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GENERAL INTRODUCTION

This book examines the competing world systems put forward by
Newton and Leibniz in the late 1680s and their reception up to the
beginning of the eighteenth century. The two main published texts of my
story are Philosophiae Naturalis Principia Mathematica of 1687, and
Tentamen de Motuum Coelestium Causis of 1689, namely Leibniz’s
article in response to Newton’s theories about the motion of celestial
bodies.

Over the last few decades Newton’s itinerary to the Principia has been
meticulously reconstructed through the study of his private manuscripts
and correspondence; the new picture which has emerged has enriched
enormously our understanding of his work in many aspects, ranging from
the interaction between mathematics and mechanics to the role of
alchemy and theology. The formation of Leibniz’s techniques and ideas
about planetary motion is extremely well documented in an exciting
series of previously unknown manuscripts which are published and
analysed here for the first time. Leibniz’s manuscripts, dating from the
late 1680s, include his first annotations to the Principia and his first
attempts to construct an alternative theory; they are among the most
extensive documents we possess on the early reception of Newton’s
masterpiece, and while providing us with deeper insights into Leibniz’s
thought and strategy, allow us to gain a better understanding of Newton’s
theory as well. They constitute stimulating material for reconsidering the
issues of equivalence between rival theories, mathematical formulations
and physical interpretations, private research versus publication,
intellectual property, and priority in the late seventeenth century. These
issues are inextricably interwoven with the dispute about the world
system between the Cambridge Lucasian Professor and the Court
Librarian and Councillor in Hanover.

The names of the protagonists of this war are immediately associated
with the controversy over the invention of the calculus, of which they are
now considered to be joint and independent inventors, Newton in
1665-6 and Leibniz in 1675. With regard to the theory of planetary
motion, however, the question of priority and plagiarism requires a
different answer. In order to introduce this issue, I start from a curious
prehistory.

Leibniz took charge of his duties as librarian to the Duke of Hanover
at the end of 1676. He reached Germany from Paris via London, having
spent the previous four years in the French capital in contact with the



2 General introduction

most advanced philosophical and mathematical circles in Europe. Soon
after his arrival, in the first few months of 1677, he wrote an important
letter to his friend the Jesuit Honoré Fabri containing an essay on
cosmology, the role and propagation of light, elasticity, cohesion, gravity,
and planetary motion. In the letter Leibniz stressed the fertility of a way
of philosophizing without hypotheses, in which experiments, geometry,
and laws of mechanics are conjoined. In his view this approach was about
to bring sweeping and breathtaking advancements of knowledge: ‘And 1
doubt not that if a certain number of selected people pursued the matter
in earnest, so many things are in our power, that with the work of one
decade it would be possible to obscure the efforts of all past centuries.!

Exactly one decade after Leibniz’s letter to Fabri, Newton’s Principia
appeared in print. Despite the superficial similarity in the language with
regard to experiments, mathematics, and mechanics, Leibniz had good
reasons for being enthusiastic and worried at the same time. His early
study of Newton’s masterpiece can be reconstructed on the basis of three
documents: his annotations or Marginalia in his own copy of the
Principia, first made available in 1973; two sets of Excerpts from several
propositions, including some comments, first published in 1988;? his
working sheets or Notes, published here for the first time. The Notes are
the most important of the three: they complement and clarify several
cryptic remarks in the Marginalia, and constitute at the same time the
starting point for a series of manuscript essays on planetary motion.
Although Leibniz admired the wealth of results attained by Newton, he
also strongly objected to the rejection of vortices carrying the planets and
to the lack of a physical explanation for gravity. These two features
affected the very criteria for studying nature in a mathematical fashion
and were in contradiction with some fundamental pillars of Leibniz’s
philosophy. Hence the need of a reply in which Newton’s extraordinary
mathematical achievements could be reconciled with a physical theory
based on vortices. That which he had taken for granted in the letter to
Fabri, needed now to be fully spelt out and developed. Crucially, Leibniz
did not present his essay as a reinterpretation of Newton’s masterpiece;
rather, he claimed that he had read only a review of the Principia, not the
book itself, and that the review had stimulated him to publish some ideas
he had conceived previously. His double claim will be examined
presently.

' LSB, 111, 2, pp. 119-48, esp. pp. 142-3, Leibniz to Fabri, dated May 1677: ‘Neque
dubito si homines aliquot lecti serio agerent, quae in nostra potestate sunt, unius decennii
opera omnium retro seculorum labores obscurari posse.

2 G. W. Leibniz, Marginalia in Newtoni Principia Mathematica, ed. E. A. Fellmann (Paris,
1973); D. Bertoloni Meli, ‘Leibniz’s Excerpts from the Principia Mathematica®, AS, 45, 1988,
pp. 477-504; hereafter Marginalia and Excerpts, respectively.
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After an initial response, interest in the Tentamen vanished for longer
than a century. In the 1850s the French physicist and historian Jean-
Baptiste Biot published a long essay-review of John Edleston,
Correspondence of Sir Isaac Newton and Professor Cotes (London, 1850).
The book contained Newton’s attack on the Tentamen, which was fully
endorsed by Biot. He severely criticized the essay on the assumption that
universal gravity was a ‘simple fact’ and vortices were superfluous.
However, while stating that Newton had completely demolished
Leibniz’s essay, he did not examine either the contents of the Tentamen
or any of Newton’s criticisms. Biot also claimed that there was not
sufficient evidence to accuse Leibniz of plagiarism. The same position
was taken, not without some regret, by Lord Brougham and Edward
Routh in their Analytical View of Sir Isaac Newton’s Principia, again
without discussing the matter in any detail.> More recently, René Dugas
has examined Leibniz’s text and defended the originality of his reasoning.
This, however, did not prevent the French historian from expressing
some doubts about Leibniz’s ‘bonne foi’ with respect to Newton. By far
the most perceptive and accurate account of Leibniz’s theory has been
provided by Eric Aiton. Among other recent interpreters I wish to
mention Alexandre Koyré, who has defended Leibniz’'s ‘good faith’,
claiming that if Leibniz had seen the Principia, he would not have made
so many mistakes. Apart from the fact that some of these mistakes are
Koyré’s and not Leibniz’s, as Aiton has convincingly shown, the
argument does not hold: Leibniz became aware of one of his errors more
than 15 years after having seen the Principia, in his correspondence with
Pierre Varignon.*

In order to appreciate Leibniz’s theory, strategy, and the dispute with
Newton in the light of the new manuscripts which were not available to
previous commentators, it is essential to start from a detailed investiga-
tion of the circumstances of composition of Leibniz’s essay and of the
code of behaviour concerning priority, intellectual property, and
publication.

* The papers by Biot were published in the Journal des Savants, 1852, pp. 133-47;217-32;
269-83 (pp. 1367 and 273-5 are on the Tentamen); see also pp. 400-3;458-70;522-35.H.
Brougham and E. J. Routh, Analytical View of Sir Isaac Newton’s Principia (London, 1855),
pp. 437-42.

4 R.Dugas, La Mécanique au XVIle Siécle (Neuchitel, 1950), p. 492. A. Koyré, Newtonian
Studies (Cambridge, Mass., 1965), appendix A, to be seen together with E. J. Aiton, ‘An
Imaginary Error in the Celestial Mechanics of Leibniz’, AS, 21,1965, pp. 169-73.1. B. Cohen,
Introduction to Newton’s ‘Principia’ {(Cambridge, Mass., 1971), p. 154; R. S. Westfall, Force in
Newton’s Physics. The science of dynamics in the seventeenth century (London and New York,
1971), ch. 6.
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Leibniz versus Hooke: establishing the code of behaviour

Priority in the seventeenth century involved a complex series of factors
and had different connotations from those with which we are familiar.
Partly as a result of such different conventions, the second part of the
century has been recently aptly characterized as ‘the golden age of the
mud-slinging priority disputes’. The usage of anagrams and sealed
depositions to secure property over an invention without revealing it, for
example, was common practice in the age of Galileo and Newton.® At a
time when journals were just beginning to appear, correspondence, and
even the disclosure in front of reliable witnesses of private manuscripts
or instruments, had considerable weight: a letter to Marin Mersenne or
to the Secretary of the Royal Society Henry Oldenburg, for example,
often had a status closer to that of a published article than of a private
communication. Today, by contrast, we tend to consider the criterion of
printed publication enshrined in the copyright act as decisive. Priority
also had a subtle relation with the prestige and credibility of an
interpretation: the ingenuity of the ‘first inventor’ went hand in hand with
the favourable reception of his work. The ‘second inventor’, by contrast,
had to protect himself from the shade of doubt about his integrity and
from the suspicion of having stolen a secret not from Nature, but from a
colleague. Intellectual priority also related to legal matters concerning
lucrative patents of technological inventions and machines, as Henry
Oldenburg, Christiaan Huygens, and Robert Hooke were well aware with
regard to the spring balance watch. But whether instruments or ideas
were involved, a central issue in disputes was the identification of the
invention or discovery: what one party presented as a major innovation
was often perceived by the rival party as a mere modification, involving
little or no skills, of well known ideas and techniques.®

5 N. Jardine, The Birth of History and Philosophy of Science {(Cambridge, 1984), ch. 2,
especially pp. 32—-4. O. Gingerich and R. 8. Westman, *The Wittich Connection: Conflict and
Priority in Late Sixteenth-Century Cosmology’, Transactions of the American Philosophical
Society, Part 7, 1988, 78, on pp. 50-69, and the essay-review by N. Jardine, ‘How to
appropriate a world system’, JHA, 21,1990, pp. 353-8, quot. from p. 353. W. Eamon, ‘From
the secrets of nature to public knowledge’, in D. C. Lindberg and R.S. Westman, eds.,
Reappraisals of the Scientific Revolution (Cambridge, 1990), pp. 333-66. On priority,
patronage, and anagrams see R.S. Westfall, ‘Science and patronage: Galileo and the
Telescope’, Isis, 76, 1985, pp. 11-30.

& The Correspondence of Henry Oldenburg, ed. and transl. by A. R. Hall and M. Boas Hall,
13 vols. (Madison and London, 1965-86), vol. I/, passim. C. MacLeod, Inventing the
Industrial Revolution. The English patent system, 16601800, (Cambridge, 1988).R. K. Merton,
The Sociology of Science (Chicago, 1973), ‘Priorities in Scientific Discovery’, pp. 286-324;
‘Behaviour Patterns of Scientists’, pp. 325-42; ‘The Ambivalence of Scientists’, pp. 383-412,
and the critical observations by J. A. Secord, Controversy in Victorian Geology: The

Cambrian-Silurian Dispute (Princeton, 1986), ch.7, esp. pp. 230 and 239-40. L.R.
Patterson, Copyright in historical perspective (Nashville, 1968).
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In our case we are particularly lucky because Leibniz himself spelt out
the criteria he deemed appropriate in priority disputes. During his first
stay in London in the winter of 1673 he became involved in two
difficulties concerning plagiarism. The first case concerned a method for
the interpolation of series by constructing series of differences. As a
guest of Robert Boyle, in the presence of the respected mathematician
John Pell, Leibniz presented the method as his own, but Pell promptly
remarked that the discovery had already been made by Frangois
Regnaud, as reported in Gabriel Mouton, Observationes diametrorum
Solis et Lunae apparentium (Lyons, 1670). Reacting to the initial
embarrassment, on the following day Leibniz hastily composed a letter to
Oldenburg explaining what had happened. On looking at Mouton’s book,
he found that ‘what Pell had said was perfectly true’, but felt justified in
defending himself from Pell’s implicit reproach of plagiarism:’

I will vindicate the honesty of my conduct by two arguments: first by displaying
my actual disordered notes in which not only my discovery appears but the
occasion and manner of making it; and secondly by adding certain points of great
importance not stated by Regnaud and Mouton, which is not likely that I could
have huddled together since yesterday evening, nor are they to be readily
expected of a copyist.

Leibniz’s strategy involved the public display of private notes and
‘important’ additions to Regnaud’s discovery; this double move was
meant to safeguard his honesty and originality at the same time. Although
Leibniz’s honour seemed to have been saved, this embarrassing event
was to be referred to later and used against him during the priority
dispute.

The second case concerned the calculating machine presented by
Leibniz at the meeting of the Royal Society on 1 February 1673. The
curator of experiments Robert Hooke examined with extraordinary care
Leibniz’s model and at the following meeting of the Society a fortnight
later, when Leibniz was not present, he criticized it and claimed he could
produce a simpler model. On hearing of Hooke’s criticisms, Leibniz was
understandably incensed and shortly afterwards, back in Paris, he spelt
out his case very forcefully in a letter to Oldenburg. Leibniz claimed that
the basis of the construction of Hooke’s machine was the same as his
own:®

Nor could he say that this basic idea would have entered his head but for me,

7 The Correspondence of Henry Oldenburg, vol. 9, p. 444, 3 Febr. 1673 o0.s.J. E. Hofmann,
Leibniz in Paris (Cambridge, 1974), pp. 25-7.

8 The Correspondence of Henry Oldenburg,vol. 9,p. 493,8 March 1673.L.. von Mackensen,
‘Zur Vorgeschichte und Entstehung der ersten digitalen 4-spezies-Rechenmaschine von
Gottfried Wilhelm Leibniz. SL, Supplementa 2, 1969, pp. 34-68.
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since two things are obvious, (1) he had never spoken to anyone of such a thing
before I came to England with my machine; (2) my machine was very thoroughly
and carefully examined by him at close quarters. For when I explained that
[machine of mine] before the Royal Society he was certainly very well forward; he
removed the back plate which covered it, and absorbed every word I said; and so,
such being his familiarity with mechanics and his skill in them, it cannot be said
that he did not observe my machine. That he did not distinctly trace out all its
wheels I readily admit. But in such cases it is enough for a man who is clever and
mechanically-minded to have once perceived a rough idea of the design, indeed
the external manner of operation, and then for him afterwards to add a little of his
own, consisting only of some involvement of the wheels which can be effected by
different people in different ways.

Hooke could not display private notes nor refer to reliable witnesses in
order to vindicate his honesty, unlike Leibniz with respect to Regnaud.
The final part of this quotation concerns the problem of originality of
and equivalence between inventions. Priority affected the definition of
‘invention’, the basic idea and the detailed arrangement of the parts, or,
as we shall see, the final result and the method of demonstration. Leibniz
continued his attack in his forceful letter by establishing a code of
behaviour based on recent history:’

We know that right-minded and decent men have preferred when they
understood something that was relevant to the improvement of other person’s
discoveries to ascribe their [own] improvements and additions to the [original]
discoverers, rather than incur the suspicion of intellectual dishonesty and want of
true magnanimity should they chase after falsehood with an unworthy kind of
greed.

Nicole Fabri de Peiresc and Pierre Gassendi, Leibniz continued,
embarked on the observations of the periods of the Jovian satellites and
the surface of the Moon respectively. But when they found out that
Galileo Galilei and Johann Hevelius had already taken up a similar task,
they spontaneously desisted and made their partial investigations
available to Galileo and Hevelius respectively. ‘Conversely, it is for the
discoverer also to admit before the public his obligation to anyone whose
advice has caused his own ideas to prosper’ This was the code of
conduct Leibniz deemed appropriate: the curator of experiments was
expected to desist from his attempts and claims, and to impart his advice
to Leibniz who, in his turn, would publicly acknowledge his obligations.
If Hooke ‘does this I shall praise his good spirit in public; if he does not,
he will do something unworthy of his own estimate of himself, unworthy
of his nation, and unworthy of the Royal Society !

¢ Ibid.

19 Ibid., pp. 493-4and 497, notes 12 and 13. On Hooke see M. Hunter and S. Schaffer, eds.,

Robert Hooke. New Studies (Woodbridge, Boydell, 1989), esp. S. Shapin, ‘Who was Robert
Hooke?, pp. 253-85.
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Leibniz versus Newton: violating the code of behaviour

Fifteen years later Leibniz found himself in an analogous situation with
respect to Isaac Newton. Following the appearance of the Principia in
1687, Leibniz rushed to print in the Acta Eruditorum three essays on
optics, motion in a resisting medium, and the causes of planetary motion,
namely De lineis opticis, Schediasma de resistentia medii, and Tentamen,
respectively. The first piece is little more than an introduction to the two
following memoirs; Leibniz’s main aim was to explain his situation at the
time and set the scene for the following essays:!

While I was engaged on a mission that I had undertaken at the command of my
prince, His Most Serene Highness, and had to spend much time in travelling to
quite distant parts, in the course of my regular sifting of records in Archives and
Libraries I was offered by a friend certain monthly parts of the Acta from which
to discover what was afoot in the Republic of Letters, since I had long been out of
touch with new publications. So, when I was examining the Proceedings for June
of this year I came across an account of the celebrated Isaac Newton’s
Mathematical Principles of Nature. This account I have read eagerly and with
much enjoyment . . .

Indeed we know that between November 1687 and June 1690 Leibniz
was travelling through Southern Germany, Austria, and Italy on behalf of
his Duke on a diplomatic mission aimed at establishing the origins of the
House of Hanover and its links with the Este House. Leibniz’s implicit
claim in the quotation above—later repeated in the Tentamen—that he
had seen only the review of the Principia by Christoph Pfautz in the Acta
Eruditorum,'? not the book itself, sounds somewhat clumsy. A partial
justification for Leibniz would be that book reviews were a new literary
genre in the last quarter of the seventeenth century, and their status with
regard to priority was dubious. However, the idea of publishing a dozen
pages on planetary motion two years after Newton had devoted several

' G. W. Leibniz, ‘De lineis opticis et alia’, AE Jan. 1689, pp. 36-8, LMG, 7, pp. 329-31;
partial transl. in NC, 3, p. 3f. ‘Schediasma de Resistentia Medii et Motu Projectorum’, AFE Jan.
1689, pp. 38-47, LMG, 6, pp. 135-47. ‘Tentamen de Motuum Coelestium Causis’. AE Febr.
1689, pp. 82-96, LMG, 6, pp. 144-61,apart from some later corrections published by Leibniz
in ‘Excerptum ex Epistola Autoris, Quam pro Sua Hypothesi Physica Motus Planetarii olim
(Febr. 1689) His Actis Inserta, ad Amicum Scripsit’, AE Oct. 1706, pp. 446-51,0np. 450,and
inserted by Gerhardt in the text. On Leibniz’s journey see K. Miiller and G. Kronert, Leben und
Werk von G. W. Leibniz. Eine Chronik {(Frankfurt a.M., 1969), and A. Robinet, G. W. Leibniz,
Iter Italicum; mars 1689-mars 1690 (Florence: Olschki, 1988), with the review by D. Bertoloni
Meli, SL, 22,1989, pp. 211-13.

12 For the identification of the reviewer as Christoph Pfautz, friend and correspondent of
Leibniz, and professor of mathematics in Leipzig, see Excerpts, p. 478, n. 8. Among Leibniz's
papers at the NLB, Hanover, there is a manuscript in his hand with his excerpts from Pfautz’s
review in the Acra : LH 35,10, 7,f. 13-14. The text contains no commentary and shows no sign
of particular interest by Leibniz. On Pfautz’s review see Cohen, Introduction, pp. 150-2.
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hundred pages to the same topic without having allegedly looked at his
work is open to several obvious objections. One of them is that the
reader is left in doubt as to Leibniz’s definitive views on the matter, since
he could have changed his mind on reading the Principia. Christiaan
Huygens was concerned precisely with this issue: in the letter to Leibniz
of 8 February 1690 he inquired whether Leibniz had changed anything in
his theory, since before composing the Zentamen he had seen only ‘un
extrait de son livre et non pas le livre mesme’. Leibniz did not receive this
letter until late September, after a further letter of 24 August in which
Huygens reiterated the point, namely whether Leibniz had changed his
mind after having seen the Principia. Pressed twice by Huygens, Leibniz
drafted a reply—which he never sent—dealing with planetary motion in
which he evaded the question; he stated that he had first seen the
Principia in Rome, where he resided from April to December 1689.
Since by then the Tentamen was already published, Leibniz was
confirming the substance of what he had already put in print. Implicitly
he admitted that passing from Pfautz’s review to Newton’s masterpiece
he had found nothing to change in his own work. Indeed, Leibniz’s later
formulations of his theory show virtually no sign of an increased
influence by Newton.!?

At the end of De lineis opticis he made the following claim stating, if
not priority, at least independent discovery:!'*

Conclusions about the resistance of the medium, which I have put on a special
sheet, I had reached to a considerable extent twelve years ago in Paris, and I
communicated some of them to the famous Royal Academy. Then, when I too
had chanced to reflect on the physical cause of celestial motions, I thought it
worth while to bring before the public some of these ideas in a hasty extemporiza-
tion of my own, although I had decided to suppress them until I had the chance to
make a more careful comparison of the geometrical laws with the most recent
observations of astronomers. But (apart from the fact that I am tied by
occupations of quite another sort) Newton’s work stimulated me to allow these
notes, for what they are worth, to appear, so that sparks of truth should be struck
out by the clash and sifting of arguments, and that we should have the penetration
of a very talented man to assist us.

It is immediately clear from this quotation that the two areas are not
treated symmetrically. With regard to motion in a resisting medium
Leibniz could point to a specific essay he had sent to the Paris Academy.
Indeed manuscripts on this topic dating from his stay in Paris have been

13 See for example the ‘zweite Bearbeitung’ of the Tentamen, in LMG, 6,pp. 161-87,and D.
Bertoloni Meli, ‘Leibniz on the censorship of the Copernican system’, SL, 20,1988, pp. 19-42,
section 4.

14 LMG, 7, pp. 330-1, transl. in NC, 3, p. 5.
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traced.’® His strategy resembles that adopted in the Regnaud-Pell case
only in part. Leibniz referred to a text which, strictly speaking, was not
public in order to safeguard his honesty. However, he could not present
any improvement upon a book which—in his account—he had not seen.
His case concerning planetary motion was considerably weaker. The
statement that he had withheld publication in order to attain a better
agreement between theory and observations implied that he had found
the results contained in the 7entamen some time earlier. However,
Leibniz was unable to refer to any letter, manuscript, or other evidence
supporting his statement.

Thus Leibniz had put forward two claims concerning priority in De
lineis opticis. Although one of them was apparently made more precise in
the letter intended for Huygens, the context of their correspondence
shows that the evidence of this later statement, though at first sight
compelling, is deceptive: both claims have a comparable status. From my
reading of Leibniz’s manuscripts I have reached the conclusion that they
have to be rejected: Leibniz formulated his theory in autumn 1688, and
the Tentamen was based on direct knowledge of Newton’s Principia, not
only of Pfautz’s review. Evidence supporting my conclusion is displayed
in Part 2 and in Appendix 1. But setting aside for the moment this issue, I
wish to draw attention to the analogies between Hooke’s position with
respect to Leibniz’s calculating machine, and Leibniz’s public position
with respect to Newton’s Principia. The analogy becomes closer if one
considers that a few years later Newton attacked Leibniz on the issue of
priority and claimed that Leibniz had merely rearranged Newton’s own
propositions in a new manner. Having affirmed that immediately after
publication a copy of the Principia had been dispatched to Leibniz via
Fatio de Duillier, Newton added:'¢

If such unrestrained licence is allowed, any author can easily be robbed of his
discoveries . .. Leibniz had seen the epitome in the Leipzig Acta. Through the
wide exchange of letters which he had with learned men, he could have learned
the principal propositions contained in that book [that is, the Principia] and
indeed have obtained the book itself. But even if he had not seen the book itself,
he ought nevertheless to have seen it before he published his own thoughts
concerning these same matters, and this so that he might not err through haste in

15 H.-J. Hess, ‘Die unveroffentlichten naturwissenschaftlichen und technischen Arbeiten
von G.W. Leibniz aus der Zeit seines Parisaufenthaltes. Eine Kurzcharakteristik’, SL,
Supplementa 17, 1978, 2 vols., vol. 1, pp. 183-217, on pp. 206-10, ‘Du Frottement’, dated
‘Hyeme, 1675". Compare also E. J. Aiton, ‘The Application of the Infinitesimal Calculus to
some Physical Problems by Leibniz and His Friends’, SL, Sonderheft 14, 1986, pp. 133-43,0n
p-134,n. 6.

16 Cohen, Introduction, p. 154, translated from Edleston, Correspondence, pp. 308-9; the
original draft is in ULC, Lucasian professorship papers, Res. 1893(a), Packet 8 (the
manuscripts are not numbered).
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a new and difficult subject, or by stealing unjustly from Newton what he had
discovered, or by annoyingly repeating what Newton had already said before.

In the ‘Account of the Commercium Epistolicum’, an anonymous review
published in the Philosophical Transactions for 1715, Newton stated:!’

In the Commercium Epistolicum, mention is made of three tracts written by
Mr. Leibnitz, after a copy of Mr. Newton’s Principia Philosophiae had been sent
to Hanover for him, and after he had seen an account of that book published in
the Acta Eruditorum for January and February 1689. And in those tracts the
principal propositions of that book are composed in a new manner, and claimed
by Mr. Leibnitz as if he had found them himself before the publishing of the said
book. But Mr. Leibnitz cannot be a witness in his own cause. It lies upon him
either to prove that he found them before Mr. Newton, or to quit his claim.

In other words, Leibniz had to name reliable witnesses testifying that he
had worked on the topics of the Principia before 1687. Referring to the
three 1689 papers, Newton went on to claim that ‘the Propositions
contained in them (Errors and Trifles excepted) are Mr Newton’s (or
easy Corollaries from them)’. If in the previous passages he had focused
on scholarly ethics and on the equivalence between the results published
by Leibniz and those contained in the Principia, in the following text
Newton adopts an openly sarcastic tone:!®

Galileo began to consider the effect of Gravity upon Projectiles. Mr Newton in
his Principia Philosophiae improved that consideration into a large science. Mr
Leibnitz christened the child by a new name as if it had been his own, calling it
Dynamica. Mr Huygens gave the name of vis centrifuga to the force by which
revolving bodies recede from the centre of their motion. Mr Newton, in honour
of that author, retained the name and called the contrary force vis centripeta. Mr
Leibnitz to explode this name calls it sollicitatio Paracentrica, a name much more
improper than that of Mr Newton. But his mark must be set upon all new
inventions. And if one may judge by the multitude of new names and characters
invented by him, he would go for a great inventor.

In a related passage he explained that Leibniz ‘changed the name of vis
centripeta used by Newton into that of sollicitatio paracentrica, not
because it is a fitter name, but to avoid being thought to build upon Mr
Newton’s foundations.’!® The eruption of Newton's anger corresponds
closely to Leibniz’s: if Hooke had removed the back plate of the
calculating machine, Leibniz had seen the review in the Acta, and it was
‘enough for a man who is clever . .. to have once perceived a rough idea

17 The ‘Account of the Book Entituled Commercium Epistolicum’, PT, 29,1715, pp. 173~
224, is reproduced in A. R. Hall, Philosophers at War (Cambridge, 1980); see pp. 208-9 and
263-314. Notice that Pfautz’s review was published in June 1688.

18 ULC, Ms Add 3968, f. 415v.; Cohen, Introduction, p. 296.

1 ULC, Ms Add 3968, f. 412v.; Cohen, Introduction, p. 297.
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of the design . . . and then for him afterwards to add a little of his own . . .
which can be effected by different people in different ways.” Although the
line between true inventor and mere imitator was at times difficult to
discern, the consequences of falling on one or the other side were
considerable in terms of prestige and credibility. Several years later
Leibniz conceived the project of a Machina Coelestis, a planetarium
based on his own theory of planetary motion: the analogy between
intellectual and material inventions is indeed remarkable.?

Leibniz’s failure to meet the very standards he had set in the
controversy with Hooke convincingly shows that the appearance of the
Principia had left him in an awkward position. Newton’s extraordinary
success in providing a new world system and his ‘bad’ philosophy
required a prompt reply. Setting aside questions of personal pride, the
danger was that if Leibniz had not intervened, Newton’s interpretation
might have gone unchallenged and might have been accepted on the basis
of its empirical success. The code of behaviour followed by Peiresc and
Gassendi, and proposed by Leibniz to Hooke, looked utterly inadequate
in those circumstances. An intervention claiming priority, however,
might have incurred ‘the suspicion of intellectual dishonesty and want of
true magnanimity’, as Leibniz had written about Hooke; unlike the case
when he had been accused by John Pell, this time he had no manuscripts
or other documents to present in his defence. Until today no evidence
has emerged that Leibniz had formulated any significant part of his
theory of planetary motion before the autumn of 1688. A purely
philosophical response would have left Newton as the only master of
celestial mechanics; Leibniz, though, wanted to compete in mathematics,
mechanics, and astronomy as well. However, had he stated that his essay
depended on Newton’s Principia, the authority of his own theory—which
Leibniz knew was problematic in several respects, as he had to admit in
the conclusion of the Tentamen—would have been undermined. In order
to raise its profile and gain higher credit, he thought he had to claim
independent and prior discovery: thus priority was used as a
philosophical weapon against Newton. Pressed by the circumstances,
Leibniz opted for action. In doing so he was prompted by an unexpected
finding that allowed him to transform Newton’s explanation of the area
law, and then to create a different theory and interpretation. The
unfolding of his strategy, the development of his alternative theory, and
the ensuing war with Newton, illuminate a crucial episode in the history
of science.

2 E. Gerland, Leibnizens nachgelassene Schriften physikalischen, mechanischen und
technischen Inhaltes (Leipzig, 1906), pp. 134-41. The planets were supposed to move along a
rotating stick. In this General Introduction L have relied on my ‘Public Claims, Private Worries:
Newton’s Principia and Leibniz’s theory of planetary motion’, SHPS, 22, 1991, pp. 415-49.
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Plan of the work and historiographic observations

This book consists of three parts with appendices; each part fulfils
different aims, hence the style of the exposition varies accordingly. Part 1
provides a historical background for the interpretation of Leibniz’s
manuscripts. While concentrating primarily on his philosophical and
mathematical works, I have found it useful to compare and contrast his
views with Newton’s. Chapter 1 is devoted to Leibniz’s deployment of
the Keplerian programme and to astronomy. His attempt to retrieve the
theme of the integration of mathematical and physical astronomy
constitutes a major aspect of my interpretation. Leibniz selected Kepler
as an ally against Newton: the German astronomer was an adroit and
natural choice because of his prestige, of the crucial role of his three laws
of planetary motion, and because Kepler had made of the integration of
mathematical and physical astronomy one of the central themes of his
work. Following Kepler, Leibniz wanted to show that mathematical
astronomy could and indeed ought to be developed together with a
physical interpretation based on vortices. Leibniz’s double gambit of
claiming priority and summoning Kepler’s authority was all the more
necessary since he knew that this theory was problematic both with
regard to mathematics and to mechanical causes. Chapter 2 deals with
vortex theories and explanations for celestial motions, gravity, and
elasticity. A set of annotations in Leibniz’s hand on the third part of the
Principia Philosophiae reveals the extent of Leibniz’s debt to Descartes
and establishes a correlation between the theories of celestial motions
and of motion in resisting media. I also examine Huygens’s mathematical
and physical accounts of centrifugal force and gravity and conclude with
a survey of seventeenth-century, and especially Leibniz’s, views on
elasticity. In Chapter 3 some fundamental features of Leibnizian and
Newtonian mathematics are outlined, with special emphasis on the issues
of representations of curves, the role of infinitesimals, and physical
dimensions. This highly selective account sets the scene for Chapter 4,
which is devoted to mechanics. Whilst the current historiographic
tradition tends to consider Leibnizian mechanics and especially
dynamics together with his metaphysics, I emphasize the links between
mechanics and mathematics. These links are crucial to appreciate the
characteristic features of Leibniz’s notions, such as impetus and solicita-
tion, dead and living force, and their mutual relations. Once again it is
useful to contrast Leibnizian and Newtonian notions. Although the
specialist in the seventeenth century may find much that is already
known in Part 1, my presentation should pave the way, I hope, for a
better understanding of the material presented and discussed below. The
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degree of success of these introductory chapters is measured not by the
extension of the survey of Leibniz’s and Newton’s sources, but by their
role in the rest of the work.

Part 2 presents a close examination of the main stages of the formation
of Leibniz’s theory from his reading of the Principia to the composition
of the published Tentamen. Chapter 5 charts the private development of
Leibniz’s itinerary and includes large excerpts of the manuscripts in
English translation. Despite the initial dependence on the Principia, later
Leibniz attained original results involving a sophisticated analysis of
orbital motion. A full translation of the Zentamen with closely textual
annotations can be found in Chapter 6.

Part 3 consists of three interpretive essays providing an exegesis of
Leibniz’s texts, a reappraisal of Newtonian mechanics in the light of his
war with Leibniz, and a study of the reception of their world systems,
respectively. The common aim of the essays is to investigate how
Leibniz’s manuscripts affect our interpretation of mathematical theories
of celestial motions around 1700. Chapter 7 is devoted to a comparative
study of Leibniz’s private and public work presented in Part 2, to the
analysis of his style of writing in the Tentamen, and to the development of
his theory. I also draw some general conclusions on the importance of
circumstances of composition and audience in the interpretation of
Leibniz’s texts. Chapter 8 focuses on Newton: [ present a fresh reading of
the problems in mathematics, mechanics, and physics encountered in the
correspondence with Hooke in 1679-80 and in the formulation of the
tracts De motu in the mid-1680s. At the end of the chapter I analyse
Newton’s onslaught on the Tentamen and especially his interpretation of
centrifugal force in terms of the law of action and reaction. This crucial
aspect in Newton’s line of attack was later deployed by his champion, the
Savilian Professor of Astronomy John Keill. The final chapter surveys
the reception of the competing theories and the reasons for the final
defeat of Leibniz’s alternative by focusing on the practice of celestial
mechanics at the beginning of the eighteenth century. In my interpreta-
tion the defeat of the Tentamen has to be attributed primarily to the
inconsistency between Kepler’s laws and vortex theory. However, other
factors were also important, such as Newton’s interpretation of
centrifugal force in terms of the third law of motion, and Leibniz’s claim
that centrifugal force in orbital motion is inversely proportional to the
third power of the distance. If the first reason is perfectly consonant with
our understanding, the others are alien to our perception and can only be
appreciated by an investigation of the generation of mathematicians
following Leibniz and Newton. Moreover, while the Principia has
opened up a wide field of research, the Tentamen had never been able to
overcome the problems already present in its original formulation.
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Indeed, in later years even Leibniz was forced in practice to abandon the
Keplerian programme and stress the theological and philosophical issues
typical of his correspondence with the divine Samuel Clarke in 1715-16.
Despite the victory of the Principia, however, at the beginning of the
eighteenth century celestial mechanics was beginning to show
autonomous features with respect to Newton’s work. Lastly, Appendix 1
contains transcriptions of the most important manuscripts with textual
analyses and commentaries.

In my investigation I have found it helpful to take into account some
historiographic tenets which require a brief explanation. They can be
described as the ‘controversy thesis’ and the ‘symmetry thesis’.
Controversies are particularly instructive for the historian because the
protagonists are often induced to spell out assumptions which otherwise
remain tacit. We have now come to realize that, far from being patho-
logical manifestations, controversies constitute an integral part of
scientific life; the virulent priority dispute over the invention of the
calculus, for example, exerted a profound influence on the community of
mathematicians, stimulated them to produce new results and to read
avidly publications appearing on both sides of the Channel. It is helpful
in the study of controversies to adopt a symmetric treatment of winning
and losing theories. Only in this way is it possible to analyse which
factors counted in the resolution of a dispute. Indeed, unless this
investigation of the actual historical developments and practice of the
protagonists is carried out, no conclusion can be drawn about the
reasons why an interpretation prevailed or was defeated. Far from
following these tenets in a dogmatic way, I employ them selectively and
in a very personal fashion depending on the historical material on which I
am working. The great number of excellent works and editions con-
cerning Newtonian mechanics has induced me to give more weight to the
comparatively less studied and unpublished Leibnizian manuscripts. A
further example may help to clarify my approach. Leibniz’s theory of
planetary motion was defeated and interest in it was eclipsed only to re-
emerge in comparatively recent times. Newton’s theory, on the other
hand, has been considered as the dominant world-view and constantly
reformulated over three centuries. Like a venerated painting where
successive waves of restorers have emphasized chiaroscuro and fading
colours in a personal and sometimes fanciful way, the Principia
Mathematica bears the marks of successive reinterpretations alien to a
seventeenth century context. Hence the importance of such a detailed
and extensive contemporary analysis as that provided by Leibniz. His
controversy with Newton is particularly helpful in understanding
contemporary approaches to centrifugal force and a wealth of subtleties
concerning mathematics and mechanics. I hope that the juxtaposition and
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contrast of competing explanations will result in a much needed
defamiliarization from the Principia. A large portion of Newton’s
masterpiece was based on a conceptual framework which was consider-
ably different from that of later reformulations improperly called
‘Newtonian’. The identification of some of those differences prepares the
ground for a fresh look at the intellectual horizon and practice of
mechanics around 1700. A further problem resulting from Newton’s
victory concerns our difficulties in understanding Leibniz’s ideas and
techniques in all their diversity and complexity. In cases like his reading
of Newton’s text and the developing of an alternative theory it is tempting
to appeal to the lazy and unbhistorical category of confusion rather than
taking seriously an alien-looking corpus of texts. However, it is precisely
those cases, when at first sight it was tempting to use the notion of
confusion, which revealed themselves on second and sometimes third
reading as the most original and stimulating. With all their inadequacies
and mistakes, Leibniz’s analyses and interpretations deserve the
historian’s full attention.

A general and more philosophical theme running through the pages of
this study is the notion of equivalence between rival theories. As A.
Rupert Hall has observed in the conclusion of his study of the priority
dispute, the word ‘equivalent’ as opposed to ‘identical’ implies some
differences ‘of a more than symbolic character’.?! A careful handling of
the problem of equivalence in the theories of celestial motions, as in the
formulations of the calculus, reveals a complex web of connections
between mathematical techniques, reflections on nature, and philo-
sophical doctrines. These considerations can be extended to the works
by Pierre Varignon, Jakob Hermann, and Johann Bernoulli at the
beginning of the eighteenth century. The translation of the eminently
geometrical language of the Principia into the algebraic form of the
calculus presents a set of problems which can be profitably compared
with those related to the Tenzamen: the issues of translation and
equivalence are closely linked. Newton’s champion John Keill, for
example, claimed that the analysis of the inverse problem of central
forces by Johann Bernoulli differed from that in the Principia as Latin
and Greek versions of the same passage would. The adequacy of this
comparison with Indo-European languages, however, can be questioned
since their structure is too close for our purposes. Other comparisons are
probably more appropriate: the syntaxes of two computer languages, for
example, often present deeper differences and the skills required to
operate with them may vary considerably. Thus later developments may

2! Hall, Philosophers at War, pp. 257-8; C. Truesdell, ‘A program toward rediscovering the
rational mechanics of the Age of Reason’, AHES, 1, 1960, pp. 3-36; M. S.Mahoney, ‘Algebraic
vs. geometric techniques in Newton’s determination of planetary orbits’ (forthcoming).
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follow different routes suggested by the specific structure and style of a
language. Underlying these observations is a definition of ‘theory’ which
is worth making explicit. The current understanding of this notion
involves a set of definitions, axioms, propositions, and demonstrations.
As such, a theory is a corpus of written interrelated statements. Besides
this set of statements it is useful to consider the skills necessary to
manipulate them. This extension of the notion of theory has several
implications: it adds a human dimension by placing alongside doctrine
and practitioners; it emphasizes the operative and hence the dynamic
aspect of theories, as opposed to the static aspect. Therefore, the specific
fashion in which they are formulated takes on an important role. Hence
my scrupulous handling of the actors’ notation is not merely a tribute to
philological accuracy, but is an integral part of my story: nuances in
terminology and notation often have wide implications for their
conceptual significance and role in the evolution of a theory. Only by
contrasting the specific features of the interaction between mathematics,
mechanics, and natural philosophy in Leibniz, Newton, and their
successors, can we gain a deeper understanding of the intellectual
subtleties and practice of the theories about the system of the world
around 1700.



PART 1

THE BACKGROUND OF THE
NEWTON-LEIBNIZ DISPUTE






1

ASTRONOMY AND THE
KEPLERIAN PROGRAMME

1.1 The Cassirer thesis: Kepler and Leibniz

Although Leibniz explicitly mentions Kepler as one of his masters, the
role of Keplerian themes on Leibniz’s system has been little studied and
often altogether ignored. One of the few exceptions is represented by
Ernst Cassirer. In his classic monograph Cassirer claims that Kepler’s
concept of vera hypothesis developed in the Mysterium Cosmographicum
and Apologia pro Tychone contra Ursum was very influential on
Leibniz. Cassirer identifies two astronomical traditions whose aims
were to provide a description of phenomena and to explain them
causally, respectively. Purely descriptive accounts were incapable of
going beyond sensory data and establishing a link between experience
and the general laws of knowledge. Causal accounts were merely
speculative and considered phenomena in a negative way, as something
contradicting the course of thought. According to Cassirer, the central
theme of the Keplerian reform of astronomy was the view that
phenomena were a positive challenge influencing the direction of
knowledge. The primary tool for accomplishing this task is identified in
the notion of ‘vera hypothesis’, which is capable of establishing the
crucial link between isolated sensory data and the laws of knowledge.
Thus a hypothesis is properly called ‘true’ not simply by virtue of its
immediate agreement with single observations, but because of its
correlation with a system of general physicomathematical principles.
Similarly, in mathematics the role and value of hypotheses has to be
established not per se, but in relation to a system of definitions.
Following Cassirer’s interpretation, the legitimacy of hypotheses in
natural philosophy and mathematics was defended by Leibniz exactly as
Kepler had done in astronomy. In their philosophical systems
phenomena assume a new dignity and the true hypothesis becomes the
instrument for binding them to the laws of knowledge.!

' E. Cassirer, Leibniz’ System in seinen wissenschaftlichen Grundlagen (Marburg, 1902),
pp. 362-3 and 503; Das Erkenntnisproblem in der Philosophie und in der Wissenschaft der
neueren Zeit, vol. 1 (Berlin, 1902), pp. 328-52. See also my preliminary study ‘Kepler and
Leibniz’, Leibniz. Tradition und Aktualitar. 11. Teil (Hannover, 1989), pp. 88-94, where I
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I call this association of Kepler with Leibniz, so beautifully expressed
in the style of history of ideas at its best, the ‘Cassirer thesis’. This
section shows that the thesis put forward by Cassirer is a powerful tool
for studying Leibniz’s theory of planetary motion. My argument follows
two main steps. First, I introduce Kepler’s notion of hypothesis, paying
attention to his emphasis on the links between mathematics and physics.
Then I contrast Leibniz’s statements about the mathematization of
nature before and after he studied Newton’s Principia and published his
own essay. This analysis reveals a change of attitudes, if not of personal
convictions: before the late 1680s Leibniz took for granted that
mathematization could be reconciled with sound philosophy. From the
1680s onwards, however, he became more and more concerned that the
mathematization of nature ought to be constrained within clear philo-
sophical and physical boundaries, lest the proper system of knowledge be
subverted. Although this shift was probably part of a more complex
evolution of Leibniz’s philosophical thought, it seems to me that the
appearance of the Principia represented at least a significant factor in
this evolution. A visible result of this change of preoccupations was the
1688-9 theory of planetary motion: from then onwards Kepler assumed
a new importance for Leibniz. At the end of this section 1 examine
Leibniz’s views on laws of nature and their analogies with Keplerian true
hypotheses. This introductory discussion will help us to understand why
Keplerian themes became relevant to Leibniz’s work after the
appearance of Newton’s Principia in 1687.

In the Mysterium Kepler expresses his disagreement with those who
believe that since true conclusions can be drawn from false premisses,
the astronomical hypothesis of Copernicus may well lead to true
phenomena even though it is false. More generally, this sceptical stance
implies that the truth of astronomical hypotheses cannot be proved by
their capacity to save the phenomena. Kepler replies that the success of
false premisses is fortuitous and fails as soon as they are applied to
related matters:?

I have never been able to agree with those who, relying on the example of an
accidental demonstration, which with syllogistic necessity yields something true

mention several areas in which Kepler was an important source for Leibniz. Collections of
essays on various aspects of Kepler's activities are in F. Krafft, K. Mayer, B. Sticker, eds.,
Internationales Kepler-Symposium (Hildesheim, 1973); A. and P. Beer, Kepler, four
hundred years ( Vistas in Astronomy, 18) (Oxford, 1975).

? Quoted from Jardine, Birth, p. 215 f.; see also p. 140. J. Kepler, Mpysterium Cosmo-
graphicum (Tibingen, 1596} = KGW, I, p. 15; (Frankfurt/M, 1621, 2nd edn)=KGW, 8,
p- 8. English translation by A. M. Duncan, Mysterium Cosmographicum. The secret of the
universe (New York, 1981). P. Duhem, ‘To save the phenomena’. An essay on the idea of
physical theory from Plato to Galileo (Chicago, 1969; transl. from the French, Paris, 1908).
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from false premisses ... used to maintain that it could be that the hypotheses
which Copernicus adopted are false, but nevertheless the true phenomena follow
from them as if from genuine principles. In fact the example is inappropriate. For
this outcome of false premisses is fortuitous, and that which is false by nature
betrays itself as soon as it is applied to another related matter; unless you
gratuitously allow him who argues to adopt infinitely many other false
propositions and never, as he goes backwards and forwards [in his reasonings], to
stand his ground.

In other words, false hypotheses have to be constantly modified by ad
hoc assumptions in order to prevent them from being refuted when they
are applied to similar problems. If one accepts heliocentrism, though,
Kepler claims that everything follows most directly and there is no need
for ad hoc assumptions. However, another objection can be raised. In the
case of astronomical hypotheses Kepler is confronted with world systems
which are observationally equivalent but inconsistent with each other.
Thus no hypothesis can be lightly dismissed and if one is rejected as
false, by the same logic any other can suffer the same fate. Kepler’s reply
to this further difficulty is twofold. First, he claims that the Copernican
hypothesis is superior to its rivals because it can provide the causes of
phenomena, such as the numbers, extents, and duration of retrograda-
tions, which can be determined from the motion of the earth. Secondly,
the rival world systems are not completely irreconcileable, since they
agree in ascribing relative motions to the celestial bodies. On the basis of
observations alone none of the astronomical hypotheses can be rejected—
at the time when Kepler was writing. Thus the Copernican hypothesis
does not refute the predications of its rivals, but expands and explains
them from a different standpoint. These themes were expanded and
refined in later years.

The Apologia, which was first published in 1858, was composed
around 1600 in connection with the priority dispute between Tycho
Brahe and Raimarus Ursus. Their controversy hinged on the trigono-
metric rules of prostaphaeresis and on the world system known as
Tychonic. The astronomer and mathematician Ursus denied the capacity
of astronomical hypotheses to ‘portray the form of the world’. Kepler’s
defence of true hypotheses in the Apologia is based on a number of
arguments countering the attack by Ursus point by point. Ursus had
claimed that the falsity of hypotheses could be inferred even from the
original connotation of the word. Moreover, he argued that predictive
accuracy alone guarantees the adequacy of hypotheses, but ‘accurate
prediction and retrodiction of apparent celestical coordinates, does not
guarantee the truth of astronomical hypotheses.” Indeed, he concluded
that all hypotheses involve blatant absurdities. Kepler’s reply ranged
from a historical survey of the etymology of ‘hypothesis’ to the claim that
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astronomy has attained some truths about the world and that philo-
sophers can make it progress further. As in the passage from the
Mysterium quoted above, Kepler claimed that true conclusions follow
from false premisses only accidentally. Concerning the choice between
rival hypotheses, he invoked the role of physical considerations as a
powerful tool for the selection. In addition, Kepler refined his argument
by drawing a distinction between true and merely geometrical hypo-
theses. True hypotheses concern the accurate description of phenomena
as well as their causal explanation. Geometrical hypotheses, however,
concern the specific ways in which a certain orbit can be represented for
the sake of calculation. Ptolemy’s equant point, for example, has to be
considered as a purely geometrical construction rather than as a true
hypothesis. A distinctive feature of geometrical hypotheses is that often
several of them can account for the same observations. From the
existence of this plurality of geometrical representations it does not
follow that one of them is correct and the others false. Thus geometrical
hypotheses could differ not substantively, but merely in the manner of
exposition, since the same relative motions of celestial bodies could be
represented by equivalent geometrical constructions. Although mathem-
atics was linked to physics and other disciplines, at the same time it
retained a certain degree of autonomy because the same phenomena
could be legitimately represented in a variety of geometrical ways.?

The themes of the Apologia permeate Kepler’s thought and were
developed in his mature works, Astronomia Nova, Harmonice Mundi and
Epitome Astronomiae Copernicanae. At the beginning of the Epitome, in
a passage that Leibniz probably found very appealing, Kepler wrote:*

Physics is popularly deemed unnecessary for the astronomer, but truly it is in the
highest degree relevant to the purpose of this branch of philosophy, and cannot,
indeed, be dispensed with by the astronomer. For astronomers should not have
absolute freedom to think up anything they please without reason; on the
contrary, you should give causas probabiles for your hypotheses which you
propose as the true cause of the appearances, and thus establish in advance the
principles of your astronomy in a higher science, namely physics or metaphysics.

This quotation expresses a major aspect of Kepler’s reform of astronomy

* Jardine, Birth, pp. 153-4 and 212-13, provides also an extensive and detailed analysis
of the controversy between Ursus and Kepler; see also N. Jardine, ‘Scepticism in Renaiss-
ance Astronomy: a preliminary study’, in R. H. Popkin and C. B. Schmitt, Scepticism from
the Renaissance to the Enlightenment (Wolfenbiittel, 1987), pp. 83-102.

4 The following passage from Epitome Astronomiae Copernicanae=KGW 7, p. 25, is
translated in Jardine, Birth, p. 250. See also KGW, I3, pp. 140-4, esp. 141, Kepler to
Michael Maestlin, Oct. 1597. E.J. Aiton, ‘Johannes Kepler and the Astronomy without
Hypotheses’, Japanese Studies in the History of Science, 14, 1975, pp. 49-71.
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and constitutes a central point in my interpretation of Leibniz. Kepler
thought that a choice among astronomical hypotheses should be based
not just on mathematical considerations or on the agreement between
theory and observations, but also on physical and philosophical grounds.
The causae probabiles he invoked had to be adequately justified in a
broader disciplinary context. The true hypothesis emerges from the
intersection between two or more disciplines, from considerations
ranging from scripture to mathematical harmony and simplicity, and
from the search for causes. Indeed, for Kepler these issues were mutually
related because the discovery of mathematical harmony and simplicity
was not an end in itself, but was instrumental in identifying the purpose
and order of the creation. Therefore causal explanations involved both
specific phenomena and the cosmic order of things. The choice of the
Copernican hypothesis was a matter of observational accuracy and
simplicity as well as of theological and physical considerations about the
Sun and the aetiologia of planetary motion.

Leibniz’s essay Tentamen de Motuum Coelestium Causis shows an
analogy with Kepler’s programme from the very title. But the analogy is
more complex and can be pushed further if one considers that the
Ientamen is Leibniz's response to Newton's Principia Mathematica.
According to Leibniz’s reading, Newton was spectacularly successful in
providing mathematical imaginary constructs to account for planetary
motions, but physical explanations were either lacking or unsound. In
particular the rejection of vortices and of celestial matter seemed to
suggest that Newton was not merely employing imaginary hypotheses in
order to save the phenomena, but was pretending to explain nature by
means of ‘occult qualities’, such as attraction. Whatever his intentions,
the task of the Tentamen was to attain a theory mathematically
equivalent to Newton’s in accounting for planetary motion and especially
for the inverse-square law and Kepler’s laws, but physically sound and
capable of explaining the causes of phenomena. The physical cause of
planetary motion had to be ascribed to a fluid rotating around the Sun.
Leibniz’s praise of Kepler in the introduction to the Tentamen is largely
based, certainly not by chance, on this aspect. Thus Leibniz found in
Kepler a natural and authoritative ally against Newton; natural because
both Kepler and Leibniz believed in a theory which brings together
mathematical representations of phenomena and physical explanations,
and authoritative because of the prestige of the German astronomer, and
in particular because Kepler’s three laws occupy a central position in
Newton’s theory.

Other texts by Leibniz show different preoccupations, as we have seen
in the letter to Fabri referred to in the General Introduction. In a letter of
1676 to Claude Perrault—a member of the Paris Academy—concerning
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the cause of gravity, Leibniz concludes his analysis with the following
words:®

So much so that concerning the laws of motion, I believe that at present I can
satisfy myself with entirely geometrical demonstrations, without employing any
suppositions or principles of experience; and that from now on what one could
say on this matter will be nothing but res calculi et geometriae. Thus 1 believe that
at present we are in a condition to pretend to a true physics without hypotheses.

In Demonstrationes Novae de Resistentia Solidorum, for example, an essay
of 1684 on the resistance of materials, Leibniz states:® ‘These few things
having been considered, the whole matter is reduced to pure geometry,
which is the one aim of physics and mechanics.” Similar pronouncements
on the role of mathematics can be found in several texts preceding
Newton’s Principia, such as De Arcanis Motus et Mechanica ad Puram
Geometriam Reducenda of 1676 and the correspondence with Henry
Oldenburg, where Leibniz makes the reduction of mechanics to
geometry dependent on the metaphysical principle of conservation of vis
viva.’

After having read the Principia Leibniz would not take for granted the
relationships between mathematical representations and natural philo-
sophy and would sharpen his views on this problem. In a number of texts
such as the Tentamen, Specimen Dynamicum, Antibarbarus Physicus and
in all principal works up to the correspondence with Samuel Clarke, he
stressed more forcefully the insufficiency of purely mathematical laws,
the need for physical explanations and once again for metaphysical
principles: ‘Because we cannot derive all truths concerning corporeal
things from logical and geometrical axioms alone, ... we must admit
something metaphysical, something perceptible by the mind alone over
and above that which is purely mathematical and subject to the
imagination.’® Although Leibniz did not change his philosophical views

5 LSB, 11, 1, pp. 262-8, on p. 267: ‘D’autant que je croy me pouvoir satisfaire  present
sur les loix de mouvement, par des demonstrations entiérement geometriques, sans me
servir de suppositions aucunes, ny des principes d’expérience; et que ce qu'on pourra dire
la dessus doresnavant ne sera que res calculi et geometriae. Ainsi je tiens que nous sommes
en estat a present de prétendre a une physique véritable, et sans hypothese.

S AE July 1684, pp. 319-25=LMG, 6, pp. 106-12, on p. 112. Translation from C.
Truesdell, Essays in the History of Mechanics (Berlin, 1968), pp. 181-2.

7 ‘De Arcanis Motus et Mechanica ad Puram Geometriam Reducenda’, in Hess,
‘Kurzcharakteristik’, pp. 202-5; NC, 2, pp. 57-75, on pp. 64 and 71, 17 Aug. 1676.
Compare also Leibniz’s 1686 Discours de Métaphysique, in G. Le Roy, ed., Discours de
Métaphysique et Correspondance avec Arnauld (Paris, 1957), paragraphs 18 and 21.

¥ G. W. Leibniz, ‘Specimen Dynamicum’, AE April 1695, pp. 145-57; in LMG, 6,
pp. 234-46; a second part was first published in LMG, 6, pp. 246-54. A critical edition
was published in Hamburg, 1982 (pp. 22-4). Transl. by R. Ariew and D. Garber in G. W.
Leibniz, Philosophical Essays (Indianapolis, 1989), pp. 117-38, on p. 125. ‘Antibarbarus
Physicus’, LPG, 7, pp. 336-44, on p. 343, dating from 1706 according to Miiller and

Kronert, Chronik, p. 203; transl. in Ariew and Garber, Essays, pp. 312-20, on pp. 318~
19. Compare also the letter to Newton of 7 March 1693, NC, 3, pp. 257-60.
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as a result of his reading of the Principia Mathematica, the new emphasis
on physical explanations led him to the deployment of Keplerian
arguments in the 7entamen. Hence the Cassirer thesis needs to be set in a
historical context where the theory of planetary motion occupies a
central position.” In order to carry out this task it is helpful to examine
Leibniz’s notion of law of nature in greater detail. I refer to his
expositions in several texts dating from the 1680s up to the Essais de
Théodicée of 1710.

Leibniz believed that mathematical or logical principles alone are not
sufficient to identify the laws of nature observed in our world, such as
conservation of force, continuity, equality between cause and effect, the
impact laws, and the law of inertia. Those principles narrow down the
choice to a broad set of propositions satisfying the criterion of non-
contradiction. A further selection is needed to move from a multiplicity
of non-contradictory propositions to laws of nature. This second step
cannot be carried out by mathematical or logical means, nor by the data
of experience, which inevitably lack generality. In other words, laws of
nature are not absolutely necessary or demonstrable from such principles
as identity or non-contradiction, nor can they be established simply by
induction. Observations and experiments can lead to a single statement
about this or that phenomenon, namely to truths of fact. They can also
instantiate and corroborate a general law by specific examples, yet they
cannot prove or refute it. In general, every time that an experiment or the
observation of a phenomenon seemed to contradict a law, Leibniz did
not take the outcome at face value; rather, he tried to work out
alternative explanations saving the generality of the law. An example of
this strategy is briefly discussed in Section 2.4 in relation to impacts and
conservation of force. If on the one hand laws are not demonstrable, on
the other they are not arbitrary; their certainty is not similar to that of a
mathematical proposition, but descends from the wisdom and perfection
of God and from his choice for the best. Theological arguments via the
principle of perfection and harmony, together with the agreement
between predictions and data, guarantee the moral certainty of laws of
nature. This justification for mechanical laws and the mathematization of
nature was related to broader debates and concerns. At a time when
mechanical explanations were becoming more and more successful,
Leibniz reports that some theologians, ‘shocked at the corpuscular
philosophy’, deny that all phenomena can be explained in mechanical
terms. His own solution is that although mechanical explanations can be
given to all phenomena, the laws of mechanics ‘depend on more sublime
principles which show the wisdom of the Author in the order and

9 D. Bertoloni Meli, ‘Some Aspects of the Interaction between Mathematics and
Natural Philosophy in Leibniz’, The Leibniz Renaissance (Florence, 1989), pp. 9-22.
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perfection of his work.” This solution satisfied a double purpose, since it
paved the way to a mechanical explanation of nature while overcoming
theological and philosophical objections against those who destroy
contingency and freedom, and subject everything to geometrical
necessity and mathematical laws alone.’® Like Kepler’s true hypotheses,
Leibniz’s laws of nature emerge from a plurality of disciplines, go beyond
a simple description of nature, and involve a causal and physical
explanation of phenomena. Although they are often formulated in a
mathematical fashion, they are not derived by mathematical means alone,
but are selected from the broad set of non-contradictory statements with
the help of a variety of disciplines.

The similarity between Keplerian and Leibnizian notions should not
be treated as an identity, since the problems they addressed and the
debates in which they were involved at the beginning and at the end of
the century varied considerably. With regard to the issues we have
considered thus far, it seems to me that Kepler paid more attention to the
observational adequacy of a hypothesis, Leibniz focused on the logical
status of laws. Similarly, Kepler’s theological preoccupations concerned
the order and structure of the universe, Leibniz’s the necessity or
contingency of propositions about nature. Further, the notion of
harmony is strictly related to geometry for Kepler, whereas for Leibniz it
involves more general principles such as combinatorial arguments,
continuity, and conservation. In conclusion, even if several important
differences should not be disregarded, true hypotheses and laws of
nature show more than a superficial analogy: Leibniz certainly had ample
ground for using Kepler in his response to the Principia Mathematica.

The discussion in this section is largely philosophical. The issues
raised so far can be seen and hopefully clarified in a different context,

10 G. W. Leibniz, Théodicée (Amsterdam, 1710); in LPG, 6, paragraphs 345-9, esp.
346, and 371, where he attacked Hobbes and Spinoza. Leibniz developed similar views
much earlier: ‘Elementa Physicae’, early 1680s, Gerland, Schriften, pp. 110-13, on p. 111;
‘Cogitationes de Physica Nova Instauranda’, Vorausedition zur Reihe VI—Philosophische
Schriften, Faszikel 3 (Miinster, 1984), pp. 625-43; both texts are translated in L. E.
Loemker (ed.), G. W. Leibniz. Philosophical Papers and Letters (Dordrecht: Reidel, second
edition, 1969), pp. 277-80 and 280-9. ‘Animadversiones in Partem Generalem Principi-
orum Cartesianorum’, LPG, 4, pp. 354-92, on p. 391 (dated 1691-2); ‘Tentamen Anagogi-
cum’, LPG, 7, pp. 270-9, on pp. 271-3, transl. in Loemker Papers and Letters, p. 478. This
topic is related to a major area in Leibniz’s philosophy, namely the notion of contingency.
The literature on this topic is vast; with regard to the more specific problem of laws of
nature see: M. D. Wilson, ‘Leibniz’s Dynamics and Contingency in Nature’, in P. K.
Machamer and R. G. Turnbull, eds., Motion and Time, Space and Matter (Ohio State
University Press, 1976), pp. 264-89; H. Poser, ‘Apriorismus der Prinzipien und Kontin-
genz der Naturgesetze. Das Leibniz-Paradigma der Naturwissenschaft’, SL Sonderheft I3,
1984, pp. 164-79; K. Okruhlik, ‘The Status of Scientific Laws in the Leibnizian System’, in
K. Okruhlik and J. R. Brown, eds., The Natural Philosophy of Leibniz (Dordrecht, 1985),
pp- 183-206.



Astronomy and the Keplerian programme 27

paying attention to the historical circumstances of their emergence. This
is the aim of the following section, which outlines Leibniz’s deployment
of Keplerian themes and in particular the account of Kepler’s physical
explanations in the Tentamen. The last section of this chapter contrasts
Leibniz’s and Newton’s interests in astronomy and examines their
respective competence and sources for the three laws of planetary
motion. This task is made easier because over the last few decades the
diffusion of Kepler’s laws in the seventeenth century has been
investigated by several commentators, especially in an attempt to trace
the origin of Newton’s ideas on mechanics and universal gravity. Thus
while my itinerary develops from philosophical themes, to physical
explanations, and lastly to astronomy, I constantly look at Kepler as the
unifying element.

1.2 Kepler’s framework and his physical explanations

Eric Aiton correctly pointed out that Leibniz’s theory of planetary
motion reflects the framework of Kepler’s ideas with regard to both
mathematics and physics. If in some cases one can talk of Kepler’s
influence on Leibniz, in others it is more correct to emphasize Leibniz’s
usage of Kepler for a variety of purposes. At the end of this section we
are going to see several instances of this usage. Let us consider first the
analysis of planetary trajectories. Kepler decomposed orbital motion into
a circular motion of revolution around a centre and a libration. The
former is due to a species motrix immateriata emitted from the Sun,
similar to light and decreasing according to the law of the inverse
distance;" the latter is composed of an accessus and recessus along the
radius to the Sun and is due to magnetic attraction or repulsion. Kepler
often talked of libration as taking place along a rigid rotating stick, or an
arm of a /libra, which is moved by the rotation of the Sun. The
composition of these two motions produces planetary ellipses.!?

In the Tentamen Leibniz decomposed orbital motion into a circulatio
harmonica and a motus paracentricus. The former is a circular motion

' E. Aiton, The Vortex Theory of Planetary Motion (London and New York, 1972),
ch. 6, esp. p. 128. J. Kepler, Mysterium, KGW, 1, p. 71 and KGW, 8, p. 113; Astronomia
Nova (Prague, 1609) = KGW, 3, pp. 239-40, 248-51; Epitome, KGW, 7, pp. 298, 304-5,
333.

2 Astronomia Nova, KGW, 3, p. 237 and 376; Epitome, KGW, 7, pp. 295-6, 301 (where
Kepler explains that without attraction or repulsion the orbit would be circular), 332,
367-70 (compare the figure with the diagram from the Tenzamen). Both texts were known
to Leibniz: the Epirome is mentioned in the Tentamen (see below); the manuscript LH 35,
9, 2, f. 80, contains excerpts from the Astronomia Nova, pp. 252-6 (original), namely
p. 182, lines 6-13; p. 184, lines 15-20; p. 186, lines 15-17. Compare also A. Koyré, La
Revolution Astronomique (Paris, 1961), part 2.
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around a centre in which the velocity of rotation is inversely proportional
to the radius; this condition is equivalent to the area law. The latter is the
radial motion towards or from a centre, due to gravity and centrifugal
force. Leibniz also talked of this component of motion as taking place
along a rigid rotating ruler. The combination of the two motions
generates planetary ellipses. The similarity between the two representa-
tions is striking. However, it should not be overlooked that for Kepler the
outward motion of a planet was due to magnetic repulsion, whereas for
Leibniz it was an effect of the planet’s own orbital motion: no repulsion
was needed in his account.

