying the MAC protocol of the network. After a packet’s sending procedure is
finished another packet is sent immediately. Hence no other node in its neighbourhood is
able to send a packet (other nodes either remain in the receiving mode or they are not able to
reach the medium being idle). Such a jammer creates traffic of approximately 60,000 packets
per detection period (hence it sends message approximately every 5 ms). δPSR was set to
2200 packets (see Figure 5.1).
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Figure 5.2: Detection of hello flood attack in a CTP network

Only one jammer is deployed in the network at a time because the presence of such
a jammer heavily influences the whole network. The IDS was able to identify the jammer
in approximately 10 alert messages per detection round. It produced no false positive and
approximately 1 false negative per detection round (see Figure 5.3). The existence of the false
negatives is introduced due to nodes which monitor the jammers although they are able to
hear only a small subset of packets emitted by them (e.g. they are spatially far away from
the attacker).
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Figure 5.3: Detection of deceptive jamming in a CTP network

5.2.2.3 Random jamming

The way the random jammer is implemented is the same as described in Section 5.2.1.2.
The only difference is the frequency of packet sending. The number of packets in the CTP
operating network is higher than in the one using an aggregation protocol and hence the
jammer should produce more messages too. It sends messages at least every 0.25 seconds
but not more often than every 0.1 seconds.

Five jammers were involved in the network. The IDS considers a node being an attacker
if its received to sent ratio deviates by more than 67 % (δPRR

PSR
) from the common received

to sent ratio of the cluster. Stand-alone IDS configuration was not tested at all because of
an extremely high number of false positives observed in simulations with no attackers (see
the previous chapter, Figure 4.8-a). Collaboration among the IDS agents was enabled and
statistics were exchanged with the node’s 1-hop neighbours. Two collaborating scenarios
were simulated.
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In the first one, the IDS agent used information from its neighbours only to make its
own statistics more precise. It did not adopt statistics about nodes which it did not monitor
itself. The IDS was able to recognize only 2.65 of the 5 jammers on average in this scenario
and produced 19.52 alert messages on average about them in each detection round. The IDS
output 10.09 false positives of 6.41 nodes on average per detection round. It was not able
to detect a jammer 54.3 times per detection round on average. The results are pictured in
Figure 5.4. Unfortunately, they cannot be considered satisfying. As mentioned before, this
is mostly due to inaccurate knowledge of the neighbours’ PRRs. If the IDS does not know
the accurate PRR of a trusted node, it may easily consider the node as a malicious one.
Furthermore, if there is a malicious node in the neighbourhood of nodes for which the IDS
does not know their PRRs, the common received to sent ratio of this neighbourhood will
be low. In case the common received to sent ratio is lower than δPRR

PSR
(set to 67 % in our

simulations), the attacker will not be identified.
In the case of the other simulation scenario, the IDS agent joined together all of the re-

ceived statistics. Hence the number of nodes passed to the detection was higher – approx-
imately 45. We will see that the number of false positives, falsely accused nodes and false
negatives went higher (false positives – 36.63 instead of 10.09, falsely accused nodes – 9.5 in-
stead of 6.41, false negatives – 97.09 as opposed to 54.3). However, the number of alerts and
the number of revealed attackers were also higher. The IDS was able to reveal 3.24 attackers
on average per detection round in 43.44 alert messages (2.65 attackers in 19.52 alerts in the
first scenario). The results of the second scenario per detection period can be seen in Figure
5.5.
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Figure 5.4: 1-hop collaboration detection of random jamming in a CTP network - intersection
of the exchanged statistics

5.2.2.4 Selective forwarding

Only nodes which serve as forwarders (internal nodes of the CTP tree) are able to conduct
a selective forwarding attack. The network tree may change in time and its form cannot
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Figure 5.5: 1-hop collaboration detection of random jamming in a CTP network - union of
the exchanged statistics

be predicted. In order to simulate selective forwarders in our simulation, they are chosen
randomly from subgroups of nodes that forwarded at least 300 messages during the first
detection round. The required number of forwarded messages was chosen empirically and
it ensures that there are enough nodes to choose from (21 nodes on average). And most
importantly, these nodes can be considered steady forwarders which will not tend to become
leaf nodes later during the simulation. If any of these nodes became a leaf node, simulation
would have to be restarted.