In the introduction to his essay Leibniz reveals first-hand knowledge
of the Epitome: he refers almost verbatim to a passage where Kepler
discusses the place of the Earth in the Universe, and whether heavy
bodies tend towards the centre of the world. Kepler proposes the
following argument, in which he examines the case of circular violent
motion, only to refute it immediately afterwards. The reasoning is based
on Aristotle’s physics. If some stalks or straws float in a vortex of water,
the water, being denser than the floating bodies, pushes them towards the
centre. In Kepler’s account this mechanism cannot be valid for the
motion of the Earth, because the aether supposedly keeping the Earth in
its orbit is certainly more tenuous than the Earth and cannot counter-
balance its tendency to fly away. Surprisingly, this passage is not in Book
4 of the Epitome, in the section on the causes of planetary motion where
Kepler explained his theory of the species motrix, but in Book 1. The
example of the bodies floating in water was to be analysed by several
philosophers in the seventeenth century, including Descartes and
Huygens. Further, Kepler compared the species motrix emitted from the
Sun with the rotation of a vortex both in the Astronomia Nova and
Epitome.1?

In the Tentamen Leibniz praises Kepler for having first made known to
the mortals ‘jura poli, rerumque fidem, legesque Deorum’.!* In this
quotation from Claudian, which originally referred to Archimedes,
Leibniz significantly mentions the laws of the heavens, the order of
nature, the precepts of the Gods, namely three central areas of inter-
section with Kepler’s philosophy. Among the reasons for this praise are
the explanation of gravity and the three laws of planetary motion: planets
move in ellipses where the Sun occupies one of the foci (first law); the
radius from the Sun to the planet sweeps out equal areas in equal times
(second law); the squares of the times of revolution are proportional to

13 KGW, 7, p. 75-6, section 4 of Book 1, De loco telluris in mundo, eiusque proportione
ad mundum; quoted in Bertoloni Meli, ‘Public Claims’, p. 427, n. 22. KGW, 3, p. 34; KGW,
7,p- 299.

14 Claudian, Carminum Minorum Corpusculum, LIL: ‘Jura poli rerumque fidem legesque
Deorum | ecce Syracusius transtulit arte senex.
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the third power of the major axes of planetary ellipses (third law).?
Nevertheless, Leibniz claims that Kepler would not have found the
causes of his discoveries, both because he still believed in angelic
intelligences moving the planets and in the doctrine of sympathies, and
because the most advanced mathematics and the science of motion had
not progressed sufficiently in his time. However, following Leibniz’s
account, Kepler gave the first indication of the true cause of gravity with
the example of the bodies floating in water, but he was hesitant and did
not draw full consequences from it. As we have seen, Kepler was not
hesitant at all and rejected altogether the explanation which Leibniz
attributed to him.'¢

In the introduction to the 7entamen Leibniz also credited Kepler with
the discovery that rotating bodies tend to escape along the tangent. He
was certainly referring to the passage immediately following that on the
vortex of water discussed above. Indeed, Kepler does say that rotating
bodies tend to fly away along the tangent; if a body is kept on a rotating
wheel and then is released, it will fly away in a straight line, as it is shown
in the accompanying figure in the Epirome.'’ However, in the letter of
1677 to Fabri, Leibniz criticized both Kepler and Galileo for failing to
realize that bodies moving along a circumference, regardless of its size,
tend to escape along the tangent. It is well known that in some passages
Kepler and Galileo considered motion in very large circles—of the size of
planetary orbits—to be natural. Leibniz’s statement reveals his under-
standing of what we call the principle of rectilinear inertia and his
sympathetic reading of Kepler in the Tentamen.'®

13 The first two laws appeared in Astronomia Nova, KGW, 3, p. 265 (first law) and 366
(second law); compare C. Wilson, ‘Kepler’s derivation of the elliptical path’, Isis, 59, 1968,
pp- 5-25; E. J. Aiton, ‘Kepler’s Second Law of Planetary Motion’, Isis, 60, 1969, pp. 75—
90. The third law appeared in the Harmonice Mundi, KGW, 6, p. 302.

16 Similar statements are in Leibniz, ‘De Causa Gravitatis’, AE May 1690, pp. 228-39;
in LMG, 6, pp. 193-203, on p. 195.

7 KGW 7, p. 76: ‘Ex adverso, solet motus violentus, horizonti parallelus, cum gravia
corripuit, incitare illa, si soluta a rota fuerint et in lineam rectam a circumferentia circuli
excutere. Compare Tentamen de Systemate Universi, LH 35, 9, 9, f. 1-2:1r.: ‘Hanc vim
[Leibniz means centrifugal] primus quod sciam observavit Keplerus, notans rotae
circulanti imposita rejici per tangentem circuli’ Throughout the seventeenth century, and
for several decades in the eighteenth century, centrifugal force was not seen as a fictitious
force arising in a non-inertial reference system, but as a real force due to the tendency of
rotating bodies to escape along the tangent. D. Bertoloni Meli, “The Relativization of
Centrifugal Force’, Isis, 81, 1990, pp. 23-43.

18 LSB, I, 2, pp. 136-7 (Proposition 14). Leibniz mentioned the law of inertia already
in the 1669 ‘De Rationibus Motus’, LSB, VI, 2, pp. 161-2. See also Koyré, Revolution,
p-215,n. 1, and Etudes Galiléennes (Paris, 1966). H. R. Bernstein, ‘Passivity and Inertia in
Leibniz’s Dynamics’, SL, 13, 1981, pp. 97-113. In the ‘Animadversiones’ Leibniz attributes
the law of nature according to which a body, ‘quantum in se est’, persists in the same state,
to Galileo and Pierre Gassendi, LPG, 4, p. 372. 1. B. Cohen, ‘Quantum in se est: Newton’s
Concept of Inertia in Relation to Descartes and Lucretius’. NRRS, 19, 1964, pp. 131-55.
For Gassendi’s influence on the young Leibniz through his professor of mathematics at
Jena Erhard Weigel compare K. Moll, Der junge Leibniz, vol. 2 (Stuttgart, 1982).
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Another issue relevant to Leibniz’s reading of Keplerian inertia and to
his relations with Newton is worth discussing at this point. Although my
analysis focuses on physical problems, one should not forget the
existence also of a metaphysical dimension. On a small piece of paper
pasted in his own copy of the second edition of the Principia (1713),
Newton inserted an addition to his definition 3. The definition reads:
‘The vis insita, or innate force of matter, is a power of resisting, by which
every body, as much as in it lies, continues in its present state, whether it
be of rest, or of moving uniformly forwards in a right line’ The addition
follows the claim, a few lines after the passage just quoted, that the vis
insita can be called vis inertiae, and states: ‘I do not mean the Keplerian
force of inertia by which bodies incline to rest, but a force maintaining
them in the same state of rest or of motion.’ I. Bernard Cohen success-
fully identified the addressee of this clarification as Leibniz, who refers
to Keplerian inertia in paragraphs 30 and 380 of the Théodicée. Kepler
defended a neo-Aristotelian view according to which bodies tend to lose
their velocity because of their own inertia or resistance to motion, and
force produces speed rather than acceleration.!” Leibniz tried to clarify
his reference to Keplerian inertia by the following passage, which led
Newton and some modern interpreters to believe that the German
philosopher shared with Kepler pre-Cartesian views about motion:2°

Let us suppose that the current of one and the same river carried along with it
various boats, which differ among themselves only in the cargo, some being laden
with wood, others with stone, and some more, the others less. That being so, it
will come about that the boats most heavily laden will go more slowly than the
others, provided it be assumed that the wind or the oar, or some other similar
means, assist them not at all.

The situation described by Leibniz is quite complex, and at first sight it is
not immediately clear how it relates to the problem of inertia. Before
tackling this issue, following Bernard Cohen I wish to notice the
similarity between boats carried by the river and planets moved by a
vortex. The reference to Kepler and the notion that motion is in some

9 I. B. Cohen, ‘Newton and Keplerian Inertia: an Echo of Newton’s Controversy with
Leibniz’, in A. G. Debus, ed., Science, Medicine and Society in the Renaissance, 2 vols.
(London, 1972), 2, pp.199-211. Isaac Newtons ‘Philosophiae Naturalis Principia
Mathematica’, the Third Edition (1726) with Variant Readings, ed. A. Koyré, 1. B. Cohen and
A. Whitman (Cambridge, 1972), pp. 40-1. Transl. by Motte and Cajori, p. 2. I. B. Cohen,
Newtonian Revolution, sect. 4.5; ‘Newton’s Copy of Leibniz’s Théodicée’, Isis, 73, 1982,
pp- 410-14. A. Gabbey, ‘Force and Inertia in Seventeenth-Century Dynamics’, SHPS, 2,
1971, pp. 1-67. Bernstein, ‘Passivity’. Catherine Wilson, Leibniz’s metaphysics (Manches-
ter, 1989}, p. 141. On the links of inertia or ‘passivity’ with metaphysical problems see G.
Buchdahl, Metaphysics and the Philosophy of Science (Oxford, 1969), ch. 7.

20 For the quotations from Leibniz, Théodicée, pars. 30 and 380, I use the transl. by E.
M. Huggard, Theodicy (Routledge and Kegan Paul, London, 1952), pp. 140-1 and 353.
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inverse proportion to the resistance or inertia may sound surprising to
the reader. However, Leibniz frequently used terms and concepts from
various traditions and reinterpreted them within his own philosophy. In
this circumstance he clarified the difference between his own concept of
inertia and Kepler’s in the very paragraph 30 of the Théodicée, soon
after the passage quoted above:

It is therefore matter itself which originally is inclined to slowness or privation of
speed; not indeed of itself to lessen this speed, having once received it, since that
would be action, but to moderate by its receptivity the effect of the impression
when it is to receive it. Consequently, since more matter is moved by the same
force of the current when the boat is more laden, it is necessary that it goes more
slowly; and experiments on the impact of bodies, as well as reason, show that
twice as much force must be employed to give equal speed to a body of the same
matter but of twice the size.

Of course, here ‘force’ means living force or mass times the square of
velocity, rather than Newtonian force. The last claim in the quotation is
not very accurate, because ‘twice the force’ could be obtained by
doubling the mass or the square of the velocity, and the result of these
operations is not the same. From the context, however, it appears that
Leibniz meant the former alternative. His interpretation of ‘inertia’ can
be further grasped from paragraph 380 of the Théodicée, where he
claims: ‘Kepler, one of the most excellent of modern mathematicians,
recognized a species of imperfection in matter, even when there is no
irregular motion: he calls it its “natural inertia”, which gives it a resistance
to motion, whereby a greater mass receives less speed from one and the
same force’ As Ernst Cassirer observed and as these quotations show,
Leibniz’s concept of inertia is defined in terms of impacts, and in
impacts, if the living force of the impelling body is given, the velocity of
the impelled body is ‘moderated’ by its own inertia. Leibnizian inertia is
resistance to impressed motion rather than vis insita or the tendency to
continue motion uniformly in a straight line. While illustrating the
differences between Leibnizian and Newtonian notions, this discussion
shows how Leibniz reinterpreted terminology and concepts from several
traditions with a sense of philological accuracy that the modern reader
may often find baffling.?! He was very quick in finding prestigious

2l Cassirer, Leibniz’ System, p. 339. Leibniz, ‘Discours de Métaphysique’, in G. Le Roy,
ed., paragraph 21; Phoranomus, in C.1. Gerhardt, “Zu Leibniz’ Dynamik’, Archiv fiir
Geschichte der Philosophie, 1, 1888, pp. 566-81, on pp. 575-81, and Bertoloni Melj,
‘Censorship’, section 2; LPG, 7, pp.446-9, on p.447, Leibniz to Antonio Alberti,
1690(?7); LPG, 4, pp. 464-7, 1691; Specimen Dynamicum (Hamburg, 1982), pp. 8-11; ‘De
Ipsa Natura’, AF Sept. 1698, pp. 427-40, in LPG, 4, pp. 504-16, on p. 510, where the
reference to Keplerian inertia is first mentioned in print; Leibniz-Clarke Correspondence,
ed. G. M. Alexander (Manchester, 1956), Leibniz’s fifth paper, par. 102. See also the
valuable edition by A. Robinet, Correspondence Leibniz—Clarke (Paris, 1957). Leibniz’s
fifth letter to Clarke, paragraph 102.
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predecessors to his own ideas, even if, as in this case with Kepler, those
predecessors seem to us to be defending rather different views.

Before concluding this section I wish to discuss a short essay first
published by Gerhardt, the Tentamen de Physicis Motuum Coelestium
Rationibus, where Leibniz gives an account of the development of
astronomy in which Kepler appears in a different light. The circum-
stances of composition, I shall suggest, induced Leibniz to write yet
another different history. Since the manuscript is on Italian paper, we can
be sure that the essay was composed in 1689 or shortly afterwards,
therefore after the published Tentamen.?? The Tentamen de Physicis
Motuum Coelestium Rationibus is a retrospective gloss, an account of the
events as Leibniz wanted to present them when his essay on planetary
motion had already appeared in the Acra. The first striking feature is that
Kepler is no longer mentioned in the context of the vortex theory. In his
place Leibniz mentions Galileo, Torricelli, and Descartes, who was
previously accused of having plagiarized Kepler’s vortices.?* These three
‘restauratores philosophiae’, as Leibniz calls them, were not able to
explain from which kind of vortical motion the laws of planetary motion
arose. On the other hand Kepler, allegedly having compared the accuracy
of several explanations of phenomena, found that planets move in
ellipses where the Sun occupies one of the foci, and that the areas swept
out by the radii from the Sun to the planet are proportional to the times.
The third law, which Leibniz had never been able to include satisfactorily
in his theory, is ignored. Leibniz claims that Ismael Boulliau, Seth Ward,
and others who followed Kepler tried to explain the area law by means of
several devices, such as the composition of various circles, but it was not
clear whence the proportion involving the areas could be generated.
Hence he presents two separate and complementary traditions: on the
one hand there are those providing physical causes without being able to
account for observations; on the other hand there are those saving the
phenomena without being able to give physical explanations. These two
traditions have to be brought together, and this is the role Leibniz assigns
himself with the discovery of the harmonic circulation, which accounts
for the motion of the vortex carrying the planets and for the area law.

22 LBG, pp. 612-13. Gerhardt erroneously identified this essay with a work mentioned
by Leibniz in a letter intended for Huygens of October 1690. Compare HOC, 9, p. 528,
n. 16. G. W. Leibniz, Vorausedition zur Reihe VI—Philosophische Schriften—, Faszikel 8
(Miinster, 1989}, pp. 1751-3.

23 Galileo is mentioned, though with some reservations, also in the Tentamen. He
referred to a subtle celestial aether in Il Saggiatore (Roma, 1623); in GOF, 6, p. 317. The
reference to Torricelli is identical to that in the Tentamen and is taken from Balthasar de
Monconys, Journal des Voyages (Lyons, 1665-6), pp. 130-1, first part. Leibniz neglects a
host of believers in vortex theories; in Britain, for example, they were adopted by Vincent
Wing and Thomas Streete. A detailed study of this area is in C. Donahue, The Dissolution
of the Celestial Spheres (New York, 1981).
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Although Kepler is confined to the role of a mathematical astronomer,
Leibniz’s dialectical ploy is typical of the German astronomer. It is
conceivable that Leibniz assigned a different role to Kepler because his
works were in the index in Italy, where the essay was composed.

1.3 Astronomy and the reception of Kepler’s laws

After having surveyed some philosophical and physical themes inter-
secting Kepler’s and Leibniz’s writings, we move to an area which turned
out to be of central importance in the Newton-Leibniz dispute, namely
astronomy. In fact, the incorporation of Kepler’s laws into their theories
became a decisive factor in the course of the controversy.

Judging from the available sources, Leibniz’s interest and competence
in astronomy seem to have been weak. I am not aware of any observa-
tions he made, nor of any extensive and accurate study of the
astronomical literature. Among his manuscripts at the Niedersichsische
Landesbibliothek catalogued under the heading ‘Astronomica’, one finds
a rather thin corpus of excerpts and remarks, the most extensive being
from Robert Hooke, Animadversiones on the first part of the Machina
Coelestis (London, 1674). Elsewhere among his papers 1 traced a
manuscript containing excerpts largely based on Giandomenico Cassini’s
observations and bearing the title ‘Observationes Astronomicae
Novissimae’. The text contains references to telescopes, double and
multiple stars, sunspots, comets, the Earth and the Moon, the planets
including Jupiter with its satellites, and Roemer’s observations on the
speed of light, Saturn and its three satellites known before 1684. Some
notes which have been added later refer to mean distances and apparent
diameters of planets as reported by Newton in the Principia.**

By contrast, Newton is known to have studied major astronomical
works and to have made observations. If the reflecting telescope he
presented at the Royal Society at the end of 1671 was more related to his
optical researches, other sources point to an unambiguous interest in
astronomy. We know for certain that he studied and annotated the
monumental compendium by Vincent Wing, Astronomia Britannica
(London, 1669), and Thomas Streete, Astronomia Carolina (London,
1661). In his correspondence with the Astronomer Royal John
Flamsteed, Newton revealed his competence on several occasions both
in cometography and lunar theory, a topic about which the eminent
mathematician and astronomer Nicolaus Mercator had already praised

24 LH 35, 15, 6, ‘Astronomica’, esp. f. 10-16. LH 35, 10, 1, f. 4. Watermark 1794 in the
catalogue at the NLB, ‘crown, symbol’ and year ‘1680’ datable from 1680 to 1687.
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him in 1676.%° Indeed, as Curtis Wilson has convincingly argued,
Mercator is Newton’s most likely source for Kepler’s second law. The
German had publicly attacked the newly appointed Royal Astronomer in
Paris, Giandomenico Cassini, precisely on the issue of the exact formula-
tion of the area law. The first and third laws were more widely known in
the seventeenth century and are clearly expressed in Streete, Astronomia
Carolina. Newton employed the third law in a manuscript of the late
1660s, in the attempt to estimate the dependence on distance of a
planet’s centrifugal force.?

In the three main sources referred to by Leibniz which I have
mentioned so far, namely the Epitome and the works by Boulliau and
Ward, the first law is clearly stated; the second, however, requires a more
careful study.?’

In the manuscript draft of the Tentamen there is a marginal note, later
crossed out, which alters paragraph 6 to read:?®

With the radii drawn from the centre of the circulation [planets and satellites]
describe areas proportional to the times, which Kepler discovered first, then
Boulliau in the Astronomia Philolaica (rather Kepleriana) and Seth Ward
beautifully explained and respectfully approved.

Interestingly Leibniz refers to the same authors mentioned in the
Tentamen de Physicis Motuum Coelestium Rationibus, namely Boulliau
and Ward. They were among the leading astronomers around the middle
of the century, and their controversy which I am about to outline was
widely known in Europe. The reference to them concerning the second

35 Westfall, Never at Rest, pp.232-7 and 258. D. T. Whiteside, ‘Newton’s Early
Thoughts on Planetary Motion: a Fresh Look’, BJHS, 2, 1964, pp. 117-37. J. E. McGuire
and M. Tamny, ‘Newton’s Astronomical Apprenticeship: Notes of 1664/5’, Isis, 1985, 76,
pp- 349-65. N. Mercator, Institutiones Astronomicae (London, 1676), p. 286: ‘Harum . ..
Librationum causas Hypothesi elegantissima explicavit nobis vir Cl. [saac Newton’, quoted
in Edleston, Correspondence, p. li, n. 49.

26 N. Mercator, ‘Some considerations concerning the geometrick and direct method of
Signior Cassini for finding the Apogees, Excentricities, and Anomalies of the Planets, as
that was printed in the Journal des Scavants of Septemb. 2 1669°, PT, 5, 1670, pp. 1168-
75. CUL, Ms Add 3958(S), f. 87, in Herivel, Background, pp. 192-8. On the reception of
Kepler’s laws in the seventeenth century see: J. L. Russell, ‘Kepler’'s Laws of Planetary
Motion’, BJHS, 2, 1964, pp. 1-24; Whiteside, ‘Early Thoughts’, esp. pp.122-4 on
Newton’s sources. V. E. Thoren, ‘Kepler’'s Second Law in England’, BJHS, 7, 1974,
pp. 243-56; C. A. Wilson, ‘From Kepler’s Laws, so Called, to Universal Gravitation:
Empirical Factors’, AHES, 6, 1970, pp. 89-170, esp. pp. 129-34 and 141-2. C. A. Wilson,
‘Horrocks, Harmonies, and the Exactitude of Kepler’s Third Law’, Studia Copernicana, 15,
1978, Science and History, Essays in Honor of Edward Rosen, pp. 235-59.

27 1. Boulliau, Astronomia Philolaica (Paris, 1645), p. 4; S. Ward, Astronomia Geo-
metrica {London, 1656), p. 1.

2% LH 35, 9, 2, f. 56-9; f. 57r.: ‘Radiis enim ex centro circulationis ductis, areas
describunt temporibus proportionales [(quod primus invenit Keplerus, deinde Bullialdus
in Astronomia Philolaica (potius Kepleriana) et Sethus Wardus pulchre illustrarunt, et
observantes comprobaberunt)]’. I enclose the text of the marginal note in square brackets.
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law is very puzzling. In Astronomia Philolaica Boulliau did not accept
the area law, but rather claimed that the elliptical motion of the planet
takes place along the surface of a cone: the points on the axis of the cone
are those of mean motion, or with respect to which angles are pro-
portional to times. Boulliau explicitly denied that his theory involved a
punctum equans, since he believed that the points on the axis of his cone
constituted an alternative to equant theories.?” A few years later Seth
Ward pointed out that the intersection of the plane of the planetary
ellipse with the axis of Boulliau’s cone is indeed an equant point of the
ellipse. This observation highlighted a serious contradiction in Boulliau’s
theory, whose presupposition was to use only circular uniform motions:
Ward had shown that Boulliau’s theory was equivalent to the theories the
French astronomer had criticized. In Astronomia Geometrica Ward
adopted again the hypothesis that the second focus of planetary ellipses
is an equant point.*® In a later version of his theory, Boulliau adopted a
modified form which saved the phenomena better, but was in contra-
diction with the assumptions of the Astronomia Philolaica; despite the
better agreement between theory and observations, Boulliau’s con-
struction was different from the area law. His was one of the many
approximations used at that time as a computational device.’! In the
passage from the manuscript of the Tentamen quoted above, Leibniz
draws no distinction between Kepler’s, Boulliau’s, and Ward’s versions of
the second law. It is not clear whether Leibniz crossed it out for this
reason.

29 Astronomia Philolaica, p. 26, point 13, and p. 286. The best account of Bouliiau’s
positions and of the reception of Kepler’s laws is in Wilson, ‘Empirical factors’. The
equant point has the property that arcs measured with respect to it are proportional to the
times.

30 S. Ward, In Ismaele Bullialdi Astronomiae Philolaicae Fundamenta, Inquisitio Brevis
(Oxford, 1653), p. 3; Astronomia Geometrica, p. 1. In a letter to Leibniz written ten years
after Newton’s book, Jakob Bernoulli raises the problem of the difference between
Kepler’s second law and Ward’s equant theory, pointing out that these were not equivalent
and that although Newton used the former it was by no means certain which was the
correct one; LMG, 3, p. 50, 27 Jan. 1697.

3 Astronomiae Philolaicae Fundamenta Clarius Explicata et Asserta (Paris, 1657), p. 37
(clear summary); see C.A. Wilson, ‘Empirical factors’, pp. 119-21. Compare also 1.
Newton, Principia, scholium to proposition 31, and D.T. Whiteside, ‘Early Thoughts’,
pp- 122-4, n.25. Y. Maeyama, Hypothesen zur Planetentheorie des 17. Jahrhunderts,
Doktorarbeit, Frankfurt a.M., 1971; ‘The Historical Development of Solar Theories in the
Late Sixteenth and Seventeenth Centuries’, Vistas in Astronomy, 16, 1974, pp. 35-60. V. E.
Thoren, ‘Second law’, p. 245. O. Gingerich and B. Welther, ‘Notes on Flamsteed’s Lunar
Tables’, BJHS, 7, 1974, pp. 257-8. See also the letter by Henry Oldenburg to Leibniz of 5
Aug. 1676, with James Gregory’s calculations on Kepler’s problem: LSB, 11, 1, pp. 520-2,
Leibniz’s excerpts from James Gregory’s papers, ib. pp. 499-503 and Newton’s epistola
prior, NC, 2, pp. 110-61, on p. 126, 24 Oct. 1676. Kepler’s problem, stated in Astronomia
Nova, KGW 3, p. 381, consists of finding the division of the area of a semicircle in a given
ratio by a line drawn from a point on the diameter to the circumference. This is strictly
related to the area law.
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In the introduction to the Zentamen Leibniz refers to the third law
with respect to planets and to the satellites of Jupiter and Saturn. The
reference to the satellites of Saturn is omitted in the editio princeps of the
Principia, and cannot have been taken from Newton.’? Indeed, I traced a
manuscript fragment in Leibniz’s hand referring to Cassini’s article on
the Journal des Scavants of 22 April 1686, where the Italian astronomer
announced the discovery of two more satellites of Saturn—fourth and
fifth—and clearly stated that they obey Kepler’s third law.*?

These observations indicate that around 1688 Leibniz probably knew
Kepler’s first and third laws; concerning the second law, although this is
correctly formulated and applied in the Tentamen, I am less confident of
Leibniz’s appreciation of the different formulations he quotes. Evidence
of his full understanding of the matter before the Tentamen is lacking,
and even afterwards his references to Boulliau and Ward are puzzling. As
far as I can tell from my reading, until 1688 Leibniz had not paid
attention to Kepler’s laws, both with respect to their mathematical
formulation and physical interpretation. I believe that before reading
Newton’s Principia, his understanding of their relation to the inverse-
square law and central forces, or harmonic circulation, was non-existent.
In a letter of 1679 Leibniz stated that the astronomy of Descartes—a
telling denomination—was basically the same as that of Copernicus and
Kepler, to which the French added a better explanation of vortices.**
This statement suggests that at least around 1679 Leibniz did not
consider the three laws to be a fundamental part of Kepler’s heritage.
Within the two traditions identified in Tentamen de Physicis Motuum

32 NMW, 6, p. 40, n. 26. In the first edition Newton omitted this reference after
consultations with Flamsteed, who could not detect the satellites; NC, 2, pp. 403-5, on
p. 405,27 Dec. 1684.

33 LH 35, 9, 5, f. 29: “Notat Cassinus diar. eruditorum 22 April. 1686 ab omnibus
satellitibus tam Saturni quam Solis observari legem a Keplero praescriptam rationis
temporum periodicorum est distantiarum nempe ut sint t? ut d*.’ Leibniz added some com-
putations to check the validity of Kepler's law. Compare Journal des Scavants, 1686,
pp- 139-54:149 (Amsterdam). See also Leibniz’s excerpts from Harmonice Mundi (Linz,
1619), in LH 35, 10, 1, f. 9, watermark 488 in the catalogue at the NLB, ‘crossed keys’ and
letters ‘F M, used by Leibniz in Vienna in 1688. The excerpts are from pp. 193, 195-6,
187-90. The sketch on the verso representing planetary distances from the Sun repro-
duces the figure facing page 186 of the Harmonice. The relevant portion of the text
excerpted by Leibniz reads: ‘Proportio quae est inter binorum quorumcumque planetarum
tempora periodica est praecise sesquialtera proportione mediarum distantiarum.” The text
was written in pencil and subsequently inked over.

3 For a different opinion about Leibniz’s reading of Boulliau and Ward see E. J. Aiton,
‘The mathematical basis of Leibniz’s theory of planetary motion’, SL Sonderheft 13, 1984,
pp. 208-25, on p. 219. Compare also LH 35, 8, 30, f. 69, Keplerus plurimus aliorum
inventis principium et occasionem dedit: ‘Dixerat Keplerus ex foco superiore tanquam
centro motum planetae fere aequabilem apparet’ The date of composition of this
manuscript is not known. LSB, 11, 1, pp. 499504, on p. 503. The addressee is unknown.
Compare also LPG, 4, pp. 343-4 and 348, datable around 1683-6.
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Coelestium Rationibus, in this area he concentrated on physical accounts
in terms of vortices rather than on mathematical attempts to save the
phenomena. We shall see in Section 5.4 that in a manuscript of autumn
1688 Leibniz explicitly attributed the generalization of the area law to
Newton, a clear indication that his own harmonic circulation had not yet
been conceived.®

* In the ‘Leibniz-Nachlass’ I traced Leibniz’s own copy of the Epitome with his
marginal annotations (Leibniz Marg. 97: Frankofurt, 1635) and a set of excerpts which
closely correspond to the underlinings in the book; LH 35, 15, 6, f. 28-9: Kepleri Loca
Sunt Multa Meae de Corporis Constitutione Philosophiae Consentanea. Tantum Quaedam
ex Epitome Astronomiae Excerpere Placer. As the title suggests, Leibniz is interested in the
theory of matter and excerpts several passages on inertia (compare the commentary on his
notes to the Principia, Definition 3). The excerpts from Kepler are followed by other
excerpts from books printed in 1696 or after; among these are: the Latin edition of
Richard Bentley's sermons, Stulritia et Irrationalitas Atheismi, transl. by D. E. Jablonski
(Berlin, 1696}, and Edward Stillingfleet, Answer to Mr Locke’s Second Letter (London,
1698). After Huygens's death in 1695 Leibniz acquired part of his library, and in particu-
lar a copy of the Epitome which may well be the same he excerpted some time afterwards.
See H.-J. Hess, ‘Biicher aus dem Besitz von Christiaan Huygens (1629-1695) in der
Niedersdchsischen Landesbibliothek Hannover’, SL, 12, 1980, pp. 1-51, on p. 10. I believe
that marginalia and excerpts date from the late 1690s.
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VORTICES AND FLUIDS: FROM
GRAVITY TO ELASTICITY

2.1 Introduction

In the second half of the seventeenth century natural philosophy relied
heavily on Cartesian explanations of phenomena in terms of the motion
of particles of different shape and size. Even if the specific mechanism
devised by Descartes was questioned, vortices and subtle fluids were the
cornerstone for an intelligible explanation of the universe. The following
two sections examine some aspects of the vortex theories framed by
Descartes and Huygens in order to gain some familiarity with this
material. The examples | have selected were well known to Leibniz and
Newton, and were important in the formation of their views; we shall
find several references to them in Leibniz’s manuscripts.

During my surveys of the ‘Leibniz-Nachlass’ I traced a set of excerpts
from the third part of Descartes’ Principia Philosophiae, De mundo
adspectabili. They cover the four manuscript sides of an entire folded
sheet and one side of a separate half sheet. Luckily the separate sheet has
a watermark with a crown, a bell, and the year ‘1678’. Leibniz used this
kind of paper especially in the early 1680s.! Descartes is mentioned in
the introduction to the Tentamen, and there is no more obvious a source
than him for a vortex theory; there is no doubt that Leibniz knew his
work well before the 1680s. However, these manuscripts are important
because they testify to Leibniz’s interest in the causes of celestial motion
in those years, and help us to establish a link between two areas which
appeared thus far to be separate, namely motion in a resisting medium
and celestial motion. Further, these excerpts show how influential the
Principia Philosophiae was as late as the early 1680s. In the following
section I discuss Leibniz’s excerpts from Descartes’ Principia and
conclude with some observations on the mathematization of nature.

Leibniz’s sources certainly went beyond excerpts and annotations. A
more direct form of communication is represented by the conversations
he had with mathematicians and philosophers, especially during his stay

' LH 35, 15, 6, f. 25-7; the watermark corresponds to number 1765 in the catalogue at
the NLB.
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in Paris. Among the astronomers discussed in Chapter 1, for example,
Leibniz referred to his talks with his friend Ismael Boulliau.? Moreover,
he probably discussed several issues with his mentor Christiaan Huygens,
to whom Section 2.3 is devoted. I examine in particular the theory of
centrifugal force with the application of evolutes, and the explanation of
the cause of gravity. Although the relevant portions of Huygens’s
theories were not available in print for many years after Leibniz left
Paris, it is likely that they were discussed by them before 1676. The
section ends with some observations on the relationship between
Descartes and Huygens.

In the last section I discuss the role and development of the notion of
elasticity in Leibniz’s system, paying attention to its function in the
relationships between mathematics, natural philosophy, and meta-
physical principles. Gravity and elasticity were often related by Leibniz,
and at one stage he even considered them to be identical. While
providing a broader picture of the mathematization of nature in the
seventeenth century and of the Leibnizian universe, these reflections will
prove useful in the interpretation of some passages discussed below.

2.2 The excerpts from Descartes’ Principia Philosophiae

The Principia Philosophiae consists of four parts on the principles of
human knowledge, the principles of material things, the visible world,
and the Earth, respectively. The excerpts I am about to discuss do not
appear to be part of a larger corpus; it seems that Leibniz focused from
the start on the third part, dealing with the objects of sensible experience,
or the system of the world.? Descartes gives a description of the universe,
its constitution and dimensions, and the types of matter filling the
heavens. His qualitative account explains the origin of the world, of its
elements, and of vortices carrying planets and comets.* Leibniz’s
excerpts cover most of the propositions 1-133. Before examining some
of them in detail, I wish to mention proposition 16 on the inadequacies
of the Ptolemaic hypothesis, proposition 30, where the word ‘vortex’ is

2 LMG, 3, p. 944, Leibniz to Johann Bernoulli, 1715; Nouveaux Essais, LSB, V1, 6, p.
489. See also Miiller and Kronert, Chronik, p. 42.

* A collection of articles on several aspects of Descartes’ work is in S. Gaukroger, ed.,
Descartes:  Philosophy, Mathematics and Physics (Brighton, 1981). On Descartes’
mechanics compare Westfall, Force, ch. 2; Dugas, Mécanique, ch. 7. On Descartes and
Leibniz see the classic Y. Belaval, Leibniz critique de Descartes (Paris, 1960).

* At the end of proposition 46 Leibniz inserts the following note, f. 25v.: ‘(+ Leucippus
apud Laertium vocabat Adivyv quanquam mihi ut dicam quod res est satius videatur
quamlibet partem rursus concipere ut exiguum vorticem, eorumque innumeros statuere
varietates in infinitum. +)’ The reference is to Diogenes Laertius, IX, 31 and is repeated in
the introduction to the Tentamen.
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first mentioned and where Descartes refers to the example of the straws
floating in a whirlpool similar to the passage from Kepler’s Epitome
which we have seen above, and proposition 52 on the three forms of
matter or elements, among which the first forms the Sun and the fixed
stars, the second fills the heavens, and the third constitutes planets and
comets. Proposition 82 is particularly interesting from our perspective
because Descartes provides a qualitative account of the motion of the
vortex and of the planets floating in it: he states that the particles of the
second element move swifter the further away from the centre of the
vortex, apart from a certain region around the centre containing the
planets where they follow the opposite law. No attempt is made,
however, to retrieve the precise quantitative formulations given by
Kepler.’

Notoriously, the ingredients of the Cartesian account are size, figure,
and motion of the particles filling up the universe. It is very helpful to
consider in detail the mechanism devised by Descartes in at least one
case. Although the relevant propositions have been excerpted but not
commented upon by Leibniz, they occupy an important position in the
present work. Proposition 120 treats the motion of a body in a vortex
having clear recourse to two opposite actions, gravity and a tendency to
escape along the tangent’ There and in the ensuing propositions
Descartes explains the details of the mechanism he has devised. A body’s
tendency to fly off along the tangent depends on its surface, because if
this is larger, the body is pushed by a greater number of particles of the
vortex and acquires a larger velocity to fly away along the tangent.
Gravity, however, depends on the volume of the body, because only the
particles of the vortex which occupy the space left when the body moves
must be taken into account. For Descartes only matter of the third
element forming the body must be included while considering its
soliditas—which 1 translate as ‘solidity’—because matter of the first
element moves through it freely without contributing to its motion.” All

S Leibniz’s excerpt reads, f. 25v.-26r.: *Quod ad globulos secundi elementi vorticem
componentes attinet. Eae excepto interiore quodam vorticis nucleo, concipiendae sint ut
aequales, tales enim initio supponimus, nec magna ratio apparet diversitatis, motus autem
remotiorum a centro celerior est, ita ut paucis forte in casibus circuitum absolvunt, nam
(licet vi suae circulationis circa vorticem, aequalem et mediocrem motum initio habuisse
intelligantur unde tardius est circulatio in circulis a centro valde remotis) ... Marked in
the margin with ‘NB’.

6 Leibniz's excerpt reads, f. 26v.: ‘Quod ut accurate intelligatur, considerandum est
astrum in vorticem a quo abripitur delatum, ibi obstare globulis vorticis, inferioribus, qui a
centro recedere conantur vi circulationis, ideo ab ipsis depellitur versus centrum. Sed cum
interim simul cum vortice circulari incipiat, vim nanciscitur recedendi a centro, qui duo
conatus pugnant, et praevalet validior.” Compare also Principia Philosophiae, proposition
140, Part II1, and propositions 20-7, Part [V, on gravity.

7 1b., Leibniz's rephrased excerpts read: ‘Vis autem qua depellitur, oritur a quantitate et
celeritate materiae coelestis seu numero globulorum eius locum occupare et a centro
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these considerations can be expressed in compact form by saying that a
body’s tendency to move away from or towards the centre depends on
its solidity: the greater the solidity, the stronger the tendency to move
away from the centre, and vice versa. Propositions 121-125 define and
explain the notion of solidity; as we have seen, Descartes means the
quantity of matter of the third element of a body, in conjunction with its
volume and surface.®

The interest of the analysis of orbital motion in proposition 120 lies
also in the correlation established with the theory of motion in a resisting
medium: the inward tendency depends on the volume of a body; the
outward tendency on its surface. In Leibniz’s excerpt the ‘vis qua
depellitur’, namely the inward tendency, depends on the number of
globes of the vortex which can occupy the volume of the body; the ‘vis
qua circulatur’, though, depends on the number of globes rubbing its
surface. An analogous reasoning is applied to proposition 126, where
Descartes explains how a comet begins to move assuming that particles
or globes of the second element filling the heavens are less solid than the
comet, which is carried by them. Leibniz writes three separate comments
to this proposition, the third of which is the most interesting:®

There is also this difficulty about the motion of a comet, that more globes can fill
its space than rub its surface. Therefore, the force of the pressing down globes is
greater; the greater the number of globes that rub its surface, the less the solidity
of the comet, and the weaker the force of recession from the centre, in spite of it

recedere conantium ducto in velocitatem eorum. Vis qua circulatur oritur a quantitate
superficiei seu numero globulorum radentium et secum circumagentium. Ipsa tamen
celeritas quam accipit astrum ducenda est in eius corpus seu soliditatem, a qua defungi
debet quicquid ei non cohaeret, ut materia primi vel secundi elementi in poris eius fluens
quippe quae aliorsum cursum suum flectit, nec agitationem impressam cum astro
conservat, aut potius determinationem potius motum, quam novum motum accessit.” This
quotation is discussed below in the text.

8 Proposition 121 in the Principia Philosophiae states: ‘Per soliditatem hic intelligo
quantitatem materiae tertii elementi, ex qua maculae hoc sidus involventes componuntur,
cum eius mole et superficie comparata’ We can also say that solidity depends on the
density of the matter of the third element in a body and on its surface. On some occasions
Leibniz seems to take ‘solidity’ as a synonym for ‘quantity of matter’, whereas at other
times he understands it in a proper Cartesian sense. Compare the letter to Claude Perrault
of 1676, LSB, 11, I, pp. 2628, on p. 264: “. .. celuy qui est plus solide ou qui contient plus
de materie . ..

9 Ib., f. 26v.: {(+ Est et haec circa cometae motum difficultas, quod plures globi locum
eius enplere quam superficiem radere possunt. Ergo major vis deprimentium, item quo
plures superficiem eius radunt, eo minus habet soliditatis; eoque minus vim habet a centro
recedendi, cum tamen a numero globorum superficiem radentium vim centrifugam habere
dicatur +)’. The previous two comments in ib., f. 26v,, read: ‘(+ Difficultas quoad
cometam quod globuli vorticis extra nucleum suppositi sunt aequales. +)” ‘(+ Cum
cometa ad centrum accedat in spirali, fieri potest ut tandem impetu concepto perget in
tangente spiralis. + )
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being said that centrifugal force arises from the number of particles rubbing the
surface.

Leibniz seems to take solidity to be proportional to the ratio between
volume and surface. In this passage he finds some inconsistencies in the
Cartesian account. However, despite some differences and criticisms, his
analysis follows the main lines drawn by Descartes: orbital motion
results from the imbalance between gravity and the tendency to recede
from the centre, which Huygens named centrifugal force. These
opposing tendencies are explained in terms of friction and density; thus
the theory emerging from Leibniz’s excerpts concerns orbital motion and
is based on some concepts of the theory of motion in a resisting medium,
two areas which so far seemed to be unrelated. In Schediasma de
Resistentia Medii Leibniz introduced two types of resistance, called
absoluta and respectiva:'® ‘Absolute resistance is that which absorbs as
much of the force of the moving body, whether it is moved with a large
or small velocity, while it is moved, and depends on the viscosity of the
medium . .. yet it is not of consequence what may be the velocity of
striking.” Although each individual particle of fluid produces the same
effect regardless of the speed with which its surface rubs the body, the
overall effect of absolute resistance depends on the number of particles
encountered and hence on velocity. For similar reasons the overall effect
of respective resistance depends on the square of velocity, while the
effect of each individual particle depends on simple velocity: ‘Respective
resistance arises from the density of the medium, and is greater according
as the velocity of the moving body is greater’ Leibniz clarifies his
distinction further:

There is also this difference between the two kinds of resistance, that the
absolute has relation in a certain manner to the surface of the moving body or of
contact, the respective however to the solidity.

In this passage the reference to the Principia Philosophiae is very clear.
In the Schediasma Leibniz was implicitly trying to transform the
Cartesian qualitative account into a quantitative formulation. This
mathematization blurred the link between the theories of motion in
resisting media and celestial motions, because they had to be developed
following contrasting requirements. Although in the Tentamen planetary
motion was treated independently of the ideas in the Schediasma, for
Leibniz the two theories were related in their common Cartesian origin.
In Section 5.5 we shall find that a manuscript of 1688 on planetary

0 Leibniz, ‘Schediasma de Resistentia Medii’, LMG, 6, p- 135-47, on p. 136. The
following translations are from E. J. Aiton, ‘Leibniz on motion in a resisting medium’,
AHES, 9,1972, pp. 257-76, on pp. 260-1.
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motion suggests that Leibniz was still trying to explain gravity and
centrifugal force in terms of absolute and respective resistance.

Theories based on subtle fluids and Cartesian vortices proved extra-
ordinarily influential on Newton too. As Tom Whiteside has shown,
while studying Vincent Wing, Astronomia Britannica, Newton calculated
that the terrestrial vortex is compressed by the solar vortex ‘by about a
431d of its width’. Whiteside has emphasized that ‘it is still not realized
how much such images coloured and structured his thinking on
astronomy during the next fifteen years’, thus approximately until the
mid-1680s. As the Géométrie of Descartes ‘had been Newton’s entrance
into higher mathematics in the late summer of 1664, so a few months
later it was the beacon of Descartes’ Principia Philosophiae that lit its
way’ to a world of vortices and to the analysis of curvilinear motion.!!
The Cartesian account of orbital motion based on the imbalance
between opposing tendencies, for example, was closely examined by
Newton. In De gravitatione et aequipondio fluidorum, of approximately
1670, he tried to refute the Cartesian theory of relativity of motion by
arguing that the outward tendency was due to a real, as opposed to a
relative, circulation. Referring to proposition 140 of the Principia
Philosophiae, Part 111, Newton paraphrased the Cartesian text: ‘Later he
attributes to the Earth and Planets a tendency to recede from the Sun as
from a centre about which they are revolved, by which they are balanced
at their [due] distances from the Sun by a similar tendency of the
gyrating vortex.” A similar imbalance theory was also adopted by
Giovanni Alfonso Borelli in his study of the Medicean Planets, Theoricae
Mediceorum Planetarum; his book was owned and studied by Newton.
Despite a certain similarity between Borelli’s and Leibniz’s theories,
evidence that Leibniz studied the Theoricae before developing his own
theory is lacking.!?

It is worth pausing here to consider the implications of what has been
said so far on the issue of the mathematization of nature. Cartesian and
neo-Cartesian world-views were at the same time the springs driving
forward the process of mathematization and the chains obstructing it.

"' V. Wing, Astronomia Britannica {London, 1669), Trinity College Library, NQ.18.36.
D. T. Whiteside, The Preliminary manuscripts for Isaac Newton’s 1687 ‘Principia’ 1684-1686,
(Cambridge, 1989), p. x, n. 19-20.

2° A. R. Hall and M. B. Hall, Unpublished scientific papers of Isaac Newton, (Cambridge,
1962), p. 124; Westfall, Force, ch. 7. Newton’s later physical explanations of gravity are
outlined in Chapter 8. G. A. Borelli, Theoricae Mediceorum Planetarum ex Causis Physicis
Deductae, (Florence, 1666), discused in Koyré, Revolution, section 3. For Newton’s copy
of the Theoricae see J. Harrison, The library of Isaac Newton, (Cambridge, 1978), with dog-
earings. Borelli is also mentioned on p. 403 of the Principia Mathematica, first edition. On
proposition 140 of Principia Philosophiae see Herivel, Background, p. 59, n. 4. A copy of
Borelli’s work with marginal annotations by Huygens is at the NLB (classmark ‘Nm. A
104’); it was acquired by Leibniz after Huygens’s death in 1965; see Hess, ‘Biicher’.
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This dichotomy was already present in Descartes, who conceived the
universe in geometrical terms. His views seemed to pave the way for a
mathematical description of the world; however, he was prevented from
proceeding in this direction by the bewildering complexity resulting from
huge numbers of colliding particles. His reaction to Galileo’s analysis of
parabolic trajectories in Two New Sciences is emblematic: Descartes
despised Galileo’s mathematical treatment not because it was fallacious,
but because the void does not exist in nature. Therefore parabolic
trajectories were merely an easy mathematical exercise inapplicable to
the world of phenomena and unrelated to clear physical explanations.
The fact that in the preface to the second edition of Newton’s Principia
Roger Cotes referred in a sarcastic tone to this problem shows that by
1713 the issues raised by Descartes’ criticism of Galileo were still very
much alive:!?

Galileo has shown that when a stone projected moves in a parabola, its deflection
into that curve from its rectilinear path is occasioned by the gravity of the stone
towards the earth, that is, by an occult quality. But now somebody, more cunning
than he, may come to explain the cause after this manner. He will suppose a
certain subtile matter, not discernible by our sight, our touch, or any other of our
senses, which fills the spaces which are near and contiguous to the surface of the
earth, and that this matter is carried with different directions, and various, and
often contrary, motions, describing parabolic curves. Then see how easily he may
account for the deflection of the stone above spoken of. The stone, says he, floats
in this subtle fluid, and following its motion, can’t choose but describe the same
figure. But the fluid moves in parabolic curves, and therefore the stone must
move in a parabola, of course. Would not the acuteness of this philosopher be
thought very extraordinary, who could deduce the appearances of Nature from
mechanical causes, matter and motion, so clearly that the meanest man may
understand it?

It is clear that in this passage Cotes had Leibniz in mind, since his attack
paraphrases portions of the Tentamen. Despite his scornful irony,
however, mechanical explanations and subtle fluids had proved valuable
resources in the second half of the seventeenth century, especially when
they were handled by such talented mathematicians as Christiaan
Huygens.

2.3 Huygens: centrifugal force and the cause of gravity

The material in the present section is not based on a rich and relatively

13 Newton, Principia, transl. by Motte and Cajori, p. xxix. W. Shea, ‘Descartes as critic
of Galileo’, in R. E. Butts and J. C. Pitt, eds., New perspectives on Galileo (Dordrecht,
1978}, pp.139-59.
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unproblematic source, as in the previous section with the excerpts from
Descartes. My attempts to trace Huygens’s influence on Leibniz’s theory
are more conjectural and depend, at least in part, on some hints which
can be found in the texts of 1688. By the time Leibniz arrived in the
French capital in 1672, the Dutch mathematician was an established
leading figure at the Académie Royale des Sciences. Following his
discovery of the ring and main satellite of Saturn, as well as the invention
of the pendulum clock in the 1650s, Huygens had become an authority in
matters mathematical among Parisian circles. Three points deserve
attention for the role they take in the rest of my work: the function of
evolvents in the theory of centrifugal force; the belief that gravity
depends on the centrifugal force of the vortex, and that the particles of
the vortex differ only in velocity from common bodies on the Earth; the
claim that vertical descent can be explained if the particles of the vortex
move in all directions around the Earth. While presenting an account of
Huygens’s theory of gravity and centrifugal force, I concentrate on these
aspects.

The recent work by Joella Yoder has convincingly reconstructed
Huygens’s intellectual itinerary to the Horologium Oscillatorium, show-
ing its internal cohesion to a degree that was previously unrecognized.
Since much of his production was probably available to Leibniz regard-
less of its date of publication, I shall treat the relevant works together.
Stimulated by Marin Mersenne to determine the distance traversed by a
body in the first second of its free fall—we would say the constant or
gravitational attraction—Huygens undertook the investigation of an
action which he believed was analogous to gravity, namely centrifugal
force. The underlying idea was that of transforming a problem of motion
into one of equilibrium. A heavy body attached to a rotating cord—the
conical pendulum—was the simple tool employed for this transforma-
tion. If the cord has an inclination of 45 degrees to the vertical, gravity
and centrifugal force are equal and one can be used to measure the
other. Thus starting from gravity Huygens was led to the study of
centrifugal force and the conical pendulum. By 15 November he had
found that in the first second a body falls 15 6/10 feet. On 1 December
1659 he asked himself ‘what ratio does the time of a very small oscilla-
tion of a pendulum have to the time of perpendicular fall through the
height of the pendulum’. While working on this problem, Huygens
unexpectedly found a more general result. Originally he had restricted
his investigations to very small oscillations, since the period of the simple
pendulum depends on the amplitude of the oscillations. While examining
this problem, Huygens produced an intricate network of geometrical
relations concealing a most precious result. Reviewing his proof, he
determined a condition which would render his solution exact for
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arbitrary arcs, or oscillations, not only for very small ones. This
condition identified the cycloid and proved that cycloidal oscillations are
isochronous. The question now was how to produce such oscillations.
With yet another brilliant result, Huygens found that if the thread is
constrained between two cycloidal arcs, the oscillations are also along a
cycloid and the pendulum is rigorously isochronous. The rolling and
unrolling of the thread on the constraining arcs led to the more general
mathematical problem of determining such related curves.* The curve
ABC, produced by the unrolling of the thread, was called evolvent or
involute, whilst the curve AD of the constraining arc was called evolute.

Fig. 2.1 Evolutes and evolvents in the study of pendular oscillations.

These studies were closely related to the problem of rectification of
curves. Lastly, the need to experiment with real pendulums differing
considerably from the abstract ones, where the thread has no weight and
the bob is considered to be a point, led Huygens to the study of centres
of oscillations and to the compound pendulum. The greatest part of
these researches was published in the Horologium Oscillatorium of 1673,
a work which exerted a considerable influence on Leibniz: the copy he
received ‘ex dono autoris’ in the year of publication is preserved in
Hanover.!

Although Huygens’s first publication on gravity, the Discours de la

4 1. G. Yoder, Unrolling Time. Christiaan Huygens and the Mathematization of Nature
(Cambridge, 1989); quotation from p. 50.

5 C. Huygens, Horologium Oscillatorium, (Paris, 1673); in HOC, I8. English transl. by
R. J. Blackwell, The Pendulum Clock, (Iowa State University Press, 1986). Leibniz’s copy
is at the NLB, classmark ‘Leibn. Marg. 70’. A modern presentation of evolutes and
evolvents is in G. Loria, Curve Piane Speciali Algebriche e Trascendenti, (Milano, 1930), 2
vols.; 2, p. 281f. J. Joder, Unrolling time, (Cambridge, 1988).
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Cause de la Pesanteur, appeared in 1690 as an appendix to the Traité de
la Lumiere, his ideas on the matter had been formulated long before, and
had been presented at a debate on the cause of gravity at the Paris
Academy in 1669.'% Like Descartes, Huygens wanted to explain gravity
in terms of the size and figure of particles in motion. Unlike his French
predecessor, however, he assumed that all bodies are made of the same
kind of matter and, crucially, introduced a quantitative analysis. His
mathematics was largely based on a skilful use of geometry and
proportions. Considering that a body moving along a circumference has
a tendency to escape along the tangent and therefore away from the
centre, he proved in the unpublished De Vi Centrifuga of 1659 that this
tendency is proportional to the square of the velocity of rotation over the
radius.

An observer placed at the centre A of a rotating wheel sees a body
attached to the wheel and rotating with it along BEFM. If the body is
released, it will move along the tangent BS. In the time it takes to travel
along BE, BF and BM, it will reach K, L, and N respectively, because the
circular and rectilinear motions are uniform. Rigorously, EK, FL, and
MN are arcs of the evolvents of the circumference BEFM, namely arcs of

N N DL CK B

A

Fig. 2.2 Huygens’s study of centrifugal force in circular motion.

'8 C. Huygens, Traité de la Lumiere, (Leiden, 1690) = HOC, 19, pp. 451-537; Discours,
ib., 21, pp. 427-99. For the debate at the Academy see HOC, 19, pp. 625-45, and Aiton,
Vortex theory, ch. 4. On Huygens compare: H. J. M. Bos, M. J. S. Rudwick, H. A. M.
Snelders, R. P. W. Visser, eds., Studies on Christiaan Huygens, (Lisse, 1980). A. D’Elia,
Christiaan Huygens, (Milano, 1985); Dugas, Mécanique, ch. 10; Westfall, Force, ch. 4.
Joder, Unrolling time. H. J. M. Bos, ‘The Influence of Huygens on the Formation of
Leibniz’s Ideas’, SL Supplementa 17, 1978, pp. 59-68.
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the same curve occurring in the study of the isochronous pendulum. The
arcs BM, BF, and BE can be conceived to unroll up to the tangent BS and
represent the trajectories of the body seen by the rotating observer
placed in A. Notice that this relativistic fashion of introducing the
problem has to be interpreted as a rhetorical ploy inserted in order to
make centrifugal force more easily understandable, rather than as a
statement implying that centrifugal force is fictitious. For Huygens
centrifugal force was real and depended on the circular motion of the
body as opposed to the circular motion of the frame of reference. The
arcs of the evolvents can be approximated by their tangents in E, F, and
M, that is, EC, FD, and MS respectively, and their lengths can be
calculated by means of simple geometry, on the assumption that the arc
BE is very small. In conclusion, centrifugal force is proportional to
EB%AB, and is represented by CE, with a constant factor 1/2 because
motion along CFE is uniformly accelerated. Further, Huygens proved that
setting the centrifugal force of a body moving along a circumference
equal to the gravity retaining it in the orbit, its period must be equal to
that of a pendulum whose length is half the radius. This allowed him to
compare gravity and centrifugal force.!” Before the publication of the
theorems about centrifugal force in the Horologium Oscillatorium—
where they appeared without proof—only I[saac Newton had been able to
find similar results in a series of manuscripts dating from the 1660s.!8

For Huygens the force of gravity acting on a body originated from the
centrifugal force of a rotation fluid surrounding the body and was equal
to the difference between the centrifugal force of the fluid and that of the
body. Huygens believed that the Earth is surrounded by a fluid; on the
assumption that matter is uniform and that a piece of lead on the Earth
does not differ at all from the matter of the fluid, he calculated that its
velocity of rotation must be 17 times swifter than that of a point on the
equator. In order to explain why bodies tend to fall towards the centre of
the Earth rather than towards the axis of rotation of the vortex, Huygens
supposed that the particles of the fluid move in all directions around the
Earth. A few years later, after Jean Richer’s observations on the
diminution of the length of the seconds pendulum at Cayenne, and after
having read Newton’s Principia, Huygens was able to account for the
decrease in gravity from the pole to the equator on the basis of this

17 ‘De Vi Centrifuga’, composed in 1659, was published posthumously (Leiden 1703);
HOC, 16, pp. 255-311, on pp. 260-1; see my ‘Relativization’, esp. sect. 1.

'8 Newton’s manuscripts are: Waste Book, ULC, Add 4004, discussed by Herivel, Back-
ground, pp. 7-13, 45-8, 127-42; Vellum Manuscript, ULC, Add 3958, f. 45, discussed in
Herivel, Background, pp. 145-50, 184-6; ULC, Add 3958(5), f. 87 and 89, discussed in
Herivel, Background, pp. 192-8. Compare also NMW, 6, p. 38, n. 22. The theorems on
centrifugal force in the Horologium, HOC, 18, pp. 366-8, are formulated using
proportions.
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theory; if the Earth is a perfect sphere the decrease is measured by a
factor of 1/172, as he explains in the Discours. Whereas Descartes
explained gravity in terms of a difference in solidity, or density of the
matter of the third element and surface of the body, Huygens initially
employed only a difference in velocity. After the appearance of the
Principia Mathematica he surmised that the particles of the aether could
consist of a different and lighter matter with respect to planets; this
would account for the apparent lack of resistance to the motion of
planets and comets. Notice, however, that if the density of the aether
changes, its velocity of rotation must vary accordingly in order to
account for gravity. Huygens believed that the aether was necessary to
explain gravity and the propagation of light.!®

This observation leads to some general considerations on the relation-
ships with Descartes, an important theme in the historiography on that
period and especially in Leibnizian and Newtonian studies. In a passage
dating from 1693, Huygens describes his change in attitude to Descartes
from his first reading of Principia Philosophiae, aged fifteen or sixteen, to
maturity:2°

When I read the book of Principles the first time, it seemed to me that everything
proceeded perfectly; and when I found some difficulty, I believed it was my fault
in not fully understanding his thought. I was only fifteen or sixteen years old. But
since then, having discovered in it from time to time things that are obviously
false and others that are very improbable, I have rid myself entirely of the
prepossession I had conceived, and I now find almost nothing in all his physics
that I can accept as true, nor in his metaphysics and his meteorology.

Seen from our perspective 300 years later, Huygens’s itinerary looks
different. He appears to have moved away from Descartes on specific
issues, such as the impact laws, while accepting his framework of general
physical explanations. This is probably one of the reasons why
Huygens’s work appears to contain so little philosophical elaboration:
the basic ingredients he needed for his great achievements in the
mathematical disciplines and especially the very reasons for the
mathematization of nature could be found in Principia Philosophiae and
were well known to his contemporaries.

By contrast, Leibniz had much deeper philosophical preoccupations:
his own reasons for the mathematization of nature resemble Descartes’s
and Huygens’s only in part and on the level of phenomena. Leibniz had
nothing to object to the Horologium Oscillatorium. Unlike the Principia
Mathematica, Huygens’s masterpiece did not challenge any Leibnizian

¥ HOC, 21, pp. 462-6 and Addition, pp. 466~88, on p. 473.
2 HOC, 10, p. 403, transl. in Westfall, Force, p. 185, and quoted in R. S. Westman,
‘Huygens and the problem of Cartesianism’, in Bos et al., Studies, pp. 83-103, on p. 99.
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philosophical tenet. However, Leibniz’s own vision of nature in relation
to mathematics and philosophy was extraordinarily more complex. In
addition to mechanical explanations, he considered final causes, which
gave rise to maxima and minima principles. In the 1682 Unicum Opticae,
Catoptricae et Dioptricae Principium L eibniz criticized the Cartesians for
rejecting finality in nature, and claimed that his principle, whereby light
travels through the casiest path, served a double purpose: it allows the
reduction of optical phenomena to geometry and the calculus, and it
reveals the order and harmony of nature, and hence of its Creator.
Further, he emphasized more strongly than ever before the conservation
principle of living force. Take, for example, the case of colliding bodies.
Although Huygens and Leibniz provided mathematically equivalent
accounts of elastic impacts, their respective understanding of the
phenomenon varied considerably. Huygens focused on conservation of
momentum, whilst Leibniz’s metaphysical commitments led him to
emphasize conservation of living force. As we are about to see, he
generalized this claim for all types of impact and phenomena. At an even
deeper level, Leibniz conceived phenomena as the manifestation of
metaphysical entities to which they were related in a way that recent
scholarship has found highly problematic. We are going to see one aspect
of this problem in the following section.?!

2.4 The role of elasticity

I conclude this chapter with a brief discussion of the notion of elasticity.
Not many years ago Herbert Breger emphatically stressed the import-
ance of this notion occupying a nodal position in Leibniz’s philosophy
among metaphysical principles and laws of mechanics, phenomena and
their mathematical representations.

From the middle of the seventeenth century elasticity began to take a
progressively more important position in the investigations of nature.
The idea that under certain conditions matter is capable of resuming its
original shape, when deformed, emerged from several areas and had
important applications. My immediate aim, before outlining the
development of Leibniz’s ideas on this subject, is to identify the main
areas in which elasticity played a significant role rather than to
summarize the main results. In acoustics the elasticity of vibrating strings

2l G. W. Leibniz, Unicum Opticae, Catoptricae et Dioptricae Principium, AE June 1682,
pp- 185-90. M. Gueroult, Dynamique et Métaphysique Leibniziennes (Paris, 1934;
reprinted 1967), pp. 215-35; Buchdahl, Metaphysics, ch. 7; the collection of essays in SL,
Sonderheft 13, 1984, contains ample references to these themes. Bertoloni Meli, ‘Some
aspects’. Concerning Leibniz and the impact laws see the following section.
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and of the air were discussed in such influential works as Marin
Mersenne’s Harmonicorum Libri and Galileo’s Two New Sciences. Book
II of Harmonicorum Libri contains a collection of observations on
vibrating bodies. They include the statement that the vibrations of a
string are isochronous regardless of the way the string is plucked and of
the vibrations’ decrease with time. Galileo’s study of vibrating strings at
the end of the first day of Two New Sciences is followed by an investiga-
tion of the resistance of materials on the second day. His work on the
loaded beam led to further investigations by Leibniz in the 1684 De
Resistentia Solidorum. Leibniz criticized Galileo’s assumption that the
beam is perfectly rigid; instead, he considered the beam as composed of
elastic fibres acting as springs, so that the beam gives way considerably
before it can be ruptured.?? Another area related to the bodies’ capacity
to regain their original shape was that of collision. In the second part of
Principia Philosophiae Descartes provided seven rules governing the
impact of perfectly hard bodies. Although they were repeatedly
criticized in the second half of the century, they set the agenda for the
study of elastic and inelastic impacts. Huygens studied the problem of
collision in the 1650s and devoted the essay De Motu corporum ex
percussione of 1656 to this problem. Newton also studied the collision of
bodies according to their vis elastica in several passages of the Waste
Book. These investigations remained unpublished at the time, and it was
only at the end of the 1660s that John Wallis, Christopher Wren, and
Huygens published their studies, though only partially in the case of
Huygens. Although their results were regarded to be in mutual agree-
ment, the specific formulations provided by each mathematician varied.
On the whole, however, impacts were classified according to the
elasticity and hardness of matter.?> A further relevant field of inquiry was
the study of the elastic properties of air in several works on the
barometer and the air-pump around the middle of the century. The

22 M. Mersenne, Harmonicorum Libri (Paris, 1636; revised edition, 1648), esp. book 2,
prop. 29; Traité de I’Harmonie Universelle (Paris, 1636-7). G. Galilei, Discorsi e
dimostrazioni matematiche intorno a due nuove scienze (Leyden, 1638); in GOF, 8, first and
second day. On the mathematical theory of elasticity see K. Stiegler, ‘Einige Probleme der
Elastizitatstheorie im 17. Jahrhundert’, Janus, 56, 1969, pp. 107-22; C. Truesdell, The
rational mechanics of flexible or elastic bodies. 1638-1788 in L. Euler, Opera Omnia,
Leipzig etc., 1912-ser. II, vol. 1I, pp. 28-64. S. Dostrovsky, ‘Early vibration theory:
Physics and Music in the seventeenth century’, AHES, 14, 1975, pp. 169-218.