4.4 attackers on average were involved in each simulation and the IDS tried to detect
them with δPDR set to 16 %. All of the attackers were identified in each detection period and
announced by 60.6 alerts on average. 1.52 nodes were falsely announced in 8.4 false positive
alerts per detection round. The number of false negatives was 42 on average per detection
round. The stated results are an average of all the detection rounds but the first one during
which attackers were not active throughout the whole round (just after forwarding the first
300 packets). Results involving the very first detection can be seen in Figure 5.6.

Another ten simulations were performed in the same configuration but using the collab-
oration component. The number of alerts increased to 291.64. The number of false negatives
remained more or less the same (36.6). However, 1.2 trusted nodes on average per detection
round were evaluated as attackers by mistake in 41.48 warnings. Results are depicted in
Figure 5.7.

5.3 Configuration options of the IDS

Several advanced options of the IDS configuration are briefly presented here. The results
from simulations using these options are pictured in this section as well.
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Figure 5.6: Stand-alone detection of selective forwarding in a CTP network
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Figure 5.7: 1-hop collaboration detection of selective forwarding in a CTP network

5.3.1 Sparse networks

If the IDS is deployed in a sparse network, several problems have to be overcome. First of
all, each node has less neighbours and it may happen that the set of nodes that the IDS
agent is able to monitor is very small. Then, it cannot serve as a good statistical sample for
determining the centre values vector or for computing the clusters. The solution proposed
here is to let the nodes exchange their gathered statistics data and use the unions of them to
perform detections.

We simulated this scenario in the configuration described before but different network
topology was used. A node had approximately 7 neighbours in this topology (24 nodes had
only 3 or less neighbours). After one hop exchange every node had a set of statistics of
approximately 24 nodes on average to be passed to the detection component. The results of
selective forwarding detection using 1-hop collaboration in a CTP operating network can be
seen in Figure 5.8. The IDS was able to reveal all of the attackers in every detection round.
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Figure 5.8: 1-hop collaboration detection of selective forwarding in a sparse CTP network

5.3.2 2-hop collaboration

So far, only simulation results of 1-hop collaboration have been summarized in this chapter.
However, the IDS also offers 2-hop collaboration. It should be noted that transmitting over
the radio is the most costly operation that motes perform. However, the number of packets
transmitted in a network with the CTP is not significatnly increased by employing 2-hop
collaboration. The description how the 2-hop collaboration is implemented is described in
the previous chapter.

Ten simulations of the network operating the CTP were averaged per detection round
and results of selective forwarding attackers detection can be seen in Figure 5.9. The descrip-
tion of the network and the IDS configuration can be found in Section 5.2.2. In comparison
to the 1-hop collaboration results described in Section 5.2.2.4, the number of false positives is
higher (62.28 in contrast to 41.48) and the number of false negatives is lower (26.4 instead of
36.6). The number of nodes falsely accused remains approximately 1. The number of alerts
increased significantly to 467.48 (291.64 for the case of 1-hop collaboration).
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Figure 5.9: 2-hop collaboration detection of selective forwarding in a CTP network
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Results from revealing attacks using stand-alone detection in data aggregation protocol
operating networks can be considered very good for all types of attacks. Hello flood and
deceptive jamming attacks conducted in networks with the CTP can be revealed reliably
by stand-alone detection too (as the results from Section 5.2.2 shows). Hence, only results
from the 2-hop collaboration of random jamming detection will be depicted in this section
(Figure 5.10 and 5.11). Again (see Section 5.2.2.3), two means of treating the received statis-
tics were simulated. If the results are compared with the 1-hop collaboration detection, no
better performance can be seen in using the 2-hop collaboration when the local statistics are
only refined by the received ones. However, the 2-hop collaboration and union of statistics
brought results which are better in every fashion than any other simulated results. Most im-
portantly, the number of revealed attackers increased to 4.13 (there were 5 attackers included
in each simulation).
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Figure 5.10: 2-hop collaboration detection of random jamming in a CTP network - intersec-
tion of the exchanged statistics
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Figure 5.11: 2-hop collaboration detection of random jamming in a CTP network - union of
the exchanged statistics
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5.3.3 Detection interval length influence