23 ]. Wallis, ‘A Summary Account of the General Laws of Motion’, PT, 3, 11 Jan. 1669,
p- 864-6; C. Wren, ‘Lex Naturae de Collisione Corporum’, ib., pp. 867-8, Huygens,
‘Régles du Mouvement dans la Rencontre des Corps’, Journal des Scavants, 18 March
1669; PT, 4, 12 May 1669, pp. 925-8 and HOC, 16, pp. 1-186. J. Wallis, Mechanica sive De
Motu Tractatus Geometricus, (London, 1670-1), ch. 11 (De Percussione) and 13 (De
Elatere). A. R. Hall, ‘Mechanics and the Royal Society, 1668-70", BJHS, 3, 1966, pp. 24—
38. Westfall, Force, chs. 4 and 5. Herivel, Background, pp. 1-6 and 128-82, esp. pp- 133

and 142. J. A. Bennett, The mathematical science of Christopher Wren (Cambridge, 1982),
pp. 71-3.
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debates centred around Robert Boyle’s experiments with the air-pump,
the notion of ‘spring of the air’, and the prolonged controversy with the
Jesuit Franciscus Linus and with Thomas Hobbes, contributed to
projecting elasticity on to the centre-stage of philosophical debates. The
most famous result of Boyle’s work was the formulation of ‘his’ law in the
1662, ‘A defence of the doctrine touching the spring and weight of the
air’.2*

At the time of Leibniz’s stay in Paris, Huygens applied the empirically
known isochronism of the vibrating string to horology. This application
was based on the principle that if incitation is proportional to the
displacement from equilibrium, oscillations are isochronous. Incitation
was defined as ‘the force acting on a body to set it in motion when it is at
rest, or to increase or decrease its speed when it is in motion.’ This seems
to be one of the few areas in which the interesting notion of incitation
was employed by Huygens. His reflections on it seem to have had no
precedent in seventeenth-century mechanics, and were not greatly
developed even by their author; as many other of his studies, they
remained unpublished. The generalization to springs of the findings
about harmonic oscillations led him to the invention of a watch regulated
by a coiled spring. Interestingly, in a 1691 letter to Huygens, Leibniz
observed that Newton had not treated elasticity in the Principia, adding
that he could remember Huygens having told him of having
demonstrated the isochronism of vibrations. In his reply Huygens
confirmed Leibniz’s recollection.”® Lastly, in De Potentia Restitutiva
(London, 1678), Robert Hooke formulated the law ‘ut tensio sic vis;
That is, the power of any spring is in the same proportion with the
tension thereof’ This survey provides convincing evidence that elasticity
had already gained a prominent position within the conceptual and
practical horizon of scholars in mechanics well before Hooke’s
celebrated work.?

Leibniz’s reception of the ideas on eclasticity dates from the early

24 See also R. Boyle, Nova Experimenta Physico-Mechanica de Vi Aeris Elastica,
(Oxford, 1661); T. Hobbes, Problemata Physica, (London, 1662); O. von Guericke, Neue
(sogenannte) Magdeburger Versuche iiber den leeren Raum, (Amsterdam, 1672; reprinted
and translated by H. Schimank, Diisseldorf, 1968). C. Webster, ‘The discovery of Boyle’s
law, and the concept of the elasticity of the air in the seventeenth century’, AHES, 2, 1965,
pp- 441-502. J. Agassi, ‘Who discovered Boyle's law?’, SHPS, 8, 1977, pp. 189-250. S.
Shapin and S. Schaffer, Leviathan and the air-pump (Princeton, 1985).

3 LMG, 2, pp. 85 and 88. LSB, IlI, I, pp. 181-216, esp. p. 206, March 1675. M.
Mahoney, ‘Christiaan Huygens: The measurement of time and longitude at sea’, in Bos et
al., Studies, pp. 234-70, esp. pp. 254-5. A. Gabbey, ‘Huygens and mechanism’, in ib., pp.
166-99, esp. pp. 176-7. Westfall, Force, ch. 4, esp. pp. 177-81 and 184. HOC, 18, pp. 475~
498, esp. pp. 483-4. On Newton and elasticity see Principia, book I, proposition 38.

26 R, Hooke, Lectures de potentia restitutiva, is reprinted in R. T. Gunther, Early science
in Oxford, vol. 8, (Oxford, 1931), pp. 331-88, on p. 333. E. Williams, ‘Hooke’s law and the
concept of elastic limit’, AS, 12, 1956, pp. 74-83.
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1670s and follows his reading of the works by Robert Boyle, Thomas
Hobbes, and Otto von Guericke on the air-pump, and by Christopher
Wren, John Wallis, Huygens, and Edme Mariotte on elastic impact. In the
Hypothesis Physica Nova of 1671 Leibniz explained gravity and elasticity
in terms of the interaction between the aether and matter. He claimed
that elastic phenomena could be studied in a physicomathematical
fashion by a new branch of mixed mathematics with optics, music, and
statics. This belief was to lead to several quantitative studies in later
years. From the Hypothesis Physica Nova onwards elasticity became a
central theme for him. Although its role with respect to mathematics,
natural philosophy, and metaphysics changed over the years, elasticity
constantly kept a prominent position.?’

In Propositiones Quaedam Physicae of 1672 Leibniz assumed that the
whole universe is elastic and that elasticity and gravity differ only in
name. A body lifted in the air would be heavy because the elasticity of
the universe would tend to restore the original position of equilibrium
through a series of impacts. Even though this radical solution was later
modified, elasticity and gravity remained correlated because they were
both the result of particles in motion and impacts.?® Thus it is not
surprising that several years later this connection reappeared in a
different form. Commenting on proposition 10, book I of the Principia—
where Newton proves that if a body moves along an ellipse the centri-
petal force towards the centre is proportional to distance—Leibniz
immediately noticed the analogy between gravity and elasticity:?°

[I question] whether it may be in agreement with the nature of things, that the
further a body is from a centre, so the more strongly it tends to it, and is to be
regarded almost an elastic substance [elastrum] receding more and more from its
natural state. Indeed, this operation of magnetic attraction would be contrary to

27 Huygens’s paper in the Philosophical Transactions was excerpted by Leibniz in 1669,
LSB, V1, 2, pp. 157-9. Compare also the introduction, pp. xxxi-xxxiil. E. Mariotte, Traité
de la Percussion, (Paris, 1673). G. W. Leibniz, Hypothesis Physica Nova, (Mainz, 1671); in
LSB, V1, 2, pp. 219-76; esp. pp. 225, 227, 229-31, 254-5. Hess, ‘Kurzcharakteristik’, pp.
211-17, ‘Calculus Elasticus’; H. Breger in ‘Elastizitdt als Strukturprinzip der Materie bei
Leibniz’, SL Sonderheft 13, 1984, pp. 112-21, mentions many unpublished manuscripts on
elasticity.

*# LSB, VI, 3, pp. 4-72, on p. 38. Compare the correspondence with Otto von Guericke
of 1671-2 in LSB, 11, 1, and F. Krafft, Otto von Guericke, (Darmstadt, 1978), pp. 30-7;
LSB, 111, 2, p. 134, Leibniz to Fabri, 1677. It is worth noticing that Otto von Guericke was
led to his investigations by his reflections on planetary motion and on the Copernican
system, which occupy the first portion of his work.

2% Marginalia, M 48; transl. in Bertoloni Meli, ‘Public Claims’, p. 444, n. 51. Here
Leibniz calls Newtonian central attraction a magnetic operation; see also paragraph 9 of
the Tentamen. Concerning the notion of ‘elastrum’ compare T. Hobbes, Problemata Physica
(London, 1662)= Opera Philosophica Latina, ed. W. Molesworth, 5. vols., (London,
1839-45); vol. 4, p. 335: ‘Per elastrum intelligo partium internarum conatum restituendi se
ad situm, a quo per tensionem abductae fuerat.’
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such a notion, which would be strengthened if gravity arose not from the
attraction of the central body but from the impulse of a vortex.

In the letter to Edme Mariotte of July 1673 Leibniz identified the cause
of all impact laws in the ‘grande principe du Ressort’. As Breger noticed,
in the reception of the theories by Wallis and Mariotte one finds the
source of the link between the principle of conservation of force and
elasticity: the return of an elastic body to its original state after an impact
or any other external action is intrinsically related to the idea of
conservation. The law of continuity too is closely related to the elasticity
of matter, because in the impact between two bodies elasticity guarantees
that their change in velocity and direction is not instantaneous. The
colliding bodies are compressed and deformed like two inflated balls,
and later rebound with no sudden transitions.*

Together with the 1684 De Resistentia Solidorum, several manuscripts,
only in part published, testify to Leibniz’s mathematical treatment of
elasticity since the 1670s. Acoustic phenomena in particular occupied an
interesting position as a fertile area for the mathematical investigation of
elasticity, a topic explored by Leibniz with the help of differential
equations. Moreover, the study of sound had important conceptual
implications derived from the vibration of rigid bodies. In De Resistentia
Solidorum he claimed: ‘that there is nothing so rigid but that it is bent a
little by the lightest stroke follows from the nature of sound, which is a
certain trembling or reciprocal bending of the parts of the sounding
body. The more rigid and indiscernible is the restitution, the higher is the
sound, since the tremulous parts are the shorter and the tenser, and they
constitute the harder body’ Thus acoustic phenomena provided
evidence for the elastic properties of matter.?’

In his mature views Leibniz considered all matter of the universe as
elastic, solid bodies as well as fluids and the aether. In spite of its pertain-
ing to all bodies, elasticity was not treated as a primitive notion but was
explicable in mechanical terms by means of subtle fluids, as in the
example of the collision between two inflated balls. There are no bodies
which are perfectly hard or perfectly fluid, but only different degrees of
hardness and fluidity. Leibniz often had recourse to elasticity in order to
reconcile his metaphysical principles with the mechanical explanation of
specific phenomena, as we have seen in the case of the principle of
continuity. In the Essay de Dynamique, for example, he considered those
impacts where living force, or mass times the square of velocity, appears

30 LSB, 11, 1, p. 102. See also Specimen Dynamicum, (Hamburg, 1982), pp. 44-9, in
Loemker, Papers and Letters, pp. 446-8, and Ariew and Garber, Essays, pp. 132-3.

31 Leibniz, De resistentia solidorum, transl. in Truesdell, Flexible bodies, p. 63. Gerland,
ed., Schriften, ‘De Vibrationibus Aeris Tensi’, pp. 31-37, contains several differential
equations (see also pp. 10-15).
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not to be conserved, in contradiction to his most famous principle.
According to his explanation, that portion of living force which seems to
be lost is in fact absorbed by the little parts constituting the colliding
bodies. Their elasticity guarantees the principle of conservation of force.
Moreover, by taking into account the motion of the constituent parts of a
body, Leibniz could claim that nothing in the universe is truly at rest.
Living force pertains to all bodies and is a manifestation of their inner
activity. Elasticity is also employed in the metaphysical analysis of
impact, which led Leibniz to deny that bodies truly affect each other. In
his view, not only the total living force is conserved in impact, but also
the living force of each body taken in isolation. Thus any change in
velocity would result from a corresponding change in the internal motion
of a body: the sum of the living forces due to the global motion and the
motion of the internal parts of a body is constant. These surprising views
highlight Leibniz’s metaphysical preoccupations and in particular his
reluctance to accept that primitive substances influence each other; in his
views each substance evolves according to its own internal principle.
Such metaphysical beliefs, however, were only partially related to
physical problems.>?

In conclusion, all matter is composed of elastic fluids which in their
turn are composed of particles and fluids: in the Leibnizian universe
elasticity is a structural principle of matter. If elasticity was discussed by
several philosophers and mathematicians in the late seventeenth century,
no one gave it a more important and universal role in his system than
Leibniz:33

I hold all the bodies of the universe to be elastic, not though in themselves, but
because of the fluids flowing between them, which on the other hand consist of
elastic parts, and this state of affairs proceeds in infinitum.

32

Leibniz’s solution to the metaphysical problem of impact involves the notion of pre-
established harmony. Compare L. Couturat, Opuscules et fragments inédits de Leibniz
(Paris, 1903), pp. 518-23, transl. in Loemker, Papers and Letters, esp. p. 269; Ariew and
Garber, Essay, p. 33. ‘De ipsa natura’, AE Sept. 1698, pp. 427-40 = LPG, 4, pp. 504-16, in
Loemker, Papers, p. 506; Ariew and Garber, Essays, pp. 165 and 254-5.

3 LMG, 3, p. 81, Leibniz to Jakob Bernoulli, 3 Dec. 1703: ‘Corpora omnia universi
puto Elastica esse, non quidem per se, sed ob fuida interlabentia, quae rursus tamen
partibus Elasticis constant, atque ea res procedit in infinitum.’ Ib., pp. 536, 544-5, 616,
Leibniz to Johann Bernoulli, 1698-99. A well-documented account of elasticity is in H.
Stammel, Der Kraftbegriff in Leibniz’ Physik, Doktorarbeit, (Mannheim, 1984), pp. 326—
31. ‘Essay de Dynamique’, LMG, 6, pp. 218-19 and 228-31; Breger, ‘Elastizitat’, pp. 120-
21; LPG, 4, (dated 1702}, pp. 397-8.



3
GEOMETRY AND THE CALCULUS

3.1 Introduction

In the seventeenth century mathematics underwent profound trans-
formations affecting methods of demonstration and objects of investiga-
tion as well as the very notions of rigour and proof. The invention of the
calculus—namely of a method for finding tangents and quadratures
which identifies the reciprocity between these two operations—was the
culmination of a process involving several important advances. The
establishment of a new, highly abstract, and general form of algebra, the
formulation of analytic geometry, and the creation of a variety of
techniques for finding maxima, minima, and tangents, paved the way to
the great inventions by Newton and Leibniz. Their calculuses can be seen
also as the starting point of a new phase of mathematical research.
Especially on the Continent, within a few years of Lebniz’s first publica-
tion in 1684, several practitioners were making the theory of differential
equations the main area of advanced research of the time. In order to
appreciate the problems and subtleties of Leibniz’s reaction to the
Principia and of his own theory of planetary motion it is helpful to gain
familiarity with some basic mathematical techniques of the late seven-
teenth century. As in the previous chapters, my aims here are very
selective and are largely dictated by the material presented in Part 2.
This chapter also has an additional aim. I intend to show that the
mathematical formulation was not a ‘neutral’ tool and that the technique
cannot be easily separated from the physical or philosophical doctrine
because, far from being merely instrumental, the art of mathematical
representation interacted with the reflection on nature. On the basis of
the interpretation provided here, Chapter 4 will establish a correlation
between mathematics and mechanics, showing how fruitful it is to study
them in conjunction. This claim can be understood in several ways. The
cycloid, for example, was initially studied as a mathematical curiosity and
later found its applications in mechanics with Huygens’s pendulum clock.
There is also a different sense in which my claim can be understood, and

! More general studies can be found in D. T. Whiteside, ‘Patterns of mathematical
thought in the late seventeenth century’, AHES, 1, 1961, pp. 179~338; C. Boyer, A History
of Mathematics (New York, 1968).
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this is the interpretation I am mainly concerned with. At least from the
time of Galileo onwards, the transition from statics to the new science of
motion was interwoven with the analysis of infinitely large and small
quantities, as the debates on the force of percussion or on the ‘infinite
tardiness’ of a body at the beginning of motion convincingly show. Thus
the interplay between mathematics and mechanics involved results as
well as the very conceptual bases of the disciplines, such as the notions
of curve and differential, velocity and acceleration.

The challenging task of presenting an account of some central features
of Leibnizian mathematics is made easier by the complementary works
of Joseph Hofmann and Henk Bos. On the basis of previously unpub-
lished manuscripts, Hofmann has reconstructed Leibniz’s growth to
mathematical maturity and the steps leading to the formulation of the
differential calculus. Bos has studied the conceptual subtleties of his
calculus, showing that this elegant and powerful construction must be
studied in its own terms and in a seventeenth century context with regard
to concepts, techniques, and notation. My account relies heavily on their
works.

In the following section I introduce some early elementary results in
infinitesimal geometry which are among the most typical in Leibniz’s
mathematics, namely the characteristic triangle and transmutation
theorem. Section 3.3 discusses the relations between the notions of curve
conceived as an infinitangular polygon, and of differential as a variable
ranging over a sequence of values. I show the links between these
geometrical and algebraic entities and outline the notion of curvature
and its main properties. Lastly, Section 3.4 examines the Leibnizian
calculus. I emphasize the lack of the notion of function, the problems
related to the technique of summation or—as it was later called by
Johann Bernoulli—integration, and the issues of order of infinity with
respect to differentiation and integration. In the final portion of the last
section I also present a brief characterization of Newton’s fluxional
calculus, trying to contrast some basic notions of Newtonian and
Leibnizian mathematics. I focus in particular on the different role played
by time in the two formulations, and on the method of first and last ratios
employed by Newton in the Principia.

3.2 Early geometrical results

The story of Leibniz’s mathematical career is an extraordinary one. On
his arrival in Paris in 1672, 26 years old Leibniz was a novice in higher
mathematics; by the time he left in 1676 he had become one of the very
few leading mathematicians of his time. During those years he became
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acquainted with Parisian mathematical circles, whilst in his corres-
pondence with the Secretary of the Royal Society Henry Oldenburg and
during two visits to London in 1673 and 1676 he gained a deep under-
standing of the works being carried out across the Channel, especially by
James Gregory, John Wallis, and Isaac Newton. His mathematical
mentor in Paris was Christiaan Huygens, whose works—especially the
Horologium Oscillatorium—and advice influenced him profoundly.?

In the 1660s and 1670s advanced mathematics was based to a large
extent on a limited number of texts, partly coming from the Greek
tradition, partly composed in the seventeenth century. Among the latter
were the works by Bonaventura Cavalieri, Evangelista Torricelli, Blaise
Pascal, Pierre de Fermat—the last two included manuscripts circulating
within selected circles—and especially René Descartes, whose 1637
Géométrie in the 1649 and 1659-61 editions by the Dutch mathemat-
ician Frans van Schooten was extraordinarily influential. The common
sources for many of the problems, the difficuities and delays of publica-
tion, and the secretive attitude of mathematicians, resulted in an unpre-
cedented and probably unsurpassed series of controversies over priority.
In their correspondences mathematicians would often reveal results
without giving details of the proofs and methods for finding the solu-
tions, or even conceal the results with anagrams in order to secure
priority. The Dutch mathematician Hendrick van Heureat, in a priority
dispute with Huygens, appended to a letter a series of eight fake
anagrams—such as ‘4. Redeoque porci somnium’—mocking his
correspondent’s style for establishing priority.® Significantly, although
both Newton and Leibniz had possessed the calculus for many years, a
major stimulus to organize their works for publication came from the
desire to secure priority. Although Newton had developed his method in
1665-6, he was led to compose the tract De analysi in 1669 as a
response to Nicolaus Mercator’s Logarithmotechnia (London, 1668),
over which he wanted to prove his superiority.* In analogous fashion,
although Leibniz had formulated the differential calculus in 1675, he was
led to publish the Nova Methodus in the Acta Eruditorum for 1684 in

2 Bos, ‘Influence of Huygens. A. R. Hall, ‘Leibniz and the British Mathematicians:
1673-1676’, SL Supplementa, 17, 1978, pp. 131-52.

3 HOC, 2, pp. 139-40, 24 Feb. 1658. Yoder, Unrolling Time, pp. 119-26. J. A. van
Maanen, ‘Hendrick van Heuraet (1634-16607?): His life and mathematical work’,
Centaurus, 27, 1984, pp. 218-79; ‘Die Mathematik in den Niederlanden im 17.
Jahrhundert und ihre Rolle in der Entwicklungsgeschichte der Infinitesimalrechnung’, SL,
Sonderheft 14, 1986, pp. 1-14.

4 The hastily composed De analysi, however, remained unpublished at the time both
because of a depressed book trade, and because Newton was aware of some imperfections
in his work. See NMW, 2, p. 163f1.
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order to secure his priority over Ehrenfried Walter von Tschirnhaus,
who had published an article on quadratures in 1683.°

Following these considerations, it is not surprising to read in
Hofmann’s monograph that Leibniz’s ‘first penetrating insight’ into
geometry was already known to ten other mathematicians including Isaac
Barrow, who made it public.® It is worth outlining this result, called by
Leibniz ‘characteristic triangle’, which is deployed by Leibniz very often
in his later researches.

Given the curve FABG, its tangent AB and perpendicular AE in 4, the
infinitesimal triangle ABC is similar to the finite triangle AED. Setting
AB=s, AC=c, AE=a, AD=h, we have s:c::a:h. This relatively straight-
forward result allows infinitesimal lengths to be compared among them-
selves, namely the sides of the infinitesimal triangle ABC; moreover, the
proportion allows us to consider the finite blow-up AED of the
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Fig. 3.1 The characteristic triangle.

infinitesimal triangle, such that ratios and especially tangents can be
dealt with using finite magnitudes. It is worth pointing out that other
finite triangles could be used, such as AHD, where H is the intersection
of the tangent AB with the prolongation of FE. The proportion above
had many applications in mathematics and mechanics, since the tangent
to a curve notoriously represents velocity. We shall find in Part 2 and in
Appendix 1 that Leibniz’s analysis of orbital motion relied heavily on the
characteristic triangle.

A mathematical development attained by Leibniz soon after the
characteristic triangle is the so-called transmutation theorem. Usually an

5 Hofmann, Leibniz in Paris, p. 64, n. 6, and p. 191, n. 27. See also H.-J. Hess, “Zur
Vorgeschichte der ‘Nova Methodus’ (1676-1684)’, SL, Sonderheft 14, 1986, pp. 64-102,
onp.72.

¢ Hofmann, Leibniz in Paris, pp. 48 and 74-5. 1. Barrow, Lectiones Geometricae,
(London, 1670), lect. xi, prop. 1. See also M. S. Mahoney, ‘Barrow’s mathematics: between
ancients and moderns’, in M. Feingold, ed., Before Newton, (Cambridge, 1990), pp. 179-
249,
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area was approximated by narrow rectangles; his method was slightly
more elaborate, but proved a useful tool for finding the quadrature of
curves by transforming one closed curvilinear figure into another of
equal area.

The basic idea consists in subdividing a curve OAPQB into infini-
tesimal triangles concurrent to the common point O. We shall see below
how Leibniz tried to develop this idea while studying proposition 1 in
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Fig. 3.2 The transmutation theorem.

the Principia Mathematica. The infinitesimal triangle PON can be shown
to be similar to the finite triangle OTW, constructed by taking the
perpendicular from O to the tangent QPW; thus by a simple application
of the characteristic triangle one has 7O : WO ::PQ:PN. Notice that the
side PQ is treated by Leibniz as rectilinear; we shall come back to this
problem below. From the proportion one has WO :PQ = TO - PN, which
means that the area of the triangle OP(Q, namely 1/2 WO - P(Q, is equal to
one half of the product TO-PN. Here TO = UR; since PN = RS, one has
that the area of the triangle OPQ is one half of the area of the rectangle
UVSR. Repeating an analogous procedure for other triangles such as
OAP, whereby one finds point L, one finds that the area of the sector
OAB is equal to one half of the area enclosed by the figure FLMG, where
the curve LUVM is constructed by iterating the procedure just outlined.’
This result was the cornerstone of many of Leibniz’s later works. A
considerable portion of De quadratura arithmetica circuli ellipseos et
hyperbolae is based on it. This essay was the most compendious treatise
on infinitesimal geometry composed by Leibniz in Paris and, following
Eberhard Knobloch, a summa of what was known in the field in 1676.
Despite Leibniz’s efforts, his treatise remained unpublished, but a small

7 Leibniz, Historia et origo calculi differentialis, LMG, 5, pp. 392-410, on p. 401; LSB,
I11, 7, pp. 341-3, 347-8, 360-1. Hofmann, Leibniz in Paris, pp. 54-5.
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portion of its results appeared in the other articles, such as Leibniz’s first
essay in the inaugural volume of the Acta Eruditorum, in 1682, De vera
proportione circuli, and the 1691 Quadratura arithmetica communis
sectionum conicarum.®

Having surveyed some preliminary geometrical results attained by
Leibniz in 1673 and soon afterwards, during his stay in Paris, we move
now to a deeper analysis of some of the most distinctive elements of his
mathematics.

3.3 Curves and differentials

In the seventeenth century the notion of curve was transformed and the
number of curves investigated by mathematicians increased consider-
ably. From being purely geometrical entities, they became associated
with algebra in the works of Viete, Descartes, and Fermat. As Michael
Mahoney has emphasized, this crucial step was part of a more general
process of algebraization of mathematics. The link between geometry
and algebra, however, did not imply that curves were always defined by
their equation. Indeed, within baroque mathematics we find a plurality of
methods to define curves, such as the identification of some of their
distinctive properties, or even of the operations required to draw them,
as Henk Bos has shown in the case of the tractrix. Moreover, the
boundary between ‘exact’ and ‘non-exact’ curves, or, to use the Cartesian
distinction, ‘geometrical’ and ‘mechanical’, was often redefined. At the
beginning of the century plane curves known to mathematicians had not
changed much from antiquity, and included conic sections, conchoids
cissoids, and Archimedean spiral. Towards the end of the century the
range of curves commonly treated by mathematicians and considered to
be exact had increased enormously; many of those curves emerged from
the mathematical study of natural phenomena. Leibniz gave a consider-
able contribution to this process with the introduction of what he called
transcendent magnitudes, which he considered to be perfectly legitimate
mathematical objects. Transcendent lines were defined as those of no
determinate degree, such as the logarithmic curve or the cycloid. Typical
problems leading to transcendent magnitudes and curves were infinite
series and quadratures. Often solutions to such problems consisted in

8 E. Knobloch, ‘Leibniz et son Manuscrit inédite sur la quadrature des sectiones
coniques’, in The Leibniz Renaissance (Florence, 1989), pp. 127-51. E. Knobloch is
publishing a complete edition of this important work, which is known only through the
partial edition by L. Scholtz, Die exacte Grundlegung der Infinitesimalrechnung bei Leibniz,
Doktorarbeit (Marburg, 1934). G. W. Leibniz, ‘De vera proportione circuli’, AFE Feb. 1682,
pp- 41-6 = LMG, 5, pp. 118-22; ‘Quadratura arithmetica communis sectionum conicarum’,
AE April 1691, pp. 178-82 = LMG, 5, pp. 128-132.
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reducing a given quadrature to that of a transcendent curve to be used as
standard. This procedure involved a redefinition of the notion of
solution and led to a regrouping and reclassification of mathematical
problems. The fact that curves which only a few decades earlier were
either unknown, or were considered not to belong to the realm of proper
mathematics, could be portrayed as adequate and rigorous solutions
emphasizes how perceptions had changed during the century.’

In addition to such broad transformations of the ways curves were
understood and represented, there are some specific aspects which
require close attention. It is not uncommon to find seventeenth-century
mathematicians following the Archimedean tradition based on the
method of exhaustion of representing curves as polygons, and extending
such representations to the cases when polygons have an infinite number
of infinitesimal sides. Such infinitangular polygons are central to the
understanding of Leibniz’s mathematics and require a careful study. Very
early in his career Leibniz referred to this notion, as in Hypothesis
Physica Nova and in several texts of the Paris period.’? In the 1684 tract
Additio ad Schedam de Dimensionibus Figuris Inveniendis, l.eibniz
explained that ‘a curvilinear figure must be considered to be equivalent to
a polygon with infinitely many sides’, in the Nova Methodus pro Maximis et
Minimis, of the same year, he defined the tangent as the prolongation of
the infinitesimal side of a polygon ‘which for us is equivalent to the
curve’ll

? M. Mahoney, The mathematical career of Pierre de Fermat (1601-1665) (Princeton,
1673); ‘Infinitesimals and transcendent relations: The mathematics of motion in the late
seventeenth century’, in D. C. Lindberg and R. S. Westman, eds., Reappraisals, pp. 461-91.
A. G. Molland, ‘Shifting the foundations: Descartes’ transformation of Ancient Geometry’,
Historia Mathematica, 3, 1976, pp. 21-49. H. J. M. Bos, ‘On the Representation of Curves
in Descartes” Géométrie’, AHES, 24, 1981, pp. 295-338; “"Arguments on Motivation in the
Rise and Decline of a Mathematical theory; the *Construction of Equations’, 1637 —ca.
1750". AHES, 30, 1984, 331-380; "Tractional Motion and the Legitimation of Tran-
scendental Curves’, Centaurus, 31, 1988, pp. 9-62, H. Breger, ‘Leibniz’s Einfithrung des
Transzendenten’, SL.. Sonderheft /4 1986, pp. 119-32. Breger claims that the word ‘tran-
scendental’ occurs first in a manuscript of 1675.

0" Leibniz, Hypothesis Physica Nova, L.SB, V1 2, p. 267; LSB, 111, I, pp. 141-69, on p.
149, Leibniz to Huygens, Oct. 1674; pp. 336-55, on p. 341, Leibniz to La Roque, end of
1675; pp. 355-63, on p. 361, Leibniz to Gallois, end of 1675: ‘Je suppose icy quun
curviligne n’est qu'un polygone infinitangle, suivant la maniere de raisonner receue
aujourdhuy; pour parler clairement et en peu de mots, puisque tant d’autres ont fait voir,
qu’il est ais€ de la reduire en cella des anciens per les inscrits et circonscrits, et on peut
dire que cellecy est aussi rigoureuse que I'autre, puisque cette reduction a esté demonstrée
generalment.” Hofmann, Leibniz in Paris, pp. 7-8.

" G. W. Leibniz, ‘Additio ad Schedam de Dimensionibus Figuris Inveniendis’, AE Dec.
1684, pp. 585-7=LMG, 5, pp. 126-7: *... figura curvilinea censenda sit aequipollere
Polygono infinitorum laterum.’ ‘Nova Methodus pro Maximis et Minimis’, AE Oct. 1684,
pp. 467-83=LMG, 5, pp. 220-6, on p. 223; ... tangentem invenire esse rectam ducere,
quae duo curvae puncta distantiam infinite parvam habentia jungat, seu latus productum
polygoni infinitanguli, quod nobis curvae aequivalent.’ H. J. M. Bos, ‘Differentials, Higher-
order Differentials and the Derivative in the Leibnizian Calculus’, AHES, 14, 1974, pp. 1—
90, on p. 14.
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Given a curve, however, it is possible to represent it as an infinit-
angular polygon in infinitely many ways. Following the standard
conventions of naming x the abscissae, y the ordinates, and s the
arclengths, it is possible to choose a polygon such that the x, the y, or the
s are divided into equal parts, for example, or indeed according to any
other rule. Following Leibniz, the difference between any pair of
adjacent x, y, or s, is called dx, dy, ds, respectively; these entities are
called ‘differentials’ and are indeterminate in two respects. First, from
the freedom of choice of the polygon selected to represent the curve, and
of the corresponding sequence of values of the x, y, s, it is possible to
choose the dx, dy, ds, to be constant or variable according to the rule
with which the sides of the polygon and the sequences of variables have
been chosen. Second, the actual value of the differential is indeterminate
regardless of the progression of the variable. Although Leibniz often
referred to the differentials as well as to sides of the polygon as
‘infinitesimal’, strictly speaking he thought it was more correct to call
them incomparably smaller than ordinary quantities. In the Tentamen, for
example, Leibniz introduced infinitesimals as a grain of sand with
respect to the sky, thus indicating that he conceived them as
incomparably smaller, though not rigorously infinitesimal quantities. The
differential can be chosen in such a way that by neglecting it—in the
appropriate circumstances—the error in the result of the calculations is
smaller than any given quantity. The differential of xy, for example, is
xdy +ydx +dx-dy, where the last term can be neglected because it is
incomparably smaller than the other two. In a letter to Johan Bernoulli,
Leibniz doubted the existence of infinitely small or large quantities;
rather, he stressed the instrumental character of differentials, which he
compared to imaginary roots in algebra, since in both cases ‘fictitious’
entities led to the correct result. This pragmatic image recurs often in his
works.!?

Leibniz was involved in several disputes on the justification and rigour
of the calculus. Although he dealt with the philosophical aspect of the
problem, his main concern seemed to be the spreading of the calculus as
a successful mode of operation. Leibniz repeatedly stressed that there
was no need to make the calculus dependent on metaphysical con-
troversies.!? In the dispute started in 1700 at the Paris Academy, Michel
Rolle and Pierre Varignon argued about the existence of infinitely small

2 LMG, 3, p. 524, Leibniz to Johann Bernoulli, 29 July 1698; in this important letter
Leibniz discussed differentials in connection with the divisibility of matter and micro-
scopic observations of animalcula.

3 LMG, 4, p. 91, Leibniz to Varignon, 2 Febr. 1702; p. 98, 4 April 1702; p. 110, 20
June 1702; LMG, 5, p. 350. G. W. Leibniz, ‘Cum prodiisset’, in Historia et Origo Calculi
Differentialis, ed. C. 1. Gerhardt (Hannover, 1846}, p. 43. This important essay is analysed
by Bos, ‘Differentials’, p. 56f., in connection with the law of continuity.
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and large quantities and the reliability of the calculus. The existence of
infinitesimals had been defended by the Marquis de 'Hépital in Analyse
des Infiniment Petits (Paris, 1696), the first textbook on the calculus.
Leibniz found himself in an awkward position because he had publicly
stated that infinitesimals could be conceived as a grain of sand with
respect to the earth, or the earth with respect to the distance of fixed
stars. In a curious and typically Leibnizian letter to Pierre Dangicourt, he
admitted that during the controversy he had to conceal his true opinons
in order not to embarass his supporters in France, and especially
’Hopital, who feared Leibniz was about to ‘betray the cause’. In the same
letter Leibniz frankly admitted that in his own views ‘truly’ infinite or
infinitesimal quantities do not exist. Differentials were merely ‘well
founded fictions’, namely useful entities which could be profitably
employed for finding new results.'

The picture of Leibnizian mathematics presented thus far shows a
correlation between the notions of curve conceived as an infinitangular
polygon and of differential. More precisely, the infinitangular polygon is
associated with a sequence of infinitely near values of a variable; the
difference between two contiguous ordinates, or abscissae, or arclengths,
is the corresponding differential:'® ‘The conception of the variables as
ranging over infinite sequences of infinitely near values, and conse-
quently the conception of the differentials and sums as new variables, is
crucial to the understanding of the Leibnizian calculus. It marks, for
instance, the contrast with Newton’s fluxional calculus, which was based
on a fundamentally different conception of the variable, namely as
flowing along a continuum of values, rather than ranging over a
sequence.” On the basis of this conception of variables, Leibniz grasped
that tangents are related to the differences between the elements of a
sequence associated with a variable, and quadratures are related to their
sums. In a letter to John Wallis, Leibniz wrote: ‘The consideration of
differences and sums in number sequences had given me the first insight,
when I realized that differences correspond to tangents and sums to
quadratures.’'® Before moving to the study of the calculus, which is the
subject of the following section, it is convenient here to expand the

1 G. W. Leibniz, Opera Omnia, ed. L. Dutens, 6 vols. (Geneva, 1768); 3, pp. 500-501,
Leibniz to Dangicourt, 11 Sept. 1716. M. Blay, ‘Deux moments de la critique du calcul
infinitesimal: Michel Rolle et George Berkeley’, RHS, 39, 1986, pp. 223-53. JBB, 2,
passim, esp. pp. 351-76. In order to defend the rigour of the differential calculus Varignon
found nothing better than quoting section I of Newton’s Principia (p. 352)! Bos, ‘Differen-
tials’, pp. 55-6.

5 H. J. M. Bos, ‘Fundamental Concepts of the Leibnizian Calculus’, SL Sonderheft /4
(1986), pp. 103-18, p. 108.

16 LMG, 4, p. 25, 28 May 1697, Leibniz to Wallis. Bos, ‘Fundamental Concepts’, pp.
104 and 106.
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treatment of curves by discussing some important notions such as radius
of curvature, osculating circle, evolute, and evolvent.

The notions of radius of curvature and evolute, which had been
‘adumbrated’ by Apollonius in the Conics, were developed in modern
times by Christiaan Huygens in relation to his work on the pendulum
clock, as we have seen in Section 2.3.77 In order to make pendular
oscillations isochronous, Huygens was prompted to constrain them
within two arcs of a cycloid. The thread of the pendulum would thus
unroll, constantly changing its length in such a way that the period of the
oscillation is rigorously independent of its amplitude. The evolvent
described by the bob of the pendulum is always perpendicular to the
thread unrolling from the evolute. The whole third section of the
Horologium Oscillatorium is devoted to the mathematical theory of these
curves, which is developed far beyond the technical needs associated
with horology.

In his 1686 Meditatio Nova de Natura Anguli Contactus et Osculi
Leibniz focused on a related aspect. Instead of considering the relations
between evolute and evolvent, he analysed the latter and its properties. A
straight line is the most appropriate for determining the direction of a
curve, since the straight line has a constant direction; similarly, the circle
is the most appropriate for measuring curvature, because its curvature is
constant. The straight line measuring the direction of a curve is called
the tangent, and the circle measuring curvature is called the osculating
circle. On taking into account the angle of contact, namely that
magnitude between the arc of a circle and its tangent, Leibniz also
defined the osculating circle as that forming the smallest angle of contact
with the curve.”® Each infinitesimal portion of a regular curve can be
approximated by an arc of circle, namely of that circle osculating the
relevant part of the curve. The advantage of considering a portion of a
curve as an arc of a circle is immediately clear, since it is easier to deal
with a circle than with any other curve. Particularly in the study of orbital
trajectories, Leibniz and Newton adopted this mathematical technique.
In Part 2 we shall see how Leibniz worked with osculating circles while
seeking a generalization of Newton’s law of centripetal force.?”

7 Boyer, A History, p. 414, quoted in Yoder, Unrolling Time, p. 98 and ch. 6.

18 G. W. Leibniz, ‘Meditatio Nova’, AE June 1686, pp. 289-293 = LMG, 7, pp. 326-9.
M. Cantor, Vorlesungen, 3, p. 189. On the angle of contact see Euclid, I1I, 16; T. Heath, A
history of Greek mathematics (Oxford, 1921; reprinted New York, 1981), 2 vols., vol. 1, pp.
178 and 382. Hofmann, Leibniz in Paris, pp. 12-13. Leibniz’s interest in the angle of
contact dates at least from the 1669 Doctrina Conditionum, LSB, V1, I, p. 389, where he
claimed that the angle of contact has no assignable ratio to a finite angle.

' On Newton and curvature see NMW, I, pp. 2451f. and 456; 3, p. 151ff.; 6, pp. 548-9,
n. 25. B. Brackenridge, ‘Newton’s mature dynamics’, AS, 45, 1988, pp. 451-76; ‘Newton’s
unpublished dynamical principles: a study in simplicity’, AS, 47, 1990, pp. 3-31.
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3.4 The calculus

We have recently come to appreciate the subtle conceptual differences
between Leibniz’s and more modern formulations of the calculus. A
notable feature which has emerged only implicitly in my account of
Leibnizian mathematics thus far, is the lack of the notion of function. In
the seventeenth century curves were not seen as a graph of a function
x—y(x), where x is the independent variable, but as figures associated
with a relation between x and y.2° Thus differentiation and summation or
integration do not act on functions of an independent variable, but on
variables themselves. Consequently, the operations of the Leibnizian
calculus do not involve the notion of derivative: Leibnizian differentia-
tion associates to a variable x another variable dx infinitely, or better
incomparably, small with respect to it, and conversely for integration.
Differentiation and integration change the order of infinity; dimensions,
though, are preserved. If x is a distance, for example, dx is also a
distance, and likewise for higher order differentials such as ddx. When
studying problems of motion it was necessary to consider time as well.
Leibniz often represented the curve described by a body as a polygon
selected in such a way that its sides are traversed in equal and constant
elements of time dt. Since df was constant, and ddt =0, it was possible
for Leibniz to neglect it in the relevant calculations. As we are going to
see in more detail in the following chapter, this habit went hand in hand
with the usage of proportions, in which variables are the focus of
attention whilst constant factors occupy a marginal position. This is the
reason why Leibniz often says that the differential of a length is as a
velocity; what is meant is dato tempore, namely the differential of a length
is proportional to a velocity when dtis constant.

It has often been emphasized that concepts and notation of the early
formulation of the Leibnizian calculus are related to the work of the
Italian mathematician Bonaventura Cavalieri. Cavalieri conceived areas
as aggregates of lines and used the expression ‘omnes lineae’ to designate
this aggregate.?! In the fundamental 1675 tract Analysi Tetragonistica
Leibniz started by denoting the sum of all lines / as omn./, later replac-
ing this by [/, where the elongated | stands for ‘summa’??> A further
change in the notation mirrored important conceptual developments. By
introducing the differential dx inside the sign of summation, Leibniz
wanted to emphasize that for him quadratures are evaluated as sums of

20 Bos, ‘Differentials’, p. 6.

2 K. Andersen, ‘Cavalieri’s Method of Indivisibles’, AHES, 31, 1984, pp. 291-367; E.
Giusti, Bonaventura Cavalieri and the Theory of Indivisibles, (Bologna, 1980).

22 LBG, pp. 147-67,25 Oct.~1 Nov. 1675.
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area differentials rather than as aggregates of lines.?® If the progression
of the variable dx is selected such that dx is constant, Leibniz’s pro-
cedure corresponds more closely to Cavalieri’s. However, the possibility
of choosing different progressions for the variable dx allows a consider-
able flexibility in the corresponding choice and even transformation of
dx. Thus virtually from the start the Leibnizian calculus was geared to
the technique of substitution of variable. Leibniz was perfectly aware of
this considerable advantage of his technique and in his first publication
on the integral calculus, De geometria recondita, he emphasized precisely
this aspect:?*

Before I finish, I add one warning, namely that one should not lightheartedly omit
the dx in differential equations like the one discussed above a=[dx:/1—xx
because in the case in which the x are supposed to increase uniformly, the dx may
be omitted. For this is the point where many have erred, and thus have closed for
themselves the road to higher results, because they have not left to the indivisi-
bles like the dx their universality (namely that the progression of the x can be
assumed ad libitum) although from this alone innumerable transfigurations and
equivalences of figures arise.

The reference to ‘indivisibles’ in this quotation follows the mid-
seventeenth-century habit of conflating indivisibles and infinitesimals
while dealing with quadratures, without worrying too much about
philology. More rigorously one could say that indivisibles are constant
entities with no magnitude, whilst infinitesimals are variables and have a
magnitude—they are ‘non quanta’ and ‘quanta’ respectively.?

By 1675 Leibniz had developed the main principles of his calculus
and in particular the reciprocal relation between differentiation or the
search for tangents, and summation or the finding of areas. In the latter
case the variations from more modern practices and concepts are even
more marked than in the case of differentiation. Strictly speaking
integration cannot be taken to be the reciprocal operation of differentia-
tion because a variable has one differential, but the number of integrals
are infinitely many depending on an arbitrary constant factor. In the
seventeenth century there was no clear distinction corresponding to the
modern notions of definite or indefinite integral; in certain cases this lack
and the corresponding asymmetry between differentiation and integra-

23 Bos, ‘Differentials’, p. 79.

24 (3. W. Leibniz, ‘De geometria recondita et analysi indivisibilium atque infinitorum’,
AE, June 1686, pp. 292-300=LMG, 5, pp. 226-33, p. 233, translated in Bos, ‘Differen-
tials’, p. 79. LMG, 7, p. 387, Leibniz to Freiherr von Bodenhausen, late 1690s. See also G.
W. Leibniz, ‘Methodus Tangentium Inversa’, dated ‘July 1676°, LBG, pp. 201-3, and the
marginal annotations to Newton’s epistola posterior, received by Leibniz in 1677, LSB, 111,
2, pp. 93-4.

25 K. Andersen, ‘The Method of Indivisibles: Changing Understandings’, SL Sonderheft
14,1986, pp. 14-25.
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tion were not particularly significant, but in the study of differential
equations a mistake regarding constant factors could produce devasting
consequences in the result. Leibniz usually neglected the rule of adding
constant factors, and even Newton did not follow this rule consistently.
By contrast Johann Bernoulli, in his 1691-2 Lectiones Mathematicae de
Methodo Integralium delivered in Paris to the Marquis de ’'Hépital, spelt
out the need to add an arbitrary constant factor in the very first lecture.?

In this short characterization of some aspects of Leibnizian
mathematics I have deliberately emphasized conceptual aspects and
presented a partial and simplified picture; while stressing the importance
of these conceptual observations, it is also worth recalling that often the
calculus was used as a tool and that philosophical considerations about
rigour could become less important than the attainment of a result.
Bearing in mind these remarks, it is useful to characterize in a few
sentences some basic notions of Leibniz’s mathematics.

Leibniz

® Curves are conceived as infinitangular polygons consisting of
incomparably many rectilinear segments. Tangents are the prolonga-
tions of such segments.

® Variables range over a discrete sequence of incomparably near values
and differentials are the differences between contiguous pairs of such
variables, such as ordinates, abscissae, or arclengths. Differentials are
indeterminate because the sequences of the relevant variable or the
associated polygon can be chosen in infinitely many ways. Moreover,
differentials can be given arbitrarily small values in the calculations so
that by neglecting them—in the appropriate circumstances—the error
in the result is less than any given quantity.

o Differentiation and integration are operations on variables and change
the order of infinity, not the dimension of a variable. The differential
of a length is an incomparably small length, the integral of an
incomparably small velocity is a finite velocity.

A similar characterization for Newton presents greater difficulties
because, from his early mid-1660s tracts up to the mature treatises, he
tried to adopt more and more rigorous formulations. In general, he
thought of a variable as changing in time, as his predecessor on the
Lucasian chair Isaac Barrow had done. Thus Newton focused on the
finite speed of this change rather than on infinitesimal increments of a
variable. This statement, though acceptable as a global characterization,
requires a careful qualification, taking into account the context of

26 JBO, 3, pp. 285-558, on p. 287. On Newton see NMW, 3, pp. 114-117.



Geometry and the calculus 69

Newton’s work. In the 1669 De Analysi, for example, he wrote: ‘Neither
am [ afraid to speak of Unity in points, or Lines infinitely small, since
Geometers are wont not to consider Proportions even in such a case,
when they make use of the Methods of Indivisibles.?’” Later, however,
and especially during the priority dispute with Leibniz, he emphasized
the rigorous foundations of his method. In his 1713 response to Christian
Wolff’s review in the Acta Eruditorum of the revised tract De Arnalysi,
Newton stressed the difference between his own ‘totally vanishing’
quantities, and Leibniz’s infinitely small—though not vanishing—
differentials:?®

For in this method quantities are never considered as infinitely little nor are right
lines ever put for arches neither are any lines or quantities put by approximation
for any other lines or quantities to which they are not exactly equal, but the whole
operation is performed exactly in finite quantities by Euclides Geometry until
you come to an equation and then the equation is reduced by rejecting the terms
which destroy one another and dividing the residue by the finite quantity o and
making this quantity o not to become infinitely little but totally to vanish.

These observations clearly show the shift of emphasis between Newton’s
early and mature works, and sound as a warning against simplified
approaches neglecting the changes in his formulations of the calculus.

In the scholium at the end of section 1 in the Principia, on first and last
ratios, Newton wrote: ‘“Therefore if in what follows . .. I should happen
to mention least, evanescent, or last quantities, I do not understand them
to be determinate, but always diminished without end. In the 1691-2
tract De quadratura curvarum Newton first introduced the notation
whereby fluxions are indicated with a dot on the corresponding variable.
Fluxions express the rate of change of a continuous variable, usually with
respect to time, and serve purposes similar to Leibnizian differentials,
despite their conceptual differences. In a passage dating from the time of
the priority dispute, Newton pointed to what he wished to present as a
characteristic feature of his method of fluxions: “This Method is derived
immediately from Nature her self, that of indivisibles, Leibnizian
differences or infinitely small quantities not so. For there are no
quantitates primae nascentes or ultimae evanescentes, there are only

*7 NMW, 2, p. 235. Quoted in P. Kitcher, ‘Fluxions, Limits, and Infinite Littleness’, sis,
64, 1973, pp. 33-49, p. 46. Cohen, Newronian Revolution, sect. 3.1. Mahoney, ‘Barrow’s
mathematics’; NMW, 3, pp. 70-2, esp. nn. 80-4.

* NMW, 2, pp. 263-73, on p. 264, and Excerpts, p. 484, n. 18. Among the documents
on the priority dispute over the invention of the calculus there are several further remarks
on this topic. Kitcher, ‘Fluxions’, pp. 46-9; F. De Gandt, ‘Le style mathematique des
Principia de Newton’, RHS, 39, 1986, pp. 195-222. The passage from De Analysi quoted
above appeared unchanged in the 1711 edition: I. Newton, Marhematical Works, ed. D. T.
Whiteside, 2 vols. (London and New York, 1964), 1, p. 18. Compare also Principia, Book
I1, lemma 2, where the method is briefly explained.
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rationes primae quantitatum nascentium or ultimae evanescentium.?® In
his article on ‘Quadrature of curves’ in John Harris, Lexicon Technicum
(London, 1711), Newton wrote: ‘I don’t here consider Mathematical
quantities as composed of Parts extremely small, but as generated by a
continuous motion’ In an example taken from orbital motion, Newton
wrote that the fluxion of a distance is a velocity, and the fluxion of a
velocity is an acceleration or gravity. In the Principia, however, Newton
employed the method of first and last ratios, whereby infinitesimals are
avoided by considering not the finite speed with which a variable
changes with respect to time, but the finite ratio between two vanishing
variables, usually lengths. Further, in proposition 10, book II, the o refer
to the distances on an axis and do not represent increments of time.
Despite some important exceptions, however, on the whole kinematics
for Newton appears to be not so much an application of the calculus, as
something intrinsic to it and to its justification: time, in its most abstract
and mathematical form, is a privileged variable. By contrast, time is
extrinsic to the Leibnizian calculus, and kinematics is merely a special
application. Moreover, as Enrico Giusti has observed, Leibniz’s notation
highlights that differentiation and integration are operations. The
notation adopted by Newton, however, indicates the speed of change and
hence an attribute of a variable. Although it is easy to rewrite Newtonian
mathematics in a Leibnizian form and vice versa, their respective
notations are indicative of important and deep conceptual differences.*®

Before providing a schematic representation of those aspects of
Newton’s calculus which will occur again in the following, it is useful to
outline some features of the mathematics of the Principia. Contrary to
Newton’s own claims that he had originally composed his masterpiece in
the language of fluxions, Tom Whiteside has shown that there is a
continuity between the preparatory manuscripts and the published
version of the Principia. Its mathematical style has been aptly defined by
Francgois De Gandt as ‘une géométrie de l'ultime’. Both the geometrical
treatment and the method of first and last ratios were closely related to
the objects of the investigation: the former, since Newton was dealing
primarily with conic sections representing the trajectory of an orbiting
body; the latter, since he needed to calculate velocities and accelerations

2 Newton, Principia (first edition), p. 35 (my translation); Motte and Cajori, p. 39.
NMW, 6, pp. 122-3, nn. 63-8 and p. 195. NMW, 3, pp. 17-18. The reciprocal of fluxions
are called fluents, which correspond to Leibnizian summation and are related to
quadratures.

0 NMW, 7, p. 129. See also Hall, Philosphers at war, p. 269. The article in Harris,
Lexicon, is reprinted in Newton, Mathematical Works, I, pp. 141f. D. T. Whiteside, ‘The
Mathematical Principles Underlying Newton’s Principia Mathematica! JHA, 1, 1970,pp.
116-38; I owe the observation on proposition 10, book II of Principia, to D. T. Whiteside.

E. Giusti, ‘A tre secoli dal calcolo: la questione delle origini’, Bollettino della Unione
Matematica Italiana, ser. 6, vol. 3A, 1984, pp. 1-55, on pp. 39-40 and 53-54.
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at specific points. As a result, the geometric figure was the protagonist in
the mathematics of large portions of the Principia; in that mathematics
points and segments move along curves, and the ratios between segments
or between areas are computed. As Newton wrote at the end of section
1: ‘And, to be sure, everything that is geometrical is legitimately
employed in determining and demonstrating other geometrical things’.
From his characterization of the mathematics of the Principia one should
not jump to the conclusion that every proposition in it was
written in exactly the same style. In proposition 10, book II, for example,
one finds that series expansions are used in the investigation of projectile
motion under constant gravity in a resisting medium. On the whole,
however, this constituted the exception rather than the rule. A more
representative example on which we shall come back later is lemma 9,
which states:?!

If the straight line AE and the curve AC given in position mutually intersect at the
given angle A and DB, EC be applied as ordinates to that straight line at any
given angle, meeting the curve in B and C, and if the points B, C then approach
the point A: I assert that the areas of the triangles ADB, AEC will be ultimately
to one another in the doubled ratio of the sides.

Lemma IX.

Si re€la AE ¢« Curva AC pofitione dat fe mutno fecent in angulo
duto A, & ad reflant illam in
alio dato angulo ordinatim ap-
plicentwr BD, EC, curvcoc-
currentes in B, C; dein puntla
B, C accedant 2d punum A:
dico quod arex triangnlorum
ADB, AEC erunt ultimo ad
invicem in duplicataratione la-
terum.

Etenimin AD produdta ca-
piantur 4d, Aeiplis AD, AE
proportionales, & erigantur or-
dinate db, ec ordinatis DB, EC parallelz & proportionales.
Producatur AC ad ¢, ducatur curva Abc ipfi ABC fimilis, &
re&a A ¢ tangatur curvautrag; in A; & fecantur ordinatim appli-
catz in F, G,f, g. 'Tum coeant punta B, € cum punéio A, &
anguloc Ag evanefcente, coincident arez curvilinex Abd, Ace
cum redtilineis Afd, Age, adeog; per Lemma V, erunt in du-

plicata

Fig. 3.3  Principia, book I, lemma 9.

In the proof Newton employed triangles Adb and Aec, similar to triangles
ADB and AEC respectively. AFGfgis the tangent to the curves ABC and

31 Tom Whiteside has provided an extensive analysis of Principia, proposition 10, book
II, and of the controversy between Newton and Johann Bernoulli in NMW, &, pp. 312-424.
Concerning lemma 9, book I, see NMW, 6, pp. 114-15, n. 49. The quotation from lemma 5
isonp. 113.
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Abc in A. Now while points B and C, as well as D and E, coalesce with
A, the angle cAg becomes vanishing. Hence the curvilinear figures Adb
and Ace will coincide with Afd and Age, respectively, and therefore will
be as the squares of their sides Ad and Ae. This conclusion follows from
lemma 5, stating that ‘in similar figures all mutually corresponding sides,
curvilinear as well as rectilinear, are proportional and their areas are in
the doubled ratio of their sides. In the present proof Newton omitted to
clarify that Ad and Ae remain fixed and therefore finite while B and C
move. Since triangles ABD and ACE are ever similar to Abd and Ace,
also their areas will be ultimately as the squares of their sides AD and
AE, respectively. Notice that Newton avoids vanishing areas and
segments taken in isolation: he considers the finite ratio between vanish-
ing quantities and in our case even the finite triangles homologous to the
vanishing ones. Probably he did not wish to apply lemma 5 directly to the
vanishing triangles ADB and AEC.

An algebraic, as opposed to a geometrical treatment, required a signi-
ficant shift in the way mathematics and mechanics were practised. This
transition from ‘une géométrie de l'ultime’ to the manipulation of
differential equations was pioneered with mixed fortunes by Leibniz and
later developed through several intermediate stages in the course of the
first half of the eighteenth century. As we are going to see in Chapter 9,
Pierre Varignon and Johann Bernoulli played an important role in this
process.?

Newton

® Curves have continuous curvature. If they are treated as polygons, this
procedure must be seen either as an approximation, or as a prelimin-
ary step in the calculations; ultimately the sides of the polygon
become vanishingly small.

® Fluxions express the speed of change of a variable and are finite. They
result from variables flowing continuously, almost always with respect
to time. Hence kinematics is part of the foundations of the Newtonian
calculus.

® Fluxions and fluents are attributes of a variable. They leave the order
of infinity unchanged, that is, they remain finite. Dimensions,

32 Whiteside, ‘Mathematical Principles’, p. 130, n. 53, and NMW, 6; De Gandt, ‘Style
mathematique’, p. 200; Mahoney, ‘Diagrams and Dynamics: Mathematical Perspectives on
Edgerton’s Thesis’, in J. W. Shirley and F. D. Hoeniger, eds., Science and the Arts in the
Renaissance (Washington, 1985), pp. 198-220; and "Algebraic vs. geometric techniques in
Newton’s determination of planetary orbits’ (forthcoming). C. Truesdell, ‘A program
toward rediscovering the rational mechanics of the Age of Reason’, AHES, 1, 1960, pp. 3-
36, esp. p. 9; P. Costabel, ‘Newton’s and Leibniz’'s Dynamics’, in R. Palter, ed., The ‘Annus
Mirabilis’ of Sir Isaac Newton (Cambridge, Mass., 1968), pp- 109-16, esp. p. 115.
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however, vary according to the variable with respect to which they are
calculated. The fluxion of a velocity with respect to time is an acceler-
ation; the fluent of an area with respect to a length is a volume.

These brief and schematic observations show that although the
Newtonian and Leibnizian formulations of the calculus could perform
analogous operations, their equivalence presents considerable difficulties
and cannot be accepted without major qualifications. The notion of
equivalence becomes misleading unless similarities and differences with
regard to their conceptual basis and notation are spelt out.

This attempt to recover the flavour of Leibnizian mathematics as
opposed to Newtonian notions sets the scene for a deeper understanding
of their respective notions in mechanics, which will be analysed in the
following chapter. The correlation between mathematics and mechanics
will emphasize that the differences in the formulations of the calculus
cannot be treated simply as philological pedantry; on the contrary,
mathematics interacted with mechanics and philosophy in a way that the
definition and manipulation of mathematical entities cannot be isolated
from physical and metaphysical views about the world.



4

MATHEMATICAL REPRESENTATIONS
OF MOTION AND FORCE

4.1 Introduction

In the previous chapter we began to appreciate the links between math-
ematics and mechanics. One of the issues I have mentioned concerns the
dimensions of physical quantities in relation to Leibnizian differentiation
and integration, or to Newton’s fluxions and fluents. The connections
between pure mathematics and mechanics—significantly a branch of the
mixed or applied mathematics—are certainly broader and deeper than
this example may suggest, and are central to my understanding of
Leibniz’s theory and war with Newton. Already in Galileo with the
notion of ‘momento’, or in Hobbes with the notion of ‘conatus’, the
infinitely small was interwoven with the study of nature. By the end of the
seventeenth century the analysis of curvilinear motion was gaining a
prominent position in mechanics, and not surprisingly it interacted with
the mathematical notion of curve.

In the following section I investigate this interaction between the way a
curve was conceived, the principle of inertia, and accelerated motion.
Leibniz had a clear predilection for rectilinear motion and impacts over
accelerations, which he tried to dispense with as much as he could.
Accelerations appear only as macroscopic effects explicable at the level
of first-order infinitesimals in terms of impacts and rectilinear uniform
motions. According to my interpretation, from the late 1680s onwards
Leibniz perceived behind these representations a correlation with
Newton’s ideas of action at a distance in a void confronting his own
physical explanations in terms of fluids. These reflections are indispens-
able in order to understand Leibniz’s mechanical notions, such as
solicitation, conatus, dead and living force. Section 4.3 deals with them
and with their mutual relations as they result from the application of the
rules of the Leibnizian calculus. In this section I pay particular attention
to the problem of dimensional homogeneity, to conservation of force, to
the links between dead and living force, and to the related issue of
constant factors versus variables.

Since Leibniz sharpened his views on the links between physical and
mathematical issues when confronting the Principia Mathematica, the
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problems I investigate are best covered by texts composed during
his maturity, especially Dynamica, Specimen Dynamicum, Illustratio
Tentaminis, and the correspondence with Pierre Varignon and Jakob
Hermann. Many of the subtleties in the 7Tentamen and its preparatory
manuscripts can be appreciated in connection with these later texts.
Though different from Newtonian mechanics and from more modern
formulations, Leibniz’s science of motion and forces is a beautiful and
effective theory which, like his mathematics, can be appreciated if it is
studied in its own terms and in a seventeenth-century context with
regard to concepts and techniques.

In this chapter I present only a partial account of Leibniz’s mechanics
and dynamica—a word he coined in Rome in 1689. A considerable
portion of his efforts was devoted to controversies and debates on the
conservation of force with the Cartesians as well as with Huygens and
Johann Bernoulli. Moreover, Leibniz developed an elaborate array of
notions relevant to a variety of problems and situations; although my
presentation is restricted to the study of celestial motions, the idea of
seeing his mechanics in relation to a philologically accurate examination
of his mathematics can be extended, I believe, to other fields. Lastly, it is
well known that Leibnizian dynamics had important metaphysical
connotations; my focus, however, remains primarily on mathematical
and physical issues.!

4.2 Mathematical representations of motion

We have seen in the previous chapter that Leibniz conceived a curve as a
polygon with an infinite number of first-order infinitesimal sides. In the
letter of 1676 to Claude Perrault this mathematical way of conceiving a
curve was interestingly related to mechanics:?

And firstly I take as certain that everything moving along a curved line
endeavours to escape along the tangent of this curve; the true cause of this is that
curves are polygons with an infinite number of sides, and these sides are portions
of the tangents. Then everything which moves circularly tends to escape along the
tangent, and since the prolongation of this tangent goes away from the centre, it is
for this reason, and in a certain manner accidental, that bodies moved circularly
tend to escape from the centre.

! More philosophical accounts are in Gueroult, Dynamique; Buchdahl, Metaphysics, ch.
7. SL, Sonderheft I3. See also D. Garber, ‘Leibniz and the Foundations of Physics: The
Middle years’, in K. Okruhlik and J. R. Brown, eds., Natural Philosophy, pp. 27-130. A.
Robinet, Architectonique Disjonctive, Automates Systémiques et Idéalité Transcendantale
dans ’Oeuvre de G. W. Leibniz (Paris: Vrin, 1986).

2 LSB,11, 1, p. 264, quoted in Bertoloni Meli, ‘Public Claims’, p. 447, n. 56.
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This interaction between the notion of curve and the law of inertia, or
more generally between mathematics and mechanics, can be extended to
other areas and is crucial for the understanding of mathematical
representations of motion and force in Leibniz. Just as a curve is a
polygon, curvilinear motion is composed of rectilinear uniform motions.
In the lengthy Dynamica, largely composed in Rome in 1689, Leibniz
wrote:?

All motions are composed of rectilinear uniform ones. In fact each motion in itself
is uniform and rectilinear; but each action on bodies consists in motion. Thus
rectilinear motion cannot be curved but by the impression of another motion by
itself also rectilinear (albeit independent on the previous one), therefore the
origin of curvilinear and non-uniform motion cannot be understood but by
compositions of rectilinear uniform motions.

If in the letter to Perrault Leibniz had referred to mathematics, and in
Dynamica he had focused on motion, in his last letter to Samuel Clarke
in 1716 he expressed similar views with an emphasis on the primacy of
impacts, which are the building blocks of his mechanics:*

A body is never moved naturally, except by another body which touches or
pushes it; after that it continues until it is prevented by another body which
touches it. Any other kind of operation on bodies is either miraculous or
imaginary.

The first consequences, which I mention in passing, concern relative
versus absolute motion and cohesion. Relativity of rectilinear motion
was widely accepted in the second half of the seventeenth century;
circular motion, however, was held to be absolute by Huygens, at least
for some time, and by Newton. Leibniz believed that since the
equivalence of hypotheses holds for rectilinear motions, and curvilinear
motion is but a composition of rectilinear ones, the equivalence of
hypotheses must hold for curvilinear motion too. By ‘equivalence of
hypotheses’ he meant that—as far as phenomena are concerned—all
representations of a system of bodies are equally valid regardless of the
motion of the observer. In other words, each hypothesis about the
motion or rest of a body of the system is acceptable.® In his account,

3 Dynamica. De potentia et Legibus Naturae Corporeae (composed with the intention of
publication), LMG, 6, pp. 281-514, on p. 502, quoted in Bertoloni Meli, ‘Public Claims’, p.
447,n.57.

3 Leibniz-Clarke Correspondence, Leibniz's fifth paper, par. 35. ‘Antibarbarus
Physicus’, LPG, 7, pp. 336-44,0n p. 338.

5 On Huygens compare Dynamica, p. 508, referred to as ‘viro praeclaro’, and LMG, 2,
pp- 184-5, Leibniz to Huygens, 22 June 1694, and the latter’s reply, p. 192, 24 Aug. 1694.
Later Huygens changed opinion on the matter: HOC, 16, pp. 189-200, 209-33. On
Newton see Principia, scholium to definition 8. A more philosophical discussion is in L.

Sklar, Space, time and spacetime {Berkeley and Los Angeles, 1974); J. Earman, Worlds
enough and space-time (Cambridge, Mass., 1989).
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cohesion and firmness arise from the tendency of rotating bodies to fly
away along the tangent. Since in the universe there is no void, this
tendency disturbs the motion of the surrounding fluid, which pushes the
rotating bodies back towards the centre as if there were a magnetic
attraction. In the 1695 Specimen Dynamicum Leibniz put the matter in
the following terms:®

All motion is in straight lines, or compounded of straight lines. Hence it not only
follows that whatever moves in a curve strives always to proceed in a straight line
tangent to it, but there also arises here, the true notion of firmness, which one
would hardly expect. For if we assume . . . some one of those bodies which we call
firm ... to rotate about its center, its parts will strive to fly off on a tangent;
indeed, they really begin to fly off. But because this separation from each other
disturbs the motion of the body surrounding them, they are thus repelled or
crowded into each other again, as if there were a magnetic force in the center
which attracts them, or as if there were a centripetal force in the parts themselves.

In a letter to Huygens of 1694 Leibniz recalled his doubts about relativ-
ity of motion:” ‘When I told you one day in Paris that the true subject of
motion is difficult to recognize, you replied that this can be done by
means of circular motion. That stopped me for a while; and I remem-
bered reading almost the same thing in Newton’s book. But that was
when I thought that I had already seen that circular motion has no
advantage in this. And I see that you now agree with me’ It is conceiv-
able that the polygonal representation outlined in the letter to Perrault
was related to Leibniz’s Parisian reflections on circular and relative
motion. I recall that the letter to Perrault dates from the end of Leibniz’s
stay in Paris. Before exploring further the consequences of these views
about curves and motion, I wish to raise an issue related partly to my
presentation and partly to Leibniz’s own texts. The previous chapter and
this one, the order of the quotations above, and indeed Leibniz’s own
statement in the letter to Perrault might suggest a causal link from
mathematics to mechanics; in other words one could argue that Leibniz
believed in the existence only of rectilinear motions, with all its
consequences, because of his mathematical notion of curve. In my
opinion this reductionist view cannot be accepted. Similar issues
concerning the identification of an alleged fundamental discipline are not

% Specimen Dynamicum, in Loemker, Papers, p. 449, and (Hamburg, 1982), pp. 54-9;
Ariew and Garber, Essays, pp. 135-6. Dynamica, LMG, pp.507-11; Leibniz-Clarke
Correspondence, Leibniz’s fifth paper, par. 53. See further LPG, 4, pp. 384-9, ‘Animadver-
siones’; Hypothesis Physica Nova, LSB, VI, 2, pp. 223 and 270; the 1677 letter to Fabri,
LSB, 111, 2, p.136, proposition 13; the ‘zweite Bearbeitung’, LMG, 6, p. 162; ‘De Causa
Gravitatis’, AE May 1690, pp. 228-39= LMG, 6, pp. 192-203, on p. 198.

7 LMG, 2, 14 Sept. 1694, p. 199, transl. Ariew and Garber, Essays, p. 308. Concerning
the reference to Newton compare sect. 5.2 below.
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uncommon in the literature on Leibniz. However, his system is based on
an extraordinarily complex interplay of themes and disciplines with no
fixed centre. Neither mathematics, nor logic, nor metaphysics, nor
theology nor any other field, can be taken to be at the foundations of the
whole system. The belief in relativity of motion, for example, is directly
linked to mathematics and the polygonal representation, to physics and
the primacy of impacts, to metaphysics and the theory of space and time,
and none of these connections appears to me to be privileged over the
others, even if at times Leibniz emphasized this or that aspect.?

A further issue related to Leibniz’s views about curvilinear motion
concerns the notion of acceleration. Since Galileo’s studies of parabolic
trajectories, Huygens’s investigations of centrifugal force, and especially
Newton’s propositions in Principia Mathematica, we are accustomed to
consider curvilinear trajectories as the resultant of rectilinear uniform
motion composed with uniformly accelerated motion. At times, however,
Newton’s Principia appears as a hybrid in which different representa-
tions occur. In the second law Newton stated that ‘the change of [the
quantity of] motion is proportional to the motive force impressed’,
adding that the effect is the same ‘whether that force is impressed
altogether and at once, or gradually and successively’. Definition 4 states
that ‘impressed forces are of different origins, as from percussion, from
pressure, from centripetal force.” Notice the coexistence of discrete and
continuous representations. Is the reference to percussion relevant to
finite impacts only, or to curvilinear motion as well? In proposition 1,
proving that ‘the areas which revolving bodies describe by radii drawn to
an immovable centre of force do lie in the same immovable planes, and
are proportional to the times in which they are described’, the
demonstration is based on the polygonal model: a series of instantaneous
impulses deflects the orbiting body from its rectilinear path. Signifi-
cantly, Newton added referring to triangles SAB, SBC, etc. (see Fig. 4.1):
‘Now let the number of those triangles be augmented, and their breadth
diminished in infinitum; and . . . their ultimate perimeter ADF will be a
curved line: and therefore the centripetal force, by which the body is
continually drawn back from the tangent of this curve, will act continu-
ally’. One may wonder at this point whether proposition 1 takes its form
for mathematical reasons, or because Newton believed impacts to be
ultimately responsible for curvilinear motion. Although before 1680 the

8 An excellent multi-dimensional perspective is given by D. Mahnke, Leibnizens
Synthese von Universalmathematik und Individualmetaphysik (Halle, 1925, reprinted
Stuttgart, 1964), esp. p. 32. The controversy about relativity of motion erupted in the
correspondence between Leibniz and Clarke. In addition to the brief discussion and
references in sect. 5.2, the reader can see the following works selected from an immense
bibliography: Sklar, Space, ch. 3; Earman, Worlds enough; H. Stein, ‘Newtonian space-
time’, in C. Palter, ed., Annus Mirabilis, pp. 258-84.



Representations of motion and force 79
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Fig. 4.1 Proposition 1 in the Principia.

latter may have appealed to Newton, I believe that by the time he was
composing the Principia the polygonal representation was merely part of
the scaffolding of the proof. As we have seen, Newton referred to a
curved line resulting from a process in infinitum and to a centripetal
force acting continually. The reader encounters finite impacts only at the
beginning; ultimately the curve becomes smooth. Indeed, generally
Newton favoured the continuous approach. Good examples of his
method of representation can be found in lemma 10 and proposition 6.
The former constitutes a generalization of Galileo’s law of fall to the case
when gravity is not constant. It states that ‘the spaces which a body
describes by any finite force urging it, are in the very beginning of the
motion to each other as the squares of the times.’ This lemma is a
corollary of lemma 9; if in Fig. 3.3 the times are represented by AD, AE,
and the velocities by DB, EC, the spaces will be as the areas ABD, ACE.
Hence at the very beginning of motion the spaces are as the squares of
the times. In a preliminary version Newton referred to Galileo’s law of
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falling bodies. In the first edition proposition 6 is based on lemma 10,
and establishes that if a body P moves along the curve APQ around a
centre of force S, the centripetal force is proportional to the deviation
RQ from the tangent RPZ and is inversely as the square of the time.
Time is as the triangle SPQ, namely as SP+Q7T, where QT is the altitude
and SP the radius. Newton specifies that this theorem is valid in the limit
when Q coincides with P.

In the proof Newton specifies that the figure QRPT is indefinitely
small; also in this circumstance PQ is taken to be an arc rather than a
straight line, and motion along QR is accelerated rather than uniform

Pro. V1. Theor. V.

Si corpus P revolvendo circa cenmtrum S, deferibat lineam quamwis
curvam AP Q_, tangat wero reéta Z P R curvam illamin puntio
quovis P, ¢ ad tangentem ab alio quovis curve punio Q agatur
O R diftantie SP parallela, acdemittatur O T perpendicularss ad
diftamiam SP: Dico_quod wis centripeta fit reciproce ut fo-

lidum S_"&ﬁ&ﬁ-, i modo folidi illins ca femper fir

matur quantitas que ultino fit

ubi coexnt punlla P& Q.

Namg; in figura indefinite
parva QR P T Iineola nafcens
OR, dato tempore, eft ut vis
centripeta ( per Leg. II. } &

Fig. 4.2 Proposition 6 in the Principia.

and rectilinear. Thus lemma 10 and proposition 6 are clearly related to
accelerated motion, and the former can be reformulated in the following
way: at the very beginning the motion produced by an arbitrary accelera-
tion law can be conceived to be uniformly accelerated, namely centri-
petal force can be taken to be constant over a very small distance.’
However, it is possible to use different representations. Leibniz, for
example, had a clear predilection for rectilinear uniform motions and
dispensed with accelerations whenever he could; indeed, he sometimes
did so even when he could not. If we consider a circumference centred in
C and the infinitesimal arc AG, there are two ways of conceiving motion
along it: either rectilinear uniform along the tangent AD and uniformly

Y Quotations from the Principia are from the transl. by A. Motte and F. Cajori
(Berkeley and Los Angeles, 1934), pp. 2, 13, 34, 40, 41. T. L. Hankins, ‘The reception of
Newton’s second law of motion in the 18th century’, Arch. Int. d’Hist. des Sciences, 1967,
20, pp.43-65, esp.pp.55-6; E. J. Aiton, ‘Polygons and Parabolas: Some Problems
Concerning the Dynamics of Planetary Orbits’, Centaurus, 1988, 31, pp.207-221.
Westfall, Force, ch. 7. D. T. Whiteside has shown that taking accelerations into account, if
we want to have rectilinear elements of the curve, they must be second-order
infinitesimals; see ‘Newtonian Dynamics' History of Science, 5, 1966, pp. 104-17; NMW, 6,
pp- 34-9, n. 19, and ib,, pp. 76-7, 97-8, 549-51, 563. 1. B. Cohen, ‘Newton’s second law
and the concept of force in the Principia’, in R. Palter, ed., The ‘annus mirabilis’ of Isaac
Newton (Cambridge, Mass., 1970), pp. 143-85. Cohen, Newtonian Revolution.
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Fig. 4.3 Leibniz’s continuous and discrete analyses of curvilinear motion in his
1706 Excerptum ex epistola.

accelerated along DG, as Newton did in proposition 6; or rectilinear
uniform along AF, which is the prolongation of the chord EA, and along
FG (FG= AH). Here EA= AF, and this means that the arcs £EA and AG
are traversed in equal times. Both alternatives lead to the same result for
the central force or conatus, because the factor 1/2 involved in the
choice of DG rather than FG cancels out the factor 1/2 resulting from
motion along DG being uniformly accelerated. This seems to be the
agreed interpretation concluding a debate between Leibniz and Pierre
Varignon which lasted from December 1704 until 1706. This debate has
been aptly defined as a ‘comedy of errors’ because Leibniz and Varignon
exhausted virtually all possible representations, including a curve with
continuous curvature without accelerated motion, giving half the correct
value for centrifugal force, and a polygon with accelerated motion, giving
twice the correct value. In the end Varignon preferred the solution which
involves accelerations because he believed that centripetal or centrifugal
force act continuously; in this respect he followed Newton’s math-
ematical treatment. Leibniz, on the other hand, had no hesitations as to
the interpretation he favoured: ‘The simpler way is that in which acceler-
ation does not occur in the elements, whenever this is not necessary. I
have used it for more than thirty years. And thirty years before takes us
exactly to the letter to Claude Perrault quoted at the opening of this
section. Notice that Leibniz prefers not to use accelerations in the
elements, that is, in infinitesimal segments.°

In the Tentamen Leibniz tried to use similar considerations twice, for
gravity and centrifugal force; in both cases he considered only uniform
rectilinear motions. This led to a correct result for gravity, because he

0 LMG, 4, pp. 150-51, 10 Oct. 1706: ‘La voye est plus simple qui ne met pas 'accelera-
tion dans les elemens, lorsqu’on n’en a point besoin. Je m’en suis servi depuis de 30 ans.
Aiton, ‘The Celestial Mechanics of Leibniz’, AS, 16, 1960, pp. 65-82, on pp. 77-82.
Compare also the correspondence with Hermann in 1709, LMG, 4, pp. 344-53.
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took the tangent as the prolongation of the chord. In the case of
centrifugal force, however, he took the deviation from the rectilinear
path to be 1/2 of the correct value without realizing the need for
accelerations. This introduced the mistake by a factor 1/2 later
corrected thanks to Varignon. Before Varignon’s explanation, Leibniz
neglected acceleration and believed that it was equivalent to consider
motion along an infinitesimal arc or along its chord, because the
difference between their lengths is incomparably small. The debate on
these two different representations of curves and on their implications
for mechanics lasted for several decades into the eighteenth century.!!

It is worth explaining this issue with an explicit calculation (see Fig.
4.3). I follow a slightly modernized notation and pay special attention to
constant factors. Take a body moving along the infinitesimal arc EAG of
a circumference with centre C. In the continuous representation, if the
body is released in A, it will fly away along the tangent AD. The arc AG
and the segment AD are traversed in the element of time dr. DG is the
deviation from the tangent to the circumference, which in the element of
time dt can be taken to be parallel to AC; DG can be expressed as
DG=(AG)?:2(AC). This is an elementary geometric relation based on
the property that all triangles inscribed in a semicircle are right-angled;
the diameter of the circle is 2(AC); further BG=AD. We move now to
mechanics. DG is traversed with accelerated motion, since in the
continuous representation the resultant AG of the composition with the
rectilinear uniform motion AD is curvilinear even for infinitesimal arcs.
In the element of time dr the arc AG of the circumference can be
approximated by a parabolic arc, their difference being negligible. From
the law of accelerated motion, DG = (df)?a:2, where a is the accelera-
tion. From the two equations one has (df)?a:2={AG)?*:2(AC), or
a=(AG:dr)*: AC, namely acceleration is equal to the square of velocity
over the radius. We consider now the polygonal representation with dr a
constant, namely the sides of the polygon are equal, EA= AG. Now the
body released in A moves along AF, and the deviation is FG. Since the
body moves along a polygon, the resultant of AF and FG must be the
rectilinear segment AG, hence motion along FG is rectilinear uniform.
From simple geometry FG = (AG)?: AC. Introducing mechanics, we have
FG= bdt, where b is a velocity. Notice, however, that if ACis finite, AG is
infinitesimal of the first order and FG is infinitesimal of the second
order. Hence b is an infinitesimal velocity b= dv=ddr:dt. From the
previous equations one has ddr=(AG)?:AC. Since dtis constant, one can

'I' Leibniz, ‘Excerptum ex Epistola’, LMG, 6, pp. 276-80. DG is called conatus centri-
fugus tangentialis, and applies only at the beginning of motion; FG is called conatus
centrifugus arcualis and applies to the body while rotating; in this essay Leibniz does not
mention accelerations. On this problem see chapter 9 below.
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say that the solicitation ddr is as the square of velocity over the radius.
Notice that in this way accelerations are avoided in the first-order
elements of the curve. For a finite arc, however, one can use accelera-
tions regardless of the representation employed, even if the ingredients
vary in the two cases. Further, in both representations velocity can be
taken to be proportional to BG, because the difference between AG? and
BG? is a fourth-order infinitesimal and therefore the measure of force or
conatus is not affected. This approximation is often adopted by Leibniz.

In the cases which we have seen so far Leibniz tried to dispense with
accelerations on mathematical grounds because of the way he conceived
curves, and on physical grounds because of his belief that phenomena
were ultimately explicable in terms of impacts. One may wonder at this
point whether for Leibniz the polygonal representation corresponds to
the real trajectory of the body, namely whether motion occurs along the
segments EA, AG, etc. The answer to this question can only be a
resounding no, and the reason is straightforward. The choice of the
specific polygon entails a degree of arbitrariness depending on the
progression of the variables. In our case df is constant, hence the chords
EA, AG, etc. are equal. However, different progressions of the variables
could have been selected. In general, the vertices of the infinitangular
polygon cannot be the actual places where impacts occur; Leibniz’s
mathematical representations of curvilinear motion are fictitious. The
polygonal curve, however, corresponds in principle to physical actions in
a way that the continuous curve does not. By correspondence ‘in
principle’ I mean that mathematics mirrors the physical laws involved,
rather than the infinitesimal details of the trajectory of the body. More-
over, as we have seen in Section 2.4 on elasticity, for Leibniz change
takes place not instantaneously, but gradually and in accordance with the
law of continuity. Thus each vertex ought to represent a smooth rather
than a sudden transition.

In an essay of 1705, Illustratio Tentaminis de Motuum Coelestium
Causis, Leibniz represented rectilinear uniformly accelerated motion by
breaking up time into infinitesimal elements during which velocity
remains constant.

OR represents time; QS, SW, WX, etc. are equal elements of time dr;
QOTZw is the curve of velocities showing that motion is uniformly
accelerated. But at the level of first-order infinitesimals the curve is
broken up into ‘steps’ representing uniform motion with velocity ST
along VI, WZ along YZ, etc. and impulsive increases in velocity OV at
the instant ), 7Y at the instant S, etc. The area of the triangle QRw
represents the space traversed in the time QR. The error introduced with
this motus scalariter acceleratus, as Leibniz calls it, is proportional to the
area of the rectangle wRA and is therefore negligible. Although Leibniz
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Fig. 4.4 Leibniz’s discrete representation of rectilinear acceleration.

introduced this representation as a mathematical construction, a
mechanical interpretation is straightforward: QV, TY, etc. are
infinitesimal impulses or microscopic impacts, whilst accelerations
appear merely as a macroscopic effect. We shall have to bear in mind
these fundamental examples and diagrams in several instances below.
Once again, the notion of equivalence between Newtonian and
Leibnizian notions presents itself in a problematic fashion.!?

4.3 Mechanical notions and their mutual relations

After these preliminary remarks, we are now equipped to examine some
of Leibniz’s most characteristic notions relevant to the texts discussed in
Part 2. The task is rendered more difficult for the modern reader by the
different treatment of the problem of dimensions. The introduction of
factors with the appropriate dimensions, such as angular momentum per
unit mass in the expression of Kepler’s area law, occurs very rarely in
early-modern mechanics. In the seventeenth century the most common
way for avoiding the problem of dimensional inhomogeneity was to
construct a suitable proportion. In order to express mathematically
Kepler’s area law, for example, one would write A,:A,::t: 1, where A is
the area and ¢ time, and say that ‘the areas are as the times’. Since such
expressions often involved infinitesimals, one can say that the differential
proportion was the primary tool in the mathematical investigation of

12 ‘Tlustratio Tentaminis de Motuum Coelestium Causis’, LMG, 6, pp. 254-76, is a
longer preliminary draft of ‘Excerptum ex epistola’; see esp. p. 259. See also Huygens,
Horologium, part I1, prop. 5.
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nature. Strictly speaking, even the form in which the proportion above is
written is slightly anachronistic, because the symbol of a variable with an
appropriate index was not currently used. Mathematicians represented
variables, including time, length, velocity, etc. by means of segments and
areas of a suitable figure. Therefore proportions were written in a form
closer to geometry, since variables were indicated by the corresponding
letters in the figure, i.e. a segment as AB or CD, an area as EFG or
HILM. Continental mathematicians often used algebraic symbols for
such variables, for example a or b for constants, x or y for non-constant
magnitudes, and dx or dy for their increments.!* In differential
proportions, however, constant factors were usually neglected or at least
treated as secondary with respect to variables. This attitude led to a
further problem related to dimensions in the mathematical representa-
tion of physical magnitudes. Leibniz in particular usually neglected
constant factors, especially mass and time. Strictly speaking velocity, for
example, is expressed by Leibniz as x=dr:df, where dr and dt are the
differentials of a length and of time respectively. In the theory of
planetary motion, and in general in all cases where the element of time dt
is constant, Leibniz wrote velocity simply as dr, meaning dato tempore. It
is worth recalling that the notation dr:dt represents the ratio between
two differentials and does not correspond to the notion of derivative of a
function with respect to an independent variable. Quantity of motion and
impetus, for example, are taken as synonyms meaning mass times
velocity in Dynamica and Specimen Dynamicum, but in the Tentamen
mass is neglected, velocity and impetus being taken as equivalent.* The
term ‘neglected” does not necessarily carry a negative connotation; it
simply emphasizes that Leibniz focused on variables and often assumed
that proportions were involved. In the study of differential equations,
however, this attitude created several problems, as we are going to see.
The modern reader ought not to be shocked if order of infinity and
physical dimensions seem to be treated inadequately. Representations
varied according to specific needs and circumstances. Proportions were
often employed by Newton too, though with different preoccupations.
As we have seen in Section 3.4, Newton generally avoided infinitesimals.
Thus from his perspective proportions had the advantage of involving
finite ratios rather than infinitesimal variables. An example of this usage
can be seen in lemmas 9 and 10 of the Principia, book 1.
Seventeenth-century studies of motion often involved reflections on
infinitesimal velocity, or infinite tardiness. Howard Bernstein has
claimed that Leibniz’s reference to conatus or solicitation to indicate an

'3 Bos, ‘Differentials’, p. 47f. Cohen, Newtonian Revolution, sect. 1.3.
Y LMG, 6, Dynamica, p.398; Specimen Dynamicum, (Hamburg, 1982), pp. 10-11,
Loemker, Papers, p. 437, Ariew and Garber, Philosophical Essays, p. 120.
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infinitesimal velocity or a tendency to motion derived from Thomas
Hobbes and had already appeared in the 1671 Hypothesis Physica Nova.
Although it can be argued that Leibniz’s usage of the same terms in
analogous contexts derives from Hobbes, their exact meaning and mode
of operation varied. Hobbesian ‘conatus’ was defined as ‘motion made in
less space and time than can be given’; despite this association with
instantaneous velocity, Hobbes also stressed that conatus does ‘not
always appear to the senses as motion, yet it appears as action, or as the
efficient cause of some mutation.”"® Leibniz was able to provide a more
precise definition closely linked to his mathematics, though some
ambiguities remained. In the Specimen Dynamicum solicitation means an
infinitesimal velocity, whilst conatus is used in the sense of velocity in
one direction—a meaning close to the modern notion of vectorial
velocity. In the Tentamen, however, solicitation and conatus—which can
be rendered as ‘endeavour’—are synonyms with regard to their
mathematical expression and correspond to the differential of velocity
dx, written as ddr because the element of time is constant. Possibly
‘solicitation’ conveys the idea of an external action, whereas ‘conatus’
suggests a tendency internal to the body. In spite of Leibniz’s repeated
statements that for him solicitations or endeavours are not accelerations,
several commentators have overlooked this distinction.!®

In a letter of 1673 to Edme Mariotte, Leibniz referred to pendular
oscillations and mentioned a force morte, which is the weight of a body,
and a force violente ou animée, which is the force of impact or percussion
and is infinitely greater than dead force. This is his first known reference
to these important notions. The most likely source for the notion of
‘dead force’ is Saggi di Naturali Esperienze Fatte nell’Accademia del
Cimento, drafted by its secretary Lorenzo Magalotti, published in
Florence in 1666 and read by Leibniz in 1673." As in the case of

'S Useful material on this topic regarding Galileo and his sources is in P. Galluzzi,
Momento. Studi Galileiani (Roma, 1979). See also H. R. Bernstein, ‘Conatus, Hobbes and
the Young Leibniz’, SHPS, 11, 1980, pp. 25-38. Hobbes, De Corpore (London, 1655), in
Molesworth, /, pp. 206 and 342. The term ‘conatus’ occurs also in Principia Philosophiae,
part HI, prop 57. Leibniz read De Corpore shortly before his letter to Thomas Hobbes of
23 July 1670, LSB, 1, I, pp. 56-9. Westfall, Force, pp. 109-14. D. Garber, ‘Motion and
Metaphysics in the Young Leibniz’, in M. Hooker, ed., Leibniz. Critical and Interpretive
Essays, (Minneapolis, 1982}, pp. 160-84. On Newton see Herivel, Background, part 1, ch. 3.

16 See the correspondence with Jakob Hermann in the years 1712-13, LMG, 4, pp. 368,
372, 378, 384 and especially 387, where Leibniz objects to Hermann’s claim that solicita-
tions are accelerations: ‘Et primum observo mihi solicitationes et ipsa celeritatis
incrementa esse idem.’ 1 Febr. 1713.

7 LSB, 11, 1, pp. 105-12, July 1673; pp. 107 and 109-10. Together with Huygens,
Mariotte was Leibniz’s mentor in mechanics. On this occasion he probably corrected a
mistake by Leibniz concerning decomposition of motion, p. 109n. M. Fichant, “La
‘Reforme’ Leibnizienne de La Dynamique, d’apres des Textes Inédits”, SL Supplementa /3,

1974, pp. 195-214; ‘Les Concepts Fondamentaux de la Mécanique selon Leibniz, en
1676, SL Supplementa, /7, 1978, pp. 219-32. Magalotti, Saggi, pp. 141-2 and 202; Hess,
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conatus with respect to Hobbes, however, it is by no means certain that
at this early stage Leibniz considered violent force to be proportional to
the square of velocity, as he did after the late 1670s. Dead and living
force occur several times in Leibniz’s works, but they are first mentioned
in print in the Tentamen.'® Dead force is mass times an infinitesimal
velocity, while living force is mass times the square of velocity. Since
mass is constant, Leibniz often said that solicitation is as dead force,
namely as x or dr, and living force is as the square of velocity, namely as
x* or dr’. The following quotation from the Specimen Dynamicum
provides examples of dead and living forces and explains their relations
in a non-quantitative fashion:'

Hence force is also of two kinds: the one elementary, which I also call dead force,
because motion does not yet exist in it, but only a solicitation to motion .. .; the
other is ordinary force combined with actual motion, which I call /iving force. An
example of dead force is centrifugal force, and likewise the force of gravity or
centripetal force; also the force with which a stretched elastic body begins to
restore itself. But in impact, whether this arises from a heavy body which has
been falling for some time, or from a bow which has been restoring itself for some
time, or from some similar cause, the force is living and arises from an infinite
number of continuous impressions of dead force.

In this passage elasticity is interestingly treated as homogeneous to
centripetal and centrifugal forces. This treatment is extended to living
forces too, and this is certainly the area with the greatest philosophical
significance.

The Specimen Dynamicum induced a debate on mechanics between
Leibniz and Johann Bernoulli. In a letter to his Swiss friend dating from
the same year as his essay on dynamics, Leibniz stated that the ars
aestimandi consists in reducing phenomena ad mensuram quandam
congruam, to a certain homogeneous measure which can be employed as
the unity is for numbers. Leibniz identified in living force this unit

‘Kurzcharacteristic’, p. 199. Several commentators pointed out that the expression ‘peso
morto” had already been used by Galilei and mention Galileo’s so-called sixth day of the
Discorsi as Leibniz’s source for the expression ‘dead force’. In fact, the sixth day of the
Discorsi was published for the first time in 1718 and cannot have been read by Leibniz.

¥ Compare ‘De Arcanis Motus’ in Hess, ‘Kurzcharacteristik’, p. 202; the letter to
Antoine Arnauld in G. Le Roy, ed., Arnauld, pp. 143~50, on p. 149, 8 Dec. 1686.
Tentamen, paragraph 10. This has been pointed out by A. Robinet, ‘Dynamique et
Fondements Métaphysiques’, SL Sonderheft 13, 1984, pp. 1-25, on p. 18. Both in the
Tentamen and Specimen Dynamicum Leibniz refers to Galileo for an example of dead and
living force. The example is the ‘forza della percossa’, which Galileo claimed to be
‘interminata, per non dire infinita’ with respect to static force; Discorsi e Dimostrazioni
Matematiche Intorno a Due Nuove Scienze (Leida, 1638) = GOF, &, p. 313, fourth day.

19 Specimen Dynamicum, (Hamburg, 1982), pp. 12-15. Transl. from Loemker, Papers,
p- 438; Ariew and Garber, Essays, pp- 122-3. ‘Essay de Dynamique’, LMG, 6, pp. 215-31,
on p. 218.
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measure common to all phenomena. The equivalence between cause and
effect embodied in the conservation of living force allows a quantitative
description of the world. If force were not conserved, its measure would
be vague and inaccurate, depending on the different circumstances and
points of view. Therefore the programme for a mathematization of
nature and indeed Leibniz’s own philosophy would collapse. His first
publication on this issue is the famous Brevis demonstratio erroris
memorabilis Cartesii et aliorum of 1686, in which he claimed that force is
proportional to the square of velocity or the height of fall. In his
celebrated essay Leibniz claimed that it is reasonable to suppose that
living force—he says the sum of motive power—is conserved in nature,
and recalled Descartes’s view that force is equivalent to quantity of
motion, that is, mass times velocity. On the basis of the two commonly
accepted assumptions that a body falling from a certain height acquires a
force sufficient to raise it back to its original height, and that the same
force is required to raise a body of one pound to four feet or a body of
four pounds to one foot, he showed that Descartes’s measure of force
leads to a contradiction, because a force could produce an effect greater
than its cause. Leibniz’s solution is that force is proportional to the
height of fall or the square of velocity, not to simple velocity.??

The relation between dead and living force is further explained in a
letter to the professor of mathematics and philosophy at Leiden,
Burchard de Volder, to whom Leibniz wrote:?!

And the impetus of living force is related to bare solicitation as the infinite to the
finite, or as lines to their elements in my differential calculus . . . Consequently, in
the case of a heavy body which receives an equal and infinitely small increment of
velocity at each instant of its fall, dead force and living force can be calculated at
the same time: to wit, velocity increases uniformly as time, but absolute force as
distance or the square of time, that is, as the effect. Hence according to the
analogy of geometry or of our analysis, solicitations are as dx, velocities are as x,
forces as xx or as [xdx.

In this passage and in the previous one accelerations seem to be treated
as in [llustratio Tentaminis, namely as a motus scalariter acceleratus.
Solicitations and velocities are linked by a single integration, x= [dx,
where time is not involved in the calculations. This is the obvious
consequence of solicitations being as infinitesimal velocities and not
accelerations. By contrast, the modern reader associates the transition
from acceleration to velocity with an integration over time,

20 LMG, 3, Leibniz to Johann Bernoulli, 29 July 1695, p.208. Cassirer,
Erkenntnisproblem, vol. 2, p.165. AE March 1686, pp. 161-3=LMG, 6, pp. 117-19;
Loemker, Papers pp. 296-302.

1 LPG, 2, pp. 153-63, on pp. 154 and 156; after Nov. 1698. Translation from Westfall,
Force, p. 298. Compare also Dynamica, LMG, 6, p. 454.
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[dt-a= x(+constant), where a is the acceleration. As we have seen in
Section 3.4, Leibnizian integration and differentiation change the size of
the integrandum and differentiandum respectively to infinitely large or
infinitely small. A distance is transformed into an infinite or infinitesimal
distance, and a velocity into an infinite or infinitesimal velocity respec-
tively. Their physical dimensions, however, remain unchanged.

There is a striking disagreement among historians on the interpreta-
tion of the second part of the quotation above and of other related
passages relevant to the link between dead and living force. Some claim
that living force was the integral of dead force times an infinitesimal
distance. René Dugas in particular maintained that the previous
quotation contains the theorem of living force and constitutes the great
claim to glory of Leibniz’s dynamics. Ernst Cassirer is the main advocate
of the thesis that Leibniz discovered the concept of work, though his
arguments are mainly philosophical rather than mathematical.?? Others
deny that Leibniz ever grasped the link between dead and living force. In
their opinion this was a consequence of his metaphysical notion of
substance or monad. According to these interpreters, since monads
evolve in time, Leibniz would integrate dead force over time rather than
over distance, and the integral of dead force over time would be
proportional to simple velocity, not to velocity squared or to living
force.?? However, it is doubtful whether Leibnizian substances can be
located in space and time, and any straightforward parallel between
metaphysics and mechanics in this form must be treated with consider-
able scepticism. Other objections relate more closely to the present
chapter; even if we neglect metaphysics, in a number of passages such as
the quotation above from the Specimen Dynamicum, Leibniz seems to
state that living force is the integral of dead force multiplied by the
element of time. Since this integral would give simple velocity, he would
have failed to establish the correct quantitative link between dead and

2 Cassirer, Leibniz’ System, ch. 6. Dugas, Mécanique, p.490, renders ‘Leibniz’s’
theorem as follows: [F-dr=1/2 mv? (the integration constant is omitted); F is mass times
vectorial acceleration and dr is also a vector. A similar position is held by J. O.
Fleckenstein in L. Euler, Opera Omnia, 11, 5, pp. xiv and xxxii.

23 Westfall, Force, pp. 299-301, on pp. 299-300; ‘What was readily accessible to his
mathematics was obstructed by his philosophical considerations, and Leibniz never
suggested that the generation of vis viva in free fall be seen as the integration of dead force
over distance. No concept in his dynamics corresponds closely to the ideas of work and
potential energy ... Indeed the whole tenor of Leibniz’s philosophy sets itself against the
possibility of a functional relation of force and distance.” And ib.: ‘The law that governs a
substance unrolls its course through time rather than space. Whereas the summation over
time of a body’s endeavours repeats mathematically the law of its being, a similar
summation over space lacks all meaning.” K. Okruhlik, ‘Ghosts in the World Machine: a
Taxonomy of Leibnizian Forces’, in J. C. Pitt, ed., Change and Progress in Modern Science,
(Dordrecht, 1985), pp. 85-105, on pp. 97-9.
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living force, which is as the square of velocity.?* However, I find no
convincing evidence that for Leibniz dead force is integrated in that way,
namely [(dead force)dr. Indeed, this belief seems to be linked to the
erroneous representation of dead force or solicitation as proportional to
acceleration. For Leibniz the integral of solicitation or dead force as
such—not multiplied by the element of time—is proportional to simple
velocity. Regarding Leibniz’s alleged failure to realize that ‘his’
integration of dead force would produce simple velocity, I believe one
ought not to translate too hastily his general statements into the rigorous
language of the calculus. When he talks of a ‘heavy body which has been
falling for some time’, he does not mean that the integral of dead force is
multiplied by an element of time, but is simply providing a general
description of the phenomenon. Further indication of Leibniz’s failure to
attain living force by integration would be the lack of the factor 1/2 in its
expression. In other passages Leibniz rather enigmatically declares that
the relation between dead and living force is analogous to that between a
point and a line.?> In my interpretation he wanted to stress that dead
force is infinitesimal, whereas living force is finite. Chapters 5 and 7
below will show that Leibniz realized that dead and living force are
related via a simple integration where dead force or conatus is multiplied
by an infinitesimal distance. Moreover, I claim that the lack of the factor
1/2 in the expression of living force is a consequence of Leibniz’s
general habit of neglecting constant factors, and argue that his differen-
tial equations relevant to force can be plausibly interpreted in terms of
the elasticity of the aether.

It may be useful to summarize some features of Leibniz’'s and
Newton’s mathematical representations of motion. Rather than trying to
cover the entire spectrum of their researches, I focus on the relevant
material from the Tentamen and Principia, starting from some general
well known statements which will be briefly discussed in the following
chapters.

Leibniz

® Empty space does not exist. The world is filled with a variety of fluids
which are responsible for physical actions, including gravity.

2% Together with Westfall and Okruhlik compare 1. Szab6, Geschichte der mechanischen
Prinzipien (Basel: Birkhaiiser, 1979, second edition), pp. 70-1. In his opinion for the link
between dead and living force we have to wait for Daniel Bernoulli, ‘Examen Principiorum
Mechanicae’, Commentarii Academiae Scientiarum Petropolitanae, 1, 1726, pp. 126-42.
However, compare Proposition 39 in Book 1 of Newton’s Principia Mathematica, where
the same result is proved in geometrical fashion; P. Varignon, ‘Maniere Générale de
Déterminer les Forces, les Vitesses, les Espaces, et les Temps’, MASP 1700, pp. 22-7, on
p- 27, and several other texts.

%5 P. Costabel, Leibniz et la Dynamique, (Paris, 1960), p. 104; compare also the
quotation from the letter to de Volder above.
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® Living force and its conservation are the fundamental notion and
principle respectively, in the investigation of nature; however, they do
not figure prominently in the study of planetary motion.

e Finite and infinitesimal variables are regularly employed in the study
of motion and of other physical phenomena. Living force and velocity
are finite; solicitation and conatus are infinitesimal.

® Accelerated motion, whether rectilinear or curvilinear, is represented
as a series of infinitesimal uniform rectilinear motions interrupted by
impulses. I call this ‘polygonal representation’. Usually the polygon is
chosen in such a way that each side is traversed in an equal element of
time dr. In polygonal representations accelerations are reduced to a
macroscopic phenomenon.

® Proportions are often used to safeguard dimensional homogeneity.
Constant factors—such as numerical factors, mass, and the element of
time—are usually ignored in the calculations.

Newron

® Celestial motions occur in spaces either empty or void of resistance.
All bodies attract each other in proportion to their masses and
inversely as the squares of their mutual distances.

® Force and acceleration are the key notions in the study of motion.

® Variables employed by Newton, such as velocities and accelerations,
are rigorously finite.

® Accelerated motion, whether rectilinear or curvilinear, is represented
by a continuous curve where force acts continually. I call this
‘continuous representation’. Newton avoided infinitesimals by
considering either the rate of change of a variable with respect to
time, or the finite ratio between two variables. In general time plays a
central role and is part of the foundations of Newtonian mechanics.

® Proportions are often used to safeguard dimensional homogeneity;
further, they have the advantage of involving finite ratios between
vanishing quantities rather than vanishing quantities taken in
isolation.

It would be impossible to present a comprehensive study of the
sources relevant to Leibniz’s theory. Though not exhaustive, this pre-
liminary account sets the scene for the study of the manuscripts and the
dispute with Newton.
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5
THE PRIVATE ITINERARY

5.1 Introduction

This chapter outlines the itinerary leading from the Notes, namely
Leibniz’s working sheets containing his immediate thoughts on the
Principia, to the Tentamen. All the manuscripts discussed here are
unpublished: those marking the most significant stages in Leibniz’s
itinerary are reproduced in the Appendix, where I also provide a detailed
textual analysis. In this chapter, however, I present a broader picture,
including some manuscripts which are not reproduced later and the
relevant Marginalia. Indeed, in some cases Leibniz’s isolated annotations
in his own copy of Newton’s masterpiece can only be understood in
relation to the texts presented here.

Leibniz’s first impressions of the Principia can be reconstructed from a
combined study of the Notes, Marginalia, and Excerpts. It is well known
that Newton’s masterpiece starts from the definitions and laws of
motions, and contains two books on the motion of bodies through spaces
void of resistance and in resisting media respectively, and a third book on
the system of the world. Leibniz had a mixed reaction to the
approximately 500 pages of the Principia: he criticized the lemmas on the
first and last ratios in section 1, book I, but was most impressed by the
generalization of Kepler’s area law in proposition 1. At the end of the
Notes Leibniz was progressively abandoning any direct reference to the
text and pursuing his own line of research; this was based on his trans-
mutation theorem and on the attempt to determine the centripetal or
centrifugal conatus for a body moving under the action of central forces.
It will become clear in this chapter that it is impossible to isolate two
separate phases of Leibniz’s thought, namely that of the interpretation
and that of the development of his own theory. Rather, I wish to stress
that these two moments are present at the same time: Leibniz’s Nofes and
essays on planetary motion form a continuum.

Leibniz’s manuscript essays are very tentative, often unfinished or with
later additions. The difficulties involved in dealing with the first steps of
the new science of motion using the most advanced mathematical
techniques available in his time largely account for Leibniz’s line of
thought being by no means straight. In spite of these problems, from a
combined examination of several factors it is possible to reconstruct a
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convincing intellectual development and strategy. The chronology which
emerges leads us, some time in the last quarter of 1688, from the
Principia Mathematica to the Tentamen.

Before embarking on the analysis of the manuscripts, I wish to outline
the criteria I have adopted for ordering and dating the texts. The first
criterion concerns papers and watermarks. All watermarked manuscripts
discussed in this chapter are of a type used by Leibniz in Vienna in 1688.
Although this element alone does not prove that the essays date from
1688, since Leibniz could have carried some Viennese paper with him to
Italy, it certainly establishes the possibility that they may have been
composed in Vienna, thus before the Tentamen. The second criterion
involves the conceptual development of Leibniz’s theory and termin-
ology employed, and provides a firmer basis for the dating. Considering
the care with which Leibniz chose his key expressions, such as circulatio
harmonica and motus paracentricus, it is reasonable to believe that the
occurrence of different terms for such crucial notions, or their occur-
rence with a different meaning, indicate an earlier date of composition. A
third related criterion concerns the sequence of the manuscripts, which
in many cases can be determined with great accuracy from several
factors: they include detailed cross references, a reasoning which is inter-
rupted in an essay and then continued and developed in another text, the
perfect matching of the edges of two manuscripts, and the combination
of these factors. The relevant criteria are introduced and analysed at the
appropriate place below, so that each step is justified in the making.

5.2 The first reading of the Principia

Leibniz’s style of working was often to comment on books or create
imaginary dialogues with other philosophers. Among the most famous
examples are the Animadversiones in Parternm Generalem Principiorum
Cartesianorum, Nouveaux Essais, and Essais de Théodicée, which are
largely based on debates with René Descartes, John Locke, and Pierre
Bayle respectively. These works were either published or written with
the intention of publication. As will be immediately clear from the
transcriptions in the Appendix, this is not the case with the Notes.
Leibniz’s manuscripts contain a private collection of thoughts and
calculations which he would not have wished to see in print. However,
the Notes shed new light on the development of Leibniz’s thought and of
his relationships with Newton. Leibniz made several attempts both to
translate Newton’s terminology and concepts into the scheme of his own
terms and ideas, and to attain similar mathematical results using his own
tools.
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No attempt is made here to summarize the main results in the
Principia, let alone to discuss the genesis of Newton’s ideas; a partial
effort in this direction can be found in Chapter 8. While focusing on
Leibniz’s own reading and understanding of the Principia, I have found it
useful to take into account the relevant Marginalia and occasionally the
Excerpts as well.

The Notes consist of two sheets folded in quarto; the first has no
watermark, the second sheet has one of a type recurrent in the paper
used by Leibniz in Vienna in 1688." The two sheets appear to have been
written in continuous succession and contain large portions of comment-
ary. The text covers approximately the first 40 pages of the Principia,
with occasional references to later material. I discuss a selection of the
passages studied and commented upon by Leibniz, including the rotating
vessel experiment, the second law of motion, and proposition 1.

The first pages of the Principia contain eight definitions with the
famous scholium about absolute space and time (pages 1-11), and three
laws of motion with their corollaries and a scholium (pages 12-25).
Leibniz paid special attention to the choice and coinage of effective
words and expressions: his philosophical system is often associated with
such terms. Far from being merely a linguistic problem, the terminology
used often implied the acceptance of a philosophy or the taking of sides
in a controversy. Answering Johann Bernoulli’s criticism, who had
complained that Leibniz had given definitions rather than explanations,
the latter replied: “You say that I give definitions rather than explana-
tions. But be this always the case! because definitions are explanations.’
And the definitions are the only part of the Principia to be present in the
Notes and in both sets of Excerpts. It is rare to find philosophers who
paid attention to the definitions, George Berkeley being the most notable
exception: neither the editor Edmond Halley, nor most of the readers of
the Principia we know of, nor even the editor of the second edition
Roger Cotes, showed any specific interest in them.? Here I examine
definitions 1, 6, 7, and the final scholium.

In the first definition Newton states that the quantity of matter arises
from its density and bulk conjointly. Leibniz’s attention focused on the
following explicative lines, where Newton claimed to ‘have no regard in

! LH 35, 10, 7,f. 32-3 and 34-5.

2 LMG, 3, p. 551, Leibniz to Johann Bernoulli, 18 Nov. 1698: ‘Ais me attulisse defini-
tiones potius, quam explicationes. Sed utinam semper definitiones afferrentur! nam illis
explicationes virtute continentur’ Compare The Works of George Berkeley, Bishop of
Cloyne, ed. by A. A. Luce and T. E. Jessop, 9 vols. (London, 1948-1957); vol. 1, Philo-
sophical Commentaries, pp. 1-140; vol. 4, De Motu (first published in London, 1721),
pp. 1-51. W. A. Suchting, ‘Berkely’s Criticism of Newton on Space and Time’, Isis, 58,
1967, pp. 186-97. P. Casini, L ‘Universo Macchina, (Bari, 1969), chapter 8.



98 The private itinerary

this place to a medium, if any such there is, that freely pervades the inter-
stices between the parts of bodies’ He could neglect this hypothetical
medium on the basis of the further claim—noted by Leibniz—that body
or mass ‘is proportional to the weight, as I have found by experiments on
pendulums, very accurately made, which shall be shown hereafter’® The
relevant passage announced by Newton is the lengthy general scholium
to proposition 40, book II (pages 339-54). Leibniz’s interest in the
scholium can be inferred from the Marginalia: on page 346 Newton gave
some details of his experiment, explaining that it was important to be
extremely accurate because the demonstration of the existence of the
vacuum depended on it. The words ‘demonstratio vacui’ are underlined
by Leibniz. The ‘crucial experiment’ on pages 352-3 was described by
Newton from memory, since he had lost the original papers: it consists in
comparing the oscillations of an eleven foot pendulum whose bob, made
of a fir-wood box, is alternately empty or filled with a piece of metal. If
resistance to motion depended on the subtle aetherial fluid penetrating
the internal parts of bodies, the presence of the piece of metal in the box
ought to affect the oscillations. This would not happen, however, if
resistance depended only on the air, which would act exclusively on the
surface of the bob. The virtually identical behaviour of the pendulum
regardless of the material contained in the bob convinced Newton that
the resistance due to the internal parts is nil or imperceptible. In the
Excerpts from pages 352-3 Leibniz noticed exactly this point.® On pages
410-11, book III, one finds further references worth mentioning here. In
corollary 1 to proposition 6, Newton states that ‘the weights of bodies do
not depend upon their forms and textures’. In a passage from the
Marginalia clearly related to definition 1 Leibniz noticed that the thick
pervading matter is not considered.’ In corollary 3 to proposition 6,
Newton claimed that a vacuum is necessarily given, otherwise the
enormous density of the fluid filling the heavens would prevent bodies as
heavy as gold from falling onto the earth, since bodies do not fall in a
fluid whose specific density is greater than theirs. In the Notes Leibniz
copied the words ‘vacuum necessario datur’ and in the Marginalia he
added two comments. He objected that Newton’s claim is not proved and
concerns only sensible experience, not the realm of what is possible
without contradicting the laws of nature. Leibniz subordinates to his
metaphysical principles the results of physical experiences. He objected

* Principia, first edition, p. 1; transl. by Motte and Cajori, p. 1. On the distinction
between mass and weight compare def. 1 in the Commentary to the Notes.

¢ Excerpts, p. 482: ‘Nulla notabilis resistentia oritur ab internarum partium superficie-
bus in corperibus unde autor de liquido interfuso subtilissimo dubitat. See also Cohen,
Newtonian Revolution, sect. 3.8.

5 Marginalia, M 410: ‘Scilicet in praesenti statu materiae crassae, qua interlabens non
computatur.’ Motte and Cajori, p. 413.
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further that Newton’s reasoning does not apply to matter generating
gravity—against the claim that gravity is universal—unless gravity arose
from an inexplicable incorporeal cause.> These opening observations
reveal the wide implications and ramifications of Newton’s definition of
mass, and show that Leibniz realized immediately the philosophical
implications of the Principia.

Definitions 6 and 7 concern the absolute and accelerative quantities of
centripetal force respectively. The former is considered by Newton in
relation to its cause; in the Marginalia Leibniz provides the example of
terrestrial versus lunar gravity. The latter definition refers to the effect,
which is weaker at a greater distance from its cause, as gravity on the
earth. In the Marginalia Leibniz called centripetal force dc: thus from the
very beginning he did not consider that Newton’s accelerative quantity of
centripetal force is ‘proportional to the velocity which it generates in a
given time.”’

The most surprising feature of Leibniz’s early response to the
scholium on absolute space and time is the secondary position it
occupies in his texts. The reader familiar with the sophisticated analyses
in the correspondence with Samuel Clarke will notice that in the Notes
Leibniz has nothing better to question than the accuracy with which the
rotating vessel experiment has been performed, or Newton’s account.
Newton’s reasoning is the following: a bucket attached to a long cord is
turned around so that the cord is strongly twisted; then it is filled with
water and released. At the begining, when the water has a great relative
motion with respect to the bucket, its surface is flat; later, when the water
has acquired absolute rotation, its surface is concave even if its relative
motion with respect to the sides of the bucket has decreased. Therefore,
motion is not relative to other bodies, such as the sides of the bucket—
incidentally, this would be Descartes’s opinion. If motion is only relative,
the forces to recede from the axis of rotation are nil; if motion is
absolute, they depend on the quantity of motion. According to Leibniz, it
is unlikely that at the beginning the motion of the bucket relative to the

$ Notes, line 53. Marginalia, M 411 A: ‘Hoc non est probatum; in possibilibus locum
non habere, sed tantum de facto et in solis sensibilibus nec debet applicari ad ipsam
materiam gravificam’; M 411 B: ‘Ita sane si gravitas oriretur a causa incorporali
inexplicabili, omnisque materia gravitaret pro portione suae quantitatis.” Compare also the
variant readings in Koyré and Cohen, Principia: Third Ediction; E. McMullin, Newton on
matter and activity (Notre Dame, 1978), esp. pp. 62-3; Koyré, Newtonian Studies, ch. 6; 1.
B. Cohen, ‘Hypotheses in Newton’s philosophy’, Physis, 8, 1966, pp. 163-84; and the
following articles by J. E. McGuire: ‘Body and Void and Newton’s De Mundi Systemate:
Some New Sources’, AHES, 3, 1966, pp. 206-48; ‘Transmutation and Immutability:
Newton’s Doctrine of Physical Qualities’, Ambix, 14, 1967, pp. 69-95; ‘The Origin of
Newton’s Doctrine of Essential Qualities’, Centaurus, 12, 1968, pp. 233-60; ‘Atoms and
the Analogy of Nature’, SHPS, 1, 1970, pp. 3-58.

7 Marginalia, M 3; Notes, lines 12-13; Motte and Cajori, p. 4.
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water is considerable, because the bucket initially does not move much;
moreover, it ought to be tested whether the water at the beginning does
not follow the motion of the bucket.® It is extremely unusual for Leibniz
to have recourse to experience rather than to laws of nature to counter
an argument. But in one way or the other Newton’s experiment has to be
wrong, otherwise Leibniz’s philosophical system would collapse. It is
well known that Leibniz rejected absolute time, space and motion; as we
have seen in Section 4.2, he claimed that since each curvilinear motion is
composed of rectilinear ones, and since relativity of motion holds for
rectilinear motions, it must hold for curvilinear ones as well.’

Leibniz’s reaction to the laws of motion is relatively straightforward to
grasp. The first law—often referred to as the law of inertia—was common
knowledge by the late 1680s. We have seen in Section 1.2 that Leibniz
was familiar with it before 1670, and that he had perceptively criticized
Kepler and Galileo on this issue. Thus his lack of interest in Newton’s
first law is easy to account for.

The second law relies heavily on the exact meaning of the definitions.
We have seen in Section 4.2 that Newton’s law is a hybrid involving
continuous and discrete notions. This interpretation is strengthened by
the reference to impressed force in the statement of the law: ‘The change
of the quantity of motion is proportional to the impressed motive force.’ I
recall that from definition 4 impressed force changes the status of rest or
rectilinear uniform motion of a body, and arises ‘from impact, from
pressure, from centripetal force’ In the Notes Leibniz transcribed a
portion of the text, adding his commentary in brackets and asterisks:'

If any force generates a motion, a double or triple force will generate double or
triple a motion. (+ I disagree +) (+ If the impression is only a conatus, namely
an infinitely small velocity, I suppose that it can be admitted. +)

It seems that in his first survey of the Principia Leibniz was having some
difficulties in getting accustomed to Newton’s terminology: on reading
the word ‘vis’ he probably thought immediately of his own living force. It
is tempting to argue that Leibniz introduced the notions of living and

8 Notes, lines 16-18 and 70-80. Further references to Newton’s experiment are in
Dynamica, LMG, 6, pp. 502 and 507; LMG, 2, p. 199, 14 Sept. 1694, Leibniz to Huygens;
Specimen Dynamicum, (Hamburg, 1982), pp.58 and 74-5, and Loemker, Papers,
pp- 449-50; Ariew and Garber, Essays, pp. 136-7; Leibniz’s fifth letter to Clarke, sect. 53.

9 The bibliography on this topic is enormous; see for example A. Koyré and 1. B.
Cohen. ‘The Case of the Missing Tanquam: Leibniz, Newton and Clarke’, Isis, 52, 1961,
pp- 555-66; ‘Newton and the Leibniz-Clarke Correspondence’, Archives Internationales
d’Histoire des Sciences, 15, 1962, pp. 63—126; M. Fox, ‘Leibniz’s Metaphysics of Space and
Time’, SL, 2, 1970, pp. 29-55; J. E. McGuire, ‘Existence, Actuality and Necessity: Newton
on Space and Time’, AS, 35, 1978, pp. 463-508.

10" Notes, lines 19~22. For the previous translations see Motte and Cajori, pp. 2 and 13.
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dead force for the first time in print in paragraph 10 of the Tentamen
specifically to contrast Newton’s definitions.

The third law, stating the equality of action and reaction, is discussed
by Newton in the lengthy scholium to the laws of motion both for
impacts and attraction. Leibniz found the third law very appealing: he
mentioned it again in the Specimen Dynamicum, among the systematic
rules of motion, and in the Theodicy."

The first section of book I, on the method of first and last ratios,
contains 11 lemmas and a scholium. Newton claimed that the proposi-
tions in the rest of the book are demonstrated on the basis of those
lemmas; however, they appear to be more a retrospective justification
than a heuristic device. In the concluding scholium he implied that rigour
and elegance played a part in his choice:!?

I set these lemmas in introduction to avoid the monotony of adducing compli-
cated proofs by reductio ad absurdum in the manner of the ancient geometers.
For, of course, proofs are rendered more compact by the method of indivisibles.
Yet, because the hypothesis of indivisibles is a rather harsh one, and for this
reason that method is reckoned less geometrical, I have preferred to reduce
proofs of following matters to the last sums and ratios of vanishing quantities and
the first ones of nascent quantities.

We have seen in Section 3.4 that the justification of the Newtonian
calculus was based on kinematics. In the Principia, however, motion was
the object of the investigation. Thus, by adopting the finite ratio between
two vanishingly small space variables, Newton was possibly trying to
avoid a circular argument while dispensing with indivisibles.

Despite their relatively elementary character, Leibniz commented on
the lemmas with increasing disappointment: I discuss here those
numbered 9-11. We have seen in Chapters 3 and 4 that lemmas 9 and 10
are closely related, and that lemma 10 allowed Newton to generalize
Galileo’s law of uniformly accelerated motion to the cases with a non-
constant regular force, though only at the very beginning of motion.
Leibniz embarked on lengthy calculations on lemma 9, leading to the
astonishing conclusion that ‘here then the subtlety of the very clever
Newton suffered a failure’!*> Lemma 11 states that ‘the vanishing sub-
tense of the angle of contact is ultimately in the doubled ratio of the sub-
tense of the bounding arc’

1 Notes, lines 23-5, 29-51, and 81-9. Specimen Dynamicum, (Hamburg, 1982),
pp- 22-3; Loemker, Papers, 441. Ariew and Garber, Essays, p. 125. Theodicy, par. 346. See
also R. W. Home, ‘The third law in Newton’s mechanics’, BJHS, 4, 1968, pp. 39-51; 1. B.
Cohen, ‘Newton’s third law and universal gravity’, JHI, 48, 1987, pp. 571-93.

12 Principia, p. 35, transl. in NMW, 6, p. 121; see also ib., pp. 107-9.

3 Notes, lines 206-65, esp. 262-3. More sober judgements soon prevailed, since in the
Excerpts, p. 481, Leibniz seems to accept Newton’s lemma.



102 The private itinerary

Lemma XI.

Subtenfa evanefcens anguli contallus eft ultimo in ratione duplicata
[ubtenfu arcus contermini.

Cas. 1. Sitarcusille AB, tangens ejus AD, fubtenla anguli
contatus ad tangentem perpendicularis B D, {ubtenfa arcus A B.
Huic fubten{z A B & tangenti A D perpendiculares erigantur AG,
B G, concurrentes in G ; dein accedant pun&ta D, B, G,ad pundta
d, b, g, fitq; 7 interfedio fincarum BG, AG ultimo fafta ubi
punéta D, B accedunt ufg; ad A. - Manifeftum eft quod dl&ﬂ!:l-

tia

[33]

tia G § minor effe poteft quam affignatanquavis. Eft autem
( ex nawra circulorum per punfla ABG, Abg tranfeuntium )
ABguad. zquale AGxBD & Abguad. 2-
quale Agxbd, adeoq; ratio AB guad. ad i v
A guad. componirur cx rationibus A G ad r
Ag&BDad bd. Sed quoniam FG affu-
mt potcft minor longitudine quavis affigna-
ta, fieri potelt ut ratic AG ad Ag minus
differat a ratione zqualicatis quain pro
differentia quavis affignata, adeoq: urratio
AB guad. ad Ab guad. mious differat a ra-
tione BD ad bd quam pro differentia
quavis aflignata.  Eft ergo, per Lemma I, -;
ratio ultima 4 B quad. ad Ab quad. zqualis &
rationt ultimz B Dad b4. 0. E. D.

Cas. 2. Inclinetur jam B D ad A D in angulo quovis dato, &
cadem femper eritratio ultima B D ad bd quz prius, adeog; ca-
dem ac AB guad ad A4b quad. Q. E. D.

C B

Fig. 5.1 Subtense of the angle of contact.

The angle of contact is the magnitude between a curve AbB and its
tangent AdD; the subtense of the angle of contact is BD or bd, whilst the
subtense of the bounding arc is the chord AB or Ab. Notice in the
diagram the small letters b, ¢, and d, employed by Newton in order to
prove the statement by means of proportions involving finite ratios
between vanishing quantities, namely that the last ratio between AB? and
Ab? is as BD to bd. This lemma is implicitly based on the properties of
the osculating circumference and tells us that any vanishing or
infinitesimal arc of a curve with finite curvature can be approximated by
the arc of a suitable circle. Leibniz’s cursory reading led him to believe
that lemma 11 is valid only when the curve AbB is a circle. Probably
referring to his correspondence with Newton in 1676-7, he concluded
his annotations on section 1 with the extraordinary words:!*

Hence it seems to me that he has somewhat lost his excessive subtlety. At last,
having considered everything, I suspect that all this subtlety is void and that at the
very beginning it is possible to indicate improvements in infinitely many ways. It
remains to be seen where these things are applied to a real problem.

14" Notes, lines 290-4. The correspondence with Newton involved mainly infinite series.
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One can speculate that Newton’s method of avoiding infinitesimals,
based on the finite ratio between two vanishing variables, created some
initial problems to Leibniz, whose calculus was centred on incomparably
small differentials. The demonstration of lemmas 9-11 is indeed based
on such ratios between vanishing variables; in his comments on lemma 9
in the Marginalia, Leibniz focused precisely on this aspect.!”> The
quotation above seems to suggest that at that point Leibniz had read only
section 1 and was therefore yet unaware of the number of ‘real problems’
tackled by Newton.

His attitude changed considerably moving to section 2, on the deter-
mination of centripetal forces. One can surmise that Leibniz’s belief in
the enormous difference in quality betwen sections 1 and 2 stimulated
him to produce a reply based on his own mathematics. Proposition 1
states that the areas described by the radii to a body orbiting around a
centre of force are proportional to the times. The importance and origin-
ality of this proposition, opening a bridge between mechanics and
astronomy, can scarcely be overestimated. Although in the statement
Newton referred to a centre of force, in the demonstration and figure he
took the force to be centripetal. This led Leibniz to comment: ‘I am also
surprised that Newton did not consider that his theorem is not recip-
rocal, but is valid also for the centrifugal force’. However, Newton was
perfectly aware that if the areas are as the times, force could be
centripetal or centrifugal. Leibniz’s reformulation reads:!

If any body already set in motion is driven in no other way than by the conatus of
gravity or levity, it describes a curve, whose areas swept out by the radii are
proportional to the times; if it is not already set in motion it describes a straight
line; and the curved line differs from Galileo’s parabolas in no other way than
because for Galileo the centre is conceived to be infinitely distant, and gravity or
levity acts everywhere uniformly. Further Newton, considering the matter in the
most general fashion, found the property known to everyone, which Kepler
proved.

The reference to Kepler’s areas law as ‘omnibus communis’ echoes a
similar pronouncement by Newton in book III, hypothesis 8, where he
claimed that Kepler’s law is ‘Astronomis notissima’.!?

The last three sides of the Notes are largely devoted to an attempt

5 Marginalia, M 31 A. See also NMW, 6, pp. 114-17.

6 Notes, lines 329-31 and 367-75. In proposition 12, book I, Newton proved that if a
body moves along a hyperbola, centripetal force towards the focus is inversely propor-
tional to the squared distance, adding that if the force were centrifugal, the body would
move along the conjugate hyperbola; in corollary 3 to proposition 41 he investigated the
curves described by a body acted upon by a centripetal or centrifugal force inversely
proportional to the third power of the distance.

7" Principia, first edition, p. 404; Motte and Cajori, p. 405, phenomenon 5; see Section
1.3 above.
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based on the transmutation theorem to solve some problems inspired by
proposition 1. The transmutation theorem was an obvious choice
because curvilinear figures are divided into triangles concurrent to one
point, as we have seen in Section 3.2; a similar partition into triangles
occurs in proposition 1 and in general in the study of orbital motion with
central forces. However, this type of investigation led to no significant
result. At the end of the text, though, in a passage later crossed out and
expanded in other manuscripts, Leibniz abandoned his attempts based
on the transmutation theorem and tried instead to determine the
centripetal or centrifugal conatus for a body acted upon by central
forces. This time he used the evolvent of the curve described by the
body. As we have seen in Section 2.3, a similar approach was adopted by
Huygens for the circumference: it is possible that Leibniz vaguely
remembered some conversations with his mentor on this issue. If the
curve is not a circumference, however, it is easy to realize that the
evolvent takes no role in the analysis of orbital trajectories, because
motion along the tangent is uniform while motion along the curve is not,
therefore Huygens’s reasoning discussed in Section 2.3 (especially Fig.
2.2) cannot be applied.

As we have seen in the general introduction, Leibniz claimed that he
had seen the Principia in Rome in 1689 for the first time. However,
several elements point to a date of composition of the Notes preceding
that of the Tentamen. Although in his commentary Leibniz had planetary
motion in mind, he referred neither to the circulatio harmonica, nor to
the motus paracentricus, terms and concepts which he regularly used in
and after the 7Tentamen. In the Notes he defined the curve described by a
body acted upon by central forces ‘linea projectitia’, an expression
occurring again in the manuscript essays immediately following the
Notes. The same terminology was also employed in other essays, which
are discussed in the following sections, where Leibniz was more
resolutely developing his own line of research rather than interpreting
Newton. Considering the care with which Leibniz chose his terminology,
it is reasonable to argue that usage of different key expressions with
respect to the Tentamen indicates an earlier date of composition: from
other documents which can be independently dated, we know that after
1688 Leibniz consistently adopted the terminology of the Tentamen, as
we shall see in Chapter 7. The conceptual analysis of central problems,
such as curvilinear motion, is at least as important as the terminology
employed. At the end of the Notes he took centrifugal conatus of a body
moving along a curve under the action of central forces to be equal and
opposite to centripetal conatus; since this approach is developed by
Leibniz in a later manuscript discussed in the following section, for
convenience my analysis is deferred to that point.
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5.3 The early developments: elaborating on Newton’s results

The essay following immediately after the very end of the Notes is De
Conatu Centripeto vel Centrifugo (vel Generaliter Paracentrico) Mobilis in
Aliqua Curva Incedentis.'® This manuscript contains the continuation of
the attempt to determine centripetal or centrifugal conatus: Leibniz
crossed out his preliminary attempt in the Noftes and started again in De
Conatu. This succession can be inferred especially from the similarity
between the respective figures—15 and 16—and the proportions which
Leibniz establishes. The link in contents is complemented by a further
factor: the edge of folii 29-30, containing De Conatu, matches perfectly
that of the second manuscript sheet containing the Notes, folii 34-5.
They originally formed one folio which was divided in two and used in
continuous succession. It is also worth recording the occurrence in the
title of the word ‘centripetal’, a distinctly Newtonian expression.

The opening paragraph outlines a theory of curvilinear motion
radically different from that found in the Tentamen:'®

Let CCC be a curved line whatsoever and given a point P whatsoever, it is to be
determined how great is the centrifugal conatus of a moving body carried along
the curve, namely with what velocity while moving it tends to recede from the
point P taken as the centre; or, what turns out to be the same, with what force of
the conatus tending to the centre P it is needful to retain the body in its orbit, so
that it does not fly away along the tangent. Whence from the nature of the curve
the centrifugal conatus of the moving body is the same as the centripetal conatus
retaining it in the orbit. Moreover, the conatus of a body to recede along the
tangent from a certain centre placed outside the concave part of the curve, is the
conatus of the same body to approach along the tangent a certain centre placed
in the concave part. And this centrifugal or centripetal conatus differs greatly
from the conatus along a ruler moved around P, which composed with the other
motion can describe the curve CC, for centrifugal conatus is infinitely smaller
than the conatus along the ruler PC composing the motion along the curve;
besides, the motion along the ruler composing the motion along the curve can be
conceived to be varied, according to one composing motion, another is taken at
the same time with it; but centrifugal conatus is always the same.