One of the possible options in the IDS configuration is to set the length of the detection inter-
val τ . It may be the case that the interval is needed to be short so any intrusion is announced
as soon as possible. However, this may have negative influence on the detection results. We
illustrate this in Figure 5.12 where averaged results of 10 simulations of the CTP operating
network with no attacker included are depicted. As the graphs show, the number of false
positives (Figure 5.12-a) and falsely accused nodes (Figure 5.12-b) when detecting selective
forwarding grows as τ is set shorter. The same network model was used as described in the
previous sections. τ was set to 34, 304 and 608 seconds.
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Figure 5.12: Detection interval length influence on detection of selective forwarding in a CTP
network
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Chapter 6

Conclusion

We have dealt with the neighbour-based intrusion detection technique in this work. In order
to design a generic IDS capable of revealing several types of attacks at a time, symptoms and
statistics have to be defined for these attacks. This work provides a study of several attacks
which can be conducted in WSNs and describes possible statistics which can be used to
reveal them. It is pointed out that only some of them are appropriate for the neighbour-
based detection technique as the technique was defined in [13, 12].

A neighbour-based IDS was designed, implemented and evaluated in this work. It was
programmed to detect different types of jammers, hello flood and selective forwarding at-
tackers. It was shown that detection in networks with an aggregation protocol provides very
good and stable detection results. The IDS was able to reveal all of the attackers in every sin-
gle simulation producing no false positives or false negatives in most cases.

Furthermore, we were able to enhance the IDS to be able to detect mentioned attackers in
networks with the CTP as well. We presented the limitations of basic detection methods and
described how clustering can be used in order to achieve better performence. By employing
clustering method, we decreased the number of false positives and false negatives almost
to 0 in case of detection of deceptive jamming. The IDS was never able to reveal all of the
random jammers deployed in the network. The best detection results when the number of
false positives was below 10 and at the same time approximately 4 random jammers out of
5 deployed were revealed was achieved only by enabling 2-hop collaboration. Detection of
selective forwarding in CTP networks provided approximately 60 accurate alerts revealing
all the malicious nodes (5 of them) and accused falsely only less than 2 nodes on average.
Even though the number of false negatives was quite high (approximately 42), it was below
the number of the accurate alerts.

The IDS comes in three modifications - stand-alone, 1-hop and 2-hop collaboration. We
described several ways how to deal with information coming from the node’s neighbours.
Collaboration can be used in order to refine the statistics gathered by the IDS agent. How-
ever, it can also be used when the IDS is deployed in a sparse network where the number of
monitored nodes by a single IDS agent is too low. IDS agents share their knowledge of their
neighbourhoods and gain information about their 2-hop or 3-hop neighbours in such a case.

It should be noted that an important advantage of the neighbour-based detection tech-
nique is that it requires no prior training. However, the IDS has to be configured before it
is deployed in a specific network. The automation of these configuration settings could im-
prove the usability of such IDS in the future. Study of advanced clustering techniques could
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6. CONCLUSION

enhance the current solution and provide better detection results in networks without an ag-
gregation protocol. However, this is left for future work in this field.
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Appendix A

Energy consumption estimation using PowerTOSSIM

Sensor nodes run on batteries and so the evaluation of software’s energy consumption is
important. PowerTOSSIM was originally developed at Harvard University [10] and was
dedicated for TinyOS 1.x networks. It was based on the energy model of mica2 mote which
uses the CC1000 radio chip. Later, it was redesigned for TinyOS 2.x [30]. There is a version of
PowerTOSSIM for TinyOS 2.x available from Trinity College Dublin researches which used
the micaZ mote with the CC2420 radio chip [31]. We used this version of PowerTOSSIM
to estimate power consumption of our intrusion detection system (the Tmote Sky node for
which our IDS can be compiled uses the CC2420 radio chip).