Leibniz states that centrifugal and centripetal endeavours are equal and
opposite, and that they are infinitesimal with respect to the conatus along
a rotating ruler: both observations are worth examining in detail. First,
in paragraphs 10 and 11 of the Tentamen there is a clear distinction
between outward conatus (‘conatus excussorius’), which relates to an
arbitrary curve, and centrifugal conatus (‘conatus centrifugus’), which is
a special case of the outward tendency and relates exclusively to the

8 LH 35, 10, 7, f. 29-30. This text is reproduced below.
19 De Conatu, lines 3-20.
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circumference. Centrifugal conatus is also called ‘conatus excussorius
curculationis’. As we shall see in Section 7.4, this distinction is drawn
even more clearly in later texts, but is lacking in the Notes and De
Conatu. Second, in the Tentamen orbital motion is based on two opposite
tendencies, one attractive and the other repulsive, which are generally
different. Even after Leibniz corrected the mistake by a factor of two for
centrifugal conatus in 1706, he still believed in the imbalance between
centripetal and centrifugal endeavours. As we have seen, in the Tentamen
Leibniz conceived them, as it were, along a rotating ruler. The difference
between gravity and twice centrifugal conatus gives rise to non-circular
orbits and in particular to motion in ellipses. In the Notes and De Conatu,
centripetal and centrifugal endeavours are always equal and opposite.
Moreover, although in De Conatu Leibniz introduced the term ‘para-
centric’, he meant a one-term expression, either centripetal or centri-
fugal: in the Tentamen the same term referred to a two-term expression,
namely the combination of centripetal and centrifugal endeavours. The
unlikely proposal that in 1689 Leibniz was developing a theory different
from that which he had already published in the 7Tentamen can be
dismissed by considering his analysis of the orders of infinitesimals. In
the passage just quoted Leibniz compared centrifugal or centripetal
conatus measured from the tangent to the curve, to the conatus along a
rotating ruler, claiming that the former is infinitely smaller than the
latter. This statement contradicts one of the basic results of the Tentamen
and shows convincingly that De Conartu dates from 1688, when Leibniz
had not yet developed his theory.

After preliminary remarks about taking constant elements of time by
dividing the curve into infinitesimal triangles of equal areas, and about
the curve being a polygon with infinitesimal sides, Leibniz used the
evolvent of the curve described by the body in order to determine
paracentric conatus. An analogus attempt can be found in the Notes.
While writing De Conatu, however, Leibniz realized that the construc-
tion of the evolvent was unnecessary for his purposes: ‘For the same
could have been already derived from the previous considerations and
therefore there would have been no need for the evolution of the line?°
Immediately afterwards he attained the following general result: para-
centric conatus, for a body moving along a curve under the action of
central forces, is directly as the square of orbital velocity and as the
secant of the angle between the paracentric radius and the curve, and
inversely as the radius of the circumference osculating the curve.?!

This result helps us to understand a comment in the Marginalia. In
book I of the Principia, corollary 7 to proposition 4 is related to the

20 De Conatu, lines 59-60.

2 In modern notation we have: paracentric conatus=vZ%psing, where v is orbital
velocity, p the osculating radius, and ¢ the angle.
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present discussion. Proposition 4 states that bodies uniformly rotating
along circular lines are attracted by centripetal forces directed towards
the centre, proportional to the square of the arcs described in equal
times, and inversely proportional to the radii. Thus centripetal forces are
as v2/r, where v represents velocity and r the radius. Corollary 7
states:*? ‘Identical assertions regarding the times, speeds and forces in, at
and by which bodies describe similar portions of any similar figures
having their centres similarly placed ensue in every case from applying
thereto the proof of those preceding’ This corollary was marked by
Leibniz in his own copy of the Principia with the distillatur, an alchemical
sign meaning that the matter deserves further investigation. Immediately
below he wrote a comment which he subsequently modified; this is an
important element in dating the Marginalia. The first stage reads: ‘Since |
do not admit the generality of Lemma XI, I also doubt the generality of
this Corollary 7°. Probably soon after he added: ‘On the contrary this is
true, because the considerations on the secant of the angle between the
radius from the centre and the curve, and on the radius of the circle
osculating the curve, vanish on account of the similitude between the
figures’?* Hence in the second part of the marginal note Leibniz
accepted Newton’s corollary. In fact, since proposition 4 is stated in the
form of a proportion between the homologous elements of two similar
figures, their similarity cancels out the dependence of paracentric
conatus on the secant of the angle and on the osculating radius: the
former is equal in the two figures; concerning the latter, the ratio
between the osculating radii is identical with the ratio between the
paracentric radii. With the same notations employed above, naming
further o the osculating radius and 6 the angle between the paracentric
radius and the curve, we have for two similar figures calied 1 and 2:

2 2 2
Vi . V) Vi . V3

o p : : 5
r r 0, 5in 0 0, sin 8

the link between the second part of the marginal note and De Conatu is
straightforward. This correlation, while clarifying an otherwise obscure

22 Principia, first edition, p. 42; transl. in NMW, 6, p. 130-1, n. 86.

23 Marginalia, M 42 A: ‘Quia lemma XI generale nondum admitto, etiam de generali
isto Corollario 7 dubito’ The second part reads: ‘Imo verum est, quia considerationes
secantis anguli quem facit radius ex centro ad curvam, et radii circuli curvam osculantis, ob
similitudinem figurarum evanescunt.’ I have amended Fellmann's transcription: after
‘considerationes’ he has ‘angulorum’, which was crossed out by Leibniz. Furthermore, in
his opinion this note was written in continuous succession. In Marginalia, M 41 B, as in the
Notes, Leibniz claimed that lemma 11 is valid only in the case of the circumference:
‘Suspectum hoc Lemma generale. In circulo tamen res vera speciali ratione, quia abscissae
in circulo sunt ut quadrata chordarum. For this reason I translate ‘Lemma generale’ and
‘Corollarium generale’ as ‘the generality of the Lemma’ or ‘of the Corollary’ respectively.
This generality is juxtaposed to the particular case of the circumference.
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passage in the Marginalia, suggests that Leibniz started writing the
Marginaliain Vienna in 1688, thus while he was composing the Notes.

At the end of De Conaru Leibniz’s interests shifted towards physical
causes. His attempts to formulate a vortex theory in a mathematical
fashion emerge again from a different context below. Later, however, he
was to concentrate on the inverse-square law and Kepler’s laws, while
here his two preoccupations were relative motion and vertical descent.
Concerning the former, he studied trajectories observed from within or
without the rotating vortex. The latter was a vexing problem in vortex
theories of gravity, because it was difficult to explain how a body
descends vertically if the cause of its descent is a vortex rotating
perpendicularly, or very nearly so, to the line of descent. Here he
proposed that the vortex moves more swiftly the further away it is from
the centre, following a law which is the exact opposite of the harmonic
circulation and which cannot be easily extended to planetary motion.

A manuscript which undoubtedly follows in close succession is
Inventum a me est et alia scheda explicatum. In the first paragraph
Leibniz recalls word by word the results on paracentric conatus attained
in De Conatu, which is the alia scheda referred to in the opening line.
The text reads:**

It has been found and explained by me in another paper that the endeavours of a
body moving along a curved orbit with respect to a certain given point as a
centre, or paracentric, are as (1) the velocities of the body in the orbit, (2) the
angles of deflection, and (3) the secants of the angles made by the radii drawn
from the centre with the curve; or are directly as the squares of the velocities and
as the secants of the same angles which the paracentric radii make with the curve,
and inversely as the radii of the osculating circles.

Below Leibniz reconsidered the decomposition of motion involving the
rotating ruler which he had mentioned in De Conatu, and established the
basis of a fundamental result. He states that orbital motion can be seen
either as the resultant of rectilinear inertial motion and gravity, or as the
composition of circular motion on a rotating ruler and of rectilinear
motion along the ruler:?’

The same line can be conceived to be described by a motion composed of the
circular motion of an indefinite ruler P around the centre P, and rectilinear of
the body C on the ruler, tending towards the centre, although in such a projectile
line it can never reach it. From ;C let the perpendicular ;C,L fall on P,C, it is
apparent that in the inassignable angle ,CP;C the perpendicular can be taken as
the arc, and it is just as if the body were transported from ,C to ;C by a motion

24 LH 35, 10, 7, f. 36-7: £. 361., lines 1-8. This is reproduced below, and is on a type of
paper used by Leibniz in Vienna in 1688. With regard to the paper see the following
section.

25 Inventum a me est, lines 25-32.
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P

Fig. 5.2 Leibniz’s transformation of proposition 1.

composed of ,L;C and ,C,L. Therefore the very circular progressions ,L,C are as
the angles of circular progression and as the radii combined.

Notice the lack of any clear statement of the imbalance between oppos-
ing tendencies for the motion along the rotating ruler. On the basis of
this alternative decomposition of motion Leibniz was able to formulate
the following fundamental proposition:2°

Thus generally the increments of time are as the paracentric radii and as the
circular progressions combined. Therefore taking equal increments of time in the
motion of projectiles, the paracentric radii PC will be inversely as the circular
progressions L(C) of the moving body.

By L(C) Leibniz means ,L,,;C, where n is an arbitrary index; we shall
find this notation again below. In this passage Leibniz introduced the
notion of harmonic circulation as a corollary from proposition 1, book I.
However, this denomination is not yet used, since Leibniz refers to a
‘progressus circularis’, and, most importantly, his discourse remains on a
mathematical level. It will not take long to him to realize that his
equivalent mathematical representation went beyond a mere change of
notation and could serve other purposes.

The conclusion of Inventum a me est is also purely mathematical and
contains the equation for the element of descent or ascent in a projectile
line with an explicit expression for the osculating radius. Despite the
preliminary investigations regarding the rotating radius, paracentric
conatus is still measured as a deviation from the tangent to the curve.

26 Inventum a me est, lines 49-52.
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Thus Inventum a me est contains a hybrid approach between De Conatu
and Tentamen. Leibniz’s equation is demonstrated on two separate
sheets, the draft Inquisitio in Semidiametrum Circuli Osculantis si pro
Ordinatis Convergentes Adhibeatur Ope Calculi, and the clean version
Investigatio  Semidiametri Circuli Curvam in Proposito Puncto
Osculantis.®” This general result is one of the best achievements of
Leibniz’s purely mathematical investigations. The resources developed
in these early attempts were soon to be reshaped and deployed in other
works.

5.4 On the wrong track: ‘pseudo-Galilean’ motion

The manuscript De Motu Gravis in Linea Projectitia illustrates very
effectively the difficulties encountered by Leibniz and the non-linearity
of his itinerary. The first three sides contain an attempt to determine the
increments of paracentric or radial descent, which are proportional to
paracentric velocity and to time. For reasons which will become clear
presently, it is important to stress that such increments are measured by
the deviation from the tangent to the curve. On the internal sides of the
manuscript Leibniz applied his reasoning to conic sections. The
occurrence of expressions such as ‘linea projectitia’, ‘progressus
circularis’, and ‘paracentricus’, suggests a link in contents with Inventum
a me est. This link is strengthened by the fact that the margin of De Motu
Gravis matches perfectly that of Inventum a me est: hence it is reasonable
to suppose that they date from approximately the same time.?

The last side of the manuscript appears to be unrelated to the
preceding ones. Its most interesting feature is the following: curvilinear
motion is decomposed not along the tangent C7 and the radius CP, but
along a line CZ parallel to the tangent to the initial point and the radius,
as in the following diagram reproducing the relevant portion from the
manuscript.

I call this approach ‘pseudo-Galilean’ motion, because Galileo
adopted a similar decomposition in his study of the composition of
rectilinear inertia with a constant gravity acting along parallel lines. The
actions of gravity could be easily added together, and Galileo found
parabolic trajectories.?® Leibniz, however, added the impulsions of

27 LH 35,10, 7,1. 41v.and LH 35, 10, 7, f. 31 respectively.

28 LH 35, 10, 7, f. 16-17; on the basis of the matching edges it can be inferred that the
present manuscript is on a type of paper used by Leibniz in Vienna in 1688, watermark
510 in the catalogue at the NLB, letters ‘M R’ and posthorn.

2% G. Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze (Leida,
1638) = GOF, 8, pp. 272-3; transl. by S. Drake (Madison, 1974), pp. 221-2. Leibniz
studied it in Paris: Hess, ‘Kurzcharacteristik’, p. 199.
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P

Fig. 5.3 An example of ‘pseudo-Galilean’ motion.

gravity towards a centre without considering their different orientations,
and found a wrong result. The word ‘wrong’ is not the historian’s retro-
spective judgement, since some time later Leibniz added the word
‘Erronea’ in correspondence with the relevant passage. His approach is
very surprising for two reasons. First, he adopted it after having
decomposed motion correctly at the beginning of the manuscript.
Indeed, even on the present side he explained that the tangents CT
represent direction and velocity in the orbit.>® Second, at the end of the
manuscript side he referred to Kepler’s discovery of the area law,
claiming that Newton rendered this in a general fashion: ‘But the very
times, because of Kepler’s most wonderful discovery (which Newton
rendered in a general fashion), are proportional to the areas’® The
attribution to Newton of the generalization of Kepler’s area law in a text
where Leibniz’s own theory looks by his own standards hopelessly
inadequate shows that before seeing at least the review of the Principia
Leibniz had not developed the notion of harmonic circulation and in
general a coherent theory. Notice also that Leibniz’s clear attribution to
Newton and emphasis on the generality of the demonstration echoes his
own comment in the Notes. The type of paper used, the conceptual
analysis of curvilinear motion, the lack of any reference to the harmonic
circulation, and the terminology, clearly point to a date of composition
preceding the Tentamen.

30 See f. 17v.: ‘Ducatur recta ;C,C, quae exprimet directionem curvae, ea producta
usque in Alerit curvae tangens, nempe ,C, T, ,C,T.

31 Ib.: ‘Sed eadem tempora pulcherrimo Kepleri invento, (quod Neutonus generale
reddidit) sunt areis proportionales.’ Leibniz is fully aware that proposition 1 is a general
statement about motion of bodies acted upon by central forces entailing Kepler’s area law



112 The private itinerary

Four manuscripts similar to the last side of the essay which we have
just seen contain a series of unsuccessful attempts to study the curve
described by a body under the action of central forces. The most
interesting among them are Galilaeus and Repraesentatio Aliqua.>> The
common feature of these texts is the mistake in the decomposition of
motion: instead of taking one component along the tangent to the curve
and the other along the radius, Leibniz took one along the radius and the
other along a straight line parallel to the tangent at the initial point. In all
other points of the curve this component is not along the tangent, but
along a sheaf of straight lines parallel to the first tangent.

It is not immediately clear why Leibniz adopted this approach, which
from his point of view must have looked disappointing also for the lack
of physical explanations. In Galilaeus, for example, Leibniz seemed to
believe that his procedure had been followed by Newton. The title of
another essay—Nova Methodus—suggests that he was looking for a new
method of representing orbital motion alternative to Newton’s. Thus
although the analysis of motion is unsatisfactory, in spirit these
manuscripts are close to the Tentamen because they show how Leibniz
explored a range of mathematical representations of motion and forces.
We would now expect to find a coherent theory different from Newton’s.

In the opening paragraph of Galilaeus Leibniz clearly outlined the
inverse problem of central forces as a generalization of Galilean
parabolas. He took the centre of force at a finite distance, such that the
endeavours are not parallel among themselves as for Galileo, and
considered a conatus varying according to the distance from the centre,
beginning with the supposedly simplest case of a constant conatus.3* The

only as a special case. In Pfautz’s review proposition 1 is omitted and in general section 2,
propositions 1 to 17, are treated very superficially without any reference to the funda-
mental results there contained. The link between central forces, the area law and Kepler’s
third law is referred to in the section on book III without any detail: C. Pfautz, AE, 1688,
p. 311.

32 Sit MM linea in qua gravia projecta motu aequaliter accelerato tendunt ad centrum
terrae, LH 35, 10, 7, f. 8 (octavo sheet). At the bottom there is a note on motion in a resist-
ing medium. Nova Methodus Tractandi Lineas Corporum Gravium vel Levium Projectorum,
LH 35, 10, 7, f. 40. This manuscript is on a type of paper used by Leibniz in Vienna in
1688, watermark number 564, ‘cross with cavalier’. Galilaeus tractare incipit de linea
gravium projectorum, LH 35, 10, 7, f. 18v.-19r. This essay is on a type of paper used by
Leibniz in Vienna in 1688, watermark number 695, letters ‘M R’. With regard to the paper
compare the following section. The text, which is crossed out, is discussed in the commen-
tary to Repraesentatio Aliqua in Appendix 1. Repraesentatio Aliqua Curvae Quae
Describitur a Gravi Projecto, LH 35, 10, 7, f. 12. This manuscript is reproduced in
Appendix 1 and is on a type of paper used by Leibniz in Vienna in 1688.

3 A similar problem was discussed by Robert Hooke and Newton a few years before:
NC, 2, Newton to Hooke, 13 Dec. 1679, p. 307; Hooke replied on 6 Jan., p. 309, explain-
ing that he was considering an attractive force inversely proportional to the square of the
distance. See chapter 8 below and NMW, 6, pp. 148-53.
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opening paragraph in Galilaeus sets the agenda for further investigations
which we are going to examine in the following section.

5.5 Mathematics, mechanics, and physical causes: Leibniz’s theory
takes shape

In Si mobile aliquod ita moveatur we find the concept—not the name
though—of harmonic circulation in connection with the motion of a
vortex. Since the edge of the manuscript matches perfectly that of
Galilaeus, it is reasonable to suppose that they date from the same time.
The introduction of vortices in connection with the mathematical
formalism represents a new and crucial stage, and will remain a
characteristic feature of Leibniz’s attempts. In Si mobile aliquod ita
moveatur he took constant elements of time by dividing the curve
described by the body into infinitesimal triangles of equal area, as in De
Conatu and Inventum a me est. He also conceived orbital motion as the
resultant of a circular motion due to a vortex rotating with a velocity
inversely proportional to the centre, composed with a rectilinear radial
motion due to gravity.>* On the third side Leibniz sought the particular
law of descent such that the resulting curve is an ellipse. In the margin
there is a note corresponding to a passage where Leibniz states that
neglecting the circulation and being left only with inertial motion and
gravity as in the ‘motus projectorum’, attractive conatus is as the second-
order differential of the radius.>®> The marginal note begins with some
differential equations which are reproduced adopting the following
conventions: the numbering is mine; ‘a’ is the transcription from
Leibniz’s text, ‘b’ is a modern form which has been introduced in order
to highlight the difference from Leibnizian mathematics, and has to be
read in connection with Section 3.4. Some observations on the differen-
tial equations introduced here can be found in Section 7.3. In Leibniz’s

34 LH 35, 10, 7, f. 38-5. The last side contains calculations on ellipses which are not
immediately related to the rest of the text. On f. 39r.: ‘Intelligi potest mobile duplici motu,
uno circulationis velocitatem habentis vicinitatibus ad centrum proportionalem, altero
rectilineo quocunque pro lineae natura vario, ferri, quorum ille a fluidi deferentis
rotatione, hic ab aliqua vi gravitati analoga oriatur.

3 Ib.: ‘Itaque investigandum jam erit, quae nam sit lex conatuum descendendi, in variis
ab umbilico distantiis, ut orbita fiat elliptica’ And: ib.: ‘Porro descensus in hac motus
compositione sunt ut incrementa radiorum paracentricorum. Itaque si fingeremus eandem
lineam describi sine circulatione, sola compositione motus alicuius aequabilis, seu impetus
semel concepti cum impulsu gravitatis quemadmodum in motu projectorum, erunt
descensus ut impetus a gravitate impressi, itaque si linea eadem motu projectionis
describeretur, forent conatus novi continue a gravitate impressi, seu incrementa impetus
versus centrum, ut differentiae differentiarum a radiis, seu ut differentiae secundae
radiorum.
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notation a horizontal bar over an expression means that the terms below
are enclosed in brackets; this method is not employed consistently,
however, and Leibniz often made it clear how an equation ought to be
read by spacing out its terms. At times he also used a comma as a
separation symbol, as we are going to see below.

ddp/w= wip?, (1la)
d?p/de = — K)p?, (1b)

p is a distance and w a constant possibly representing both an infinit-
esimal element of time and an arbitrary factor. In equation (1b) K is a
constant and ¢ time. Leibniz’s equation means that the conatus ddp is
inversely proportional to the square of the distance. Multiplying by dp
we have

dp - ddp = wdp/p?, (2a)
dp - d*p/dt* = — dp K/p?, (2b)
and then calculating the integral, with £ constant, one finds
Y dpP=w?/2p +w; (3a)
+ (dp/dt)*= (K/p) + E. (3b)

Leibniz carried out the integral without changing sign in the right
member, where he erroneously inserted the factor 4; moreover, he wrote
the integral constant with the same symbol w he had already used, thus
restricting the generality of the procedure and mixing two conceptually
different factors. In spite of these shortcomings, these equations clearly
show how according to Leibniz the integral of conatus times an infinitesi-
mal distance is equal to one half the square of velocity; their relevance to
the debate on dead and living force referred to in Section 4.3 is straight-
forward. They are also among the first uncertain steps towards an
algebraic science of motion; Leibniz’s uncertainties and difficulties
testify to the complexity of the task. The marginal note continues with an
attempt doomed from the start to calculate the integral. Leibniz multi-
plies both members by 2 and takes the square root:

2
+
dp = /W42WP’ (4a)
p
dp = dtj(2Ep + 2K)/p, (4b)

multiplying both members by p Leibniz found

pdp = |w?p+2wpp, (5a)
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pdp=J2Ep*+2Kp di; (5b)

here one sees immediately how problematic it is to integrate equation
(5a). Infact, Leibniz is led to write:

ipp =[dp|w’p +2wpp, (6a)
{dp-p/2Ep’+2Kp=1t. (6b)

Leibniz could not separate the variables because time is not made
explicit and is represented with the same symbol as other constants. In
equation (6a) he arbitrarily inserted at second member the differential
dp, which is not even constant. The marginal note continues from a
modified reading of equation (4a), where he neglects the integration
constant. Leibniz says that dp is inversely proportional to |/p, thus dpJp is
constant and is proportional to the element of time. Therefore [dp|p, or
pJp, is proportional to time and the third power of the radius is as the
square of the period of revolution.’® Leibniz’s calculations are aimed at a
relation between time and distance entailing Kepler’s third law; his
procedure, however, is unsuitable to this task because in order to attain
the third law it is necessary to impose the condition that the orbit is an
ellipse. We shall find him dealing with this problem several times in the
following essays.>’

Contents and terminology of Si mobile aliquod ita moveatur are
directly related to the most important manuscripts in the formation of
Leibniz’s theory, namely the two folded folii of De Motu Gravium vel
Levium Projectorum. The text begins with a statement about the inverse
problem of central forces resembling the opening paragraph of
Galilaeus:3®

3 Ib.: “dp reciproce ut Jp. Ergo ut dp/p est constans. Ergo proportionalis temporis
elementis. Ergo [dp/p seu pJp proportionalis temporibus. Ergo cubi distantiarum
proportionales arearum seu temporum quadratis.

37 Newton found a modified version of the third law in proposition 60, book I, where he
showed that the proportionality constant between the square of the times and the third
power of the major axes depends on the sum of the masses of the planets and Sun. This
proposition is referred to in the Excerpts, p. 492, but I am not aware of any commentary by
Leibniz on it. Newton referred to Kepler’s third law also in the scholium to proposition 4,
book I, and in corollary 6. He showed that Kepler’s third law is equivalent to the inverse
square law when the orbit is a circumference. In the Marginalia Leibniz criticized this
claim with the words: ‘Sed non quadrat satis, quia figurae motuum non sunt similes, nec
circuli’ (M 42 B). Newton generalized his statement in proposition 15, which is transcribed
in the Excerpts, p. 490, without commentary.

* LH 35, 10, 7, f. 1-25 and 2-3: f. Ir. (lines 4-11). Both manuscripts are on a type of
paper used by Leibniz in Vienna in 1688, watermark 564 in the catalogue at the NLB,
cross with cavalier. The texts are reproduced in Appendix 1. The structure of the texts is
as follows: f. 1 and 25r. (referred to as ‘essay’) have been written in continuous succession;
they end with an attempt of solving the inverse problem of central forces; f. 2 contains a
continuation of the same calculations, where Leibniz refers to proposition 11, book 1 of
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If the conatus of gravity or levity is along straight parallel lines where the centre
is conceived to be infinitely or incomparably removed, and it is always constant,
which is the simplest case, the line of projection will be a common parabola, as
Galileo showed. The next case is with respect to a certain centre at a finite
distance, and the conatus with respect to the centre, or paracentric, is also every-
where constant; although I do not know yet whether the line is determined,
nevertheless first of all we expose these generalities about centroparabolic lines,
for so 1 like to call them.

The idea that the case of a central constant conatus is the next simplest
case after Galilean parabolas is questioned at the end of the quotation.
‘Centroparabolic lines’ are just another denomination of ‘projectile
lines’—the word ‘projectaria’ occurs in line 18. On the basis of calcula-
tions analogous to those in Inventum a me est and Si mobile aliquod ita
moveatur, Leibniz is able to state the following fundamental result:>

Therefore it is discovered that centroparabolic lines, with which I am now
dealing and are described in like manner by the projection of bodies with gravity
or levity, are the same as vortical lines of heavy bodies, of dinobaryc, which are
described by a body with gravity or levity carried in a vortex with a speed which
is smaller, in proportion, to the greater distance from the centre of the vortex;
and at the same time tending to the centre of the vortex because of gravity, or
receding from it because of levity.

The surprising identity between curves described with rectilinear
uniform motion and the action of gravity or levity, and curves described
by a body pushed by a vortex rotating with a velocity inversely propor-
tional to the distance from the centre, allows Leibniz to make the crucial
transition from Newton’s central forces as an explanation for the area
law, to vortical motion. This metamorphosis allowed Leibniz to raise the
profile of his interpretation by presenting it not as a modification of
Newton’s theory, but as the result of an independent discovery dating
from several years earlier. Needless to say, the move from central attrac-
tion to vortical motion is carefully concealed in the Tentamen; Leibniz’s
claim to originality is based on his demonstrations of the area law and
inverse-square law being different from Newton’s. De Motu Gravium
predates the Tentamen not only because it is on a type of paper used by

the Principia (addition 2). In the demonstration Newton employed lemma 12 (‘all
parallelograms circumscribed to a given ellipse have equal area’), which Leibniz tried to
prove on f. 3r. (addition 3); f. 25v. contains an attempt to solve the direct problem of
central forces, starting from ellipses (addition 1); f. 3v. contains an independent essay on
planetary motion (addition 4).

¥ LH 335, 10, 7, f. 1r., lines 61-7. The adverbs ‘centroparabolice’ and ‘dinobaryce’
occur in Si mobile aliquod ita moveatur, f. 39r. They do not occur in known texts dated
after the Tentamen.
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Leibniz in Vienna in 1688, or because the harmonic circulation is named
differently, but also for the following reason. In the texts seen thus far
Leibniz understands by ‘paracentric conatus’ a one-term expression,
either centripetal or centrifugal. Here he started as in those texts, but
later he tried to calculate the conatus along the rotating radius. His
attempts differ from Newton’s for the following reason: Newton
calculated the deviation from the tangent to the curve; Leibniz calculated
the variation of the distance from the centre, comparing the distances at
different times by a rotation of the radius. At the beginning he thought
that paracentric conatus was still a one-term expression:

Whence it is necessary that ddr = m, namely m or ,MG, which represents the new
impression of gravity, is the difference between the differences between two
nearby radii, or between two descents, ; G, L, ,G,L, or, what turns out to be the
same, between two nearby whole impetuses to descend, which could have also
been foreseen.

Namely, the difference between two radii is dr, and the difference
between two such differences, which can be called dr, and dr, respect-
ively, is dr, — dr,=ddr. Later in the essay, however, he realized that he
had committed a mistake: ‘Therefore at last we have corrected our
calculations, and together with the conatus to descend from gravity, the
centrifugal force from the circulation has to be conjoined.” Therefore
paracentric conatus along a rotating radius becomes a two-term
expression:*?

Hence it is clear that if all endeavours from gravity m are added together, and
from this all centrifugal endeavours k are detracted, one will have the impetus of
descent | G;L, namely dr = [m— [k, that is, ddr=m— k.

This imbalance between opposite tendencies will remain one of the most
characteristic features of Leibniz’s theory of planetary motion, and
constitutes a new result of his investigations. If his starting point can be
clearly located in the Principia, in De Motu Gravium Leibniz attained
truly original findings.*! If we reconsider the manuscripts of the previous

4 De Motum Gravium, lines 79-83, 141-3, and 152-5 and figure 26.

1 In the Tentamen endeavours are taken with opposite signs, and the expression a262: 73
represents twice centrifugal conatus. From 1688 to 1705 (LMG, 4, Leibniz to Varignon, 27
July 1705, p. 128) Leibniz interpreted his equation in the same way. In the ‘zweite Bear-
beitung’ of the Tentamen, for example (see Section 7.4), he admits that his result is surpris-
ing. LMG, 6, p. 184: ‘Unde etiam analysis conatus paracentrici geometrica in solicita-
tionem gravitatis et duplum conatum centrifugum, id est duplum eius qui esse debere
vederetur, .. (my emphasis). In a letter to Johann Bernoulli of 28 Jan. 1696 he probably
wanted to make this point clear: ‘Verissimum est, quod ais, et a me quoque comprobatum
in Tentamine de Motuum Coelestium Causis, vires centrifugas in ratione composita esse ex
duplicata directa celeritatum et reciproca simplice radiorum; neque id contemnendum est
in rem nostram, etsi enim hae vires, vel potius sollicitationes, differant a viribus ipsius per
se circulantis; sufficit quod illis sunt proportionales. Interim revera nihil aliud sunt quam
celeritates elementares.” LMG, 3, p. 241. See also the discussion below.
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section, we see that finding a new decomposition of motion was a main
concern for Leibniz. He began investigating this problem very soon after
reading the Principia.

Having established a new equation, Leibniz tackled the inverse
problem of central forces with his differential calculus. He worked with
several differential equations which, while showing a considerable
improvement on those seen above, still failed him in his task of finding
ellipses and Kepler’s third law. Leibniz adopted different strategies for
finding the integral of his equation: he could not find the integral when
gravity is constant; by setting gravity composed of two terms, the second
of which cancels out centrifugal conatus, he attained a solution, but even
apart from the artificial character of the procedure, he did not find
ellipses. In a renewed series of attempts in the second folded folio of De
Motu Gravium (addition 2), he set gravity proportional to an arbitrary
power of the distance, namely proportional to r”, trying to determine the
exponent a posteriori in order to find ellipses. On failing again to find a
result, he set first n= —2 and then n+ 1= — 2, but the result he found
had no relation to ellipses. After some further calculations based on
common geometry, in a passage starting with the words ‘Ad Neut. p. 50,
he excerpted proposition 11 from the Principia, where it is proved to
Leibniz’s satisfaction that if a body moves along an ellipse, the force
towards the focus is inversely proportional to the square of the distance.
Indeed Newton proved more than this, and established that centripetal
force is equal to the square of the altitude of the triangle swept out by the
radius in a vanishing element of time over the latus rectum of the ellipse.
Since all such triangles have equal areas, for each of them the altitude is
inversely as the radius. Leibniz transcribed this equation as Lm = k?,
where L=2a is the latus rectum, m centripetal force, and k= 6a:r the
altitude of the triangle; since fa is the area of the triangle and r the radius,
Leibniz introduces here a trivial mistake by a factor of two. Following his
notation derived from proposition 11 of the Principia, one has that centri-
petal force is equal to a®0%:2ar? or simply af2:2r% These excerpts
resemble closely the corresponding annotations in the Marginalia. On
the basis of this result he was able to start a new series of calculations,
which are here reproduced:*?

ddr=a8?:2r* —a*0?.r% (7a)
d?r:dr*=(—h?:r%a) + (h*:r3). (7b)
It is extraordinary to notice how Leibniz included the result of

proposition 11 in the different context of his own attempts. Here ddr is

42 LH 35, 10, 7, f. 2. Newton, Principia, first edition, pp. 50-51; Marginalia, M. 50 D;
De Motu Gravium, Addition 2, lines 46-60.
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the second-order differential of the radius; a@?%:2r? represents gravity,
where the factor 2 ought to be at the numerator, because of the mistake
mentioned above; fa is the infinitesimal area swept out by the radius in
the time O (6=dt); a is also half the latus rectum, which typically is
indicated with a letter already employed, possibly in the attempt of
simplifying the final equation; 6a:r is as the velocity of rotation (a factor
2 is missing) and its square over the radius, namely a?6?:73, is taken to
be simple centrifugal conatus. In equation (7b) a is the semi-latum
rectum and A is the angular momentum.*3> Leibniz’s equation clearly
expresses the second-order differential of the radius as the difference
between two terms with opposite signs. Multiplying by dr we have:

[dr - ddr=0%a,{dr:2r* —afdr:r (8a)
[dr-d?r:de*=[dr[(— h*:r’a) + (h*:r))]; (8b)

the comma in equation (8a) means that 62a multiplies the entire express-
ion to its right. Calculating the integral one finds:

1/2dr=62%a,12r— a:r* 3; (9a)

1/2 (dr:dt)*> = (h*:ra) — (B*:2r}) +E; (9b)

where the factors 1/2 are cancelled on both sides of (9a}, and in (9b) E
is the integration constant. Leibniz interpreted the first and second term
at second member as integrals of centrifugal force and gravity times an
infinitesimal distance; again, their relevance to the discussions in Section

4.3 is straightforward.** Unlike equation (4a), here Leibniz is able to
separate the variables:

6=dr-rjar— aq (10a)

dt=dr-r:2Er*+2r(h*.a) - h% (10b)

and operates the substitution Jar—aa=v in order to carry out the inte-
gration. Leibniz shows no uncertainty as to the substitution of variable.
He sets r =v2+ a%:a*°

time=[2¥dv:y +[a’dviv or time=2v+ [ad’dv:v (11a)

43 Equation (7b) can be easily obtained by taking twice the derivative of the polar
equation of an ellipse with respect to time. It is worth recalling that 4 = r’da:dt, where da
is the differential of the angle of circulation. The polar equation is r=c:(I +¢ cos a),
where ¢ is the parameter of the conic, equal to the semi-latum rectum, and ¢ its
eccentricity; if ¢ is nil the curve is a circle; if e=1 a parabola; if ¢ is positive but smaller
than 1 an ellipse; lastly, if is greater than 1 a hyperbola.

44 Similar calculations can also be found in a later essay Si mobile feratur motu
composito, LH 35,9, 9, f. 9-10; f. 10v. Compare also the calculations in Gerland, Schriften,
pp. 32-3.

45 Because of a trivial slip Leibniz wrote dr=2vdv + a%,.a; later, however, he did not
take the term 4? into account.
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As in Si mobile aliquod ita moveatur, his final goal is a relation between
time and distance satisfying Kepler’s laws. From equation (10a) we
should have instead 1=2v +2[v?dv:a?. Leibniz also tried to take into
account that the radius does not start from being infinitesimal, but ranges
between the distances at aphelion and perihelion. In other words, he
realized that he had to calculate what we call a definite integral; he set
r=2z—h, where z is a new variable and /4 a constant, and failed again to
find the result he was seeking. Although these and similar calculations
failed him in his task of finding the third law of planetary motion, they
represent an extraordinary document of the early usage of differential
equations, and of techniques such as substitution and separation of
variables.

In these calculations one sees at the same time the power and the
difficulties of the new algebraic representations in mechanics. The reader
has certainly realized the similarity between Leibniz’s analysis of orbital
motion and modern vectorial representations of motion under central
forces. This similarity is somewhat artificially strengthened by the
modern version marked with the letter ‘b’. Some aspects concerning
mathematics and the problem of dimensional homogeneity have been
outlined in Chapters 3 and 4: I recall the difference between Leibniz’s
differential and the derivative of a function, or between his infinitesimal
velocity and acceleration. Moreover, constant factors such as angular
momentum A/ and energy E play a central role in modern representa-
tions, whilst Leibniz treated the former as a relatively unimportant
constant, and did not take the latter into consideration. Further, I wish to
mention the problems of interpretation of the differential equations with
regard to real versus fictitious entities. In one respect both Leibniz’s and
the modern representations are fictitious: Leibniz conceived radial
motion to take place along a rotating ruler which, with regard to
planetary motion, was certainly imaginary; likewise, the rotating radius-
vector of modern mechanics is a purely ideal entity. With respect to
other aspects, however, the similarity vanishes. For Leibniz centrifugal
conatus was a real tendency due to a circular motion induced by a
material rotating fluid. By contrast, in the modern account centrifugal
force appears as a fictitious entity due to the choice of the representation
along the rotating radius. The similarity between equations ‘a’ and ‘D’
hides a conceptual gulf in mathematics and in the physical interpretation
as well.

The last side of the second folded folio of De Motu Gravium (addition
4) contains an essay on planetary motion where Leibniz tried to explain
the causes of the physical actions. He claimed that gravity, for example,
results from the difference between the centrifugal forces of the vortex
and of the body. Since they rotate with the same velocity, the difference
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between their centrifugal forces must depend on their respective
densities. In a passage partially crossed out Leibniz hinted at a
connection between his theories of planetary motion and of motion in
resisting medium. He seemed to suggest that the circulation of the body
depends on its surface, whereas gravity or levity depend on its solidity.
This passage resembles Descartes’s theory in Principia Philosophiae,
especially for the reference to ‘soliditas’, and is based on notions
corresponding to ‘absolute’ and ‘respective’ resistance, the two kinds of
friction described by Leibniz in his Schediasma de Resistentia Medii.*¢
This is his only known reference to the theory of motion in a resisting
medium in the context of planetary motion.

5.6 The application to ellipses and the direct problem

On the last side of the first folded folio of De Motu Gravium (addition 1),
Leibniz tried to apply some of the results on the circulation and descent
of a body to the specific case of motion along an ellipse. In particular, he
wanted to determine the ratio between the differential dr of the radius
and the velocity of rotation a8:r in terms of the parameters of the ellipse
by means of the known properties of conic sections. This project leads
directly to paragraph 18 of the Tentamen. His attempt represents a
retreat from the inverse to the direct problem, and from the integral
calculus to common geometry and some elementary differentiation rules.
Similar calculations can be found in other manuscript essays, where
Leibniz was able to attain his aim by means of the characteristic triangle
and of simple geometry.*’ In one of them, Calculus Motus Elliptici, one
reads that fa is twice the area swept out by the radius in the element of
time; thus the error mentioned above is eliminated. Leibniz’s proportion
is:

Oa

r

:dr::b.Je* — p?;

where b and g are the minor and major axes of the ellipse respectively, ¢
its eccentricity, a the latus rectum, no longer its half, and p=2r—gq;
further, it is worth recalling that e?= ¢*> — b? and b?= agq. Differentiating

4 LH 35,10, 7,f. 3v., lines 21-5. See Section 2.2 above.

41 LH 35, 10, 7, f. 4v-5: Inveniendus Est Calculus Differentialium Ellipseos per Solas
Eductas ex Umbilicis; LH 35, 10, 1, f. 12-3 (not written in continuous succession):
Calculus de Elementis Radiorum Ellipseos ex Umbilico Eductorum per Radios et
Velocitatem Circulationis Inveniendis, et Speciatim de Casu Quo Circulationes Sunt Radiis
Reciproce Proportionales; LH 35, 9, 9, f. 5-6 (not written in continuous succession):
Calculus Motus Elliptici Aequales Areas Aequalibus Temporibus ex Foco Abscindentis.
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the equation obtained from this proportion and eliminating dr by
substitution one finds the equation of paracentric motion:

ddr=8%a*:r* — 8%a2:r%

In Calculus de Elementis Radiorum Ellipseos, as in De Motu Gravium,
this equation is interpreted as centrifugal force minus gravity, whereas in
Calculus Motus Elliptici the first term is identified as twice centrifugal
conatus, as in the Tentamen.*® Leibniz’s equation of paracentric motion
is attained by means of a mixed technique, first geometric and then
algebraic. The final result does not contain an interpretation of its terms,
which has to be given separately.

In all three manuscripts under discussion Leibniz gave numerical
examples together with literal expressions, as if he wanted to reassure
himself of their soundness.*” In two manuscripts, for example, he fixed
the radius r = MO = 5; the major axis AV of the ellipse g =9, and the latus
rectum a = bb:q =8, where bb =72 is the square of the minor axis; the
eccentricity e = 3. On the basis of the proportion above we have that the
differential dr of the radius, or LD = 68:15. At this point Leibniz fixed
the value of 8 =0.000015, representing the infinitesimal time df; thus
LD =0.000008; the circulation a8:r=0.000024. Here Leibniz took his
differentials as very small numbers. While Newton dealt with finite forces
and accelerations, the main ingredients in Leibniz’s analysis were infinit-
esimal displacements. In another manuscript essay Leibniz took the radius
equal to 1 000 000 000 000, namely an incomparably large number, and
checked again his results with numerical examples.*°

The last side of Calculus Motus Elliptici contains some general remarks
on finding the orbit given the two relations between paracentric impetus and
time, and between angle of circulation, radius and time.’! From the propor-
tion dr:dt::r°:c’, where e is an arbitrary exponent and c is a constant intro-
duced in order to preserve dimensional homogeneity (‘ut servetur lex
homogeneorum’), taking the integral we have a relation between time and
radius. The second relation, namely da:dt::cc:rr, where dais the differential
of the angle, can be used in different ways. If the circulation is harmonic, and
the differential of time constant, the infinitesimal angles are inversely
proportional to the square of the radii. With the aid of the preceding

4 1 H 35,10, 1,f 13v.and LH 35,9, 9,f. 6v.

4 In Calculus Motus Elliptici, f. 5v., Leibniz even applied his ars characteristica by
associating numbers to concepts.

50 LH 35,9, 9, f 5r.and LH 35, 10, 1, f. 12v. See also LH 35, 10, 7, f. 23-4, on f. 24v.
Leibniz often used this procedure of numerical control. For example, at the end of an essay
on motion in a resisting medium of 1688, LH 35, 9, 5, f. 27v., he wrote: ‘Deprehendetur
res adhibitis ubique quantum licet numeris.’” This manuscript has been studied by Aiton,
‘Resisting Medium’.

SULH 35,9,9,1. 6v.
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proportion one can have an equation dependent either on the angle and
time, or on the angle and the radius, namely the equation of the orbit. The
relations used are too simple to be applied to planetary motion. They seem to
be a second attempt, after the failure to solve the inverse problem of central
forces in De Motu Gravium. Although these calculations are relevant to the
inverse problem, here Leibniz starts from velocities, or more precisely from
dr, rather than from forces. These results will be mentioned in paragraph 13
in the Tentamen.

In the manuscript Ad Relationem Actorum Junii pag. 303 seqq., which is
a preliminary draft of De lineis opticis, there is a passage in which Leibniz
mentions two hypotheses explaining planetary motion. The former states
that the aetherial matter and the planets are repelled from the Sun
proportionally to their weight or mass, and stems from the assumption that
centrifugal force is proportional to the mass of a body; the latter states that
the powers or living forces of aether rings and of planets are equal among
themselves. This is a primitive attempt to ensure equilibrium in the vortex.>?
Although the latter hypothesis will be adopted again by Leibniz (see Section
7.5), neither is mentioned in the Tentamen, nor does he ever explain how
elliptical orbits arise. The equality of force between the vortex rings and the
planets, together with the harmonic circulation, determines a relation
between mass and distance. If mass times the square of velocity is constant,
and velocity is inversely proportional to the distance from the centre, mass
must be directly proportional to the square of the distance. Indeed, thereisa
manuscript in which Leibniz sets the linear density of each ring proportional
to the radius, and since the length of the ring is proportional to the radius,
mass is directly proportional to the square of the radius.>?

Ad Relationem Actorum is followed in continuous succession by
Tentamende Legibus Naturae Mundi, an essay intended for publicationin the
Acta together with the three papers of January and February 1689.3* The
text is composed of 20 numbered paragraphs on dead and living force,
composition of motion, the law of continuity, cohesion, the impact laws,
elasticity, the non-existence of the vacuum and of atoms. Referring to a
falling body Leibniz wrote:>*

2 LH 35, 10, 4, f. 1. The text covers the first side of a folded folio and the beginning of
the second (other drafts of the same essay are in LH 35, 10, 1, f. 14v., and LH 35, 15, 2, f.
1). On the distinction between weight and mass see definition 1 in the commentary to the
Notes.

33 LH 35, 9, 9, f. 3-4, Incrementa angulorum circulationis harmonicae sunt in ratione
duplicata reciproca radiorum. The relevant passage is on f. 3v.-4r.

% LH 35, 10, 4, f. 1v.-2. At the begining of f. 1v. Leibniz mentioned four essays on the
laws of nature, the system of the world, optical lines and motion in a resisting medium. On
f. 1v., referring to conservation of force, he wrote: ‘Eadem alibi in his Actis demonstravi’,
and this shows that the essay was intended for publication in the Acta.

55 Ib., partially in a marginal note on f. 1v.: “Vim corporis in motu positi recte aestimo
ex altitudine ad quam se potest elevare, similiter ex producta intensione alicuius elastri vis
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I measure the force of a body set in motion by the height to which it can raise itself;
similarly, the force can be measured by the stress produced in a spring.

Leibniz established an equivalence between vis viva, the height to which a
body can raise itself, and the force of a compressed spring. The analogy
between gravity and elasticity also extends to the case of fall and to the realm
of living forces.

Lastly, a few words on the final stage of our journey, the Tentamen de
Systemate Universi.>® This essay is composed of numbered paragraphs which
resemble the Tentamenin structure and contents. The first paragraph begins
with the words: ‘ Circulationemvoco harmonican?, and corresponds closely
to paragraph 3 of the Tentamen. This and the great number of corrections in
the text reveal the manuscript as a preliminary draft. Leibniz later added an
introduction and two opening paragraphs, shifting the others consequently.
A notable exception with respect to the Tentamenis thathere Leibniz makes
clear that the harmonic circulation is equivalent to a motion composed of
rectilinear inertia with central solicitation.’” As he had discovered in De
Motu Graviumwith respect to the lineae projectitiae and vorticales, these two
different representations of orbital motion are equivalent in accounting for
the area law.

The manuscript essays referred to so far contain the main stages in the
development of Leibniz’s theory. They can be summarized as follows: a
purely mathematical elaboration of Newton’s results, involving a general
expression for centripetal or centrifugal conatus; the discovery that if the
areas are proportional to the times, circular progression is inversely
proportional to the radius; a series of attempts to find an alternative
decomposition of motion based on what I have called ‘pseudo-Galilean’
motion; the introduction of a vortex and the recognition that lineae centro-
parabolicae are the same as the lineae vorticales; the discovery that para-
centric conatus along the rotating radius is a two-term expression, namely
the difference between centrifugal conatus and gravity; the failure to solve
the inverse problem and the success with the direct problem, namely to find
paracentric conatus starting from ellipses. Although proposition 1 in the
Principiaplayed a central role in the development of Leibniz’s theory, many

aestimari potest.” Compare also Dynamica, LMG, 6, p. 452: ‘Vis etiam in Elastro sustinendi
aliquod est Mortua, et similiter vis in pondere coercendi Elastrum ... Sed Vis ponderis
quam habet ad Elastrum comprimendum v. gr. aerem ex statu ordinario redigendum intra
aliquod spatium arctius, Viva est; opus enim est descensu ex aliqua altitudine, seu impetu
concepto, nec solum mortuum pondus sufficit.’

56 LH 35,9, 9, f. 1-2; related drafts are in LH 35, 9, 9, f. 7-8, S mobile ex centro semel
emittatur aut repellatur; and LH 35, 9, 9, f. 9-10, Si mobile feratur motu composito.

57 LH 35,9, 9, f. 1v. “Coincidunt inter se circulatio harmonica, et motus compositus ex
impetu priore semel concepto et solicitatione gravitatis vel levitatis nova.’
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of the results discussed in this chapter represent original discoveries which
did not follow automatically from Newton’s masterpiece. The representa-
tion of orbital motion along the rotating radius cannot be defined to be
equivalent to the Principia without major qualifications. After having seen
the private development of Leibniz’s theory and the surprising results he

attained, we possess all the elements to study the text which Leibniz chose to
make public.



6
PUBLICATION

Introduction

The Tentamen appeared in the Acta Eruditorum of February 1689. At the
same time Leibniz left Vienna for Venice, where he arrived on 4 March.
Therefore, the essay was certainly composed in the Imperial capital. We
have the manuscript draft, the final manuscript version having probably
been sent to the editors of the Actain Leipzig.! The text would have been
sufficiently challenging even without several misprints. Moreover, the
figure was lost and had to be redrawn by Christoph Pfautz, the mathe-
matician collaborating with the editor of the Acta Otto Mencke. As a
result, the segment ;MG and the letters G at the bottom of the figure
were omitted. On the basis of a manuscript diagram, I have restored the
figure inserting the missing letters in angle brackets. In the footnotes I
indicate Leibniz’s later emendations and explain some technical points.?

While trying to present a text which can be followed by a modern
reader, my translation of the Tentamen corresponds fairly closely to the
original. Capitalization follows modern conventions, while punctuation
has been altered occasionally for clarity, and mathematical symbols have
been italicized. In my work I have been helped by two partial trans-
lations. In the chapter on astronomy of his Treatise of Fluxions (London,
1704), Charles Hayes closely paraphrased large portions of the
Tentamen: this work is particularly interesting because it is contemporary
to Leibniz. Further, in his articles in Annals of Science Eric Aiton
translated some crucial propositions.

An essay on the causes of celestial motions

It is well known that the ancients, especially those who followed the
beliefs of Aristotle and Ptolemy, did not yet understand the splendour of

! LH 35,9, 2, f. 56-9, consisting of an entire folded sheet and two separate half sheets.
The last side and about three quarters of the last but one side contain some complemen-
tary remarks. In the margin Leibniz added some passages leading to the ‘zweite Bearbei-
tung’ of the Tentamen; this later version, first published by Gerhardt, was not available to
Leibniz’s contemporaries.

2 LH 35,9,2,f 67r.and v,; LSB, 1, 5, p. 607, Mencke to Leibniz, 9 July 1690.
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nature, which has at last shone forth in our century and in the preceding
one; this ever since Copernicus showed that the most beautiful
hypothesis of the Pythagoreans, which they seem perhaps to have
proffered tentatively rather than correctly determined, recalled from
obscurity, satisfied the phenomena with utmost simplicity. Moreover
Tycho, having followed Copernicus in the principal points of the system
(apart from transposing Sun and Earth), cast his mind to observations
more accurate than usual, and removed from the heavens the wholly
unseemly apparatus of solid orbs. And yet he did not gather sufficient
results from his Herculean labours, partly because he was hindered by
certain prejudices, partly because death forestalled him. Divine
Providence, though, arranged that his observations and efforts passed
into the hands of the incomparable Johann Kepler, whom the fates had
destined to be the first mortal man to make public?

the laws of the heavens, the order of nature, and the precepts of the
Gods.

He then discovered that any planet describes an elliptical orbit in
which the Sun occupies one of the foci, following that law of motion
whereby the areas swept out by the radii from the Sun to the planet are
always proportional to the times. The same man found that the periodic
times of the several planets of the same system are in the sesquialterate
ratio of their mean distances from the Sun; and he would certainly have
been about to triumph wonderfully had he known (as Cassini eminently
noticed) that the satellites of Jupiter and Saturn also observe the same
laws with respect to their planets as these do with respect to the Sun.*
But he could not yet determine the causes of so many and so unvarying
truths, both because his mind was hindered by thoughts of Intelligences
or unexplained radiations or sympathies, and because at that time the
more profound mathematics and the science of motion were not yet as
far advanced as they are now. However, he also opened the way to
investigation of the causes. For to him we owe the first indication of the
true cause of gravity and of this law of nature on which gravity depends,
that rotating bodies endeavour to recede from the centre along the
tangent; thus if stalks or straws are afloat on water moving in a vortex by
the rotation of a vessel, the water being denser than the stalks and there-
fore being driven out from the centre more strongly than they are, will
push them towards the centre. Kepler himself clearly explained this in
two or more places in Epitome Astronomiae, though he was still

* For this quotation from Claudian referring to Archimedes see Section 1.2.

4 That is, the square T? of the period of revolution is proportional to the third power ¢°
of the mean distances, or of the major axis. With regard to Cassini’s observations see
Section 1.3.
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somewhat in doubt and ignorant of his own means, and insufficiently
aware of how many things would follow therefrom in physics and
especially in astronomy. But later Descartes made brilliant use of these
reasonings, though in his usual manner he concealed their author.
Further, I often marvel that Descartes did not even try to provide
reasons for the celestial laws discovered by Kepler, as far as we know,
either because he could not reconcile them sufficiently with his own
opinions, or because he remained ignorant of the fruitfulness of the
discovery and did not consider it to be so accurately followed by nature.

Further, since it seems not at all the province of physics, and indeed
unworthy of the admirable workmanship of God, to assign to the stars
individual Intelligences directing their course, as if He lacked the means
for accomplishing the same by laws governing bodies; and to be sure
solid orbs have some while now been rejected, while sympathies,
magnetisms and other abstruse qualities of that kind are either not
understood, or, when they are, they are judged to be effects consequent
on corporeal impressions—I myself judge there is no alternative left but
that the cause of celestial motions should originate in the motions of the
aether, or, using astronomical terms, in orbs which are deferent, yet fluid.
This opinion, though very ancient, has been neglected: Leucippus in fact
expressed it even before Epicurus to the extent that, in fashioning his
system, he employed the very name divn¢ (vortex), and we have learnt
how Kepler foreshadowed gravity in the motion of water driven round in
a vortex. And from Monconys’ book on voyages® we learn that Torricelli
(and I suspect also Galileo, whose pupil he was) was already of the
opinion that the entire aether with the planets is driven round by the
motion of the Sun about its centre, just as water is if a stick is rotated
about its axis in the middle of a vessel at rest; and like straws or stalks
floating on the water, so too heavenly bodies closer to the centre revolve
faster.

But these more general considerations come to mind without
difficulty. We, however, intend to explain more distinctly the laws of
motion themselves, which will prove to be a matter needing a far deeper
investigation. And since some light has dawned on us in this matter, and
our research seems to proceed extremely favourably and naturally, I am
raised to hope that we have come close to the true causes of celestial
motions.$

(1) To tackle the matter itself, then, it can first of all be demonstrated
that according to the laws of nature all bodies which describe a curved
line in a fluid are driven by the motion of the fluid. For all bodies describ-

> De Monconys, Journal des Voyages, first part, pp. 130-1.
¢ Some general observations on this introduction and the following two paragraphs can
be found in Sections 1.2, 7.2, and 7.4.
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ing a curve endeavour to recede from it along the tangent (because of the
nature of motion), it is therefore necessary that something should
constrain them. There is, however, nothing contiguous except for the
fluid (by hypothesis), and no conatus is constrained except by something
contiguous in motion (because of the nature of the body), therefore it is
necessary that the fluid itself be in motion.

(2) Hence it follows that planets are moved by their aether, namely they
have fluid orbs which are deferent or moving. In fact by universal
agreement they describe curved lines, and it is not possible to explain
phenomena by supposing rectilinear motions alone. Therefore (by the
preceding paragraph) they are moved by an ambient fluid. The same can
otherwise be demonstrated from the fact that the motion of a planet is
not uniform, or describing equal spaces in equal times. Whence, also, it is
necessary that a planet be driven by the motion of the ambient fluid.

(3) I call a circulation a harmonic one if the velocities of circulation in
some body are inversely proportional to the radii or distances from the
centre of circulation, or (what is the same) if the velocities of circulation
round the centre decrease proportionally as the distances from the

Fig. 6.1 The analysis of orbital motion in the Tentamen.
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centre increase; or, most briefly, if the velocities of circulation increase
proportionally to the closeness. Thus if, for instance, the radii, namely
the distances, increase uniformly or arithmetically, the velocities will
decrease in harmonic progression. Accordingly, harmonic circulation
may occur not only in the circle arc, but also in any other curve what-
soever to be described. Let us suppose that the moving body M is carried
along in an arbitrary curve ;M, MM (or M,M;M) and that it describes
the elements of the curve ;M, M, ,M; M in equal times; its motion can be
conceived to be composed of a circular one around some such centre
as © (as for instance M, T, ,M,T), and a rectilinear one such as , LM,
, Ty M (where O, T is taken equal to O ;M and O, T to O,M). This motion
can also be conceived to be such that, while a ruler or an indefinitely
long and rigid straight line @ 3 moves around the centre ©, at the same
time the body M moves along the line ©31. Further, it does not matter
what is the rectilinear motion of approach to or recess from the centre
(which I call paracentric motion), provided that a circulation of the
moving body M, such as ;M, 7, is to another circulation of it, ,M, T, as
©,M to O, M, namely if the circulations completed in equal elements of
time are inversely as the radii. For since these arcs of elementary circula-
tions are as the times and speeds combined, and the elements of time are
taken to be equal, the circulations will be as the velocities, and conse-
quently the velocities inversely as the radii, and therefore the circulation
will be called harmonic.

(4) If a moving body is carried with a harmonic circulation (whatever
its paracentric motion may be) the areas swept out by the radii drawn from
the centre of the circulation to the body will be proportional 1o the times
required, and vice versa. For since the elementary circular arcs, such as
LM, ,T;M, are incomparably smaller than the radii ©®,M, ©;M, the
differences between the arcs and their sines (such as between | T, M, and
,D,M) will be incomparable with the arcs and sines, and therefore (for our
analysis of infinites)” can be taken as non-existent, and the arcs and
sines as coincident. Therefore D, M is to ,D;M as O, M to O, M, namely
O, M times | D, M is equal to O, M times ,D; M, therefore also their halves,
namely triangles | M, MO and ,M,; MO, are equal. Since these triangles are
elements of the area AOMA , and we have assumed by hypothesis equal
elements of time, also the elements of the area are equal, and vice versa,
and therefore the areas A®GMA are proportional to the times with which
the arcs AM are traversed.

(5) In the demonstrations 1 have employed incomparably small
quantities, such as the difference between two finite quantities,
incomparable with the quantities themselves. Such matters, if I am not

7 Leibniz, ‘De Geometria recondita et Analysi Indivisibilium atque Infinitorum’, AE
1686. See more specifically the following paragraph.
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mistaken, can be exposed most lucidly as follows. Thus if someone does
not want to employ infinitely small quantities, one can take them to be as
small as one judges sufficient as to be incomparable, so that they
produce an error of no importance and even smaller than allowed. In the
same way as the Earth is like a point, or the diameter of the Earth as an
infintely small line with respect to the sky, so it can be demonstrated that
if the sides of an angle have a basis incomparably smaller than them, the
angle they enclose will be incomparably smaller than the right angle, and
the difference between the sides will be incomparable with the sides
themselves; and the difference between the whole sine, the sine of the
complement, and the secant, will be incompable with the terms of the
difference, as the difference between the sine, the chord, the arc, and the
tangent.® Therefore, since these quantities are infinitely small, the
differences will be infinitely many times infinitely small, and also the
versed sine will be infinitely many times infinitely small, thus
incomparable with the sine.® Further, there are infinitely many orders
both of infinite and infinitely small quantities. Moreover, it is possible to
use finite triangles similar to the inassignable ones, which are most useful
for finding tangents, maxima, minima, and for unfolding the curvature of
lines; likewise, almost in every application of geometry to nature; for, if
motion is represented by a finite line, which is traversed by a body in a
given time, the impetus or velocity is expressed by an infinitely small line,
and the element of velocity, which is solicitation of gravity or centrifugal
conatus, by a line infinitely many times infinitely small. I reckoned these
matters were to be noted down here as lemmas for our Method of
incomparable quantities and analysis of infinites, just as elements of this
new doctrine.!?

(6) From this now it follows that planets move with a harmonic circula-
tion round the Sun as a centre, satellites round their planet. For with the
radii drawn from the centre of the circulation they sweep out areas
proportional to the times (by observations). Therefore taking equal
elements of time, the triangle ;M,MO is equal to the triangle ,M;MO,
thus © M is to ©O,M as ,D;M to ,D,M, namely the circulation is har-
monic.

® Here the sinus of an angle « is understood to be Rsina, where R is some convenient
power of 10 chosen in order to avoid decimals. The whole sine is R; the sine of the
complement Rcosa; the secant must be taken to be R/cosa. The clarifying comma
between ‘the sine, the chord (sinus, chordae)’ was inserted by Leibniz in 1706.

® The versed sine is the difference between the whole sine and the sine of the comple-
ment, that is, R— Rcosa. By ‘infinitely many times infinitely small’ Leibniz means second-
order infinitesimals. Thus, if a is a first-order infinitesimal, sina is also a first-order
infinitesimal, whilst the versed sine is infinitesimal of the second order.

1 Leibniz will refer to this important paragraph as Lemmata Incomparabilium or
Lemmes des Incomparables; LMG, 3, p. 524, Leibniz to Johann Bernoulli, 29 July 1698;
LMG, 4,p. 92, Leibniz to Pierre Varignon, 2 Febr. 1702.
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(7) It is also reasonable that the aether or the fluid orb of each planet
moves with a harmonic circulation. In fact it has been shown above that a
body in a fluid does not move spontaneously in a curved line, therefore
there will be a circulation also in the aether; further, it is reasonable to
believe it to be in harmony with the circulation of the planet, so that the
circulation of the aether of each planet is also harmonic; that is, if the
fluid orb of the planet is mentally divided into innumerable concentric
circular orbs of hardly any thickness, each orb will have its own circula-
tion which gets proportionally faster the nearer to the Sun. But a more
accurate account of this motion in the aether will be given elsewhere.

(8) Thus we suppose that a planet moves with a double motion
composed of the harmonic circulation of its fluid deferent orb, and the
paracentric motion, as if it had a certain gravity or attraction, namely an
impulsion fowards the Sun or—if it is a satellite—the planet. Further, the
circulation of the aether makes the planet circulate harmonically not, as
it were, by its own motion, but almost as if swimming smoothly in the
deferent fluid, whose motion it follows. Thus the planet does not retain
the faster impetus of circulation it had in the inferior or closer orb, but
this impetus weakens while crossing the superior orbs (resisting a
velocity greater than their own), decreases continuously, and adapts
imperceptibly to the approaching orbs. Conversely, while the planet
tends from the superior to the inferior orbs, it acquires their impetus.
And this happens all the more easily because when its motion agrees
once with the motion of its actual orb, then it hardly differs from the
motion of the orbs nearby.

(9) Having explained the harmonic circulation, we must come to the
paracentric motion of the planets, born of the outward impression of the
circulation and solar attraction combined. Moreover, it may be permitted
to call it an attraction, although in reality it is an impulse, inasmuch as
the Sun in a certain sense can be conceived to be a magnet; the magnetic
actions themselves, however, are derived doubtless from the impulsions
of fluids. Whence we shall also call it the solicitation of gravity, conceiving
a planet to be a heavy body tending towards a centre, namely the Sun.
The type of orbit, however, depends on the particular law of attraction.
Let us see then which law of attraction produces an elliptical path. In
order to attain this, it is necessary to enter a while the adytum of geometry.

(10) Since every moving body which describes a curved path
endeavours to recede along the tangent, one may call this the outward
conatus, as in the motion of the sling, for which there is required an equal
force constraining the moving body, lest it flies away. This conatus can be
measured by the perpendicular from the following point to the tangent at
the inassignably distant preceding point. When the curve is a circle, the
renowned Huygens, who was the first to investigate it mathematically,
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called this force produced by repeated endeavours centrifugall!
Moreover, every outward conatus is infinitely smaller than the velocity
or impetus acquired from the conatus repeated for some time, in just the
same way as the solicitation of gravity, whose nature is homogeneous to
it. Whence also it is confirmed that they have the same cause. It is
consequently not surprising, as Galileo thought, that percussion is
infinitely greater in comparison to simple gravity, or, in my terms, to
simple conatus, whose force I usually call dead; while acting and receiv-
ing the impetus from repeated impressions, dead force is at last rendered
living.

(11) Centrifugal conatus, namely the outward conatus of circulation,
can be expressed by PN, the versed sine of the angle of circulation \MON
(or by D, T, which turns out to be the same because the difference
between the radii is inassignable); for the versed sine is equal to the
perpendicular drawn from one end-point of the arc of a circle to the
tangent from the other end-point, whereby we expressed the outward
conatus in the preceding paragraph. (Centrifugal conatus can be also
expressed by PV, the difference between the radius and the secant of the
same angle; the distance between their difference and the versed sine is
infinitely infinitely many times infinitely small, and so wholly insignificant
with respect to the radius.)!? Hence, furthermore, since the versed
sine is as the square of the chord, it follows that centrifugal endeavours of
bodies describing equal circles with uniform motion are as the squares of
the velocities, and those of bodies describing circles of different size as the
squares of the velocities and inversely as the radii.

(12) Centrifugal endeavours of bodies circulating harmonically are
inversely as the cubes of the radii. For (by the preceding paragraph) they
are inversely as the radii, and directly as the squares of the velocities,
that is (since the velocities of the harmonic circulation are inversely as
the radii), inversely as the squares of the radii; and combining the simple
inverse and the square inverse, the ratio becomes the inverse cube.!® For

I In the ‘zweite Bearbeitung’ and ‘Excerptum ex epistola’ Leibniz crossed out the mis-
leading words ‘produced by repeated endeavours’; indeed, the impetus, not the force, is
produced by repeated endeavours.

2 The versed sine PN is equal to R— Rcosa; PV is equal to (R/cosa)— R; their
difference PV — PN is equal to R(1—cosa)?/cosa; thus, if a is infinitesimal of the first
order, PV — PN is a fourth-order infinitesimal. In addition, notice that @V depends on the
cosecant of the angle of circulation.

3 In the following calculation Leibniz conflates two alternative representations of
motion. Since he is using a continuous curve, he ought to consider that PN is traversed
with uniformly accelerated motion. Alternatively, if he wanted to neglect accelerations, he
ought to consider the tangent as the prolongation of the chord. The latter is the solution he
chose in the list of errata published in the 1706 ‘Excerptum ex Epistola’, where he stated
that in paragraphs 11, 12, 15, 21, 27, and 30 one should read just the centrifugal conatus
instead of its double, and half of it instead of the whole. See also Section 4.2 above.



134 Publication

the sake of calculation let fa be a fixed area always equal to twice the
elementary triangle ,M; MO, or to the rectangle ,D;M times the radius
©,M or r; then ,D;M is Ba:r or fa divided by r; now the centrifugal
conatus ,D, T is equal to the square of ,D;M divided by twice ©;M and is
therefore equal to 66aa:2r>.

(13) If the paracentric motion (receding from the centre Q or
approaching it) is uniform, and the circulation harmonic, the trajectory
QMG will be a spiral starting from the centre Q, with the property that
the segments 2GMS2 are proportional to the radii, namely in this case to
the chords QG drawn from the centre: in fact, both the areas, that is, the
segments, and (because of the uniform motion of recession) the radii are
proportional to the times. There are many other notable properties of
this spiral, and the construction is not difficult. Indeed, in the harmonic
circulation a general method is given of constructing the curves, suppos-
ing at least their quadratures, if from the radii the times are given, or the
velocities of paracentric motion, or at least the elements of the impetuses
or the solicitations of gravity.'*

(14) Paracentric solicitation, whether of gravity or levity, is expressed by
the straight line ;ML drawn from the point ;M of the curve to the tangent
,ML (produced to L) of the preceding, inassignably distant point ,M
parallel to the preceding radius ®,M (drawn from the centre to the
preceding point ,M).

(15) In every harmonic circulation the element of paracentric impetus
(namely the increment or decrement of the velocity of descent towards
the centre or of ascent from the centre) is the difference or sum of the
paracentric solicitation (namely the impression due to gravity or levity or
a similar cause} and of twice the centrifugal conatus (arising from the
harmonic circulation itself); the sum indeed if levity is present, the
difference if gravity. When the solicitation of gravity prevails, the
velocity of descent increases or the velocity of ascent decreases, but the
contrary happens when twice centrifugal conatus prevails. From ;M and
sMlet {MN and ;M,D be normal to ©,M; then, because of the harmonic
circulation the triangles \M,M©® and ,M;M© have been shown to be
equal, their altitudes ;MN and ;M,D will also be equal (because of the
common base ©,M). Now, taking ,MG equal to L, M, let ;MG be drawn
parallel to ,ML itself;!® the triangles ; MN,M and ;M,DG will then be

4 The word ‘segment’ refers to the plane portion of a spiral figure. The case of a
uniform paracentric motion implies an attraction inversely proportional to the cube of the
distance and was studied in the second addition to De Motu Gravium, lines 18-20. Here

the lower part of diagram 6.1 is tacitly considered as a separate figure unrelated to the
planetary ellipse.

15 The tangent ,ML is the prolongation of the chord ;M,M. Leibniz’s mathematical
reasoning in this paragraph is correct; the mistake lies in paragraph 12, since PN is only
half the centrifugal conatus (see Section 4.2). The reader may find it easier to follow the
argument with the help of the following diagram, which is rigorously based on Leibniz’s
text.
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congruent, and ; M, M equal to G;M, and N,M equal to G,D. Further, in
the straight line ©,M (produced if necessary, as I always understand)
take OP equal to O, M, and O,T equal to O;M; P,M will then be the
difference between the radii ©,M and ©@;M. Now P,M is equal to (N,M
or) G,D+NP, and ,T,M equal to ,MG+ G,D—,D,T, therefore
P,M —,T,M (the difference of the differences) will be NP +,D,T—,MG,
that is (since the versed sines NP and ,D, T of two angles and radii whose
differences are incomparable, coincide) twice ,D,T—,MG. Now the
difference between the radii expresses the paracentric velocity, the
difference of the differences expresses the element of paracentric
velocity. Further ,D, T or NP is the centrifugal conatus of the circulation,
being namely the versed sine (by 11), and ,MG or ;ML is the solicitation
of gravity (by the preceding paragraph). Thus the element of paracentric
velocity is equal to the difference between twice the centrifugal conatus
NP or ,D,T, and the simple solicitation of gravity G, M, or (as it follows
in the same way) the sum of twice the centrifugal conatus and the simple
solicitation of levity.

(16) Given the increments or decrements of the velocity of ascent or

©
Diagram from paragraph 15 of the Tentamen

P,M = N,M+ PN; ;M,T=,MG + G,D—,D,T, Leibniz was able to find the difference
PoM— M, T, namely PN+ PN—,MG, by setting NP=,D,T and N,M = G,D; these two
equalities were later criticized by Newton and are discussed in Section 8.4.
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descent, the solicitation of gravity or levity is given, and vice versa. This
is clear from the preceding paragraph, for I hold centrifugal conatus to
be always given, since it is inversely as the cube of the radii (by 12).

(17) In equal elements of time the increments of the angles of
harmonic circulation are inversely as the squares of the radii. For the
circulations are as the angles and the radii combined, and since the
elementary circulations are harmonic, they are inversly as the radii,
therefore the elementary angles are inversely as the squares of the radii.
Such are virtually the apparent diurnal motions as seen from the Sun (for
in this instance days are sufficiently short periods of time, especially for
the outer planets), which are approximately inversely as the squares of
the distances, so that at double the distance only the fourth part of the
angle is covered in the same element of time, at triple the distance only
the ninth.¢

(18) If an ellipse is described by a body moving with a harmonic circula-
tion round a focus as a centre of the circulation, one has these following
three related magnitudes: the circulation ,T;M or ,D;M (these do not
differ by a comparable quantity), the paracentric velocity ,D,M, and the
velocity of the same body (composed of them) in the elliptical orbit itself,
namely ,M;M. They are as these three respectively: the minor axis BE; the
mean proportional between the difference and the sum of the distance
F O of the foci one from the other, and the difference ©¢ between the
distances of the point ;M of the orbit from the foci; and, lastly, twice the
mean proportional between ©®,M and F;M, or the distances of the same
point from the two foci.!” The same is true for the hyperbola in its own
way. In the parabola with quantities which are infinite, and elsewhere are
vanishing, the circulation, paracentric velocity, and the velocity
composed by them, which is in the same orbit, will be respectively as the
latus rectum; the mean proportional between the latus rectum and the
excess of the radius over the shortest radius (which is the fourth part of
the latus rectum), and lastly, twice the mean proportional between the
radius and the latus rectum. The correctness of these statements can be
derived from the common elements of the conic sections if one supposes
that the straight line ;MR'® perpendicular to the curve (or to its tangent)

' Since Leibniz is talking of elementary or infinitesimal circulations, he thinks that one
day is a sufficiently short interval of time with respect to the entire period of an orbit, to be
represented by a differential (compare his observations in paragraph 5 above). The results
of this paragraph were attained in Inventum a me est. Notice, however, that for Mars a day
corresponds approximately to half a degree.

7 This remarkably cumbersome passage can be clarified in the following way: circula-
tion ,T;M is as BE; paracentric velocity ,D0,M as J(FO+0¢)-(FO—©¢); and orbital
velocity ,M;M as 2O, M- F;M. Notice that, strictly speaking, paracentric velocity ought to
be ,T,M; however, the difference from the expression given by Leibniz is a second-order
infinitesimal.

18 The letter ‘R’ was added by Leibniz in 1706.
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in ;M meets the axis AQ in R, and that the perpendiculars FQ, O H from
the foci are drawn normal to it; it is clear that ;MH, H®,” O,M, are
proporttional to ,M,D, ,D;M, ;M,M, that is, the paracentric velocity, the
circulation, and the velocity in the orbit. Therefore, it is sufficient to
show that the sides of the triangle ;MH® are to one another as we have
stated. This can the more easily be done by observing that the triangles
sMQF, and ;MHQ® are similar, and further that F;M is to @;M as FR to
OR, whence the statement will be demonstrated by common analysis.?®
Hence it follows that, even if the foci are interchanged, so that one
instead of the other becomes the centre of the harmonic circulation, in
any point the ratio between circulation and paracentric velocity remains
the same as before.

(19) If a moving body having gravity, or which is drawn to some centre,
such as we suppose a planet is with respect to the Sun, is carried in an
ellipse (or another conic section) with a harmonic circulation, and the
centre both of attraction and of circulation is at the focus of the ellipse,
then the attractions or solicitations of gravity will be directly as the squares
of the circulations, or inversely as the squares of the radii or distances from
the focus. We find this as follows by a not inelegant specimen of our
differential calculus or analysis of infinites. Let AQ be g; BF?!' be ¢; BE
be b (that is Jqq — ee); O, M the radius r; @¢ (or O,M — F,M) 2r—q, or
for brevity p; and the latus rectum WX be a, equal to bb:q. Let twice the
element of the area, or twice the triangle ; M,M ©®, which is constant, be
Oa, supposing a to be the latus rectum, and representing the constant
element of time by 6; and the circulation ,D;M will be Oa:r (see 12
above). Moreover, call the difference ,D,M of the radii dr,*?> and the
difference of the differences ddr. Further, from the preceding paragraph
dr (or ,D,M) is to Bar (or ,D;M) as Jjee—pp to b. Therefore
brdr = fajee — pp, which is the differential equation. But this differential
equation differentiated (following the Laws of the calculus explained by us
elsewhere in these Acta) is bdrdr + brddr = 2pafdr:Jee — pp, and eliminat-
ing dr from these two equations, so that only ddr remains, it becomes
ddr = bbaa60 — 2aaqrf6,:bbr’,?* from which the proposition follows. In
fact, the element of paracentric velocity ddr is the difference between
bbaa60:bbr* or aa60:r’, which is twice the centrifugal conatus (by 12

19 Read ‘©OH, H;M’, so corrected by Leibniz in 1706.

20 The reader interested in this calculation can consult the ‘zweite Bearbeitung’ of the
Tentamen, LMG, 6, pp. 173-6.

2 Read ‘OF’, so corrected by Leibniz in 1706.

2 If we were to take second-order infinitesimals into account this difference would be
»ToM. Leibniz’s reasoning, however, is perfectly adequate because in this instance his
choice does not affect the result.

3 The clarifying comma in the equation was inserted by Leibniz in 1706; thus, we
should read ddr = (bbaa66 — 2aaqr66):bbr.
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above), and 2aaqr66:bbr?, that is, (since bb:q =a) 2a80:rr; it is there-
fore necessary (by 15) that 2a68:rr be the solicitation of gravity, which
multiplied by the constant a:2 gives the square of the circulation aa68:rr.
Therefore the solicitations of gravity are directly as the squares of the
circulations, and hence inversely as the squares of the radii. The same
conclusion follows both in the hyperbola and parabola, and especially in
the circle, which is the simplest ellipse. The reason, however, for the
difference between these conic sections, and why it should be that circles
and ellipses are generated in preference to the other conics, will appear
below.

(20) The same planet is attracted by the Sun in different ways, namely as
the square of its closeness, in such a way that it is continually solicited to
descend towards the Sun by a certain new impression four times stronger
if twice as near, nine times stronger if three times as near. This is clear
from the preceding paragraph, supposing that the planet describes an
ellipse, circulates harmonically, and in addition is continuously impelled
towards the Sun. I see that this proposition was already known also to
the renowned Isaac Newton, as it appears from the review in the Acta,
although from the review [ cannot determine how he attained it.

(21) Moreover, it is clear that the solicitation of gravity on a planet is to
the centrifugal conatus of the planet (or the outward conatus derived from
the harmonic circulation snatching it in its orb and thus trying to drive it
away) as its present distance from the Sun to the fourth part of the latus
rectum of the planetary ellipse, namely as rto a:4; and therefore the ratios
of gravity to centrifugal conatus are proportional to the distances of the
planet from the Sun.

(22) The velocity of the planet round the Sun is everywhere greater than
the paracentric velocity, that is, of approach to or recess from the Sun. For
since circulation is to paracentric velocity as b to Jee— pp (by 18, and
add the calculation in 19), the former will be greater than the latter if
bb + pp is greater than ee; this is certainly the case, because bb is greater
than ee, namely the minor axis b is greater than the distance e between
the foci. Certainly this always happens in planetary ellipses known to us,
which do not differ much from circles.

(23) In Aphelion A and Perihelion 2 there is only the circulation with-
out approach or recess, greatest in Perihelion, smallest in Aphelion.
Further, at the mean distance of the planet from the Sun (which is at the
end-points B and E of the minor axis) the velocity of approach and
recess is to the circulation as the distance between the foci to the minor
axis, namely as eto b. There, in fact, p vanishes.

(24) The greatest velocity of the planet of approach to the Sun, or recess
from it, is when the distance WO or X© of the planet from the Sun is
equal to the semi-latus rectum of the ellipse; then in fact (by 19 and 21)
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ddr =0, since r=a:2. Thus if from the Sun as a centre a circle is
described with a radius equal to the semi-latus rectum O W, this circle
will intersect the planetary ellipse in two points W and X where the
greatest paracentric velocity occurs, which in one point such as W will be
of approach, in the other X of recess. The smallest paracentric velocity is
nil and is in Aphelion or Perihelion, namely in both vertices A and Q of
the ellipse.

(25) In the ellipse and therefore in the planet the centrifugal conatus of
recess from the Sun, or the outward conatus of the harmonic circulation,
is always smaller than the solicitation of gravity or the central attraction of
the Sun. For (by 21) attraction is to centrifugal conatus as the distance
from the Sun, or the focus, to the fourth part of the latus rectum, and in
the ellipse the distance from the focus is always greater than the fourth
part of the latus rectum.

(26) The impetuses which a planet acquires in its path by the continued
attraction of the Sun are as the angles of circulation, that is, the angles
enclosed between the radii drawn from the Sun to the initial and final
points of the path, or as the apparent motion or path seen from the Sun.
Thus the impetus impressed during the path A,M is to the impetus
impressed during the path A;M as the angle A®, M to the angle AO,;M.
In fact the increments of the angles are as the impressions of gravity (by
17 and 19), therefore their respective sums will also be proportional,
namely the completed angles of circulation are proportional to the sums
of the impressions or to the impetuses acquired from the beginning.
Hence in the point W, where an ordinate from the Sun intersects the
ellipse, the impetus acquired from the Aphelion A is half the impetus
acquired from Aphelion to Perihelion; for in W the distance ©OW from
the Sun is the semi-latus rectum. Further, the impetus acquired in any
path is to that acquired in a semirevolution as the angle of circulation to
two right angles. Now, however, | am considering the impetuses
impressed by gravity or attraction by themselves, without subtracting or
computing the contrary impetuses impressed by the outward conatus.

(27) Now, however, from the assigned causes it is worth explaining the
whole revolution of a planet and the degree of approach to and recess from
the Sun. A planet then placed at the greatest distance A from the Sun,
namely in Aphelion, experiences both a weaker centrifugal conatus of
the circulation driving it away and attractive conatus of the solicitation of
gravity than if it were nearer to the Sun. At that distance, however,
namely at the vertex further away from the Sun, gravity is greater than
twice centrifugal conatus (by 21), because the distance ©®A of the
Aphelion or vertex further away from the Sun, or the focus, is greater
than the semi-latus rectum ® W. Therefore the planet descends towards
the Sun along the path AMEWQ, and the impetus of descent increases



140 Publication

continuously, as in heavy accelerated bodies, as long as the new solicita-
tion of gravity remains greater than twice the new centrifugal conatus; as
long as this happens, the impression of approach increases over the
impression of recess, therefore velocity of approach increases absolutely,
until it reaches the point where those two new contrary impressions are
equal, that is, the point W, where the distance @ W from the Sun is equal
to the semi-latus rectum. There accordingly the velocity of approach is
greatest, and stops to increase (by 24). Thence, however, although the
planet continues to move towards the Sun as far as Q, yet the velocity of
approach decreases, since twice the centrifugal conatus prevails over the
impression of gravity; and this continues until the sum of the centrifugal
impressions from the beginning A thus far, destroy exactly the sum of
the impressions of gravity also from the beginning thus far, namely when
the entire impetus of recess (acquired only from the centrifugal
impressions taken together) equals at last the entire impetus of approach
(acquired from the continuously repeated impressions of gravity), where
any approach stops; and this very place is the Perihelion Q, in which the
planet is closest to the Sun. Thereafter, however, the planet continues its
motion, and while thus far it was approaching, now it begins to recede
and tends from Q through X towards A. In fact twice centrifugal
conatus, which had begun to prevail over gravity from W to Q, still
continues to prevail from Q to X; and therefore since the planet from Q
starts almost to move anew, because the previous contrary impetuses
cancel each other out, recess prevails also from Q, and the velocity of
recess increases continuously as far as X; but the increment thereof or
the new impression decreases until this new impression of recess, namely
twice centrifugal conatus, equals again, obviously in X, the new impres-
sion of approach?® or gravity. Therefore in X the velocity of recess is
greatest. Thence, further, gravity or the new impression of approach
prevails, although the entire impetus of recess, namely the sum of all the
impressions of recess acquired from €, prevails still for some time over
the whoie impetus of approach impressed from Q. But since after X the
latter increases more than the former, at last they become equal in A,
where they mutually destroy each other, and recess stops, that is, the
planet has returned to the Aphelion A. Thus, then, all previous equal and
opposite impressions cancel each other out, and the situation returns to
its original state; and everything takes place anew in perpetual games
until one distant day—time having completed its course—will bring a
notable change in the ordering of things.

(28) Hence we have in the elliptical motion of a planet six especially
noteworthy points; four, to be sure, are obvious: Aphelion A and

2+ The text says ‘of recess’.
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Perihelion Q, and likewise the mean distances E and B (for ©B or OF is
half the major axis AQ, and consequently the arithmetic mean between
the greatest digression @ A and the least one ©Q ). Two we have added:
the end-points W and X of the latus rectum WX or the ordinate of the
axis at the focus O, which are the points of greatest velocity, in W of
recess and in X of approach (by 24). Here, also, (by 26) the impetus
acquired by the continuous impression of gravity from A to W is exactly
half of that acquired in the entire descent from A to Q; similarly, the
impetus acquired from © to X is half of that acquired from Q to A; and,
indeed, the impetuses acquired by gravity through AW, WQ, QX, XA, are
equal.

(29) It is now time to recount the causes which determine the type of
planetary ellipse. Given the focus © of the ellipse, which is the Sun’s
position, and given also now the place A where the Sun begins to attract
the planet, for example at the planet’s greatest distance, the more distant
vertex of the ellipse from this focus is also given. Further, given the ratio
of the gravity or virtue with which the Sun begins to attract the planet, to
the centrifugal conatus by which the circulation in the same point drives
the planet away and strives to repel it from the Sun, also the ellipse’s
principal latus rectum WX is given, namely the ordinate at the focus @.
For the given O A is to the semi-latus rectum © W in the given ratio of the
solar attraction to twice the centrifugal conatus. Thus if now the fourth
part of the latus rectum is subtracted from the greatest given digression
AQ, the remainder will be to A® as AGO to AQ: therefore the ellipse’s
major axis AQ or its minor axis is given. Hence given the points ©, A, W
or X, also Q is given, and consequently also the centre C of the ellipse,
its other focus F, and the minor axis BE, and thereby the ellipse itself. No
less are all given if at the beginning Q had been given instead of A.

(30) From these considerations it is clear at the same time how an
ellipse, or a circle, which is an instance of it, is described by the planets,
and not another conic section. The circle, to be sure, results when the
attraction of gravity and twice the centrifugal force arising from the
circulation are at the beginning of attraction equal; for they will remain
thus equal, since there is no cause for approach or recess; but when at
the beginning (or in the state in which the previous contrary impetuses of
recess or approach, which is equivalent to the beginning, cancel each
other out, namely in Aphelion or Perihelion) attraction and twice
centrifugal conatus are different, provided (by 25) that the simple
centrifugal conatus is less than the attraction, an ellipse is described; and
if the attraction prevails the start is the Aphelion, but if twice centrifugal
conatus prevails it is Perihelion. If the simple centrifugal conatus is equal
to the attraction, a parabola is described; if it is greater, a hyperbola,
whose internal focus is the Sun. If, however, the planet were endowed
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with levity and not gravity, and were not attracted but repelled from the
Sun, an opposite hyperbola would arise, whose external focus would
obviously be the Sun.?

Two particularly outstanding points now remain to be accounted for
in this argument: one, to explain what motion of the aether makes the
planets heavy, namely drives them towards the Sun, and this as the
squares of their closeness; next, what may be the cause of the relation-
ship of the motions of the different planets of the same system, that the
periodic times are in the sesquialterate proportion of the mean distances,
or what is the same, the major axes of the ellipses; that is, one ought to
explain more clearly the motion of the solar vortex, namely the aether,
constituting each individual system. But since these matters have to be
re-examined more deeply, they cannot be included within the brevity of
this essay. What seems fitting to us will be explained separately in a more
appropriate fashion.

23 This classification of the orbits is discussed in Section 7.2.
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7

REFLECTIONS ON LEIBNIZ’S
THEORY AND ITS DEVELOPMENT

7.1 Introduction

The previous two chapters have charted the formation and development
of Leibniz’s theory from his reading of the Principia, through a series of
manuscript essays and calculations, to the published Tentamen. A
comparative study of the material presented so far and of further private
manuscripts, letters, and public texts discussed in this chapter allows us
to grasp the problems met by Leibniz. Taking into account the contrast
between these different genres, and the style of writing in the Tentamen, it
is possible to appreciate the development of his theory and strategy.

The following section examines the structure and style of the
Tentamen, emphasizing the difference between the genesis of Leibniz’s
ideas and the order of presentation. I also select two examples relevant to
the relationships between mathematical theory and physical interpreta-
tion, namely the generalization of the expression for centripetal force
attained in De Conatu, and the law of the harmonic circulation. My
contention is that in the first case the link between mathematics and
physics was lacking and Leibniz’s result was therefore unsuitable for a
response to Newton. The second example, however, in which mathem-
atics and physics are brought together, appeared in print in a prominent
position.

Regarding the differential equations in De Motu Gravium, together
with the problematic link between mathematics and physics, it is necess-
ary to consider an obvious factor preventing publication, namely
Leibniz’s failure to find a link with ellipses and especially with Kepler’s
third law. These considerations are discussed in Section 7.3, where [
examine some aspects of the theory of differential equations and the
problems related to the early applications of the integral calculus. I
discuss briefly also the role of elasticity and the implications of his
equations for the debate on the relationships between dead and living
force.

In the last three sections I outline the development of Leibniz’s theory
after February 1689, taking into account in particular the ‘zweite
Bearbeitung’ of the Tentamen and De Causa Gravitatis, the Excerpts from
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the Principia, and the correspondence with Huygens in connection with
the related manuscript De Causis Motuum Coelestium. These observa-
tions complement the picture of Leibniz’s theory in several important
respects. In the ‘zweite Bearbeitung’ Leibniz tried to present his ideas in
a form acceptable to the Catholic Church; this revised version of the
Tentamen shows convincingly the importance of Leibniz’s contingent
preoccupations in the exposition of his theory. In the Excerpts he
expanded his exploration of the Principia and improved his interpreta-
tion of several passages. In the letter intended for Huygens and De
Causis he revised his theory, showing where he thought its strengths and
weaknesses lay. The last section also contains a brief reassessment of the
material presented up to that point, and especially of the difficulties in
interpreting Leibniz’s texts.

7.2 Private research versus publication: priority and styles of writing

A comparison between the previous two chapters reveals immediately
how the genesis of Leibniz’s theory differed widely from its presentation.
This difference is crucial in understanding the author’s aims and
problems. The first obvious issue is priority. The manuscripts Inventum
a me est and De Motu Gravium show that the Tentamen is based on the
transformation of projectile lines (‘lineae projectitiae’) into vortical lines
{‘lineae vorticales’); the former correspond to Newtonian central
attraction, the latter to Leibnizian vortical motion. Leibniz’s claim to
priority, or at least to independent discovery, is based on the con-
cealment of this fundamental proposition, which was still referred to in
Tentamen de Systemate Universi.

Worries about priority represent only one aspect of Leibniz’s response
to the Principia. Concerning the related issue of private versus public
texts, it is instructive to compare two results on orbital motion attained
by Leibniz.! In De Conatu and Inventum a me est we find the general
equation for centripetal conatus for a body moving along a curve with
respect to an arbitrary centre of attraction. However, this result was
exclusively a mathematical exercise with no physical interpretation. It is
not surprising that Leibniz seemed to attach no particular value to his
generalization in a response to the Principia and that his equation
remained unpublished. We shall see in Chapter 9 that the mathemat-
icians of the generation after Leibniz adopted a different attitude on this

' On the issue of public and private texts compare M. J. S. Rudwick, ‘Charles Darwin in
London: The Integration of Public and Private Science’, Isis, 73, 1982, pp. 186-206, esp.
pp- 198-206.
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issue. By contrast, the mathematical result involving the harmonic circu-
lation had a direct physical interpretation and became the most
representative element of Leibniz’s theory. The integration of Kepler’s
area law, physical interpretations in terms of vortices, and mathematics,
made the result interesting to Leibniz. This analysis of purely mathemat-
ical results versus physicomathematical laws constitutes a prominent
feature of the Tentamen. Despite the hurry with which Leibniz’s essay
was composed, the 7Tentamen is a carefully drafted piece whose
rhetorical strategy deserves to be investigated in relation to con-
temporary styles of writing.

The introduction to the Zentamen outlines the history of the vortex
theory from Leucippus and Epicurus to Leibniz’s own time. Similar
historical introductions were relatively common in the seventeenth
century, especially in the astronomical literature. Newton also provided
an historical account of his theory in De Mundi Systemate, which was to
become the third book of the Principia. Without knowing of each other’s
texts, Leibniz and Newton gave almost antithetical accounts. According
to Leibniz, the ancients, especially the followers of Aristotle and
Ptolemy, did not fully appreciate the splendour of nature; even the
Pythagoreans had intuitions rather than rigorous demonstrations.
Newton, on the other hand, presented himself as the restorer of the
forgotten ancient knowledge of the Chaldeans, Anaximander, Aristar-
chus, and the Pythagoreans. Leibniz’s list of heroes starts much later,
from Copernicus, and includes Tycho and especially Kepler, as we have
seen in Chapter 1. For him the merit lay in setting celestial motions in
fluid orbs; for Newton in setting them through empty spaces without any
resistance.?

Moving from the introduction to the first two paragraphs of the
Tentamen, we find an attempt to establish the physical foundations of the
essay in a rigorous fashion. Seventeenth-century attempts to render one’s
text uncontroversial followed different patterns. Before examining the
Tentamen, 1 compare Robert Boyle’s rhetorical style in his account of
experimental philosophy with the strategies adopted by Newton and
Leibniz. Boyle’s extraordinarily detailed account of his experiments,
performed in the presence of distinguished and trustworthy witnesses of
high social stand, are described so as to create the impression in the
reader that he is present and watching the functioning of the air-pump in
all its minute operations. This technique has been aptly defined ‘virtual
witnessing’. It is not surprising, therefore, that for Boyle mathematics was

2 1. Newton, De Mundi Systemate (London, 1728), was written in 1685 but remained
unpublished in Newton’s lifetime. J. E. McGuire and P. M. Rattansi, ‘Newton and the Pipes
of Pan’, NRRS, 21, 1966, pp. 108-43. P. Casini, ‘Newton: gli scolii classici’, Giornale Critico
della Filosofia Italiana, 60, 1981, pp. 7-53.
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to be avoided because the presence of such a difficult discipline would
restrict his gentlemanly audience. Moreover, Boyle believed that the use
of mathematics was inappropriate in experimental philosophy, because
the complexities of nature were likely to be hidden by mathematical
idealizations. Mathematics would bring with it almost inevitably
unwarranted and possibly dangerous expectations of certainty and
accuracy.’

Newton adopted almost the opposite strategy. On the one hand he had
no doubts about the perfect adequacy of mathematics for describing
natural phenomena. Indeed, as we have seen in Section 3.4, the very
foundations of his calculus were interwoven with kinematics and the
study of motion. Further, by limiting his audience to proficient
mathematicians, he seemed to be deliberately trying to avoid ‘litigious’
philosophy and seek a higher ground of certainty. Following the publica-
tion of a New theory of light and colors in 1672, Newton became involved
in endless disputes concerning the execution of his experiments and their
interpretations. If mathematics rather than natural philosophy was
involved, however, he thought that controversies could be avoided.
Although the argument of the Philosophiae Naturalis Principia
Mathematica was bound to involve advanced mathematics to a consider-
able degree, Newton could certainly have presented his discourse in a
less forbidding fashion, mitigating his ruthless and at times pointless
mathematization.*

By contrast, Leibniz tried to render his ideas about planetary motion
uncontroversial by having recourse to the authority of the Keplerian
programme, by spelling out the premisses of his reasonings, and
especially by the deployment of logic. The last two aspects of his
strategy, which owed much to his Aristotelian formation, were character-
istic of Leibniz’s philosophy. It is worth recalling here also his extensive
theoretical investigations in logic. Probably the most spectacular case of
his deployment of these arguments in a controversy can be found in the
dispute on the conservation of living force with Denis Papin. In April
1696, ‘as they could not reach an agreement about what they were
discussing, Leibniz proposed reducing the arguments to a syllogistic
form. But the difficulties in establishing which propositions were already
demonstrated and accepted by the opponent, as well as of finding the
agreed meaning of the technical words were so numerous, that they

* 8. Shapin and S. Schaffer, Leviathan and the Air-Pump (Princeton, 1985), esp. pp. 25
and 60. S. Shapin, ‘Robert Boyle and Mathematics: Reality, Representation, and
Experimental Practice’, Science in Context, 2, 1988, pp. 23-58.

4 R. lNiffe, The idols of the temple: Isaac Newton and the private life of anti-idolatory,
Ph.D. Thesis, Cambridge University, 1989. Cohen, Newtonian Revolution; D. T. Whiteside,
‘Newton the Mathematician’ in Z. Bechler (ed.), Contemporary Newtonian Research
(Cambridge, 1982) pp. 109-27. Compare also Chapter 8 in the present work.
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arrived at the sixteenth syllogism in 1697 without either of them having
acknowledged defeat’ Two years later, on realizing that his own analysis
of the issue was not to Papin’s taste, Leibniz had sadly and scornfully to
conclude—following the words of a ‘certain courtier’—that ‘de gustibus
non est disputandibus’ logic had failed miserably.>

In the theory of planetary motion Leibniz adopted the same strategy
without greater success. We have seen that moving from the unpublished
Tentamen de Systemate Universi to the Tentamen de Motuum Coelestium
Causis the harmonic circulation was shifted from the opening sentence to
leave space for an introduction largely based on Kepler, and to two
opening paragraphs. In Chapter 1 I emphasized the significance of the
choice of Kepler as an ally against Newton; it is now time to read again
and analyse the two opening paragraphs. Leibniz says that on the basis of
laws of nature it can be proved (‘demonstrari potest’) that all bodies
which describe a curved line in a fluid are driven by the motion of the
fluid. His reasoning is modelled on the syllogism. All bodies which
describe a curve tend to escape along the tangent because of the nature
of motion, therefore something constraining them is needed. Since, from
the nature of bodies, no conatus is constrained except by a contiguous
means in motion, and, by hypothesis, only the fluid is contiguous to the
bodies, then all bodies which describe a curve are constrained by a fluid
in motion. From this general statement it follows that since planets
describe curved trajectories, they must be moved by the surrounding
fluid. Here the term ‘hypothesis’ refers to the statement on which the
demonstration is based, and indicates a praecognitum. Thus the structure
of the first two paragraphs indicates that for Leibniz the opening state-
ment is not hypothetical, but descends from laws of nature and therefore
has moral certainty. His disputes with Newton and Papin bring to mind
his ‘calculemus!” and the utopia that one day logic will be so advanced
that all disputes could be settled by an unquestionable logical calculus.®

The other paragraphs of the 7entamen can be organized in different
groups. With the exception of paragraph 5, dealing with mathematical
issues and especially the application of differentials, paragraphs 3-8
regard harmonic circulation, paracentric motion, and their basic
properties. The mathematics employed up to this point is fairly simple;
paragraphs 9-17, however, require considerable skills since Leibniz
tackles the problem of paracentric motion. His preliminary analysis is

5 A. G. Ranea, ‘The a priori Method and the actio Concept Revised’, SL, 21, 1989, pp.
42-68, on pp. 44 and 66. This article is based on the study of the unpublished correspond-
ence between Leibniz and Papin. A recent and broad collection of essays on Leibniz’s
logic is in SL Sonderheft 15, 1987, Leibniz: Questions de Logique.

® G. W. Leibniz, Dissertatio de Arte Combinatoria (Leipzig, 1666)=LSB, VI, I, pp.
163-230, on p. 169, LPG, 7, pp. 198-203, on p. 201 (without title). See also LMG, 6, p.
211.



150 Leibniz’s theory and its development

expanded in paragraphs 18 and 19 by means of his differential calculus.
Indeed, the Tentamen is the first publication in which Leibniz applied the
calculus to a physical problem. In previous essays, such as the 1682
Unicum opticae principium or the 1689 Schediasma de resistentia medii,
the reader finds no differentials, despite the fact that they were used by
Leibniz in his private calculations. Apparently only in the Tentamen did
he feel sufficiently motivated to present a portion of his equations to the
public. It is reasonable to see in this deployment of the calculus yet
another aspect of his confrontation with Newton. The following
paragraph contains the reference to Newton concerning the inverse-
square law; strictly speaking Leibniz does not deny that he had seen the
book, his point being merely that in the review in the Acta there is no
demonstration of the law. Paragraphs 21-9 are worth considering in
order to appreciate a further aspect of Leibniz’s rhetorical strategy.
Their contents consist of rather elementary statements which are nothing
more than corollaries to the previous demonstrations. Yet they present
to a reader with a modest competence in geometry, and especially conic
sections, a series of easily understandable propositions and a convincing
exposition of motion along ellipses. We can reasonably infer that a
reader like Christoph Pfautz, for example, would have appreciated this
clear, at times pedantic, account. Indeed, the English mathematician
Charles Hayes, who followed Leibniz’s mathematical theory, seemed to
appreciate precisely this aspect of his exposition.’

The last paragraph consists of two parts. The former contains an
attempt to classify the orbits, the latter an evaluation of the problems
left unsolved by his theory. I outline Leibniz’s classification taking into
account his 1706 corrections of the factor of two for centrifugal conatus.
The argument is based on the ratio between attraction and centrifugal
conatus at the perihelion, where paracentric or radial velocity vanishes,
for orbital velocity is equal to the velocity of circulation, as Leibniz
explains in paragraph 23. Further, from paragraph 21 we know that the
ratio between attraction and centrifugal conatus is as rto a:2, where ais
the latus rectum of a conic section; notice that the equation of para-
centric motion is valid for all conics, as we read at the end of paragraph
19. The cornerstones of this classification are the circle and parabola,
from which the other cases can be easily obtained. If gravity is equal to
centrifugal conatus r=a:2 and paracentric solicitation vanishes; since
there is no cause for approach or recess, attraction and centrifugal
conatus remain equal, paracentric or radial motion is nil, and the orbit is
a circle. We move now to the parabola. From paragraph 18 we know that
the ratio between velocity of circulation and orbital velocity is as a to

7 Hayes, Treatise of Fluxions, pp. 291-305. On Hayes see Section 9.3
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2Jra. Since at the perihelion the two velocities coincide, a =2ra and
r=a:4, therefore attraction is equal to half centrifugal conatus. If
centrifugal conatus is smaller than this threshold value, but greater than
attraction, the curve is an ellipse; if half the centrifugal conatus is greater
than attraction, the curve is a hyperbola. If we had repulsion instead of
attraction, the curve would be an opposite hyperbola whose focus lies
outside its concavity, as Newton stated in Principia, book I, proposition
12.2 However, it is worth recalling that Leibniz’s reasoning is based on
the unproven assumption that the curve is a conic section.

In the second part of paragraph 30 Leibniz mentions two unsolved
problems of his theory: the mechanism which generates gravity inversely
proportional to the square of the distance, and Kepler’s third law. These
concluding observations show that even Leibniz was aware of the
problematic status of his theory; in such circumstances establishing
independent discovery and priority was all the more necessary in order
not to appear as an inventor who had not only come second, but was also
worse than the first.

7.3 Some observations on differential equations and their
interpretation

In the manuscripts described in Chapter 5 Leibniz used a variety of
mathematical techniques ranging from elementary geometry to differen-
tial equations. Here I present some reflections on differentials, on the
integration of differential equations, and on the interpretation of some of
the equations we have seen above.

As we have seen in Chapter 3, the Leibnizian calculus is based on
operations with variables including differentials of first and higher order,
such as x, dx, ddx, etc. In the Nova Methodus Leibniz introduced dx as a
straight line taken at will (‘recta aliqua pro arbitrio assumta’). The
Tentamen and its related manuscripts modify and extend this definition.
In the Lemmata Incomparabilium, namely paragraph 5 of the Tentamen,
he explained that differentials can be understood by considering the
dimensions of the Earth with respect to the sky; in paragraph 17 the
differential of time is taken as the length of a day with respect to the
period of an outer planet. The preparatory manuscripts enrich this
picture by showing that on several occasions Leibniz attributed very

® The equation of radial acceleration with a repulsive force, namely
d*ridf? = (h%:r%) + (h%r%0), is indeed obtained by taking twice the derivative with respect
to time of the polar equation of the hyperbolic branch whose focus is not contained within
its concavity, namely r=c:(ecosa—1); here c is the parameter of the hyperbola, ¢ its
eccentricity, rand a its polar coordinates, and & = r’da:dr.
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small values to differentials for the sake of calculation. This way of con-
ceiving them served several purposes. Firstly, Leibniz was able to avoid
infinitesimals as well as the related conceptual problems and philo-
sophical objections. Secondly, he could provide a practical justification
for avoiding higher-order differentials, since they can be chosen so as to
produce errors smaller than any given quantity. Thirdly, as the physical
examples above suggest, differentials could be directly applied to the
investigation of nature. In the study of orbital motion, for example,
impetus corresponds to a displacement incomparably smaller than the
radius, conatus or solicitation to a displacement incomparably smaller
than impetus. In this way nature was investigated by means of differential
equations and represented by the curves resulting from their integration.
The theory of differential equations around 1700 is surprisingly and
regrettably little studied. The following observations concern a small
portion of Leibniz’s investigations, yet at the same time they raise
broader issues and provide some general interpretive guidelines. From
the examples in Section 5.5 we have seen that in the integration of
differential equations Leibniz’s technique broke down. This technique
involves procedures—such as substitution and separation of variable—
requiring specific skills. Leibniz’s difficuities appear clearly: in equation
(3a) he introduced the integration constant w with the same symbol used
for the constant differential of the time variable. This problem of
notation whereby conceptually different constants are not distinguished
among themselves plagues several of his attempts. In equation (5a) he
was unable to separate the variables and this failure led him into trouble
with the integration: clearly the choice of the differential of time as a
constant blurred the distinction between parameters and variables, thus
invalidating the integration procedure. The same problem occurs in
other texts by Leibniz.” A very interesting case can be found in equation
(8a); since this equation is of second order, the neglect of signs and
constant factors affects the core of the solution procedure so that the
final result is completely different—compare equations (10a) and (10b).
The role of signs in geometry, and the role of signs and constant factors
in proportions, is considerably less important. Although this type of
mistake may appear to the modern reader as due to inattention, it would
be misleading to interpret it as such and to state that if Leibniz had paid
more attention, he would not have used the same symbol for two

° LSB, 1I, 2, 21 June 1677, Leibniz to Oldenburg, p. 176, lines 15-17. Hess, ‘Zur
Vorgeschichte’, publishes several important manuscripts. It is doubtful whether Leibniz
understood the issue of separation of variables as clearly as Johann Bernoulli; see his letter
to Leibniz of 9 May 1695, LMG, 3, p. 138; Johann Bernoulli, ‘Modus Generalis
Construendi Omnes Aequationes Differentiales Primi Gradus’, AE Nov. 1694, p.
435=JBO, 1, p. 123. E. Grosholz, ‘Two Leibnizian Manuscripts of 1690 Concerning
Differential Equations’, Historia Mathematica, 14, 1987, pp. 1-37.
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completely unrelated constants, or forgotten a sign or a constant. Leibniz
obviously had not appreciated the importance of parameters in the new
mathematics. These problems mark the transition from geometry and
proportions to the new mathematics of differential equations, where a
sign or a constant factor may radically change the result. The examples
which we have seen illustrate that the transition from the former to the
latter was by no means smooth, especially with regard to the integral
calculus. Similar examples can be found in the other fields in which
Leibniz employed the calculus. Commenting on a mistake concerning a
constant factor in a differential equation concerning motion in a resisting
medium, Eric Aiton points out that ‘the difference is not material,
because Leibniz is really concerned only with proportions. Precisely this
concern, however, constitutes a line of separation between two styles of
practising mathematics. In this regard it is revealing that Leibniz rarely
makes mistakes with variables.®

At the end of his calculations in Addition 2 to De Motu Gravium,
Leibniz realized that his technique was not sufficient and tried to take
into account that the radius over which he was taking the integral did not
start from being infinitely small, since it ranged between the aphelion and
perihelion distances. Integration techniques—which we identify as the
definite and indefinite integral—were not clearly distinguished and were
more complex than Leibniz had thought.

The equations above, however, testify to Leibniz’s skill with the
technique of substitution of variable; after equation (10a), for example,
he wrote the correct substitution without hesitation. As we have seen in
Section 3.4, Leibniz had developed his calculus almost from the
beginning in a form allowing the selection of the most convenient
progression of the variable. Moreover, the differential equations
discussed in Section 5.5 are a powerfu!l illustration of the difficulties and
the importance of the transformation of language of the Principia into
the differential calculus. The attempt to find ellipses and Kepler’s third
law in the second addition to De Motu Gravium led Leibniz to write a
very general and powerful equation in which gravity depends on an
arbitrary power n of the distance from the centre. In this fashion orbital
motion was reduced to the problem of integrating differential equations

‘% Aiton, ‘Resisting Medium’, p. 264, n. 30. See also M. S. Mahoney, ‘Diagrams and
Dynamics: Mathematical Perspectives on Edgerton’s Thesis’, in J. W. Shirley and F. D.
Hoeniger, eds., Science and the Arts in the Renaissance (Washington, 1985), pp. 198-220,
on pp. 213-16; ‘Beginning of Algebraic Thought’, in Gaukroger, ed., Descartes, pp. 141-
55; ‘Infinitesimals and Transcendent Relations’. Cohen, Newtonian Revolution, sect. 1.3. E.
J. Hofmann, ‘Uber Auftauchen und Behandlung von Differentialgleichungen im 17.
Jahrhundert’, Humanismus und Technik, 15, 1972, pp. 1-40. C. J. Scriba, ‘The Inverse
Method of Tangents: A Dialogue between Leibniz and Newtor’, AHES, 2, 1963, pp. 113—
37.
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depending on a parameter. This example is representative, I believe, of
the versatility of the new methods devised and practised by Continental
mathematicians. Although Leibniz’s own attempts in De Motu Gravium
were largely unsuccessful, the efforts of several generations of
mathematicians in the eighteenth century followed the same lines and led
to the transformation of mathematics and mechanics alike. The differen-
tial equations employed by Leonhard Euler and Alexis Clairaut around
1750 in their works on celestial mechanics and especially lunar theory
bear a remarkable similarity to Leibniz’s equation of paracentric motion.
Thus the rediscovery of the fruitful radial equation, in a different
physical and mechanical context and with more sophisticated math-
ematical tools, bore important fruits."!

The differential equations discussed in Chapter 5 have important
implications for the debate on the relation between dead and living force.
The left-hand sides of equations (2a) and (3a), and (7a)—(9a), clearly
express the relation between dead force and living force with the factor ;.
Similar equations occur frequently in Leibniz’s mathematics, but in this
context they have a direct relation to mechanics; it is worth emphasizing
that dead and living force are mentioned in De Motu Gravium. Thus for
Leibniz living force could be represented as the integral of dead force
times an infinitesimal distance.!?

My interpretation of the right-hand sides of Leibniz’s equations is
more conjectural and is based on the role of elasticity discussed in
Sections 2.4, 4.3, and 5.6. We have seen that Leibniz established an
analogy between centripetal force, centrifugal force, and the force with
which a compressed elastic spring begins to restore itself. Together with
this association centred on the notion of dead force, Leibniz considered
another analogy based on living force, the height to which a body can
raise itself, and the compression of an elastic spring. Although Leibniz
does not distinguish clearly between dead and living force in this context,
it is worth emphasizing once again the central role played by elasticity in
Leibniz’s system. In the case of the differential equations above, I believe
that if a physical interpretation of the terms which we identify as
‘potential energy’ has to be given, it would be based on the elasticity of
the interplanetary aether. Although this interpretation may provide a
convincing qualitative account, quantitatively it would fail to explain the
dependence on distance. After 1688 Leibniz’s main objective was to find
explanations in terms of impacts, rather than to write equations which
could not be interpreted in this way. It is in this context that he wrote the

' This issue is discussed in D. Bertoloni Meli, “The emergence of reference frames and
the transformation of mechanics in the Enlightenment’, forthcoming in Historical Studies in
the Physical and Biological Sciences. See also chapter 9 below.

12 See the essay De Motu Gravium, lines 95-101.
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equations above; from his point of view, however, they create new
problems instead of solving old ones. With respect to the new aims
dictated by the appearance of the Principia, Leibniz’s equations were not
only mathematically unsatisfactory, in that they failed to establish a link
between paracentric motion and ellipses, but were also an additional
puzzle in physics.!?

This survey of Leibniz’s texts sets the scene for a study of the develop-
ment of his theory; as we shall see, rather than cracking new problems,
Leibniz became engulfed in an ever growing number of difficulties and
doubts.

7.4 The ‘zweite Bearbeitung’ and the cause of gravity

Talia frustra
Quaerite quos agitat mundi labor, at mihi semper
Tu quaecumgque paret tam crebros causa meatus
Ut superi voluere late.
Lucan, De Bello Civili, 1. 417-9.

This quotation concludes the introduction to the ‘zweite Bearbeitung’ of
the Tentamen. Leibniz claims that the inquiry into the causes of planetary
motion has reached such a satisfactory stage, that a poeta intelligens
would no longer say that the Gods wished them to remain hidden
forever. In spite of this optimism, Leibniz was far from satisfied with his
own theory: from the publication of the Tentamen in February 1689 until
his letter intended for Huygens of October 1690 he changed his opinion
several times on several issues.'

In Leibniz’s mathematical papers edited by Gerhardt the Tentamen of
the Acta, or published version, is printed together with a second revised
version, named by Gerhardt ‘zweite Bearbeitung’. The manuscripts
consist of a set of notes referring to the pagination of the text as it
appears in the Acta.!® Its probable date of composition is between the

3 See LMG, 4, p. 399, Leibniz to Hermann, 17 Sept. 1715.

1 Further manuscripts on planetary motion composed in Rome include Compositio
Motus ex Circulatione Circa Aliquod Centrum, et Solicitatione Paracentrica Attractionis vel
Repulsae Respectu Ejusdem Centri, LH 35, 10, 1, f. 17; the text begins from f. 17v. and then
goes on to f. 17r. It is half a folded folio. In the other half, f. 16r. contains two short texts
on planetary motion, (f. 16v. is blank). The folded folio is on Roman paper. Also f. 15—a
quarto sheet—is on Roman paper and deals with planetary motion; ‘circulatio harmonica’
and ‘motus paracentricus’ are explicitly mentioned. Moreover, Leibniz refers to twice
centrifugal conatus in the analysis of orbital motion.

5 LMG, 6, pp. 161-87. LH 35, 9, 2, f. 54-5 and 77-8 (complete set of notes); f. 62-4
and 74-6 (copies of paragraph 18 written by a secretary and revised by Leibniz); f. 60-1
(copy of paragraphs 19-30 in Leibniz’s hand).
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summers of 1689 and 1690; it is difficult to be more precise, because the
notes forming the text were written in successive stages, beginning with a
preliminary draft on the manuscript of the 7Tentamen. Additional
elements in support of my dating emerge from the following discussion.
The two versions are similar, the main differences being a long passage
which has been added to the introduction in the ‘zweite Bearbeitung’ and
a few other additions and recastings. It appears that Leibniz had three
reasons to write a revised version: he wanted to introduce a new model
for gravity; he tried to be more explicit in his definitions and calcula-
tions; he wished to present his theory in a form acceptable to the
Catholic Church. The last issue was probably related to a series of
attempts undertaken by Leibniz during the Italian journey to have the
ban against the Copernican system lifted. Thus despite their similarity,
the ‘zweite Bearbeitung’ shows a considerable shift of preoccupations
with respect to the published version. As we are going to see presently,
Leibniz’s emphasis moved from the themes of the Cassirer thesis to a
more ‘positivist’ account based on relativity of motion. These observa-
tions reinforce my interpretation of the link between the Cassirer thesis
and the dispute with Newton, and at the same time prove convincingly
the central role played by circumstances of composition on Leibniz.

The new passage in the introduction begins with a reference to
William Gilbert’s theory of magnetism, and contains reflections on the
history of the Earth and its original fluid state, as well as on the cause of
its sphericity.!® The main novelty concerns the cause of gravity, which is
no longer seen as generated by the same fluid which carries the planets,
but by a fluid emitted from a centre and propagating according to the
inverse-square law, on the example of light. This fluid penetrates the
pores of bodies interposed to it; since the bodies contain less fluid
receding from the centre than the unperturbed fluid, it is necessary that
they are pushed back towards the centre with a force depending on the
number of pores open to the fluid. On a more philosophical tone,
Leibniz claims that the inverse-square law has been found first a priori,
meaning that it has been assumed as a reasonable hypothesis.
Subsequently, it has also been found a posteriori without hypotheses, by
combining laws of nature and mathematical calculations based on
astronomical data, as he shows in paragraph 19.17

It is useful to complement the observations on the cause of gravity
discussed in the introduction to the ‘zweite Bearbeitung’ with another

16 A commentary to the revised introduction is in Koyré Newronian Studies, appendix
A. Leibniz's reflections on the formation and history of the Earth were expounded in
Protogaea (Gottingen, 1749).

7 On Leibniz’s a priori and a posteriori see Gueroult, Dynamique, chapters 3-5;
Leibniz, ‘An Introduction’, in Loemker, Papers, pp. 280-90.
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essay on the same topic. In May 1690, when Leibniz was on his way back
to Hanover, a paper of his appeared in the Acta, De Causa Gravitatis
et Defensio Sententine Autoris de Veris Naturae Legibus Contra
Cartesianos.'® As the title indicates, this paper touches upon two topics,
the cause of gravity and the response to a paper by Denis Papin on
conservation of force which had appeared in the Acza the previous year.
Bearing in mind Leibniz’s promise at the end of the Tentamen of a new
essay in which the cause of gravity and Kepler’s third law would be
better explained, we can consider De Causa Gravitatis as a continuation
of the Tentamen. Leibniz provides a possible model for gravity, although
the mechanism he adopts in the end is different. He considers a tube
filled with mercury in which a glass sphere floats. The tube is closed at
the extremities and is made to rotate in a horizontal plane around a
vertical axis passing through one of the bases. Since the fluid is very
dense, it pushes the lighter sphere towards the centre. This example
explains why bodies are heavy as a result of their density relative to the
aether. This model, however, does not account for an attraction inversely
proportional to the squared distance, nor can the circulation be
harmonic, since the fluid rotates like a rigid body. Further, in the case of
a vortex it would be necessary to consider problems arising from its
stability. Leibniz surveys alternative explanations for gravity: a vortex
rotating along the parallels would be unsuitable because gravity would
act towards the axis of rotation and not towards the centre; also a vortex
rotating along the meridians, of the same kind as that he had envisaged in
the Hypothesis Physica Nova, would be unsatisfactory because gravity
would be much stronger in the polar regions, where all meridians meet,
than at the equator, and this is contrary to experience. According to the
third alternative, gravity is caused by a fluid emitted from a centre, as in
the ‘zweite Bearbeitung’ and in a coeval letter to Antoine Arnauld.!?

In the introduction to the ‘zweite Bearbeitung’ Leibniz continues with
a passage often quoted by historians as an example of his ‘positivism’:2

What follows is not based on hypotheses but is deduced from phenomena by the
laws of motion; whether or not there is indeed an attraction of the planets by the
Sun, it is sufficient for us to be able to infer the approach and recession, that is,
the increase or decrease of distance, which would occur if they were attracted by
the prescribed law. And whether they do indeed circulate about the Sun, or do

'8 AE May 1690, pp. 228-39 = LMG, 6, pp. 193-203.

12" At the end of his Italian journey Leibniz wrote the last letter of his correspondence
with Arnauld, dated Venice, 23 March 1690. The letter and its preparatory draft contain
some observations on planetary motion. Le Roy, ed., Discours de Métaphysique, pp. 202-3.

20 LMG, 6, p. 166; Aiton, Vortex Theory, p. 132, from where the translation is taken;
Koyré, Newtonian Studies, p. 136; Cohen, Newtonian Revolution, p. 323, n. 10.,
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not circulate, it is sufficient that they change position relative to the Sun as if they
were moved by a harmonic circulation.

Although at first sight this passage bears a similarity to Newton’s
General Scholium concluding the second edition of the Principia (1713),
and in particular to his famous hAypotheses non fingo, the context in which
it ought to be interpreted is different. I consider two aspects. First, when
Leibniz claims that his theory is not based on hypotheses, he certainly
does not refer to the cause of the solicitation of gravity and to the
existence of fluids; as we have seen, these are not hypothetical, but
corollaries to the laws of nature, as he explains in paragraphs 1 and 2.
For Leibniz the existence of attraction is hypothetical, since attraction is
a purely imaginary mathematical construct to save the phenomena;
reality lies in the impulsions of fluids. His interpretation is almost the
opposite of Newton’s hypotheses non fingo; for Newton the existence of
attraction inversely proportional to the squared distance is a mathemat-
ically demonstrated fact, whereas the existence of subtle fluids is a
hypothesis: the two players could not agree on the rules of the game.
Thus it is likely that in the first part of the quotation Leibniz had Newton
in mind as a target.

The second aspect concerns Leibniz’s attempt to propagate his theory
in Catholic countries and his defence of the freedom of philosophizing.
While he was travelling through Southern Germany, Austria, and Italy,
he was actively involved in a debate with several Catholics and especially
Jesuits on the censorship of the Copernican system, in the hope of having
the ban lifted. This is the other context in which the passage above needs
to be interpreted. In the second part of the quotation Leibniz did not
have Newton in mind, but Andreas Osiander’s preface to De
Revolutionibus, Cardinal Roberto Bellarmino and the anti-Copernican
decree. Instead of claiming that his theory was merely a mathematical
hypothesis, Leibniz defended its truth on the basis of relativity of motion
and regardless of the adoption of any astronomical system. My inter-
pretation is supported by other variant readings between the two
versions. For example, in the introduction to the ‘zweite Bearbeitung’,
references to Copernicus and Epicurus are crossed out, as well as
passages such as the following: ‘the entire aether with the planets is
driven round by the motion of the Sun about its centre’. But the philo-
sophical implications of the essay have been modified too. In the Acta,
for example, Leibniz says referring to Kepler: ‘For to him we owe the
first indication of the true cause of gravity and of this law of nature on
which gravity depends’. And in the ‘zweite Bearbeitung” ‘For to him we
owe the first indication of the physical use of this law of nature on which
either gravity depends, or at least it can be described in a wonderful
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way’.2! It is likely that Leibniz revised the Tentamen after it had appeared
in the Acta, having in mind a second publication in a form acceptable to
the Catholic Church. In a letter from Florence of December 1689 to the
Jesuit Antonio Baldigiani in Rome, Leibniz asked for his opinion on an
enclosed memorandum on the Copernican system and announced his
intention to publish an essay on that topic. He may have referred to the
‘zweite Bearbeitung’.??

Further additions and recastings, apart from some minor variants,
occur in paragraphs 2, 19, 27, and 30. In paragraph 2 Leibniz adds that
since all planets move in the same direction and are very nearly on the
same plane, and similar effects have the same cause, it follows that they
are carried by fluid orbs. This seems to be a polemical usage of the
second hypothesis in book III of the Principia, where Newton states:
‘The causes of natural effects of the same kind are the same.??

The additions to paragraph 19 consist in the attempt of reformulating
the demonstration of the equation of paracentric motion without the
differential calculus. The new proof is based on the osculating circum-
ference, and contains the important point where Leibniz clarifies that the
outward conatus (‘conatus excussorius’) differs from the centrifugal
conatus (‘conatus centrifugus’), which corresponds to the case when the
curve is a circumference.?*

Some of the most interesting variants are in paragraph 27. Leibniz
stresses that the advantage of the harmonic circulation is in the agree-
ment between physical and geometrical representations. If the circulation
were not harmonic, the planet would move faster or slower than the
surrounding fluid because of its impetus conceptus. Once again, Leibniz
is concerned with the principle of inertia. Immediately below he states
the equivalence between two representations of orbital motion: the
trajectory can be seen as the resultant either of rectilinear motion (‘ac in

2 LMG, 6, pp. 147-9 and 162-3 and Bertoloni Meli, ‘Censorship’, sect. 4. The passage
from the ‘zweite Bearbeitung’ reads: ‘Nam ipsi primum indicium debetur usus physicis
huius naturae legis, a qua vel pendet gravitas, vel saltem mirifice illustratur’.

22 LMG, 6, pp. 145-7n., and Bertoloni Meli, ‘Censorship’, sections 3 and 4, where [
date the letter and identify the addressee. Gerhardt erroneously associates this letter with
the published version of the Tentamen, not with the ’zweite Bearbeitung’. Leibniz,
Vorausedition zur Reihe VI, 1989, Faszikel 8, pp. 1754-62.

23 The Hypotheses {Regulae philosophandi in the later editions), all mentioned in
Pfautz’s review, are discussed in Koyré, Newronian Studies, chapter 6. 1. B. Cohen,
‘Hypotheses in Newton’s Philosophy’, Physis, 8, 1966, pp. 163-84. See also KGW, 3,
Astronomia Nova, p. 236: ‘Est siquidem axioma per universam philosophiam naturalem:
eorum, quae simul et eodem modo fiunt, et easdem ubique dimensiones accipiunt, alterum
alterius causam aut utrumque ejusdem causae effectum esse.

2 LMG, 6, p. 178: ‘Nam conatus centrifugus, ut supra diximus [paragraph 10], est
species tantum simplicissima conatus excussorii, cum scilicet motus est circularis. It is
useful to contrast this careful distinction with the less sophisticated treatment in De
Conatu (Section 5.3 above).
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vacuo’) and of the attraction of gravity; or of circular harmonic motion
and of paracentric motion. This equivalence accompanies Leibniz’s
theory from a very early stage, namely from Inventum a me est and
especially De Motu Gravium. The awareness of the existence of two
equivalent mathematical representations of orbital motion is one of the
most characteristic aspects of Leibniz’s theory. It is useful to focus on
this aspect.

B

Fig. 7.1 Equivalent decompositions of orbital motion.

An infinitesimal arc PQ of an orbital trajectory can be decomposed in
an infinite number of ways. For example one can consider the tangent PR
to the curve, and the deviation RQ); or alternatively radial motion PC
and circular motion CQ. In the first case the trajectory results from recti-
linear inertial motion PR and central attraction RQ; in the second case
the orbital path results from a circular motion CQ and radial motion CP.
For Leibniz this equivalence could be resolved on a physical level by the
existence of a vortex.

In the conclusion of the same revised passage, Leibniz makes an
interesting remark on the relation between mathematics and natural
philosophy. He states that the preceding geometrical constructions do
not occur with absolute geometrical precision because of the mutual
action among the planets and indeed the bodies of the universe. Nothing
has ideal geometrical of dynamical properties; it is sufficient that matter
does not behave too differently from our limited representations. Here
the expression ‘proprietates Dynamicae’ contains one of the first occur-
rences of the new term.
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Lastly, in paragraph 30 Leibniz alters the conclusion and refers to
cometary paths, leaving the question whether they are closed, hyper-
bolic, or parabolic to further investigations. He maintained a very
cautious attitude to comets—so difficult to explain in his vortex theory—
for many years, until the Illustratio Tentaminis and Theodicy.?®

7.5 The Excerpts from the Principia Mathematica

Further manuscripts dating from Leibniz’s stay in Rome include the two
sets of Excerpts from the Principia Mathematica. Leibniz focused on
three areas: the concept of the infinitely small; the notion of force in
connection with infinitesimal velocities and accelerations; the existence
of the aether and of a vortex carrying the planets in connection with the
cause of gravity.

With regard to the infinitely small, Leibniz reconsidered lemma 11
and added some comments which highlight the differences between his
own and Newton’s notions and practice. In the demonstration that the
subtense of the angle of contact is ultimately as the square of the
subtense of the bounding arc, Newton stated that one extreme of the arc
approaches right up to the other extreme. Leibniz objected that in this
case they would coincide: in his opinion it should be said that they
approach until they form an arc infinitesimal of the first order which
differs incomparably from a straight line. The relevant sentences in the
concluding scholium were also excerpted. Newton explained that with
his method of first and last ratios he did not consider velocities or
quantities before they vanish, or after they vanish, but with which they
vanish. Leibniz’s attention was also caught by Newton’s statement that
whenever he mentions least, evanescent or last quantities, he does not
understand them to be determinate, but always diminished without end.
Whereas Newton’s least quantities become vanishingly small and occur
only in finite ratios, Leibniz’s differentials are infinitely small but not
vanishing, and behave in the realm of the infinitely small as variables do
for ordinary magnitudes. His observations on lemma 11 were generally
of superior quality than the corresponding ones in the Marginalia, where
he had stated that Newton’s demonstration was valid only in the special
case of the circumference. The unambiguous statement in the Excerpts
that the arc of the curve can be taken as the arc of the osculating circle,

25 LMG, 2, p. 54, Leibniz to Huygens, autumn 1690; Theodicy, par. 245; in Illustratio
Tentaminis, LMG, 6, p. 266, Leibniz adds the following considerations: ‘Sed eo licet
supposito verisimile alicui fortasse videbitur, contingere in his vorticibus, quod in aquarum
circulis quod diversi lapilli faciunt simul in aquam injecti, aut diversi simul soni suis
ondulationibus eundem aeris locum permeantes, ubi alter alterum non turbat.’



162 Leibniz’s theory and its development

and other pertinent observations, show that by 1689 Leibniz had come
to accept the substance of lemma 11 with its corollaries.26

Leibniz confronted Newton’s statements on force in lemma 10 and
proposition 6, which we examined briefly in Section 4.2. The former
states that the spaces traversed by a body urged by a regular force at the
beginning of motion are proportional to the squares of the times, and is a
generalization of Galileo’s law of fall. Unlike the Nofes, where lemmas 9
and 10 were severely criticized, here they are transcribed without critical
comments, as if Leibniz had come to accept them. Indeed, lemma 10 is
employed in proposition 6, which was also accepted by Leibniz, though
in a peculiar fashion. As we have seen in Section 4.2, this fundamental
proposition proves that the centripetal force retaining a body in its orbit
is directly as the vanishing deviation from the tangent to the curve, and
inversely as the square of the area of the focal sector swept out by the
radius; this area is proportional to the time required to traverse the
corresponding arc, for Kepler’s law. It is worth considering Leibniz’s
struggle with this passage in more detail by taking into account the
evolution of his thought from the Marginalia. On page 45 of the
Principia, in the demonstration of proposition 6, lemma 10 is mentioned
in the first line. In the Marginalia Leibniz commented: ‘I doubt lemma 10’
(‘In lemmate X adhuc haereo’). The text of Newton’s demonstration
reads (see Fig. 4.2): “The nascent line-element QR is, given the time, as
the centripetal force (by Law 2) and given the force, as the square of the
time (by Lem. 10)’. Leibniz altered this passage in the following way:
‘The nascent line-element QR is, given the time, as the centripetal
velocity (by Law 2) and given the velocity, as the time (by Lem. 10). (My
emphases.) Subsequently he systematically changed ‘quadratum
temporis’ into ‘tempus’. This is the reason why a later reference by
Newton to the corollary to proposition 6 is marked by Leibniz with the
words ‘error ibi’. The corollary states that, given an arbitrary curvilinear
figure and a centre of force, the law of centripetal force can be found by
computing the ratio of the deviation from the tangent to the square of the
area swept out by the radius—or to time squared.?’” By and large, the
Marginalia predate the Tentamen. We have seen that Leibniz conceived a
curve as a polygon composed of infinitely many first-order infinitesimal
sides, and that this representation requires instantaneous impulses at
each vertex of the polygon and velocities, not accelerations. This is a first

3 Exerpts, pp. 480-1 and 484: * Mirum quod haec dicantur ultimo rationem habere
cum coincidant, sed respondeo revera non coincidere, cum formant arcum infinite parvum
primi gradus, qui a recta non differt nisi incomparabiliter. Et res redit ad meam
aestimationem de circulo osculante.’ See Sections 3.4 and 5.2.