A.1 Deployment in PowerTOSSIM

PowerTOSSIM downloaded from [32] is dedicated for TinyOS 2.x simulations. Our IDS is
written for TinyOS 2.1.0. Even though these versions are compatible, some of the features
may not be available.

After uncompressing the downloaded archive of PowerTOSSIM, there are three direc-
tories obtained – tos, postprocessZ and powercurses. The first one is a replica of the
directories and files that were modified inside the TinyOS 2.x tree. They can be hard-copied
into TinyOS’ installation or included at the compile time by defining appropriate rules in
the application’s Makefile. After accomplishing this part, PowerTOSSIM can be consid-
ered as installed. In order to record power consumption of a simulation, ENERGY_HANDLER
channel needs to be added to the simulation source code. Once the output of this channel
is obtained in a file, a post-processor can be used to summarize the energy consumption
results. It is located in postprocessZ directory. In order to see all of its available options,
the python postprocessZ.py command can be run in the shell. PowerCurses is a soft-
ware for graphical representation of nodes’ energy consumption and can be found in the
last directory.

A.2 Energy consumption simulations

We would like to know the energy consumption introduced by running our intrusion detec-
tion system on every node of a network. The most expensive operation that nodes perform
is communication using the radio. Therefore, we will be interested in comparing energy
consumption of the IDS with and without the collaboration.
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A.2. ENERGY CONSUMPTION SIMULATIONS

We ran simulations of stand-alone modification of the IDS, 1-hop collaborating modifi-
cation of the IDS and a simulation of a network without the IDS installed. The simulated
networks were composed of 224 nodes that sensed the temperature every 16 seconds and
sent the measured values using the CTP to the gateway. Nodes were set to the low gain
monitoring mode with the threshold of -88 dB. It should be noted that this should positively
influence the energy consumption even in the case when the IDS agent is not running on a
node. The detections (when the IDS was installed) were held every 304 seconds and 6 such
detections were simulated during 2001 seconds. We only mention that running the post-
processor on the output of such a simulation takes several hours (Intel Core Duo 1.7 GHz, 1
GB RAM). The energy consumptions results can be seen in Table A.1.

CPU (mJ) Radio chip (mJ) Messages sent
no IDS installed 117.43 117776.26 670
stand-alone IDS 117.43 117774.23 769

collaborative IDS 117.43 117774.75 731

Table A.1: Average sensor node energy consumption

The simulated energy consumption of a node on average seems to be the same for all
the tested scenarios. This was not expected. The IDS is believed to consume a lot of energy
because of its requirement to disable early dropping of packets which are not destined to
the node running the IDS agent (this is done by disabling address recognition in the appli-
cation’s Makefile). Unfortunately, the TOSSIM network model used for the simulations of
our IDS cannot be set to early packet dropping mode. Hence, we programmed this feature
for TOSSIM. It may be the case that PowerTOSSIM is not compatible with this change and
hence the power consumption of the radio chips remains the same even when the IDS is
turned off.

Almost no difference in energy consumption was found when comparing the stand-
alone and 1-hop collaborating modifications of the IDS. This might be due to a huge number
of messages sent when the CTP is used to deliver packets to the base station. Furthermore,
the number of messages differs for every simulation.

From another point of view, we may estimate power consumption of the collaboration
component in means of what part of the total radio chip’s consumption it represents. Five
simulations of the IDS having its collaboration component enabled were performed. Until
the beginning of the sixth detection, there were approximately 170,000 packets sent in to-
tal. Only 6,700 messages (less than 4 %) were produced by the collaboration component.
Hence, the power consumption of the collaboration component is 4 % (the CPU energy con-
sumption is not taken into account because the total CPU consumption in the simulations
performed with PowerTOSSIM was only 0.01 % of the total node’s energy consumption).
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