27 Marginalia, M 44 and M 45 A. The translation is based on NMW, 6, p. 133. The
words ‘error ibi’ are in Marginalia, M 48, line 32.
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partial explanation of Leibniz’s interpretation. Secondly, although in
proposition 6 Newton used a continuous curve and accelerations, he
referred to the second law of motion, where force appears to be
proportional to an impulse, not to acceleration. No doubt this ambiguous
reference also contributed to Leibniz’s reading.

The situation changed—partially, at least—after the autumn of 1688.
In fact, in paragraph 19 of the Tentamen Leibniz proved that the second-
order infinitesimal spaces traversed by a body acted upon by paracentric
solicitation or gravity are proportional to the squares of the differentials
of time. One may wonder at this point how Leibniz could reconcile this
result, which seems to require accelerations, with his views that solicita-
tions are as infinitesimal velocities. Although he did not discuss this
matter in detail, from some brief observations he seemed to suggest that
the two interpretations were compatible because the element of time dr is
constant. Recalling the marginal role given to constants, we can figure
out why in his mind the problem did not arise. One may add that Leibniz
could write the equation of paracentric motion in a form involving time
because of Kepler’s area law. In that equation, however, the second-
order differential of the radius ddr is equal to the difference between
two terms which—taking into account the physical dimension of
parameters—must also be second-order infinitesimal lengths. Thus, as in
the calculation of central solicitation in Section 4.2, Leibniz’s equation of
paracentric motion can be reasonably understood in terms of infinit-
esimal velocities. In the FExcerpts Leibniz followed an interpretation
derived from the Tentamen. Newtonian force is taken to be proportional
to infinitesimal velocity, which in its turn is proportional to time squared:
‘The space QR is always as the centripetal force or velocity and (time,
crossed out) the square of time. Once again, Leibnizian mechanics is
based on the refusal to take accelerations into account. Significantly,
while transcribing proposition 6, he started by writing: ‘Aestimat vim
percussionis’, swiftly substituting the last word with ‘centripetam’. Thus
Leibniz thought that Newtonian force could be rendered as an infinit-
esimal velocity which, as this slip suggests, was due to an infinitesimal
impact.?®

Leibniz hardly missed a passage on vortices and fluids. As we have
seen in Section 5.2, he transcribed from the general scholium to proposi-
tion 40, book II, that the resistance to pendular motion due to the internal
parts of a body is utterly negligible with respect to the resistance due to
its surface; this consideration led Newton to doubt the existence of a

8 Excerpts, pp. 481 and 485-6: ‘Spatium QR semper est in ratione vis centripetae seu
celeritatis et (temporis, crossed out) quadrati temporis.’ In Marginalia, M 48, lines 33-4,
Leibniz tried to reconcile his own views with Newton’s by considering that the element of
time is constant.
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subtle fluid penetrating all bodies. In corollary 3 to proposition 6, book
I, Newton claimed that a vacuum is necessarily given. Leibniz’s
immediate comment was that in this way gravity can only be explained in
terms of incorporeal operations.

In propositions 52 and 53 and their respective scholia at the end of
book II, Newton claimed that planets cannot be carried by vortices for
several reasons. Newton’s shaky analysis of vortical motion in proposi-
tion 52 alleged that ‘If a solid sphere, in a uniform and infinite fluid,
revolves about an axis given in a position with a uniform velocity . . . the
periodic times of the parts of the fluid are as the squares of their
distances from the centre of the sphere’ Proposition 53 states that
‘Bodies carried about in a vortex, and returning in the same orbit, are of
the same density with the vortex, and are moved according to the same
law (as to velocity and direction of motion) with the parts of the vortex.
Therefore, since planets should follow exactly the same motion as the
vortex, and the vortex ought to rotate with a period proportional to the
square of the distance from the centre, planets could not obey Kepler’s
third law. Further, from Kepler’s second law, planets move more swiftly
in perihelion than in aphelion; in perihelion, however, according to the
laws of mechanics, the vortex with its planets would have a slower
motion, because planets move in a wider space. Newton’s conclusion is
that ‘the hypothesis of vortices is utterly irreconcilable with astronomical
phenomena, and rather serves to perplex than explain the heavenly
motions.” Leibniz excerpted these passages adding an interesting remark
in the margin. He claimed that at the beginning of section 11 Newton
stated that he was ‘considering the centripetal forces as attractions;
though perhaps in a physical strictness they may more truly be called
impulses.” However, since there is no impelling matter, it is not clear by
what heavy bodies should be impelled.?*

I wish to recall a further passage from book II, proposition 23, where
Newton studied elastic fluids and gave a mathematical explanation of
Boyles’ law. The proposition states:

If a fluid be composed of particles fleeing from each other, and the density be as
the compression, the centrifugal forces of the particles will be inversely propor-
tional to the distances of their centres. And, conversely, particles fleeing from
each other, with forces that are inversely proportional to the distances of their
centres, compose an elastic fluid, whose density is as the compression.

The conclusion of the following scholium is also worth quoting:*°

But whether elastic fluids do really consist of particles so repelling each other, is

2% Excerpts, pp. 482 and 487; Principia (Motte and Cajori), pp. 164 and 387-96, esp.
pp. 387,394, 396.
M Principia (Motte and Cajori), pp. 300 an 302.
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a physical question. We have here demonstrated mathematically the property of
fluids consisting of particles of this kind, that hence philosophers may take
occasion to discuss that question.

As 1. Bernard Cohen has convincingly shown, the necessary and
sufficient reasons regarding Boyle’s law provided by Newton involve a
hypothetical assumption: the gas must be composed of particles
endowed with a repulsive—or centrifugal, as Newton called it—force.
Few philosophers were better placed than Leibniz to grasp at once the
difference between mathematical constructions and physical reality. The
words fingi potest inserted in the Excerpts referring to Newton'’s repulsive
force clearly highlight that Leibniz did not take the force to be real. The
problems in this analysis of the elasticity of fluids are analogous to the
issue concerning the cause of gravity. From Leibniz’s perspective, in both
cases Newton was playing the virtuoso mathematician while avoiding the
real physical and metaphysical issues.?!

Lastly, Leibniz excerpted from page 480 that the heavens must be
devoid of any resistance, otherwise the motion of comets would be
perturbed by planetary orbs. As we have seen in the preceding section,
Leibniz referred to comets in the conclusion of the ‘zweite

Bearbeitung’.*?

7.6 The final version of the theory

In a letter intended for Huygens of October 1690 Leibniz proposed
further changes to his theory and announced a new essay on planetary
motion. Gerhardt tentatively identified this essay as the Tentamen de
Physicis Motuum Coelestium Rationibus, but the editors of Huygens’s
works have rightly disputed his identification on the grounds that letter
and essay contain no common elements.®® The similarity in contents
between the letter to Huygens and the manuscript essay De Causis
Motuum Coelestium suggests that this was the text meant by Leibniz and
thus places its date of composition around autumn 1690.

In the letter Leibniz wrote that while admiring the beautiful things
contained in the Principia Mathematica, he could not understand

31 Excerpts, p. 482: ‘Si fluidi elastici vis sit compressioni proportionalis fingi potest esse
in partibus vim se fugendi distantiis reciproce proportionalem. (My emphasis.) Principia,
first edition, pp. 301 and 303; Motte and Cajori, pp. 300 and 302. Cohen, Newronian
Revolution, sect 3.3.

32 Excerpts, p. 483: ‘Coeli resistentia destituuntur alioqui cometae turbarentur ab
orbibus planetarum.

3 HOC, 9, pp. 521-7, on p. 526, n. 16; LBG, pp. 611-13. Despite Huygens’s insistence,
Leibniz never sent this letter: LMG, 2, pp. 41, 46, 49, 64, 68.
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Newton’s ideas on the origin of gravity. According to Newton, gravity
seemed to be an incorporeal virtue, and this was very different from the
explanation given by Huygens in his Discours de la Cause de la Pesanteur,
the treatise published in 1690 together with the Traité de la Lumiere
which Leibniz had just received from its author.

After correcting a few misprints in the Tentamen, installing further
slips in their place, Leibniz claimed that although Newton’s account was
satisfactory for one planet, he did not explain why all planets move in the
same direction and on the same plane, exactly as the satellites of Jupiter
and Saturn do. A similar argument, which is presented as one of the
reasons why Leibniz wanted to maintain vortices, is in De Causis
Motuum Coelestium.>*

Leibniz then proposed two alternative explanations for gravity. First,
the cause of gravity could be a fluid emitted from a centre that
propagates according to the inverse-square law, on the analogy of light.
This alternative is also mentioned in De Causis Motuum Coelestium,
although in both texts it occupies an ancillary position.**

The second proposal, which Leibniz discusses in both texts at far
greater length, is that each aether shell has the same quantity of power or
living force, hence the square of velocity is inversely proportional to the
radius.?® In the letter to Huygens there follow two corollaries. The first
states that the squares of the revolution times are proportional to the
third power of the distances, in accordance with Kepler’s third law. The
second corollary states that since centrifugal endeavours are
proportional to the square of velocity over distance, they are also
inversely proportional to the square of the distance, as they should be.
Both points are referred to in De Causis Motuum Coelestium, where
Leibniz is more explicit about the second; since in the ellipse gravity is
inversely proportional to the square of the distance, and gravity results
from the centrifugal conatus of the rotating aether, if this were inversely
proportional to the third power of the distance we would have a

* LH 35, 10, 1, f. 1 and 3; f. 3v.: ‘Quoniam manifestum erat planetas in easdem partes
ferri circa solem, et propemodum in eodem plano incidere ordine quodam in planorum
declinationibus . ..’ Similar reasonings can be found in the ‘zweite Bearbeitung’, LMG 6,
pp. 166-7. Kant discussed the same problem in the Allgemeine Naturgeschichte und
Theorie des Himmels (Konigsberg and Leipzig, 1755).

3 Ib., f. 3v. in marginal note: ‘Memorabile est gravitatis vim decrescere ut lucis,
perinde ac si radiis quibusdam ex centro radiante eductis corpus ad descendendum
solicitaretur.’

3 HOC, 9, p. 525 and LH 35, 10, 1, f. 3v.: ‘Idque rationis est etiam hac lege harmonica
fieri, ut gyri majores sint aequales potentia minoribus, seu ut velocitatum quadrata seu
potestates sunt harmonicae hoc est disantiis a centro reciproce proportionales.” Since
power is proportional to the square of velocity times quantity of matter, matter is
proportional to distance in order for the powers of the aether shells to be equal.
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contradiction.’” This crucial observation is meant to amend the result
stated in paragraph 13 of the Tentamen, where centrifugal force was set
inversely proportional to the third power of distance from the centre as a
consequence of the harmonic circulation. According to Leibniz, the new
dependence on distance is more satisfactory because gravity and
centrifugal force act together, but since gravity is inversely proportional
to the squared distance, centrifugal force should also follow the same
law. This erroneous correction is probably related to the Principia
Mathematica, proposition 11, book I, where it is proved that if a body
revolves along an ellipse, the centripetal force with respect to the focus is
inversely proportional to the squared distance.

Leibniz was aware of the existence of two different motions for the
vortex in his second explanation for gravity: one is the simple harmonic
motion explaining the area law for a single planet; the other is the
harmonic motion secundum potentiam, explaining Kepler’s third law for
a planetary system and the ‘right’ dependence on distance of centrifugal
force.?® Thus, it is necessary to consider two independent vortices: one
generates gravity and is not itself heavy; the other carries the planets
around the Sun. The two aethers were chosen alternatively according to
the result sought.>®

I know no other case in Leibniz’s theory of planetary motion of a
virtually complete identity of views as in the two texts I have compared.
This suggests that De Causis is the text referred to in the letter to
Huygens. The style of the essay resembles some of the works by Kepler,
especially the Astronomia Nova. We find the genesis of his own ideas, the
doubts and the mistakes, frustration and eventually the triumph.
Leibniz’s account of the evolution of his theory provides us with a retro-

3 Ib,, f. 3r.: ‘Nam cum aetherem secundum legis secundae explicationem posuerimus
homogeneum, aether autem homogeneus harmonice curculans habeat vires centrifugas
cubis distantiarum a centro reciproce proportionales; sequeretur planetam detrudi
gravitationibus quae sint etiam cubis distantiarum a sole reciproce proportionales. Ergo
non posset fieri in ellipsi, ubi gravitationes sunt reciproce ut quadrata distantiarum’

3 HOC, 9 p. 526: ‘La circulation harmonique se rencontre dans chique corps a part,
comparant les distances differentes qu’il a, mais la circulation harmonique en puissance
(ou les quarrés des velocités sont reciproques aux distances) se rencontre en comparant
des differens corps, soit qu’ils décrivent une ligne circulaire, ou qu'on prenne leur moyen
mouvement . .. pour l'orbe circulaire qu’ils décrivent” LH 35, 10, 1, f. 3v.: ‘Manet etiam
verum absolute quidem circulationes aetheris, ipsiusque aurae planetas deferentis esse
harmonicas secundum potentiam ... In orbibus tamen deferentibus seu interceptis inter
aphelium et perihelium, circulationes aurae deferentis fieri harmonicas secundum celerita-
tem.’ The same explanation is adopted in ‘Illustratio Tentaminis’ and ‘Excerptum ex
Epistola’, LMG, 6, pp. 267-8 and 276-7 respectively.

3 HOC, 9, p. 526: ‘Cependant je distingue I'ether qui fait la pesanteur . .. de celuy que
defere les planetes, qui est bien plus grossier” LH 35, 10, 1, f. 3v.: ‘Is autem est causa
gravitatis, non aura illa crassior seu spongiosior in circulis latitudinum mota quae ipsa est
gravis . ..
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spective description of the problems he encountered. It is unusual to find
Leibniz writing in this way: ‘I could assign sufficient causes to any rule
[Kepler’s law], but I was in trouble with their conjunction, until at last a
wonderful reasoning to reconcile them appeared’; ‘But the comparison
between the different planets disturbed exceedingly these circles of mine
when I began investigating the cause of the second rule’; ‘Moreover,
having worked much in vain, without being able to abandon the hope of
explaining planetary motions by means of the motion of the aether, .. ;
‘But here a new difficulty appears, which might less easily drive me to
despair of success whilst I am engaged in these matters’; lastly the bold
opening, ‘Eventually after many pains I can well exclaim the Archi-
medean etjonxa having found the true causes of planetary motion.” 4

We have now charted the development of Leibniz’s theory over a
period of two years. The most striking feature is that although it is
possible to identify a progressive line of thought and a growing aware-
ness about the new problems involved at each stage, few solutions
satisfied Leibniz in a definitive way. He seemed to be involved in a
continuous process of revision in which the only constant elements were
the existence of fluids generating gravity and carrying the planets, and
Kepler’s laws. Everything else was questioned, from the mechanism
generating gravity, to the number of vortices, from the law of centrifugal
force to the inverse-square law—which Leibniz abandoned in De Motu
Gravium while trying to solve the inverse problem of central forces, and
soon afterwards accepted again after a more thorough study of page 50
from the Principia.' His uncertainty about the role of centrifugal force
inversely proportional to the third power of the distance was a major
problem which undermined his belief in his own equation of paracentric
motion.

40 1H 35, 10, 1, f. 1r.: ‘Cuilibet regulae separatim facile assignabam causas sufficientes,
sed haesi in earum conjunctione, donec tandem conciliandi ratio pulcherrima sese aperuit’;
f. 1v.: ‘Sed hos circulos meos mirifice turbavit comparatio diversorum planetarum inter se
quando regulae secundae causam investigare aggressum sum’, f. 3r.: ‘Cum autem multa
frustra molitus essem, nec tamen spem deserere possem explicandi planetarios motus per
motum aetheris, . . .; f. 3r.: ‘Sed hic sese aperit nova difficultas, quae minus in his versatum
ad desperationem successus facile adigeret’; f. 1r.: ‘Tandem post multa agitata Archi-
medeum £¥pnxa mihi exclamare posse videor, veris motuum planetariorum causis
repertis, ...

41 1, Bernard Cohen has suggested that at around 1700 Leibniz was even prepared to
give up planetary ellipses and accept the revised form put forward by Giandomenico
Cassini. See his ‘Leibniz on Elliptical Orbits: As Seen in His Correspondence with the
Académie Royale des Sciences in 1700°, Journal of the History of Medicine and Allied
Sciences, 17, 1962, pp. 72-82. However, compare LMG, 3, pp. 497-500:498, Leibniz to
Johann Bernoulii, 7 June 1698: ‘Interroga, quaeso, Dominum Varignonium de progressu
Astronomiae apud ipsos, ..., et quid sentiatur de lineis, quas Dn. Cassinus voluit
substituere Ellipsibus Keplerianis, quarum tamen novarum linearum causas Physico-
Mechanicas dare difficile erit, quas nobis utique facilius praebent Ellipses.
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From the texts we have considered we can identify a crucial common
theme which guided Leibniz’s attempts from a very early stage, namely
the awareness that there exists a plurality of mathematical representa-
tions of phenomena. In De Conatu and Inventum a me est Leibniz stated
that orbital motion can result from a composition either of inertial
motion along the tangent and of gravity along the radius, or of rectilinear
motion along a rotating ruler and circular motion of the ruler; in
Repraesentatio Aliqua and a series of related manuscripts he adopted a
different mathematical representation which I have called ‘pseudo-
Galilean’ motion; in De Mot Gravium he realized that different
decompositions of motion imply different paracentric endeavours;
commenting on Newton’s analysis of elastic fluids in proposition 23,
book II, Leibniz stressed the mathematical and fictitious character of the
demonstration; in the letter intended for Huygens of October 1690,
Tentamen de Systemate Universi, and ‘zweite Bearbeitung’ he explicitly
acknowledged the existence of a plurality of representations with regard
both to mathematics and to the endeavours involved. His awareness
about this aspect reinforced his belief that mathematics cannot dictate
physics and metaphysics, and guided him through a successful and
spectacular case of plagiarism. If the existence of several mathematical
descriptions of the same phenomena was widely accepted in the
seventeenth century, nobody else had considered this issue in relation to
the Principia. The reading of Newton’s masterpiece, from the Notes,
where Leibniz immediately recorded the words vacuum necessario datur,
to the Excerpts, where he missed virtually no passage on vortices, was a
crucial factor in the reorganization of his priorities and shaping of his
ideas and strategy. The Cassirer thesis becomes a powerful instrument in
understanding Leibniz’s reading of Kepler and ideas about the role of
laws of nature, mathematics, and physical explanations. In the dispute
about the world system between Newton and Leibniz, the issue of
equivalence of their mathematical theories cannot be separated from
priority claims and from Leibniz’s creation of a highly ingenious new
theory and adoption of the Keplerian programme.

Even from the limited selection of texts considered in this work it is
clear that the Cassirer thesis occupies a central position in Leibniz’s
response to Newton, not necessarily, though, in other texts. Indeed, a
general conclusion which can be drawn from this work is precisely the
difficulty in interpreting Leibniz’s texts. Of course, similar problems
affect the whole spectrum of historical researches, although in this case
they are magnified by Leibniz’s extraordinary range of activities, by the
at times unpredictable intersection between different fields of knowl-
edge, and by his habit of adopting the terminology of his audience or
correspondent. Instances of these difficulties can be found in the
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material presented so far, and here I wish to reconsider some of them.
Take, for example, Kepler’s role. The German astronomer was the
unchallenged protagonist of the published version of the Tentamen
because of his discovery of the laws of planetary motion and conflation
of mathematical astronomy and physics. In the Tentamen de Physicis
Motuum Coelestium Rationibus, however, Kepler was portrayed purely
as a mathematical astronomer and his role greatly diminished. In the
‘zweite Bearbeitung’ of the Tentamen he regained a dominant position,
though his three laws and explanation of gravity had to be reinterpreted
following Leibniz’s alternative account of the cause of gravity and
attempt to avoid religious censorship. If one considers that these three
essays were written in the space of a few months, and that they represent
a fragment of Leibniz’s production during those months, the difficulty of
providing broader interpretations emerges immediately. Even the task of
providing a picture going beyond some general guidelines of his views
about such issues as space, time, and motion appears to be a formidable
one. An adequate investigation would require a detailed study of
intellectual reflections, circumstances of composition, rhetorical strategy,
and audiences in very different situations. They include memoranda on
relative motion aimed at having the anti-Copernican ban lifted, debates
with Huygens, and attempts to win the Princess of Wales’s support in the
controversy with Samuel Clarke and the Newtonians. If this book were
to stimulate fresh readings of those texts, one of its aims will have been
achieved.*?

42 Interesting analyses of the Leibniz-Clarke correspondence can be found in S. Shapin,
‘Of Gods and Kings: politics and the Leibniz-Clarke dispute’, Isis, 72, 1981, pp. 187-215.
S. Schaffer, ‘Occultism and Reason’, in A. J. Holland, ed., Philosophy, Its History and
Historiography (Dordrecht, 1985), pp. 117-43, esp. sect. 6.
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A REAPPRAISAL OF NEWTON’S
ITINERARY

8.1 Introduction

The analysis of the formation of Leibniz’s techniques and ideas provides
us with stimulating material for re-examining Newton’s itinerary towards
the Principia and his criticism of the 7entamen. Their rival
interpretations are mutually clarifying in many respects, such as the
problem of the infinitely small in mathematics, the notion of acceleration,
and the analysis of orbital motion.

The background and development of Newtonian mechanics have been
investigated in great detail over the last few decades, especially after the
works by A. Rupert Hall and Marie Boas Hall, John Herivel, Richard
Westfall, I. Bernard Cohen, and Tom Whiteside. Although Newton retro-
spectively dated his discovery of universal gravity back to the 1660s, and
although he did work on problems such as curvilinear motion or the
motion of the Moon at that time, recent scholarship has reached a
consensus in dating the crucial period during which Newton’s mature
ideas emerged between 1679 and 1684. In 1679 Robert Hooke, having
become Secretary of the Royal Society, restarted a correspondence with
Newton and stimulated him to work on curvilinear motion; in 1680 and
1681 John Flamsteed and Newton exchanged some important letters on
comets; lastly, following Edmond Halley’s visit to Cambridge in August
1684, Newton was stimulated to compose the fundamental tract De motu
corporum in gyrum, the first step on the way to the Principia.

In the first part of this chapter I present a reappraisal of the crucial
phase in the formation of Newton’s theory. After reviewing in Section
8.2 some typical seventeenth-century approaches to curvilinear motion,
Section 8.3 focuses on the debate between Newton and Hooke, and
Newton’s later views on this matter. Current historiography tends to
consider Hooke’s idea that a curvilinear path results from rectilinear
motion combined with central attraction, without centrifugal force, as
obviously correct and as the only sensible solution to the problem. My
contention is that these two assumptions cannot be accepted. Hooke’s
interpretation had no privileged status with respect to Huygens’s; Hooke
himself in the 1660s and in 1680 took into account an outward tendency
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from the centre after he had already formulated his ‘correct’ theory of
curvilinear motion. Indeed, after 1679 even Newton still referred to
centrifugal forces, although he had allegedly already carried out the
calculations following Hooke’s advice and established a link between
ellipses and an attractive force inversely proportional to the square of
the distance. I will show that up to 1680 Newton conceived centrifugal
force in orbital motion to counterbalance attraction, being at times
smaller and at times greater than it. From the mid-1680s onwards
centrifugal and centripetal forces in orbital motion were set equal and
opposite for the third law of motion. My second objection concerns the
tacit assumption that if one solution is ‘right’, different solutions must
necessarily be ‘wrong’. In particular, the idea that there is an imbalance
between opposing centripetal and centrifugal forces along the radius has
been criticized for no clear reason.

These observations lead us to Section 8.4, where I examine Newton’s
onslaught on Leibniz’s theory. The Tentamen pointed to a different
theory of curvilinear motion. As Eric Aiton has shown, Newton’s
attempt to demolish Leibniz’s work on a mathematical ground was
unsuccessful. Indeed, I hope to show that Newton’s criticisms concerning
the analysis of curvilinear motion involved ideas differing considerably
from more modern formulations of mechanics; his investigations and
ideas require a careful assessment in the context of the practices of
mechanics around 1700. I recall that opening a work on lunar or
perturbation theory of the late 1740s by Euler or Clairaut, it is not
difficult to realize that Leibniz’s equation of paracentric motion was a
reasonable and fertile way of tackling the problem. A comparative
investigation of the formation of Leibniz’s and Newton’s theories reveals
more questions than one would have expected.

8.2 Continental and English approaches to curvilinear motion

In Chapters 1 and 2 we have seen that Continental mathematicians,
notably Descartes, the member of the Florentine Accademia del
Cimento, Borelli, and Huygens shared common ideas about curvilinear
motion. Despite some differences on specific points, they believed that
curvilinear motion results from the interplay of a tendency towards a
centre and an outwards tendency due to the rotation of the body and to
its rectilinear inertia. These explanations relied on a number of typical
analogies: the bucket full of water with several bodies floating in it, used
for example by Kepler, Descartes, and Huygens: the rotating sling,
discussed by Descartes and several others including Newton; the rotating
ruler, used by Kepler, Descartes, Borelli, and Leibniz; the pendulum,
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adopted by Borelli and Huygens. These explanations were not
necessarily mutually exclusive, but rather complementary, and often one
author discussed several of them in the same work. In his study of the
Medicean planets, for example, Borelli conceived orbital motion as the
resultant of a circular and a radial component. While studying the latter,
he imagined radial motion to take place on a rotating lever moved by the
rotation of the central body, on the example of Kepler. In the same work
Borelli also tried to establish a quantitative relation between orbital
velocity and distance from the centre by means of the analogy with the
pendulum. Following the priority dispute about the invention of the
pendulum clock between Huygens and the Accademia del Cimento in
Florence, which defended Galileo’s rights, pendular oscillations
occupied a fairly prominent position on the Academicians’ agenda.
Hence it is not surprising that Huygens also employed the pendulum in
his study of centrifugal force on the Earth and in orbital motion, though
in a much more sophisticated way than Borelli.!

Descartes, Huygens, and their contemporaries did not consider
centrifugal force as dependent on the choice of a rotating reference
frame, as is commonly done in more modern formulations of mechanics.
In order to understand the practice of mechanics in the late seventeenth
century it is essential to grasp this point. Modern formulations—mis-
leadingly named ‘Newtonian’—take for granted that there exists a
plurality of alternative representations of curvilinear motion: if the
reference frame is inertial, and more precisely if it does not rotate,
centrifugal forces do not appear; if the frame rotates, centrifugal forces
arise from the art of representation, regardless of the motion which is
observed. Indeed, even around 1700 these two representations—
although for us they are mutually exclusive—were commonly conflated in
the following way: a body moving along a curvilinear path endeavours to
escape along the tangent and therefore away from the centre. Thus
centrifugal force was associated with rectilinear inertia and the curvi-
linear motion of the body, as opposed to that of the frame of reference.
As a result, inertial motion was considered together with attractive and
centrifugal forces in a way which appears to be inconsistent to the
modern reader. It was practice which guided mathematicians to provide
case by case solutions to the problems they were investigating. More-
over, Newton and several mathematicians after him often considered
centripetal and centrifugal forces to be related for the third law of

' On Kepler, Descartes, and Huygens, compare Chapter 1 and Sections 2.2 and 2.3
above. G. A. Borelli, Theoricae mediceorum planetarum ex causis physicis deductae
(Florence, 1666), pp. 53f. and 76f. Koyré, Revolution Astronomique, part 1II. W. E.
Knowles Middleton, The experimenters: a study of the Accademia del Cimento (Baltimore,
1971).
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motion. This approach appears to us to be plagued by conceptual diffi-
culties, such as the following two. There are several cases in which
centripetal and centrifugal forces cannot be set to be equal and opposite,
because the whole study is based on them being different. An example is
the study of the shape of the Earth, where the ratio between gravity and
centrifugal force at the equator is approximately as 300 to 1. The third
law, however, is universal and cannot be switched off depending on the
circumstances. The other difficulty concerns a different aspect of the
application of the third law. Briefly, if body A acts on body B, also B acts
on A with a reaction equal and opposite to the action. In orbital motion
centrifugal force was conceived as a reaction to gravity; however, the
reaction was not affecting the acting body, but was contained within the
body acted upon. Considering a planet, for example, one would expect
the reaction to be directed towards the body whence gravity or the
action originates, such as the sun for example. If the reaction is identified
with the centrifugal force, though, it remains constrained within the
orbiting body: A acts on B, and B reacts on itself. Although these
problems were not discussed around 1700 in this form, the present
analysis has historical significance because it emphasizes the difference
between Newton’s and later formulations of mechanics. I believe this
defamiliarization with the Principia to be essential for a more satisfactory
interpretation of its contents.?

These preliminary remarks will be referred to while analysing the
genesis of Newton’s ideas, which were significantly greatly influenced by
Descartes as well as by Borelli and Huygens. I discuss now the English
approach, namely a different way of accounting for curvilinear motion
which was then emerging on this side of the Channel, but was by no
means dominant or even widely known. Indeed, until 1679 Newton
seemed to be unaware that Christopher Wren, John Wallis, and Robert
Hooke were developing an explanation according to which rectilinear
inertia and a tendency towards a centre accounted for curvilinear
motion, whilst the outward tendency or centrifugal force did not appear
explicitly. This explanation was based on the analogy of the conical
pendulum and on the study of cometary trajectories. Until 1679 Newton
followed a theory, which he had already developed in the 1660s in the
Waste Book, along the Continental lines. In a manuscript on circular
motion dating from the late 1660s, for example, as we have seen in
Section 1.2, he hit upon the inverse-square law by combining Kepler’s
third law with the expression for an outward or centrifugal tendency.
The assumption that outward and attractive tendencies—at least for

2 Bertoloni Meli, ‘Relativization’.



Reappraisal of Newton’s Itinerary 175

orbits differing little from circles—were almost identical was implicit in
his calculations.?

The years 1664-6 turned out to be crucial in the formation of the
English approach in two respects. In 1664 Wallis and Wren examined
some of the manuscripts left by the Liverpool astronomer Jeremiah
Horrocks, who had prematurely died in 1641. As a result of their efforts,
a selection of his manuscripts was published in the Opera Posthuma
(London, 1672-8). In a letter to William Crabtree of 25 July 1638
Horrocks used the conical pendulum to explain the elliptical motion of
planets. In spite of the difference between the accounts of pendular
motion given by Horrocks in the 1630s and by Robert Hooke in the
1660s and 1670s, Bennett has convincingly argued for a connection
between them. Moreover, Wren, who belonged to the same circle with
Wallis and Hooke, had already discussed in 1661 with Christiaan
Huygens the application of the conical penduium to clocks. Hooke’s
ideas can be traced from the records of the debates at the Royal Society.
On 9 May 1666 the Society was presented a paper by Wallis on tides.
Wallis thought of modifying the Galilean hypothesis based on the
combined motion of the Earth around its axis and around the Sun, by
considering the motion of the common centre of gravity of the Earth and
the Moon around the Sun. At the following meeting, after the paper was
read, it was objected ‘that it appeared not, how two bodies, that have no
tie, can have one common center of gravity, upon which the whole
hypothesis of Dr. Wallis is founded.” Hooke replied that celestial motions
‘may be represented by pendulums’, and on 23 May he submitted his
paper ‘concerning the inflection of a direct motion into a curve by a
supervening attractive principle” Hooke further suggested that by using
two pendulums it may be possible to account for the motion of the Moon
around the Earth.*

The other area which turned out to be of crucial importance in the
formation of Hooke’s ideas is cometary motion. The appearance of a
comet at the end of 1664 stimulated Wren, Wallis, and Hooke to discuss
the matter with respect to physics, mechanics, and mathematics.
Curiously, the same comet inspired Newton to the study of astronomy in
those years. Wren and Wallis discussed the problem of finding the
position of a comet from a number of observations. The problem had
been posed by Wren to Wallis on 1 Januray 1665; the solution by Wallis

* J. A. Bennett, ‘Hooke and Wren and the System of the World: Some Points Towards
an Historical Account’, BJHS, 8, 1975, pp. 32-61. ULC, MS add. 3958(5), fols. 87, 89,
Herivel, Background, pp. 192-8. Westfall, Force, pp. 350-60.

* ‘An essay of Dr. John Wallis, exhibiting his Hypothesis about the flux and reflux of the
sea’, PT, I, 1666, pp. 263-88. T. Birch, A history of the Royal Society of London, 4 vols.
(London, 1756-7), vol. 11, pp. 89-90. Bennett, ‘Hooke and Wren’, pp. 44-7.
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is preserved at the Bodleian Library, whilst that by Wren was later
included by Hooke in Cometa, published in 1678 after the appearance
of the 1677 comet. Hooke’s work, though, was largely composed in the
late 1660s.° In the seventeenth century the areas of consensus within
cometography were very limited indeed. Setting aside theories like those
defended by Galileo in I! Saggiatore, denying that comets were real
bodies moving through the spaces above the Moon, opinions about
cometary paths ranged from the circular to the rectilinear hypotheses.
Kepler in particular defended the idea that the path was rectilinear on
the basis of metaphysical assumptions and rather rough astronomical
observations. The rectilinear hypothesis was generally regarded as a
good approximation, though, as Hooke wrote in Cometa, there were two
causes of perturbations: one was the attractive power of celestial bodies
such as the Sun or the Earth, the other was the action of a fluid vortex in
which the comet was moving. Concerning the crucial problem of orbital
motion, Hooke supposed that ‘the attractive power of the Sun, or other
central body may draw the body towards it, and so bend the motion of
the Comet from the straight line, in which it tends, into a kind of curve,
whose concave part is towards the Sun.” Bennett has convincingly argued
that ‘it is clear that through the problem of the motion of comets, Hooke
arrived at the idea of combining a rectilinear inertial motion with a
central attractive force, and he eventually explained the motion of the
1664 comet in these terms’.®

Thus the years 16646 saw the birth of Hooke’s ideas of celestial and
in general curvilinear motions. The passage from his 1674 Cutlerian
lectures with his famous three ‘suppositions’ appears as the result of an
English tradition which had matured over several years:’

First, that all Coelestial Bodies whatsoever, have an attraction or gravitating
power towards their own Centers, whereby they attract not only their own parts,
and keep them from flying from them, as we may observe the Earth to do, but
that they do also attract all the other Coelestial bodies that are within the sphere
of their activity; ... The second supposition is this, That all bodies whatsoever
that are put into a direct and simple motion, will so continue to move forward in
a streight line, till they are by some other effectual powers deflected and bent into
a Motion, describing a Circle, Ellipsis, or some other more compounded Curve
Line. The third supposition is, That these attractive powers are so much more
powerful in operating, by how much the nearer the body wrought upon is to their
own Centers. Now what these several degrees are I have not yet experimentally

> Bennett, ‘Hooke and Wren’, p. 50, n. 103. Hooke, Cometa, reprinted in Gunther, Early
Science in Oxford (Oxford, 1931), vol. 8, pp. 56-9.

¢ J. A. Ruffner, The Background and Early Development of Newton’s Theory of Comets,
Ph.D. Thesis, Indiana University, 1966, pp. 94-118 and 168-84. Bennett, ‘Hooke and
Wren’, pp. 49-60, esp. p. 58. Hooke, Cometa, in Gunther, p. 229.

7 Gunther, Early Science, pp. 27-8.



Reappraisal of Newton’s [tinerary 177

verified; but it is a notion, which if fully prosecuted as it ought to be, will mightily
assist the Astronomer to reduce all the Coelestial Motions to a certain rule,
which I doubt will never be done without it. He that understands the nature of the
Circular Pendulum and Circular Motion, will easily understand the whole ground
of this Principle.

Universal attraction decreasing in some ratio of the distance from the
centre, the idea that unperturbed motion is rectilinear and uniform, and
the circular or conical pendulum interacted in the formulation of an
account of circular motion in which centrifugal force was ignored.

8.3 Newton versus Hooke

The correspondence between Hooke and Newton in 1679-80 repres-
ented the meeting of two different approaches none of which was a priori
self-evident or even more convincing than the other. It is well known that
on 24 November 1679 Hooke asked Newton to consider what would
happen by ‘compounding the celestiall motions of the planetts of a direct
motion by the tangent and an attractive motion towards the centrall
body’. In his letter of 28 November Newton avoided the issue and
discussed instead an experiment intended to prove the diurnal motion of
the Earth by dropping heavy bodies from high places and studying their
trajectory. The ensuing discussion concerned the trajectory of the
bodies inside the hollow sphere of the Earth as well. On 9 December
Hooke claimed that he ‘could adde many other conciderations which are
consonant to my Theory of Circular motions compounded by a Direct
motion and an attractive one to a Center’ This time, in his reply on 13
December, Newton objected that Hooke ought not to overlook that if
‘gravity be supposed uniform’, a body falling inside the Earth would
‘circulate with an alternate ascent and descent made by its vis centrifuga
and gravity alternately overballancing one another” On seeing that
Newton had taken the attraction to be constant, on 6 January Hooke
specified that ‘the Attraction always is in a duplicate proportion to the
distance from the center Reciprocall’ This claim was the source of the
later priority dispute with Newton. But there is another passage in the
same letter which is of interest to us. While discussing Newton’s experi-
ment, Hooke stated that ‘the further a body is from the centre the Lesse
will be its gravitation, which I have a Long time supposed not only upon
the account of the Decrease of the attractive power but upon the
increase of the Indeavour of Recesse’. In a preliminary draft Hooke had
begun to write ‘centrifugal’; this increase was due to ‘the Circular motion
being swifter’. These quotations are revealing of the problem of identify-
ing the components of curvilinear motion. Initially Hooke considered
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rectilinear inertia and central attraction, whilst Newton, in addition,
considered a Huygensian centrifugal force opposite to gravity, at times
greater and at times smaller than it. Later Hooke talked of an ‘indeavour
of recesse’, thus following Newton’s interpretation.? Symmetrically—as
we know from his own later account—Newton seized upon Hooke’s
challenge, almost certainly adopting his correspondent’s initial sugges-
tion. He thus apparently established a link between Keplerian ellipses
and the inverse-square law. We do not know exactly what his 1680
calculation looked like; claims that a copy of that first demonstration are
extant are still controversial.®

Setting aside this issue and the exact details of that early proof, the
question I wish to address here concerns its status for Newton at the
time. My claim is not only that Hooke’s original suggestion, but also
Newton’s 1679 demonstration of the link between ellipses on the one
hand, and rectilinear inertia composed with an attraction inversely pro-
portional to the square of the distance on the other, had an unclear
status. Hooke’s suggestion was problematic and at best worth investi-
gating further with regard to physical actions and the problem of
centrifugal force. I survey briefly these two aspects.

Around 1680 Newton, like Hooke and the great majority of natural
philosophers, believed in the existence of an aether responsible for
gravity. In An Hypothesis explaining the properties of light, read at the
Royal Society on 9 December 1675, Newton presented his speculations
about the cause of gravity. He started by claiming that ‘it is to be
supposed therein, that there is an aethereal medium much of the same
constitution with air, but far rarer, subtler, and more strongly elastic. Of
the existence of this medium the motion of a pendulum in a glass
exhausted of air almost as quickly as in the open air, is no inconsiderable
argument.” We have seen in Section 5.2 that in the Principia Newton used
pendulum experiments to reach the opposite conclusion, namely that the
aether penetrating the pores of solid bodies opposes virtually no
resistance to motion. In An Hypothesis, after a discussion of the likeli-
hood that the attraction of a rubbed piece of glass may be caused by an
aecthereal wind, Newton continues:!®

So may the gravitating attraction of the Earth be caused by the continual
condensation of some other such like aethereal spirit, not of the main body of

8 NC, 2, pp. 297-313. Koyré, Newronian Studies, ch. 5. J. A. Lohne, ‘Hooke versus
Newton’, Centaurus, 7, 1960, pp. 6-52.

9 Westfall, Never ar Rest, pp. 387-8, n. 145. Whiteside, Preliminary manuscripts, pp. Xiv
and xx—xxi, n. 53.

0 Birch, III, pp. 257-305, in Cohen, Papers and Letters, pp. 177-235; quotations from
pp- 179-80 and 180-1. The pendulum experiment is also discussed in De aere et aethere,
Hall and Hall, Scientific Papers, pp. 220 and 227, dated 1673 to 1675.
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phlegmatic aether, but of something very thinly and subtilly diffused through it,
perhaps of an unctuous or gummy, tenacious, and springy nature, and bearing
much the same relation to aether, which the vital aereal spirit, requisite for the
conservation of flame and vital motions, does to air.

In a letter to Robert Boyle of 28 February 1679 Newton tried to provide
a causal explanation of gravity based on that aether. His mechanism
involved the pressure of finer and grosser particles of the aether moving
through the pores of solid bodies.!’ Lastly, in a series of propositions
relating mainly to comets and dating from approximately 1681, Newton
stated that ‘the matter of the heavens is fluid’ and that it ‘revolves around
the centre of the cosmic system in the direction of the courses of the
planets” Whether and how this matter affected the motion of celestial
bodies was not clear.!?

These reflections followed shortly after the important correspondence
with the Astronomer Royal John Flamsteed on the great comet of
1680-1. This exchange contains an interesting observation on centri-
fugal force. It is well known that initially Newton, like most of his
contemporaries, believed in the existence of two different comets. Their
correspondence ranged from observational astronomy to the analysis of
the effects of the solar vortex, from orbital dynamics to the study of the
magnetic properties of the Sun in relation to its extraordinarily high
temperature. In a draft of a letter probably intended for James
Crompton, a friend of Flamsteed and Fellow of Jesus College,
Cambridge, Newton criticized Flamsteed’s theory that the comet was
attracted while approaching the Sun and repelled while receding:!3

But all these difficulties may be avoyded by supposing ye comet to be directed by
ye Sun’s magnetism as well as attracted, and consequently to have been attracted
all ye time of its motion, as well in its recess from ye Sun as in its access towards
him, and thereby to have been as much retarded in its recess as accelerated in its
access, and by this continuall attraction to have been made to fetch a compass
about the Sun ... the vis centrifuga [in Perihelion] overpow’ring the attraction
and forcing the Comet notwithstanding the attraction, to begin to recede from ye
Sun.

1 Cohen, Papers and Letters, p. 253.

2 ULC, Add 3965(14), f. 613r.: ‘2. Materiam caelorum fluidam esse ... 3. Materiam
caelorum circa centrum systematis cosmici secundum cursum Planetarum gyrare” These
propositions were first made known by J. Ruffner in his doctoral dissertation, Newton’s
theory of comets, pp. 310-13. The statement in proposition [X] that ‘the curve is an oval if
the comet returns in an orbit, if not {the curve] is nearly a hyperbola’ (p. 312), indicates
that Newton’s manuscript follows his correspondence with Flamsteed. Moreover, prop. 16,
stating that ‘The comet descended below the sphere of Mercury’, clearly refers to the
1680-1 comet.

3 NC, 2, pp. 358-62, probably dating from April 1681, on p. 361. Cohen, Newtonian
Revolution, sect. 5.4.
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The analogy with the ideas expressed in the letter to Hooke strongly
suggests that around 1680 Newton was convinced that a body moving
along a curvilinear path endeavoured to escape from the centre. This
centrifugal force had been given a quantitative expression by Huygens in
the unpublished De vi centrifuga of 1659 and later in the Horologium
Oscillatorium of 1673, and by Newton himself in some reflections dating
from the mid-1660s in the Waste Book and in other manuscripts. In the
Waste Book Newton calculated the endeavour from the centre of a body
moving inside a hollow sphere by considering the pressure of the body
against the inner surface of the sphere. He first considered a trajectory
along a regular inscribed polygon with a given number of sides. In this
way the pressure could be calculated at the vertices of the polygon,
where the impacts of the ball with the sphere occur; then the number of
sides was increased to infinity, and the result calculated in this limiting
case. In later manuscripts Newton adopted different methods and found,
as Huygens, that for a body moving along a circumference the tendency
to escape from the centre was as the square of the velocity over the
radius. Its measure for an arbitrary curve and especially for the ellipse,
however, had not been calculated, nor was it immediately clear how this
should be done. In the continuation of his discussion in the Waste Book
Newton referred to this problem: ‘If the body b moved in an Ellipsis then
its force in each point (if its motion in that point bee given) will bee
found by a tangent circle of Equall crookednesse with that point of the
Ellipsis.'* Whether the force was directed along the radius of the
‘tangent circle’, or the radius to the centre of the ellipse, or that to one of
its foci, was not specified. Before asking this question, one may even
query whether centrifugal force can be measured in this way. Altern-
atively, one may fix a centre and a radius, and then take the component
of motion along the ellipse—or any other curve—perpendicular to that
radius; in this way the measure of centrifugal force would be equal to the
square of that component of velocity over the radius. As it happens, this
is the standard procedure in modern mechanics, since centrifugal force is
usually measured with respect to a fixed centre. In addition, as Newton’s
objection to Hooke reveals, it was by no means clear how the outward
tendency should effect curvilinear motion, or, more precisely, how the
components of curvilinear motion should be represented.

Thus around 1680 Newton’s views were broadly similar to Leibniz’s
at the end of the decade. Following Hooke’s suggestion, Newton had

14 Herivel, Background, p. 130; 1 have taken into account Whiteside’s improved
transcription in NMW, I, p. 456. Aiton, Vortex Theory, pp. 115-18. Bertoloni Mel,
‘Relativization’, sect. 2. See also the recent reappraisal of Newton’s mechanical investiga-
tions by D. T. Whiteside, ‘The prehistory of the Principia from 1664 to 1686°, NRRS, 45,
1991, pp. 11-61.
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probably provided a ‘successful’ purely mathematical explanation which
seemed to bear no relation either to shared ideas about mechanics, such
as the existence of centrifugal force, or to physical explanations concern-
ing the aether. In such circumstances it is not surprising that in 1680
Newton’s demonstration ‘failed to seize his imagination! indeed, one
may well ask how it ever did.

Newton’s purely mathematical demonstration and, even more
problematically, Hooke’s famous observation in the Cutlerian Lectures
that curvilinear motion results from rectilinear inertial motion combined
with a central attraction, are all too easily retrospectively judged by the
historian to be the ‘correct’ proof and suggestion respectively. At the
time, however, they were both surrounded by uncertainty as to their
status and significance.!® Several historians, and Newton himself in his
1686 letter to Halley, emphasized the distance between Hooke’s sugges-
tion and Newton’s own mathematical proof.!” In addition, here I wish to
stress also the distance between Newton’s 1680 alleged demonstration
and the tracts De motu of 1684-5. Besides the emergence of the notion
of universal gravity by the end of 1684, there were other issues Newton
had to address. In order to render his mathematical proof acceptable
first to himself, and then to his readers, Newton had to tackle the
problems related to mechanics and physics as well. Take, for example,
the problem of curvilinear motion.

In the augmented tract De motu corporum of winter 1684-5 he tried
to account for centrifugal force in terms of the vis insita and of the
reaction to the force deflecting a body from its curvilinear path. A
preliminary rejected definition of vis exercita reads:'®

The exercised force of a body is that by which it attempts to preserve that part of
its state of rest or motion which it gives up instantaneously and it is proportional
to the change of its state or to that portion of its state given up instantaneously,

15 Westfall, Never at Rest, p. 390.

16 Westfall, Force, p. 426: ‘In the mechanics of circular motion, Hooke’s suggestion was
of capital importance, slicing away as it did the confusion inherent in the idea of centri-
fugal force and exposing the basic dynamic factors with striking clarity.’ Ib. p. 430: ‘Under
the tutelage of Hooke, he bid centrifugal force adieu and turned down the path that would
lead him eventually to the Principia’ A more satisfactory account is in Cohen, Newtonian
Revolution, sect. 5.4. It will become clear in the following that Newton never bid centri-
fugal force adieu in the study of curvilinear motion.

17 NC, 2, p. 438, 20 June 1686. Cohen, Newtonian Revolution, sect. 5.4.

® ULC, Ms Add. 3965 (5), f. 25v. and 26r. (for the two following quotations,
respectively). Herivel, Background, pp. 317 and 320, definition 14; I have improved
Herivel’s translation. The following quotation is from Background, pp. 306 and 311,
definition 12; I have taken into account Whiteside’s improved reading in ‘Newtonian
Dynamics’, p. 115, n. 1, and NMW, 6, p. 191. Compare also Whiteside, Preliminary
Manuscripts, pp. 30-1.
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and not improperly is said to be the reluctance or resistance of the body, of which
one species is the centrifugal force of rotating bodies.

The revised version, which is not crossed out by Newton, established an
even clearer link between vis insiza, or ‘internal’, and centrifugal force:

The internal and innate force of a body is the power by which it preserves in its
state of rest or of moving uniformly in a straight line. It is proportional to the
quantity of the body, and is actually exercised proportionally to the change of
state, and in so far as it is exercised it can be said to be the exercised force of the
body, conatus or reluctance, of which one species is the centrifugal force of
rotating bodies.

Here centrifugal force appears to be related to rectilinear inertia and is
seen as a reaction proportional to the force which bends the body’s orbit.
No hint can be found of a distinction between inertial and rotating
frames. We notice also the difficulty about the link between centrifugal
force and third law discussed in the previous section: centrifugal force
does not act on the cause bending the body’s orbit, but appears as a
reaction contained within the orbiting body.

In his maturity Newton interpreted centrifugal force in orbital motion
as a reaction to centripetal force: as such, they were considered to be
equal and opposite—whilst in the past they appeared to be only opposite
but not necessarily equal—and then centrifugal force was ignored in the
calculations. The clearest statement in this regard can be found in two
memoranda against Leibniz which we are going to examine in the follow-
ing section. Here I survey other sources dating from 1687 onwards. In
the manuscript “The Elements of Mechanicks’, which according to its
editors ‘is certainly later in date than the Principia’, Newton stated:'?

Bodies circulating in concentric circles have centrifuge forces proportional to ye
radii of ye circles directly and the squares of the times of revolution reciprocally,
and are kept in their Orbs by contrary forces of the same quantity.

The Principia contains several passages consistent with this interpreta-
tion. Although from my reading Newton’s views on this matter did not
change from 1687 to 1726, I prefer to quote from the second and third
editions, where he became more explicit. In book I, scholium to proposi-
tion 4, Newton referred to the Horologium Oscillatorium, where
Huygens had compared the force of gravity with the centrifugal force of
revolving bodies, and to the motion of a body inside a hollow sphere,
which he had studied in the Waste Book. The scholium ends with the

1 ULC, Ms Add 4005, f. 23-5, published by Hall and Hall, Scientific Papers, pp. 165-9,
on pp. 165-6. Further references to a conatus recedendi a centro and vis centrifuga after
1684 can be found in the letters to Halley of 20 June and 27 July 1686, NC, 2, pp. 436 and
446, respectively.
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words: ‘“This is the centrifugal force, with which the body presses upon
the circle; and to which the contrary force, wherewith the circle con-
tinually repels the body towards the centre, is equal.’?® This quotation
gives the impression that Newton is using the third law: note in particular
the words huic aequalis est vis contraria. In a passage related to definition
5, and omitted in the first edition, Newton follows Descartes in explain-
ing curvilinear motion with the example of the sling. The representations
involving rectilinear inertia and an outward tendency are conflated:?!

A stone, whirled about in a sling, endeavors to recede from the hand that turns it;
and by that endeavor, distends the sling, and that with so much the greater force,
as it is revolved with the greater velocity, and as soon as it is let go, flies away.
That force contrary to this endeavor, and by which the sling continually draws
back the stone towards the hand and retains it in its orbit, because it is directed
to the hand as the centre of the orbit, I call the centripetal force. And the same
thing is to be understood of all bodies, revolved in any orbits.

Also in this passage Newton seems to have the third law in mind. Lastly,
in the third edition, scholium to proposition 4, book III, while discussing
the motion of a hypothetical little moon rotating very close to the surface
of the Earth, Newton states:22

Therefore if the same little moon should be deserted by all the motion which
carries it through its orb, because of the lack of centrifugal force with which it
had endured in the orb, it would descend to the Earth,

In cases different from orbital motion, such as the study of the shape of
the Earth, centrifugal force was neither set equal and opposite to gravity,
nor was it neglected in the calculations; in book III, propositions 18, 19
and in the corollary to proposition 36, the effects of centrifugal force
were carefully evaluated. This difference of treatment emphasizes the
difficulty in establishing the components of curvilinear motion. Newton’s
approach was shaped by the particular problem under investigation; this
emphasis on practice gives the impression that his theory was based on a
case by case analysis and that the solution in one specific area could not
easily be generalized to other fields. Interestingly, even Robert Hooke
in a manuscript of 1667, after having already found the ‘correct’
approach to curvilinear motion, stated that ‘In all circular motion the
indeavour of receding from the center is in a duplicate proportion to the
velocity. This passage and his 6 January 1680 letter to Newton show

" The word ‘centrifugal’ is used only in the last two editions. I have slightly improved
the translation of the Principia by Motte and Cajori, p. 47. See also NMW, 6, pp. 200-1.

21 Principia, definition 5. I have slightly improved the translation by Motte and Cajori,
pp. 2-3. The crucial passage reads: ‘Vim conatui illi contrariam . . . centripetam appello.

32 Principia (third edition), p. 398, lines 22-4 (my translation).
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that the alleged self-evidence of Hooke’s ‘correct’ approach is not easy to
defend.?

The problems related to the role of the celestial aether in Newton’s
world system have been thoroughly investigated by historians and
require no extensive discussion here. From the mid-1680s onwards
Newton denied that the heavens oppose any resistance to the motion of
celestial bodies, planets, and comets alike. In this context the motion of
comets in all directions was crucial in the establishment of his views.
Concerning the issue of a mechanical or physical cause for gravity, he
produced no quantitative account and left the issue to further investiga-
tions. Unlike Roger Cotes in the preface to the second edition of the
Principia, Newton repeatedly denied that gravity was a primary or
essential property of matter. As he wrote at the end of the third rule in
the second and third editions of the Principia, ‘1 do not affirm at all that
gravity is essential to bodies.”?*

I believe that these observations show not only that there was no a
priori way to establish the ‘correct’ approach to the study of curvilinear
motion, but even a posteriori the transition from the 1680 demonstration
to the tracts De motu involved important decisions on Newton’s part and
did not follow automatically. Without underestimating the intrinsic—
though not necessarily conclusive—value of Newton’s mathematical
demonstration, it is also worth recalling the public support he thought he
would command at the Royal Society from Wren, for example, and
especially Halley, who had been ‘struck with joy and amazement’ on
hearing of Newton’s result involving inverse-square law and elliptical
orbits.?* In the case of celestial matter Newton may have been led to strip
the heavens of any resistance by the consideration that the motions of
celestial bodies are remarkably regular. Thus the surprising agreement
between mathematics and astronomical data turned out to be crucial.

23 P. Pugliese, ‘Robert Hooke and the dynamics of motion in a curved path’, M. Hunter
and S. Schaffer, eds., Robert Hooke. New Studies (Cambridge, 1989), pp. 181-205, on p.
204, my emphasis.

24 Among the many sources on the role of the aether in Newton’s thought see: H.
Guerlac, ‘Newton’s Optical Aether’, NRRS, 22, 1967, pp. 45-57. J. L. Hawes, ‘Newton’s
Revival of the Aether Hypothesis and the Explanation of Gravitational Attraction’, NRRS,
23, 1968, pp. 200-12. J. E. McGuire, ‘Active Principles and Newton’s Invisible Realm’,
Ambix, 15, 1968, pp. 154-208; ‘Body and Void and Newton’s De Mundi Systemate: Some
New Sources’, AHES, 3, 1966, pp. 206-48. A. Thackray, Aroms and Powers (Cambridge,
Mass., 1970), chapters 2 and 3. R. W. Home, ‘Force, Electricity and the Powers of Living
Matter in Newton’s Mature Philosophy of Nature’, in M. J. Osler and P. L. Farber, eds,,
Religion, Science and Worldview (Cambridge, 1985), pp. 95-117. 1. B. Cohen, Newronian
Revolution, sect. 3.8. See also the correspondence with Richard Bentley in Cohen, ed.,
Papers and Lerters, pp. 271-312, esp. pp. 298 and 302-3. Koyré and Cohen, eds., Third
edition with variant readings, p. 555.

25 Westfall, Never at Rest, pp. 402-6.
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With regard to mechanics and the role of centrifugal force he had a
similar convincing tool: success. The extraordinary fertility of his
approach concerning all possible features of planetary and cometary
paths, as well as of the shape of celestial bodies, convinced Newton,
more strongly at each step, that he was ‘right’. It was not the individua-
tion of the ‘correct’ analysis of curvilinear motion that led Newton to
succeed. Rather, success in accounting mathematically for celestial
motions led him to redefine, against the views he had previously held,
how curvilinear motion should be analysed. Had Newton explained only
circular motion, the impact of his approach would have been
incomparably less significant. Widening the range of his theory was a
way of strengthening its uncertain premisses. As Kepler had stated in the
Mysterium Cosmographicum, the ‘outcome of false premisses is
fortuitous, and that which is false by nature betrays itself as soon as it is
applied to another related matter.’ In an analogous fashion, the extra-
ordinary success of the method Newton was developing supported its
credibility.

His approach hinged on the application of the three laws of motion: an
undisturbed body moves in a straight line with a uniform velocity; a
deviation from this state of inertial motion is due to a force, either
impulsive as in an impact, or continuously acting as in the case of
centripetal force; centrifugal force is the reaction to centripetal force and
is equal and opposite to it from the third law. In the Principia the third
law is used to prove that attraction must be mutual: if body A attracts
body B, the reaction is the equal and opposite force with which B attracts
A. This is made clear in proposition 69, book 1. Therefore, in my
interpretation the third law has a double role for Newton, as an explana-
tion of centrifugal force and of the reciprocity of attraction.?®

Newton’s interpretation differs widely from more modern versions of
‘Newtonian’ mechanics to the extent that his views appear to the modern
reader as inconsistent. Centrifugal force is set equal and opposite to
gravity for the third law. Despite the universality of the laws of motion,
however, on the rotating Earth centrifugal force and gravity were dif-
ferent. Moreover, in the mathematical analysis of orbital motion
centrifugal force was switched off for no apparent reason. As we are
going to see in the following chapter, Newton’s contemporaries found his
explanation of centrifugal force in terms of the third law highly convinc-
ing. Newton himself used it in his attack on the Tentamen.

26 B. Latour, Science in Action (Milton Keynes, 1987), esp. p. 12. Aiton, ‘Mathematical
Basis’, p. 222. I. B. Cohen, ‘Newton’s third law and universal gravity’, Journal for the
History of Ideas, 48, 1987, pp. 571-93.
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8.4 Newton’s onslaught on the Tentamen

In the 1710s, at the climax of the priority dispute over the invention of
the calculus, Newton carefully engineered an onslaught on the Tentamen.
If the final broadside came from John Keill, there is no doubt that
ammunition had been provided by Newton himself. We possess two
memoranda in his hand spelling out the attacking lines; several further
unpublished manuscripts with criticisms and calculations concerning the
Tentamen are preserved at the University Library, Cambridge.?” A fresh
analysis of this controversy not only provides us with the most detailed
contemporary evaluation of the Tentamen, but also illuminates Newton’s
views. As Eric Aiton has shown, although Leibniz had considerable diffi-
culties in accounting for Kepler’s third law, Newton’s attacks were not as
devastating and self-evident as previous commentators had supposed.

The issue of proficiency in second-order infinitesimals was an
important theatre of the war between Newtonians and Leibnizians.
Although this controversy affected Newton’s reading, his criticisms were
not restricted to mathematics, but involved other aspects as well. In
particular they concerned the cause of motion with regard to a corporeal
agent versus the human mind or God, the incongruences following from
the idea that gravity is due to a vortex rotating harmonically, the
mathematical treatment of the theory, and finally the analysis of curvi-
linear motion in connection with the role of centrifugal force.

The first and more philosophical point concerned the opening two
paragraphs of the Tentamen. By stating that it was absurd to believe that
‘a body is only moved by a corporeal agent, not by the human mind
(unless it be corporeal) nor by God (unless he be corporeal)’, Newton
was deploying a typical argument of the time. Similar observations can
be found in De gravitatione et aequipondio fluidorum and in the
correspondence between Leibniz and Samuel Clarke.?®

The problems related to Cartesian vortices were that gravity would

27 The memoranda are published in Edleston, Correspondence, pp. 307-14, and NC, 6,
pp. 116-22. Other related manuscripts are ULC, Add 3968.4, f. 15r, 16v., 17r., 19v.
(remarks on the Tentamen); Add 3968.12, f. 176r.; Add 3968.41, f. 124v. (where Newton
checked Leibniz’s calculation of the equation of paracentric motion).

2% De Gravitatione et Aequipondio Fluidorum (written around 1670), is published by
Hall and Hall, Scientific Papers, pp. 90-121, on pp. 138-9 (English translation, pp. 121-
56, pp. 141-2). Leibniz claimed several times that everything in the world happens
mechanically, but the laws of mechanics depend on God'’s choice for the best. Compare the
letter to Herman Conring of 1678, LSB, 11, I, p. 400; Discours de Métaphysique, paragraph
18; the letter to Nicholas Malebranche of 1687, known as ‘Principium Quoddam
Generale’, LMG, 6, pp. 129-35:135; the correspondence with Samuel Clarke, Leibniz’s
fifth paper, paragraphs 92 and 124. These themes were standard arguments against
Descartes and Hobbes. See also Section 1.1.
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tend towards the axis of rotation rather than towards the centre, either of
the Sun or of other celestial bodies. More crucially, as Leibniz knew only
too well, and as David Gregory and George Cheyne had already pointed
out, the harmonic vortex could account for the area law or, with some
modifications, the third law, but he had great difficulties in explaining the
two together.?” Newton also claimed that according to the Principia,
corollary 1 to proposition 4, book I, centripetal forces in a circum-
ference are proportional to the square of velocity over the radius; if the
circulation is harmonic, centripetal forces would be inversely propor-
tional to the third power of the distance. This criticism is not correct
because harmonic circulation and inverse-square law are perfectly
compatible. The harmonic circulation imposes no constraints on the
dependence of force on distance.’® A further criticism implied that
Leibniz’s reasoning was absurd because, following his vortex theory, the
velocity of planets and comets at equal distances from the Sun would
have to be equal. Indeed, already in the 1685 De mundi systemate
Newton had employed the rule whereby, at the same distance from the
Sun, the speed of a comet is to the speed of a planet as the square root of
2 is to unity. This approximate rule was based on the assumptions that
the orbit of the comet is nearly parabolic, and the orbit of the planet is
circular. Although Newton’s criticism would be even more cogent if he
referred to the component of orbital velocity perpendicular to the radius,
his objection was still very powerful, provided one accepted his theory of
comets. As we are going to see in the next chapter, however, at the
beginning of the eighteenth century the status of cometography on the
Continent differed greatly from that in England, and none of the main
mathematicians working on celestial mechanics had any specific interest
in astronomy and especially in cometography.*!

We move to the third point. Some of Newton’s criticisms about
Leibnizian mathematics have been analysed in masterly fashion by Eric
Aiton and need therefore not detain us too long. They regard the notion

2 D. Gregory, Astronomiae Physicae et Geometricae Elementa (Oxford, 1702), pp- 99-
104. A copy with marginal annotations by Leibniz is at the NLB (Marg. 124). In a letter to
Johann Bernoulli Leibniz said that this book contained nothing new. He replied to
Gregory’s criticisms, however, in the ‘Tllustratio Tentaminis’, LMG, 6, p. 254. G. Cheyne,
Philosophical Principles of Natural Religion (London, 1705), pp. 37-42. 1 owe this
reference to Eric Aiton.

* NC, 6, p. 116 and 118; Edleston, Correspondence, pp. 310-11. See also Principia,
corollary 6 and scholium to proposition 4, book 1.

> On cometography around 1700 see J. A. Ruffner, Background; chapters 7-9 are on
Newton. S. Schaffer, ‘Newton’s Comets and the Transformation of Astrology’, in P. Curry,
ed., Astrology, Science and Society. Historical Essays (Woodbridge, 1987), pp. 219-43.
NMW, 5, pp. 210-13, 298-303, 524-31, and 6, pp. 57-61, 81-5, 481-507. See also
Principia Mathematica, first edition, pp. 474-510.
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and measure of centrifugal force, and two equalities in paragraph 15 of
the Tentamen. The two equalities are N,M = G,D and NP =,D, T3?

© is the centre of the circulation; M, ,M, ;M are the positions
occupied by the planet at three successive equal instants of time 8 = dt;
{MP, ,M, T, and ;M,T are three circular arcs with radii ©,M =r+dr,,
O,M=r, and O;M=r—dr, respectively, where dr,=;7\M and
dr,=,T,M. Further, ,D;M and N, M are perpendicular to O,M; ;MG is
parallel to M,M, M, M is equal to ,ML, and L,M is parallel to O, M.
Despite Newton’s criticism, Leibniz’s first equality is correct if the
tangent , ML is the prolongation of the chord ; M, M, as Leibniz specified
in 1706 and John Keill critically observed in his 1714 attack on the
Tentamen. Newton’s criticism of the second equality, that second-order
differences are neglected, is not correct; if fa is equal to twice the area of
triangles ;M©®,M and ,MO,;M, which is constant because ;M,M and
,M;M are traversed in equal times, the segment PN =a?6022(r + dr,)>,
the segment ,D,T=a?0%2(r — dr,)%; their difference is proportional to
0%(dr, + dr,), which is a third-order infinitesimal. In conclusion, by 1706

@

Fig. 8.1 Leibniz’s analysis of orbital motion.

32 Aiton, Vortex Theory, pp. 144-5. 1 have introduced indices to the differential dr of
the radius, although they were not employed by Leibniz.
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Leibniz’s emended version was not easy to challenge from a purely
mathematical standpoint: the main problem involved matters of
definition—such as the notion of tangent—and these were linked to deep
philosophical commitments. We move now to the last issue on the
agenda, namely mechanics and the analysis of curvilinear motion.

With regard to the measure of centrifugal force, Newton objected to
the mistake concerning the factor of 2, which was corrected by Leibniz
in 1706 thanks to the correspondence with Varignon, and to the very
definition of centrifugal force or conatus as well. For Leibniz centrifugal
conatus pertained only to circular motion; when motion was not circular,
he considered that component of the orbital trajectory pependicular to
the radius, or the circular component of the curvilinear trajectory:
centrifugal force was as the square of that component over the radius. By
contrast, Newton used the expression ‘centrifugal force’ for any curve,
and set it equal and opposite to gravity. Newton’s objections are particu-
larly interesting because Newton himself until 1680 held views almost
identical with Leibniz’s. In the controversy Newton was induced to spell
out his theory more explicitly than anywhere else in his work. It is worth
noticing Newton’s reluctance to put forward his ideas on centrifugal
force in print: his criticisms were only the basis for Keill’s public attack.
The strategy of pushing his champion Keill forward may suggest a degree
of doubt on Newton’s part on this issue. In the following discussion I
consider the 1706 version of Leibniz’s theory, ignoring for simplicity the
mistake by a factor of 2. Newton, to be sure, was much less charitable on
this issue.

In both memoranda against the Tentamen referred to at the beginning
of this section, Newton stated that paracentric solicitation, or centripetal
force, is equal and opposite to centrifugal conatus, or force. In the
memorandum named EXx epistola he explained further that this equality
derived from the third law of motion, namely action equals reaction. His
objection to the Tentamen was that since for Leibniz paracentric solicita-
tion and centrifugal conatus were in general different, the third law of
motion was violated. Far from being merely a polemical device employed
against Leibniz, the explanation of centrifugal force in terms of the third
law had been implicitly endorsed by Newton already in the first edition
of the Principia. 1 have pointed out above that the variant readings
among the three editions show that he became progressively more
explicit on this issue. It is tempting to see this process as revealing of
Newton’s initial uncertainty on this matter, and as part of the war with
Leibniz involving the attack on the Zentamen in particular. Moreover,
Newton was able to show a further consequence of Leibniz’s reasoning:
‘If the curvature of the curve be diminished until the curve coincides with
its tangent, paracentric solicitation and centrifugal conatus will cease, but
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o C

Fig. 8.2 Newton’s criticisms of the Tentamen.

the paracentric velocity and its element will not cease” Newton’s reason-
ing can be illustrated with the following diagram.3?

Let us imagine a curve OPQ and its tangent SPT in P. If a body moves
along the curve, for Leibniz the body will have both a centripetal and
centrifugal conatus. If we now imagine the curve to be progressively
straightened, as indicated by the dotted lines, until it coincides with the
tangent SPT, motion becomes rectilinearly uniform, therefore centripetal
and centrifugal force ought to vanish from the first two laws of motion.
Indeed, this is what happens following Newton’s approach. Following
Leibniz, however, paracentric or radial motion along CP and its element
ddr do not vanish, and this appeared to be a crucial fault to Newton,
because the first two laws of motion were violated too. Carrying out the
calculations, one would find ddr=a?62/r%. In conclusion, a direct
consequence of Leibniz’s mathematical representation of curvilinear
motion violates all three laws of motion. For Newton there was only one
reasonable representation of curvilinear motion: different representa-
tions were inevitably leading to inconsistencies. From this analysis of
Newton’s reasoning, it seems difficult to defend the view that for Newton
centrifugal force was ‘fictitious’ or that it was related to the rotation of
the frame of reference as opposed to the rotation of a body. On the
contrary, for Newton centrifugal force in orbital motion appears to be a
‘real’ force, as real as a reaction to a centripetal force. These observa-
tions emphasize the difference between Newton’s own formulation of
mechanics and later formulations of ‘Newtonian’ mechanics.

This evaluation of contrasting views bears little historical value unless
one considers the reception of Newtonian and Leibnizian theories of
curvilinear and especially planetary motion; this is our following task.

33 The diagram is mine: see NC, 6, pp. 117-18.
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THE RECEPTION OF NEWTONIAN
AND LEIBNIZIAN THEORIES

9.1 Introduction

Although in the seventeenth century several philosphers including René
Descartes, Giovanni Alfonso Borelli, Robert Hooke, and Christiaan
Huygens studied celestial phenomena using the laws of mechanics, with
the appearance of Newton’s Principia the mathematical study of the
system of the world reached a new level of sophistication and a broader
horizon. If physical causes had been left at the margin of Newton’s
account, mechanics and astronomy were brought together to an un-
precedented degree of cohesion. Not only planetary motion and Kepler’s
three laws, but also the motion of comets, tides, the shape and mutual
perturbations of celestial bodies were studied on the basis of the same
principles and laws of motion. This unified treatment of celestial and
terrestrial phenomena set a number of problems in mathematics,
mechanics, and astronomy and established a new field within the math-
ematical disciplines, namely celestial mechanics. It is essential at this
point to permit some remarks about disciplinary boundaries. Newtonian
and Leibnizian celestial mechanics had a location on the map of
knowledge different from that which became standard several decades
later. With regard to theology, for example, the order and constitution of
the cosmos and the status of its laws with respect to the Creator were a
major concern for the two contenders. From the references to God in the
first edition of the Principia to the general scholium concluding the later
editions, theology was interwoven with Newton’s ideas about the system
of the world. As the series of annual Boyle lectures begun in 1692 shows,
theology and politics played a central role in the reception of
Newtonianism. Likewise Leibniz, in many letters and pamphlets, in his
main published work significantly named Théodicée, up to his
correspondence with Samuel Clarke, stressed that laws of nature were an
integral part of his philosophical and theological system. Although
theology probably marks the most important difference with respect to
modern perceptions, other disciplines too figure in the arena of celestial
mechanics. Cometography, for example, was an area where Earth
history, biblical hermeneutics, and alchemy interacted in Newton’s



192 Reception of Newtonian and Leibnizian theories

theory and influenced his belief in the periodicity of comets. Their tails
in particular were endowed with remarkable properties, as the following
quotation from the Principia shows:!

So for the conservation of the seas, and fluids of the planets, comets seem to be
required, that, from their exhalations and vapors condensed, the wastes of the
planetary fluids spent upon vegetation and putrefaction, and converted into dry
earth, may be continually supplied and made up; for all vegetables entirely derive
their growths from fluids, and afterwards, in great measure, are turned into dry
earth by putrefaction; and a sort of slime is always found to settle at the bottom
of putrefied fluids; and hence it is that the bulk of the solid earth is continually
increased; and the fluids, if they are not supplied from without, must be in a
continual decrease, and quite fail at last. I suspect moreover, that it is chiefly
from comets that spirits come, which is indeed the smallest but the most subtle
and useful part of our air, and so much required to sustain the life of all things
with us.

Within the several contexts of the reception of the Principia, 1 focus
here on the mathematical study of celestial motions—especially on the
Continent—and on the competitive interaction with the 7Tentamen from
the late 1680s to approximately Leibniz’s death in 1716. In those years
not only Newton’s masterpiece, but also Leibniz’s response were known
to the main mathematicians.? I restrict my field of inquiry to advanced
research, setting aside the problem of how celestial mechanics entered
university teaching.’

The awareness of the wealth of staggering results contained in the
Principia grew slowly and induced a response which can be analysed
with the help of a periodization linked to the attitudes of different

! Newton, Principia, first edition, p. 506; Motte and Cajori, pp. 529-30. Notice the
references to ‘vegetation and putrefaction’. On alchemy and cometography in Newton see
S. Schechner Genuth, ‘Comets, teleology and the relationship of chemistry to cosmology in
Newton’s thought’, Annali dell’Istituto e Museo di Storia della Scienza di Firenze, 10, 1985,
pp. 31-65. Cohen, Introduction, pp. 155-6 and 240-5. M. C. Jacob, The Newtonians and
the English Revolution (Ithaca, 1976).

2 Johann Bernoulli referred to the Tentamen in a letter to Leibniz in LMG, 3, p. 250, 22
Febr. 1696. P. Varignon, ‘Des Forces Centrales’, MASP, 1700, pp. 218-37, on p. 224. On
David Gregory and Cheyne see Section 8.2 above. J. Hermann, ‘Metodo d’Investigare
I'Orbite de’ Pianett’, GLI, 2, 1710, pp. 447-67, on p. 450. C. Wolff, NC, 6, pp. 216-18, 24
April 1715. G. Poleni, De vorticibus coelestibus dialogus (Padua, 1712), pp. 34-5. Celestino
Galiani—Guido Grandi. Carteggio (1714-1729), eds. F. Palladino and L. Simonutti (Firenze,
1989), p. 34, Grandi to Galiani, 19 May 1714. For a broader picture of vortex theories
including those not directly related to the Principia and Tentamen see Aiton, Vortex
Theory, chs. 7-8.

* On this topic see L. W. B. Brockliss, French higher education in the seventeenth and
eighteenth centuries (Oxford, 1987), ch. 7; N. Guicciardini, The development of the
Newronian calculus in Britain, 1700-1800 (Cambridge, 1989) provides a useful survey. H. J.
Waschkies, Physik und Physikotheologie des jungen Kant (Amsterdam, 1987), chs. 7 and
18.
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communities in Britain and on the Continent. The locations and
approximate dates of activity of the scholars engaged in the practice of
celestial mechanics can be seen in the following diagram.
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Fig. 9.1 Reception of Newtonian and Leibnizian theories.

On the Continent the emergence of a community of practitioners of
the Leibnizian calculus created at the same time a competent audience
for the Principia. This paradox, whereby Newton was read and admired
thanks to his rival, can be documented at several centres. The presence
of Johann Bernoulli in Paris in the 1690s led to the formation of a circle
of mathematicians whose most distinguished members were the Marquis
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de I'Hopital and Pierre Varignon.* Johann’s career continued later at
Basel, where he counted Leonhard Euler among his students. Still at
Basel Johann’s brother Jakob taught Jakob Hermann, who later became
professor of mathematics at Padua. At Padua we find a distinguished
circle of mathematicians practising the Leibnizian calculus and studying
the Principia: Jacopo Riccati and Giovanni Poleni were among them. In
Germany the Leibnizian Christian Wolff, professor of mathematics at
Halle, contributed several important reviews to the Leipzig Acta and
wrote didactic treatises which formed the backbone of German higher
education for several years. Once again, in his reading of the Principia he
had recourse to the differential calculus. On the whole, knowledge of
higher mathematics on the Continent was based on a common set of
texts, mainly articles from the Acta Eruditorum, Paris Mémoires, Venice
Giornale, and textbooks such as 'Hépital’s Analyse des infiniment petits.
Continental mathematicians shared a conceptual framework, language,
and set of problems: a small but significant portion of them concerned
the motions and shape of heavenly bodies.

The immediate reception of the Principia, which is the subject of
Section 9.2, centred on the cause of gravity. This aspect is singled out
immediately in the titles of the most important works of the early period,
Leibniz’s Tentamen de motuum coelestium causis, Huygens’s Discours de
la cause de la pesanteur, and Fatio de Duillier’s unpublished essay De la
cause de la pesanteur. Another important reader of the Principia was
David Gregory, who carried out an extensive and accurate study of the
text. His annotations were to become an important resource for his later
book on the elements of astronomy. After the three works mentioned
above, we have to wait until the new century to find other contributions
to the mathematical study of celestial motions.

In the new century the Principia inspired several investigations,
notably by Pierre Varignon and Johann Bernoulli. The adoption of some
guiding lines from Newton’s mathematical treatment of celestial motions,
however, did not imply the acceptance of his ideas about vortices and the
cause of gravity. Their work poses again the problem of equivalence,
though in a less dramatic way than with Leibniz. Despite the obvious

* On the Parisian circles see A. Robinet, ‘Le groupe malebranchiste introducteur du
calcul infinitésimal en France’, RHS, 13, 1960, pp. 287-308; ‘La philosophie male-
branchiste des mathématiques’, RHS, 14, 1961, pp. 205-54. P. Costabel, ed., Oeuvres de
Malebranche, vol. 17.2, Mathematica (Paris, 1968). See also A. R. Hall, ‘Newton in France:
a new view’, History of Science, 13, 1975, pp. 233-50. H. Guerlac, ‘Some areas for further
Newtonian studies’, ib., 17, 1979, pp. 75-101. Much useful material isin JBB, / and 2.

5 A. Robinet, ‘Lan conquéte de la chaise de mathématiques de Padove par les
leibniziens’, RHS, 44, 1991, pp. 181-201. I have been unable to see A. Robinet, L’Empire
leibnizien (Trieste: Lint, 1991). Further relevant literature can be found below. For some
interesting guidelines on the period see M. S. Mahoney, ‘On Differential Calculuses’, Isis,
75,1984, pp. 366-72.
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relations to the Principia, their essays contained several innovative
features and led to a decisive algebraization of the science of motion.
Although geometrical diagrams were still widely used, they no longer
occupied such a prominent role as in the Principia. On the Continent it is
possible to trace a dual response regarding mathematics and physics.
Several mathematicians such as Johann Bernoulli or Leonhard Euler
later in the century, adopted the mutual attraction of celestial bodies
while remaining highly sceptical if not altogether hostile towards
Newton’s ideas about the heavenly matter. This situation resembles in
some respects the state of pre-Keplerian astronomy, when Aristotelian
cosmology could not produce a predictively adequate system able to
compete with those based on fictitious mathematical constructions. The
natural philosophy of the heavens set out in De Caelo and Metaphysica,
XI1, allowed only concentric orbs, while mathematical astronomy was
based on epicycles, eccentrics, and equants. Besides this analogy
involving the dichotomy of mathematical versus physical explanations
between the sixteenth and the eighteenth centuries, however, an important
difference needs to be singled out. In the sixteenth century mathematical
devices designed to save the phenomena were accompanied by serious
doubts about the possibility of attaining knowledge of the heavens. By
contrast, at the beginning of the eighteenth century the inverse-square
law was accepted as a genuine discovery about the motions of planets
and satellites. The propositions of the Principia had to be explained,
complemented and extended, rather than subverted.®

By and large, Continental and British readers showed different
interests in their reading of Newton’s masterpiece. Although the
influence of theology on Continental mathematicians has not been
satisfactorily investigated, at present is appears that authors like
Varignon, Hermann, Johann and Niklaus Bernoulli showed no great
theological preoccupations.” The main developments in the new century
are surveyed in Section 9.3. Whilst on the Continent we find important
mathematical contributions, in Britain one witnesses a stronger inter-
action between mechanics and astronomy. John Flamsteed, Edmond
Halley, and Roger Cotes were concerned with lunar motions, the theory
of comets, and tides. By contrast Continental astronomers, notably
Giandomenico Cassini, largely ignored the Principia.

® R. S. Westman, ‘The astronomer’s role in the sixteenth century: a preliminary study’,
History of Science, 18, 1980, pp. 105-47. Jardine, Birth, chs. 6-9; ‘Scepticism in Renaiss-
ance astronomy’.

7 Regarding 'Hopital see JBB, 1, pp. 305-7, 22 Aug. and 3 Sept. 1695. The situation in
Italy has been investigated in V. Ferrone, Scienza, Natura, Religione. Mondo newtoniano e
cultura italiana nel primo sertecento (Napoli, 1982). H. Guerlac, Newton on the Continent
(Ithaca, 1981). E. A. Fellmann, ‘The Principia and Continental Mathematicians’, NRRS, 42,
1988, pp. 13-34.
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At the beginning of the eighteenth century an important context of the
reception of the Principia and Tentamen was the priority dispute over the
invention of the calculus. The inverse problem of central forces, which
emerged around 1710, was interwoven with the war between Newton
and Leibniz. Section 9.4 focuses on this issue and especially on the
works by Newton, Johann Bernoulli, Varignon, and Hermann. At the end
of the section I survey the priority dispute between Johann Bernoulli and
John Keill. The very notions of ‘demonstration’ and ‘solution’ became
controversial; this dispute emphasizes the differences between British
and Continental mathematics, especially about geometrical and analyti-
cal representations of curves.

The last section examines Keill’s attack on the Tentamen and the
reasons for the final defeat of Leibniz’s theory. Despite the polarization
of the mathematical community into rival groups, the defeat of the
Tentamen depended overwhelmingly on intellectual factors and on the
fertility of the Principia as a source for further researches. The main
difficulty for Leibniz, namely the combination of Kepler’s third law and
the harmonic vortex, involved arguments that we would still perceive as
valid. Other factors, however, such as the link between centrifugal force
and third law in orbital motion, or the belief that centrifugal force could
not decrease inversely as the third power of the distance, are alien to our
interpretation. Thus the reasons I invoke have to be located in the
historical practice and intellectual horizon of baroque mechanics,
mathematics, and natural philosophy. While early eighteenth-century
mathematicians investigated celestial motions in a purely mathematical
fashion, Leibniz’s strategy shifted from the attempt to produce a theory
able to compete with Newton’s, to the formulation of theological and
metaphysical objections typical of the correspondence with Samuel
Clarke in 1715 and 1716. Thus Leibniz abandoned the Keplerian
programme.

9.2 The early response to the Principia and Tentamen

As 1. Bernhard Cohen has shown, the Principia was reviewed in the main
journals of the late seventeenth century, namely the Philosophical
Transactions, Acta Eruditorum, Bibliothéque Universelle and Journal des
Scavants. In addition, we can rely on a number of private documents to
trace the first responses to Newton’s masterpiece both in Britain and on
the Continent. Together with Edmond Halley, who edited the book and
wrote the review for the Philosophical Transactions, and Robert Hooke,
who made an accusation of plagiarism with respect to the inverse-square
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law, we know of the reactions of readers such as Fatio de Duillier, David
Gregory, John Locke, and Gilbert Clerke.?

In the late 1680s the two outstanding figures on the European philo-
sophical scene were Huygens and Leibniz. Although they shared many
ideas on physics and mathematics, their reaction to the Principia also
presented different features. Their correspondence, some annotations by
Huygens, and his Addition to the Discours de la cause de la pesanteur,
allow us to reconstruct Huygens’s complex reaction to the Principia and
Ientamen. Although Huygens wondered why Newton would have gone
through all the trouble of so many difficult mathematical demonstrations
when the whole system was based on the ‘absurd’ principle of attraction,
it appears that those demonstrations left a deep mark on him. In particu-
lar Huygens accepted the inverse-square law as a genuine discovery,
although he believed that its cause remained to be investigated. With
regard to physical explanations he thought that Newton had demolished
Cartesian vortices, in which Huygens himself had believed until the late
1680s. Despite the rejection of deferent vortices, Huygens still looked
for a mechanical cause for gravity; he justified the existence of an aether
with the propagation of light through celestial spaces. Notoriously, he
compared this propagation to that of waves in a medium. The rejection
of Cartesian vortices was the main point of departure from Leibniz: this
is precisely the issue on which Huygens pressed his German friend in
their correspondence, containing the only early opinion on the Tentamen
I am aware of.®

With regard to the analysis of curvilinear motion and centrifugal force,
current historiography tends to see a major break between Huygens and
Newton. Briefly, Huygens is presented as the last outstanding repres-
entative of the old school which focused on outwards tendencies and
stopped on the threshold of the correct formulation. Newton, on the
other hand, is portrayed as a modern who resolutely passed that
threshold and provided the definitive solution to the problem, at least
within classical mechanics. Thus his move from centrifugal to centripetal
forces would represent the decisive step from error to truth. Contrary to
this interpretation, and despite the differences between their approaches
and the new results attained by Newton, I see a continuity between

8 The main source for the reception of the Principiais Cohen, Introduction, pp. 145-61.
NC, 2, p. 431 (Halley to Newton, 22 May 1686), pp. 435-41 {Newton to Halley, 20 June
1686). Lohne, ‘Hooke versus Newton’, R. S. Westfall, ‘Hooke and the Law of Universal
Gravitation’, BJHS, 3, 1967, pp. 245-61, and Never at Rest, pp. 382-3, 446-53, 471-2,
with additional bibliography.

9 LMG, 2, pp. 41 and 57, Huygens to Leibniz, 8 Febr. and 18 Nov. 1690. HOC, 10, pp.
147-55, with Cohen’s commentary in Introduction, pp. 186-7. HOC, 9, pp. 167-71; 190-
1; 357-60; 381-9; 391-3; 407-12 (correspondence with Fatio De Duillier). Addition to
the Discours, HOC, 21, pp. 466—88. Cohen, Newtonian Revolution, section 3.4.
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Huygens’s and Newton’s analyses of curvilinear motion. My interpreta-
tion is supported by the material presented in the previous chapter and
by Huygens’s own statements. In the 1690 Addition he wrote:'

But seeing now by the demonstrations of M. Newton that, supposing such a
gravity toward the sun, and that it diminishes according to the said proportion, it
counterbalances so well the centrifugal forces of the planets and produces
precisely the effect of the elliptical motion that Kepler had guessed and proved
by observation, I cannot doubt the truth either of these hypotheses concerning
gravity or of the System of M. Newton.

The same opinion about centrifugal force and gravity counterbalancing
each other was expressed in the letter to Leibniz of 8 February 1690
referred to above. Huygens probably had in mind corollaries 1, 6, 7, and
the scholium to proposition 4. Corollary 1 states that the centripetal
forces of bodies moving uniformly along circles tend to the centres of the
circles and are as the squares of the velocities over the radii. Corollary 6
states that if the squares of the periods are as the third powers of the
radii, centripetal forces are inversely as the squares of the distances.
Corollary 7 generalizes these results to other curves. Lastly, the scholium
refers to the propositions at the end of the Horologium Oscillatorium and
establishes the relation between centripetal and centrifugal forces that
we have seen in Section 8.3. Thus the quotation above and the &
February letter to Leibniz were not the product of an old mind unable to
follow the latest developments in mechanics, or the result of misunder-
standing. Quite on the contrary, Huygens provided a reasonable inter-
pretation which was shared by many of his contemporaries and which
coincided to a large extent with Newton’s own. We shall see in the
following section that one of the most influential readers of the Principia
on the Continent and even Newton’s mouthpiece—Pierre Varignon and
John Keill respectively—expressed similar views on this matter.

From 1690 onwards Leibniz referred to the Principia on several
occasions. In the Specimen Dynamicum, just to mention one example, he
criticized Newton’s theory of attraction and ideas about absolute motion.
The preparatory manuscripts, whose critical edition unfortunately is not
always reliable, reveal the existence of further references to the
Principia.! Another line of action can be traced through the contacts
sought by Leibniz with Newton and the Royal Society. In October 1690
Leibniz wrote to his old Paris friend Henri Justel, by then a royal
librarian in London, praising the Traité de la Lumiere and Principia

W HOC, 21, p. 472; transl. in Cohen, Newtonian Revolution, p. 80.

' Leibniz, Specimen Dynamicum (Hamburg, 1982), pp. 22-4 and 58, and the essay-
review by E. Knobloch, AS, 40, 1983, pp. 501-4. Translations in Ariew and Garber,
Philosophical Essays, pp. 125 and 136.
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Mathematica as the most important works of their kind since Descartes.
However, he criticized Newton’s attraction and his rejection of vortices.
In the same letter Leibniz also advertised the main features of the
Tentamen and of his recent findings about planetary motion, probably in
the hope that his ideas and essay would be discussed in England. Justel’s
reply, in which he defended Newton with the claim that in physics all
attempts are justified because tentare non nocet, probably induced
Leibniz to pursue other routes.!? In 1693 he wrote directly to Newton,
urging him to continue ‘to handle nature in mathematical terms’, while
suggesting a new interpretation of his results:

You have made the astonishing discovery that Kepler’s ellipses result simply from
the conception of attraction or gravitation and trajection in a planet. And yet I
would incline to believe that all these are caused or regulated by the motion of a
fluid medium, on the analogy of gravity and magnetism as we know it here. Yet
this solution would not detract from the value and truth of your discovery. (My
emphases.)

In his reply Newton defended the interpretation of the Principia:

For since celestial motions are more regular than if they arose from vortices and
observe other laws, so much so that vortices contribute not to the regulation but
to the disturbance of the motions of planets and comets; and since all phenomena
of the heavens and of the sea follow precisely, so far as I am aware, from nothing
but gravity acting in accordance with the laws described by me; and since nature
is very simple, I have myself concluded that all other causes have to be rejected
and that the heavens are to be stripped as far as may be of all matter, lest the
motions of planets and comets be hindered or rendered irregular. But if, mean-
while, someone explains gravity along with all its laws by the action of some
subtle matter, and shows that the motion of planets and comets will not be
disturbed by this matter, I shall be far from objecting.

By throwing the ball into Leibniz’s court, Newton challenged him to
provide not a partial explanation of this or that phenomenon, but to
account for ‘all phenomena of the heavens and of the sea’."?

In the following year Leibniz wrote again to London. On 31 October
1694 a letter of his was read at the Royal Society, ‘wherein he
recommends to the Society to use their endeavours to induce Mr
Newton to publish his further thoughts and emprovements on the subject
of his late book Principia Philosophiae Mathematica, and his other
Physicall and Mathematicall discoverys, least by his death they should
happen to be lost” Possibly Leibniz was hoping that new results by

2 LSB, 1, 6, pp. 263-7 and 300-2; Aiton, Leibniz. A Biography, (Bristol, 1985), pp.
171-2.

13 NC, 3, pp. 257-60, on p. 258, 17 March 1693, and Guerlac, Continent, p. 53, n. 41,;
NC, 3, pp- 285-9,0n p. 287, 15 Oct. 1693.
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Newton might have led to a reconciliation with physical interpretations.!*

In England, soon after publication of the Principia, rumours and plans
about a revised edition were under way. Within weeks of the appearance
of the book Halley urged Newton to improve lunar theory. This attitude
was typical of the reception of the Principia in Britain, where emphasis
was laid on the links between theory and astronomical observations.!

Plans for a new edition were associated with Fatio de Duillier and
David Gregory. The Genevan mathematician, who had come to England
in 1687 and had become a very close friend of Newton, felt confident
enough to undertake the task and started drafting a list of errata and
improvements. More interesting from our point of view is Fatio’s attempt
to provide a physical and mechanical explanation for gravity. His theory
was based on a quantitative attempt to calculate the effect of the pressure
of a very rare aether on the bodies floating in it. Although an account of
Fatio’s theory was presented at the Royal Society on 26 February 1690
and was known outside Britain to influential mathematicians such as
Huygens and Jakob Bernoulli, his ideas remained unpublished and
exerted only a limited influence. Initially Newton himself believed that
Fatio’s hypothesis was the only possible physical explanation for gravity,
but he later retracted his support; as reported by Gregory, ‘Mr Newton
and Mr Hally laugh at Mr Fatios manner of explaining gravity’.!6

The Scottish mathematician David Gregory started his study of the
Principia in Edinburgh in September 1687 and completed it in Oxford in
1694, where he had become Savilian Professor of Astronomy in 1691.
His Notae reveal him as one of the most careful readers of Newton’s
masterpiece. Gregory, however, did not develop any particular branch of
Newton’s work. Together with his Memoranda, recording his conversa-
tions with Newton, the Notae will become an important resource for the
Astronomiae physicae et geometricae elementa (Oxford, 1702), the first
textbook of astronomy based on Newton’s Principia.'’

4 NC,4,p.24,n.5.

5 NC, 2, p. 482, Halley to Newton, 5 July 1687. Cohen, Introduction, p. 173.

1 NC, 3, p. 191. Cohen, Introduction, pp. 177-87. B. Gagnebin, ‘Memoire de Nicolas
Fatio De Duillier. De la Cause de la Pesanteur. Presente a la Royal Society le 26 Fevrier
1690°’, NRRS, 6, 1949, pp. 105-60. Hall and Hall, Scientific Papers of Isaac Newton, pp.
312-17. K. Bopp, ‘Die wiederaufgefundene Abhandlung von Fatio de Duillier: De la Cause
de la Pesanteur’, Schrifien der Strassburger Wissenschafilichen Gesellschaft in Heidelberg,
1929, Neue Folge, /0. Heft, pp. 19-66. H. Zehe, ‘Die Gravitationstheorie des Nicolas Fatio
de Duillier’, AHES, 28, 1983, pp. 1-23.

7 W. P. D. Wightman, ‘Gregory’s Notae in Isaaci Newtoni Principia Philosophiae’,
Nature, 172, 1953, p. 690 and ‘David Gregory’s Commentary on Newton's Principia’,
Nature, 179, 1959, pp. 393-4. C. M. Eagles, The Mathematical Work of David Gregory,
1659-1708, Ph.D. Thesis, University of Edinburgh 1978, pp. 26-34.
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9.3 Developments in the new century

The appearance of Pierre Varignon’s work on central forces in 1700
marks a crucial date in the reception of Newton’s and Leibniz’s theories.
Unlike Fatio, Huygens, and Leibniz, Varignon focused on mathematics
and mechanics, ignoring the problem of physical explanations. Varignon
was the first of a series of Continental mathematicians whose main
concern was not the reconciliation of gravity with vortices, but the public
demonstration of the power and versatility of the differential calculus
and the deployment of their mathematical skills. The Principia Math-
ematica was used as a battleground for the new mathematics. In the
works of Continental mathematicians after 1700 astronomy was largely
neglected; none of the leading figures of the new generation, notably
Varignon, Johann Bernoulli, and Hermann, was very proficient or
interested in it.

Varignon was a member of the Paris Academy. He was indirectly
instructed in the calculus by Johann Bernoulli and, following Fontenelle’s
Euloge, studied the Principia in the late 1690s. The recently established
Mémoires of the Academy provided an ideal arena for his publications.
His series of essays have been judged differently by historians: some
have treated him as a mere translator of Newtonian mechanics into the
language of the calculus, while others have presented him as a more
original thinker. A puzzling historical insight can be gained by consider-
ing a debate between the Marquis de ’'Hopital—one of the leading math-
ematicians at the end of the century—and his mentor Johann Bernoulli.
When the latter posed a problem involving centrifugal forces in 1695,
the Marquis had to confess his lack of a clear understanding of what was
meant with ‘force centrifuge’. Johann in his reply referred to the proposi-
tions contained in the appendix of the Horologium Oscillatorium.'® This
exchange, dating only one year before the appearance of 'Hopital’s
Analyse des infinement petits in 1696, emphasises the gulf between pure
and applied mathematics. This seems to suggest that common
mechanical notions were not necessarily known even to the best math-
ematicians of the time. Although Johann Bernouili was a more talented
mathematician than Varignon, the French had developed a particular
skill in mechanics.

Before attempting an evaluation of Varignon’s contributions, at this
point I wish to introduce some general reflections. The process of bring-

8 JBB, 1, p. 236, V'Hépital to Johann, 19 Febr. 1695; pp. 270-1, Johann to I'Hépital, 5
Mar. 1695. The Marquis later published a ‘Solution d'un probléme physico-
mathématique’, MASP, 1700, pp. 9-21, on the original problem posed by Johann
Bernoulli.
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ing together the most advanced areas of mathematics and mechanics of
the time bore fundamental results which are not captured by the term
‘translation’, at least in its most immediate meaning of rendering a
passage from one language into another, such as Greek into Latin. Other
examples may turn out to be more appropriate. An extreme case
emphasizing the importance of notations and style is the calculation of
the square of a number, say 86, written in Roman numerals as
‘LXXXVI. Even simple multiplication becomes highly problematic,
since our positional notation allows the execution of several operations
by means of simple techniques which cannot be ‘translated’ notation and
manipulation of equations cannot be separated. In the general intro-
duction T argued that translating a set of operations between two
computer languages may require deeper changes than translating
between two Indo-European languages. Even if the two programmes are
designed to perform the same operations, the skills required to
manipulate them may differ considerably. Thus subsequent modifica-
tions and developments may follow different routes, and this is precisely
what happened in Britain and on the Continent in the eighteenth century:
despite the initial ‘equivalence’ of fluxions and differentials, British
mathematicians remained closer to geometry and tended to conceive the
increments of a variable with respect to time. By contrast, Continental
mathematicians developed an algebraic approach in which variables and
parameters were clearly distinguished by means of a standard notation:
x, y, etc. for variables, a, b, etc. for parameters. Differential equations
became the focus of attention, and a wealth of integration techniques was
developed. By the middle of the century, whilst British mathematicians
were still struggling with diagrams and a cumbersome geometric
notation, Continental mathematicians were beginning to investigate
equations in several independent variables, partial differentiation, and
even simple but effective new representations involving rotating axes. As
a result, entire fields such as the study of elasticity, celestial mechanics,
and the theory of rigid bodies were transformed by Daniel Bernoulli,
Alexis Clairaut, Jean d’Alembert, and especially Leonhard Euler. In
1757 the distinguished British mathematician Thomas Simpson could
state: 1’

And it appears clear to me, that, it is by a diligent cultivation of the Modern

19 Bertoloni Meli, ‘Emergence’. See the collection of essays by Truesdell, Essays in the
History of Mechanics (New York, 1968), and his important contributions in Euler, Opera
Ompnia, 11, vols. 11, (second part) to 13. D. T. Whiteside, ‘Newton's lunar theory: from high
hope to disenchantment’, Vistas in Astronomy, 19, 1976, pp. 317-28. A different interpreta-
tion of British mathematics in the eighteenth century is in Guicciardini, Development.
Further observations on this topic can be found in the following section. T. Simpson,
Miscellaneous Tracts (London, 1757), preface, quoted in Guicciardini, Development, p. 84.
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Analysis, that Foreign Mathematicians have, of late, been able to push their
Researches farther, in many particulars, than Sir Isaac Newton and his Followers
here, have done.

In Varignon’s case the problem of equivalence appears again in a form
different from that we have seen for the Tentamen. Leibniz’s transforma-
tion of some results of the Principia involved mathematics and physics at
the same time. Varignon’s work, by contrast, is purely mathematical. By
wanting to prove the versatility of the differential calculus, he was setting
the scene for the algebraization of Newtonian mechanics, deepening the
understanding of the link between mathematical representations and
motion, and beginning to develop new practices and results. Varignon
did not prove new fundamental theorems in mechanics; for example,
nothing in his work compares in originality to any one of Huygens’s
major achievements a few decades earlier, such as the impact laws,
centrifugal force, or the isochronism of the cycloid. Varignon’s import-
ance must be evaluated in different terms.

His first essay on mechanics in the Paris Mémoires, read in January
1700, sets out a general correlation between mathematics and mechanics
involving spaces, times, speeds, and forces. At the end of his essay
Varignon was able to express in algebraic form proposition 39 of the
Principia, which states: ‘Supposing a centripetal force of any kind, and
granting the quadratures of curvilinear figures; it is required to find the
velocity of a body, ascending or descending in a right line, in the several
places through which it passes ..’ Whereas Newton’s demonstration was
entirely geometrical, Varignon was able to write an elementary
differential equation: [ydx=1/2 vv, where y is the acceleration, v
velocity, and x the space traversed. Propositions 39-41, as we shall see in
the following section, became a focal point of interest for the mathemat-
icians involved in the formulation of an algebraic mechanics. Varignon’s
second memoir deals with central forces developing mathematical
examples, such as motion along ellipses and the circle in particular,
logarithmic and hyperbolic spirals, and the case of forces acting along
parallel lines. The third essay is particularly interesting since it follows
the outbreak of the controversy with Rolle about the calculus. In this
memoir Varignon focused on astronomical examples, starting again from
the ellipse, and then moving to the Cassinoid, and to the eccentric. Each
example was studied with the correct form of the area law, and with the
empty focus rule which had been commonly adopted in the seventeenth
century as a computational device. With these examples Varignon was
more interested in emphasizing the universality of his method and
possibly gaining Cassini’s support against Rolle, than in seeking a
collaboration with astronomers, as Newton was with Flamsteed in the
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1680s and 90s. The fourth essay introduces the osculating circumference
and generalizes some of the preceding results. It is interesting to notice
that analogous results with the osculating circumference had been
obtained, though not published, by Leibniz in De Conatu of late 1688. In
a later essay Varignon was stimulated by Leibniz to tackle the three-body
problem, an area in which he attained no significant result.?°

In Varignon’s memoirs there are two points in particular which
deserve attention. In the second essay he referred to central forces—both
centrifugal and centripetal—as being the foundation of the Principia. The
suspicion that he interpreted Newton’s masterpiece as concerning
centripetal as well as centrifugal forces is confirmed by a further memoir
in the Paris Academy for 1706, in which Varignon explicitly stated that
centrifugal forces are equal and opposite to centripetal forces. This inter-
pretation largely corresponds to Huygens’s and shows once again the
gulf between interpretations around 1700 and more recent ones. Even
Johann Bernoulli followed partly this approach. Unlike Varignon,
however, Johann applied the third law only to the component of gravity
which is perpendicular to the curve, attaining the expression v?/p, where
vis orbital velocity and p the osculating radius.?!

The other issue concerns the link between mathematical representa-
tions of curves and dynamics. As we have seen in Section 4.2, conceiving
a curve as an infinitangular polygon affected the dynamics of curvilinear
motion because accelerations do not arise in the elements. By and large,
Leibniz preferred to dispense with accelerations and adopted the
polygonal representation of curves. As Eric Aiton has shown, at the
beginning Varignon represented curves as polygons, but at the same time
he employed accelerated motion. Awareness of this mistake emerged in
his debates with Leibniz and Johann Bernoulli, and is due to Varignon.
He explained the matter to Leibniz, who in his turn passed it on to
Johann. Later the Swiss mathematician communicated the result to the

20 P. Varignon, ‘Maniere generale de déterminer les forces, les vitesses, les espaces, et
les temps’, MASP, 1700, pp. 22~7, esp. p. 27. Newton, Principia (Motte and Cajori), p.
125. Varignon’s memoir was preceded by several essays on the mathematical analysis of
motion; compared M. Blay, ‘Quatre memoires inédits de Pierre Varignon consacres a la
science du mouvement’, AIHS, 39, 1989, pp. 218-48. On Varignon and the Principia see
M. Blay, “Varignon ou la theorie du mouvement des projectiles ‘comprise en une
Proposition generale’”, AS, 45, 1988, pp. 591-618. Varignon’s second memoir is ‘Du
mouvement en general’, MASP, 1700, pp. 83-101; the third is ‘Des Forces centrales’,
MASP, 1700, pp. 218-37; the fourth ‘Autre regle generale des forces centrales’, MASP,
1701, pp. 20-38. P. Varignon, ‘Des courbes décrites par le concours de tant de forces
centrales qu’'on voudra’, MASP, 1703, pp. 212-29.

21 P. Varignon, ‘Comparaison des forces centrales avec les pesanteurs absolues des
corps’, MASP, 1706, pp. 178-235, on pp. 178-9. Johann Bernoulli’s relevant passage is
quoted in a letter by Varignon to Leibniz, LMG, 4, pp. 136-8, 9 Oct. 1705. Bertoloni Meli,
‘Relativization’, sect. 3.
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Huguenot refugee in England Abraham De Moivre. Although Varignon
acknowledged that the polygonal model led to the correct result, he
believed that centripetal force acts continuously and that motion under
a centrifugal force is accelerated; hence he preferred the continuous
approach. Johann Bernoulli and Hermann also preferred to use
accelerations despite their allegiance with Leibniz. The correspondence
between Hermann and Leibniz contains several debates on this issue. At
one point, for example, Hermann claimed that the ‘causa agens’ inducing
in the body m the infinitesimal velocity dc in the element of time d, is
equal to mdc:dt, a statement promptly denied by Leibniz, who saw in it a
contradiction with his own metaphysics as well.2

In a Remargue in his third memoir, Pierre Varignon introduced as a
purely mathematical exercise an expression resembling Leibniz’s
equation of paracentric motion, namely:

_d2— rddb,
rdt?

which can be written as ddr =(dz?/r) — (ydt?), where y is the central
force, r the radius, dz the component of the orbital trajectory perpen-
dicular to the radius, and dr a constant element of time. Thus for a
particular choice of the progression of the variables Varignon wrote the
central force as the difference between two terms. However, he did not
interpret his mathematical formulation as relating either to centrifugal
force, or to physical actions.?®> This detachment of the mathematical
formulation from the interpretation in physics and mechanics can be
witnessed in another interesting case in England. In 1704 the Deputy
Governor of the Royal African Company Charles Hayes published A
Treatise of Fluxions, one of the first textbooks on the new calculus. In the
preface he clearly admitted that he had borrowed freely from virtually all
the main mathematicians of the time, and especially from Newton,
Leibniz, the Bernoulli brothers, I'Hoépital, and John Craig. The section
on astronomy in his book is particularly curious because it juxtaposes
propositions from the Principia and from the Tentamen. Although he
does not refer to vortices, the Leibnizian mathematical treatment of
planetary motion is clearly exposed. Hayes started from a version of

2 T. L. Hankins, Jean d’Alembert (Oxford, 1970), pp. 225-57 and Science and the
Enlightenment (Cambridge, 1985), pp. 22-5; Aiton, ‘Celestial Mechanics’, pp. 75-82;
NMW, 6, pp. 540-1, n. 8. K. Wollenschldger, ed., ‘Der mathematische Briefwechsel
zwischen Johann I Bernoulli und Abraham de Moivre’, Verhandlungen der Naturforschen-
den Geselischaft in Basel, 43, 1933, pp. 151-317, on pp. 281-2, 290, 296-7. LMG, 4, p.
384, Hermann to Leibniz, 22 Dec. 1712; p. 388, Leibniz to Hermann, 1 Febr. 1713. See
also Chapter 4 above.

3 Varignon, ‘Des forces centrales’, MASP, 1701, p. 234. In the equation in the fourth
line of the Remarque the numerator should read dz? — rddr.
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proposition 1 of the Principia, and then, following Leibniz’s private
itinerary, he attained the law of the harmonic circulation expressed in a
purely mathematical form. The reviewer in the Acra did not fail to notice
that his source was the Tentamen.?* Moreover, although in his figure
Hayes called the latus rectum of the planetary ellipse XN, in the text he
wrote XW, which corresponds to Leibniz’s figure! Once again, a math-
ematical formulation was detached from its interpretations.

Hayes was not very representative of the work carried out in Britain,
which hinged on a closer integration of celestial mechanics with
astronomy. The Astronomer Royal John Flamsteed, despite the heated
controversy with Newton over the publication of his own observations in
Historia Coelestis (London, 1712) without his own consent, provided
crucial data for lunar theory.?’

If Flamsteed was eminently an observational astronomer, the Savilian
Professor David Gregory was almost exclusively a theoretical or ‘closet
astronomer’, as Flamsteed called him. His Astronomiae Physicae et
Geometricae Elementa, probably used for teaching to final year students,
was largely based on the Principia and contained the preface and an
essay on lunar theory by Newton himself. Gregory’s work was structured
in six books on the Newtonian system, spherical astronomy and
refraction, planetary theories and the shape of rotating bodies, the
astronomy of satellites including lunar theory, cometography, and
comparative astronomy, namely the study of the universe viewed from
different celestial bodies. In book I Gregory examined the physical
theories proposed by Kepler, Descartes, and Leibniz. Interestingly,
originally Gregory had been very appreciative of Kepler, but Keplerian
physics was eventually dismissed, it appears, after a meeting with
Newton in 1698. Gregory criticized the Tentamen for the lack of an
explanation of the inverse-square law, the incompatibility between the
harmonic vortex and Kepler’s third law, and the theory of comets. In a
comment made known by Christina Eagles in her doctoral dissertation,
Gregory dismissed Leibniz’s 1706 additions and emendations to the
Tentamen with the words: ‘It is a very poor paper, and does not so much

as touch the main difficultys, but acknowledges all it touches’.?

24 C. Hayes, A treatise of fluxions or an introduction to mathematical philosophy
(London, 1704), pp. 291-305; Acta Eruditorum (1705), pp. 474-6. Guicciardini, Develop-
ment, pp. 15-17.

35 A. Chapman, The Preface to John Flamsteed's ‘Historia Coelestis Britannica’, Maritime
Monographs and Reports, 52, 1982. Cohen, Introduction, pp. 172-7.

3 D. Gregory, Astronomiae Physicae et Geometricae Elementa, pp. 99-104. A copy
with marginal annotations by Leibniz is at the NLB (see p. 187 n. 29). Leibniz replied to
Gregory'’s criticisms in the ‘Illustratio Tentaminis’, LMG, 6, p. 254. Eagles, David Gregory,
pp. 477-577 (on Astronomia); pp. 499-504 (on Kepler); pp. 505-510, esp. p. 509 (on
Leibniz); pp. 574 and 597. Cohen, Introduction, p. 184. Isaac Newton’s ‘Theory of the
Moons Motion’ (1702); with a bibliographical and historical introduction by 1. Bernard
Cohen (Folkestone, 1975).
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Gregory’s colleague at Oxford Edmond Halley, since 1704 Savilian
Professor of Geometry, worked extensively on comets. His seminal
Synopsis is based on the study of 24 comets dating from 1337 to 1698.7

Probably the most talented mathematician in Britain after Newton was
Roger Cotes, since 1707 Plumian Professor of Astronomy, and editor of
the second edition of the Principia (Cambridge, 1713). In his celebrated
preface he ascribed gravity among the primary qualities of bodies,
repeated all the standard arguments against vortices, and attacked the
Tentamen in particular without mentioning Leibniz. Indeed in a letter to
his patron, the Master of Trinity College Richard Bentley, Cotes singled
out the Tentamen as a particularly good example of a work ‘which
deserves a censure’ because of Leibniz’s ‘want of candour’. His outstand-
ing editorial work involved virtually all aspects of the Principia and, with
regard to celestial mechanics, especially lunar theory.?

The different roles played by astronomy in celestial mechanics in
Britain and on the Continent are exemplified by the story of the data of
the early sighting of the great comet of 1680-1. In the first edition of the
Principia the first none too accurate observation of the great comet was
that of 17 November in Rome. Gottfried Kirch, however, since 1700
astronomer at the Berlin Akademie der Wissenschaften, had made
reliable observations in Coburg on 4, 6, and 11 November. The existence
of these observations was known to Leibniz around 1700, though he was
unable to make any use of them. In the early summer of 1703 Edmond
Halley stopped in Hanover on the way South to the Adriatic, and the
matter of Kirch’s observations arose in a conversation with Leibniz. In a
letter of 14 July 1703, Leibniz promised Halley to ask Kirch about his
observations. As Leibniz wrote to Halley on 8 December 1705, he
hoped that Kirch’s observations might bring some light to cometography.
Although those data were received in England, Newton omitted them
from the second edition of the Principia, probably because he did not
want to thank Leibniz. In the third edition, however, the observations by
‘Mr Kirk” were mentioned not only in book III, but also in the few lines
of the preface as one of the notable additions.?” Few examples could

27 E. Halley, ‘Astronomiae Cometicae Synopsis’, PT, 24, 1705, pp. 1882-99. A.
Armitage, Edmond Halley (London, 1966). Standing on the shoulders of giants, ed. N. J. W.
Thrower (Berkeley, 1990). S. Schaffer, ‘Newton’s comets and the transformation of
astrology’.

28 R. Gowing, Roger Cotes. Natural Philosopher, (Cambridge, 1983). Cohen,
Introduction, pp. 239-40. NC, 5, p. 389, Cotes to Bentley, 10 Mar. 1713. NC, 5, Intr,, pp.
XXXI—XXX1V.

29 Correspondence and Papers of Edmond Halley, ed. E. F. MacPike (Oxford, 1932), pp.
200-1, and p. 219. On Halley’s journey see Armitage, Halley, p. 155, and esp. A. H. Cook,
‘Halley, Surveyor and Military Engineer: Istria, 1703, in Thrower, ed., Giants, pp. 157-70.
The whole episode is narrated in Waschkies, Physik pp. 277-90; the dates of cometary
sightings follow the old style, as in the Principia. ‘Observationes quaedam accuratae
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emphasize more spectacularly the different roles of astronomical data in
Britain and on the Continent. The close links established by Newton
with the community of astronomers, mirroring the close links between
his own celestial mechanics and astronomy, remained without parallel on
the Continent until the time of Jean d’Alembert and Pierre Charles Le
Monnier, Alexis Clairaut and Joseph Delisle, Leonhard Euler and
Tobias Mayer.

At least two influential Italian mathematicians produced an early
response to the Principia and Tentamen. The Marquis Giovanni Poleni
was from 1709 Professor of Astronomy and Meteorology at the
University of Padua, where he later occupied the chair of mathematics.
In 1712 he published De vorticibus coelestibus dialogus, an extremely
well documented survey on the current debates on vortex theories in
celestial mechanics. In his characteristic style, Poleni presented the
arguments for and against the various versions of the vortex theories
then available, including Leibniz’s harmonic vortex, without taking side
with any of them or with the Newtonians. In those years Padua was the
main mathematical centre in Italy, following the conquest of the chair of
mathematics in 1709 by the Swiss Jakob Hermann, a pupil of Jakob
Bernoulli at Basel.3® A very interesting document about the reception of
the Principia has been recently published by Vincenzo Ferrone. In a
letter to Gregorio Caloprese of March 1714, the Celestine father
Celestino Galiani attacked Cartesian vortices and implicitly Leibniz’s
Tentamen, which he had certainly read. His criticisms were based on the
inconsistency between Kepler’s laws and vortical motion and contained
several mathematical arguments. The letter, originally intended for the
Venetian Giornale de’ Letterati, remained unpublished but seems to have
been widely known in Italy.’!

9.4 The inverse problem of central forces

The whole dispute will concern not the solution to the problem, which is not con-
troversial, but the manner of solving it; following the spirit of this very delicate

insignis Cometae sub finem anni 1680 visi, Coburgi Saxoniae a Domino Gottfried Kirch
habitae’, PT, 29,1715, pp. 169-72.

30 Poleni, De vorticibus, pp. 15, 34-5, 126-8, 138-42. On Poleni compare B. Dooley,
‘Science teaching as a career at Padua in the early eighteenth century. The case of
Giovanni Poleni’, History of Universities, 4, 1984, pp. 115-51, esp. p. 125f. P. Casini,
Newton e la conscienza europea, (Bologna, 1983), pp. 179-81. Ferrone, Scienza, passim.

3 V. Ferrone, ‘Celestino Galiani e la diffusione del newtonianesimo. Appunti e
documenti per una storia della cultura scientifica italiana del primo settecento’, Giornale
Critico della Filosofia Italiana, 61, 1982, pp. 1-33; Ferrone, Scienza, passim. P. Casini,
Newton, pp. 192-4.
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century, which having set together Analysis and Metaphysics, does not value as
much the truth which has been discovered, as the method with which this truth is
found and made overt.*?

A major mathematical issue in celestial mechanics tackled successfully
before the generation of Leonhard Euler and Alexis Clairaut was the
inverse problem of central forces. The direct problem consists in finding
the force given the trajectory and is easier than the inverse problem,
which requires the trajectory given the force. Before the issue became
the focus of attention around 1710, the two problems were not sharply
distinguished. As the opening quotation shows, what was at stake was
not so much the result, as the method of demonstration.

The leading Continental mathematician at that time was Johann
Bernoulli. Together with his brother Jakob, they were among the first to
study Leibniz’s publications on the calculus and to develop new results.
Despite his prominent role in pure mathematics, however, Johann
entered the arena of mechanics quite late. In the context of the priority
dispute over the invention of the calculus, he seized upon the inverse
problem of central forces as a further element in his attack on the
English. In corollary 1 to proposition 10 of the Principia, book I, Newton
stated that if a body moves along an ellipse, the force towards the centre
is proportional to the distance, and conversely. In propositions 11, 12,
and 13 he proved that if a body moves along an ellipse, a hyperbola, or a
parabola, respectively, the force towards the focus is inversely pro-
portional to the square of the distance. In corollary 1 to proposition 13
he stated that also the inverse of the previous three theorems was true,
though without proving it. At the very beginning of the work for a second
edition of the Principia, in 1709, Newton wrote to Rogers Cotes about
the need to add a few lines at the end of corollary 1 to proposition 13, in
order to prove the inverse problem. The additional outline of the proof,
which appeared in the 1713 edition, reads:*3

32 J. Riccati, ‘Risposta ad alcune opposizioni fatte del Sig. Giovanni Bernulli’, GLI, I9,
1714, pp. 185-210, on p. 187 (the rather free translation is mine): ‘Tutta dunque la disputa
versera, non sopra il problema sciolto, che non ¢é soggetto ad opposizione; ma sopra la
maniera di scioglierlo: conforme al genio di questo delicatissimo secolo, che avendo
insieme congiunte I’Analisi, e la Metafisica, non fa tanto conto della verita ritrovata,
quanto del metodo, con cui si scopre, e si manifesta.’

3 NC, 5, p. 5, 11 Oct. 1709, Newton to Cotes. Principia, transl. by Motte and Cajori, p.
61. The reviewer of the second edition in the Acta Eruditorum missed this point. The
editors of the Acta wrote the names of the authors into the volumes in their possession.
The year 1714 (March, pp. 131-42) of the set at the University Library in Leipzig
indicates Christian Wolff as the author. E. Ravier in Bibliographie des Oeuvres de Leibniz
(Paris, 1937, reprinted in 1966), pp. 90~-1, states that after 1705 Leibniz and Wolff worked
together on several reviews. The antinewtonian context of Johann’s work emerges clearly
from a letter to Leibniz of 12 Aug. 1710, LMG, 3, pp. 853-4.
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For the focus, the point of contact, and the position of the tangent, being given, a
conic section may be described, which at that point shall have a given curvature.
But the curvature is given from the centripetal force and velocity of the body
being given; and two orbits, touching one the other, cannot be described by the
same centripetal force and the same velocity.

This proof relies on the direct problem: Newton starts by trying to
establish a possible solution with a conic section, and later provides a
unicity requirement implying that the curve thus selected is the only
possible one.

In 1710, thus before the appearance of the second edition, this was an
ideal topic for Johann Bernoulli: unlike cometography or lunar theory,
which required specific skills in astronomy, the inverse problem of
central forces involved analytic skills with quadratures, one of the fields
where he was strongest. Johann convincingly stated the need to prove the
inverse theorem with a counter-example: if a body moves along a
logarithmic spiral, central attraction is inversely proportional to the third
power of the distance from the centre. However, starting from a force
decreasing in this fashion, it does not follow that the trajectory will be a
logarithmic spiral, because other curves, such as the hyperbolic spiral,
can be described too. Hence Johann's statement that although Newton’s
claims were correct, they had not been demonstrated in the first edition
of the Principia. Johann’s solution was published in the Paris Mémoires
for 1710, together with those by Hermann and Varignon. The problem
was conceived in purely mathematical terms, with no implications on
physics or mechanics. Their solutions and Johann Bernoulli’s subsequent
polemics with Newton’s champion John Keill and with Hermann high-
light a number of problems in the practice of early eighteenth-century
mechanics. These problems hinged on the process of algebraization of
mechanics. Newton’s cumbersome geometical treatment of central forces
in propositions 39-41 of book I was rendered into analytic form and
developed. This process is related to several issues, such as the relation-
ships between mathematics and its physical interpretations, the problem
of what constitutes a satisfactory solution in relation to geometric versus
algebraic techniques, and the notion of adequate proof in relation to
auxiliary lemmas and constant factors. I discuss these problems in turn.

Regardless of their beliefs concerning the cause of gravity and
vortices, mathematicians employed accelerations and continuous curves
rather than uniform motions and infinitangular polygons. Thus the
correlation between mathematical representations and physical interpre-
tations established by Leibniz collapsed.** A particularly interesting case

34 Hermann, however, mixed the polygonal representation with accelerated motion, as

Eric Aiton had pointed out in ‘The Inverse Problem of Central Forces’, AS, 20, 1964, pp.
81-99,0n p. 94, n. 62.
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can be found in a memoir by Pierre Varignon, who provided several
solutions to the inverse problem involving different progressions of the
variables. On the hypothesis that ydx is constant, where y is the radius
and dx the height of the infinitesimal triangle swept out by the radius in
the time dt, he started from an expression similar to Leibniz’s equation of
paracentric motion, perfectly analogous to the equation we have seen in
the previous section.’> Leibniz provided his mathematical formulation
together with an intepretation in mechanics involving centrifugal conatus
and the solicitation of gravity, and a physical account in terms of
vortices. Paradoxically, Varignon used Leibniz’s formulation, originally
intended against Newton, in a purely mathematical fashion: neither
Leibniz’s theory of centrifugal conatus, nor his physical interpretation
were given any consideration. This specific case seems to point to a
separation of mathematics from its immediate physical interpretation
and thus to a collapse of the Keplerian programme. However, the issue is
considerably more complex and requires a broader investigation cover-
ing several fields over a longer period. Elasticity, for example, is a
promising area for investigating the relationships between mathematical
modelling and physical interpretations. Johann Bernoulli is a particularly
interesting case: he followed and developed the Leibnizian calculus;
moreover, philosophically he was in many respects close to Leibniz and
believed in the conservation of living force and vortices of subtle matter.
In the 1730s he tried to develop a vortex theory of gravity in several
essays presented to the Paris Academy, which awarded him two prizes.*$
Although the specific form of the Keplerian programme defended by
Leibniz did collapse, surely the same cannot be said for the more general
spirit of his attempts. These preliminary observations set the agenda for
a broader study of the status of mathematical representations in the
Enlightenment.

The second issue concerns the notion of ‘solution’ of a mathematical
question. The controversy between Johann Bernoulli and Keill highlights
the disagreement about this point. As we have seen in Section 3.3,
representation of curves in the late seventeenth and early eighteenth
centuries was based on a plurality of methods. A curve was known not
only or necessarily through its equation, but also through its properties
or method of construction. With the introduction of the infinitesimal
calculus the problem was further complicated by the presence of

35 P. Varignon, ‘Des forces centrales inverses’, MASP, 1710, pp. 533-44; LMG, 4, pp-
170-4, Varignon to Leibniz, 4 Dec. 1710. In his reply on 17 Febr. 1711, pp. 174-6, Leibniz
refers to the utility of the calculation in the study of lunar motion.

% Aiton, Vortex Theory, pp. 214-19 and 228-35. On elasticity compare Truesdell,
Euler, Opera Omnia, 11, 11 (second part) and I2. J. Bernoulli, Nouvelles pensées sur le
systeme de M. Descartes (Paris, 1730) =JBO, 3, pp. 131-73; Essai d’'une nouvelle physique
céleste (Paris, 1735) =JBO, 3, pp. 261-364.



212 Reception of Newtonian and Leibnizian theories

differential equations: a solution could be such an equation, ‘granted the
quadratures’, or its integral. If the integral was transcendent, the problem
could be said to have no ‘solution’. Since the inverse problem of central
forces consists in finding the curve traversed by a body in special
conditions, it is not surprising that the issue of representation of curves
affected the notion of solution. Curious equivocations emerged from a
passage by Jakob Hermann. On the same page of an article in the
Venetian Giornale de’ Letterati, he stated that probably the general
solution to the problem of central forces will never be found, and that
Newton had given an ‘erudita soluzione’ to it. Giuseppe Verzaglia, a
patrician from Cesena who had studied mathematics in Basel with
Johann Bernoullj, started a controversy with Hermann involving, among
other things, the notion of solution and the acceptability of transcendent
or mechanical curves.*’

In the Principia, proposition 41 of book I, Newton provided a general
geometrical method for finding the curve given an arbitrary central force.
The proposition states: ‘Supposing a centripetal force of any kind, and
granting the quadratures of curvilinear figures; it is required to find as well
the curve in which bodies will move, as the times of their motions in the
curves found’ (my emphasis). At first sight Newton’s solution appears to
be very general. On second reflections, however, one may wonder
whether it is a satisfactory solution at all, since in practice the identifica-
tion of the trajectory of the orbiting body was not provided.’® From
proposition 41 it was by no means clear that if the force is inversely
proportional to the square of the distance, the only possible trajectories
are conic sections. Indeed, Newton’s own attempt at the inverse problem
was not based on proposition 41. This issue attracted the attention of
Continental mathematicians: Johann Bernoulli in particular attained the
general equation of a conic from the inverse-square law by integrating a
first-order differential equation. His proof begins with a preliminary
lemma and then moves on to the differential equation of the orbit. The
method he employed was an algebraic version of Newton’s geometrical
treatment in propositions 40 and 41, book I. Their equations can be
shown to be ‘the same’ if one considers that Newton’s A corresponds to

37 J. Hermann, ‘Metodo d'investigare l'orbite dei pianeti’, GLI, 2, 1710,p. 460; G.
Verzaglia ‘Modo di trovare l'orbita, che descrivono i pianeti, qualunque siasi la loro forza
chiamata centrale’, GLI, 3, 1710, pp. 495-510. J. Hermann, ‘Soluzione generale del
problema inverso delle forze centrali’, GLI, 5, 1711, pp. 312-35. G. Verzaglia,
‘Considerazioni sopra I'articolo nel quale si tratta del problema inverso delle forze centrali
nel voto', GLI, 6, 1711, pp. 411-40. J. Hermann, ‘Riflessioni geometriche’, GLI, 7, pPpP-
173-229. Verzaglia, who had a paper rejected by the Venetian Giornale, published a book
on the issue, Esame delle riflessioni geometriche pubblicate da un ultramontano professore
in Italia (Bologna, 1714), esp. p. 22.

* Newton, Principia, transl. Motte and Cajori, p. 130; NMW, 6, pp. 336-51.



Reception of Newtonian and Leibnizian theories 213

Bemoulli’s x, IN to dx, CX to a, YX to dz, etc. Trivial as this translation
may appear, its advantage can already be grasped: Newton’s notation
relies entirely on the geometrical figures which one must look at at each
stage, and hides the difference between variables and constants. By
contrast, this difference is immediately clear in Bernoulli’s work: by
looking at his equation one can assess the difficulties of the integration,
devise a suitable strategy, think of appropriate substitutions of variables.
Hence Johann’s claim that Newton’s proof was ‘trop embarassée’ may
have been ungenerous, but was not completely unjustified. The two
‘equivalent’ equations differed in another fundamental respect: Newton’s
represented the completion of his proof, Bernoulli’s was the starting
point of an original and skilful development from the Principia. By
means of a series of substitutions the Swiss mathematician could attain
the equation of a conic section depending on a parameter whose values
identified ellipses, parabolas, or hyperbolas. Johann went even further
and provided an alternative solution based on a second-order differen-
tial equation. Also in this case he was able to find the integral, this time
for different progressions of the variables.>

The ensuing controversy with Keill highlights the conflict between two
mathematical styles. Keill claimed that Bernoulli had merely translated
Newton’s theorem into the language of the calculus, and that the two
texts differed as the Latin and Greek versions of the same passage. When
Bernoulli replied that he had provided an analytical solution showing
that the only possible curves in the hypothesis of central forces inversely
proportional to the square of the distance were conic sections, Keill
answered that Newton had provided a general solution, which his rival
had applied only to a special case. Further, he claimed that Newton’s
solution was simpler, being three lines long, while Bernoulli had
employed seven pages. However, as mathematicians knew well, the
special case was not a trivial corollary of the general one: Bernoulli’s
integration was indeed magisterial 4

We move now to the third issue, namely the notion of adequate proof.
Newton’s own proof, which I have quoted above, relies on proposition
17, book 1, which states: ‘Supposing the centripetal force to be inversely

3% J. Bernoulli, ‘Solution du probleme inverse des forces centrales’, MASP, 1710, pp.
521-33=JBO0, 1, pp. 470-80; the equation corresponding to Newton’s is on p. 475, lines
8-9. It is worth recalling that unlike first-order differential equations, higher-order
equations depend on the progression of the variable: see Bos, ‘Differentials’, pp. 26, 29~
30, and 35.

40 J. Keill, ‘De inverso problemate virium centripetarum’, PT, 29, 1714, pp. 91-111;
‘Défense du Chevalier Newton’, Journal Litéraire, 8, 1716, pp. 418-33, esp. p. 420; ‘Lettre
de M. J. Keill’, Journal Litéraire, 10, 1719, pp. 261-87. J. Bernoulli was the author of the
anonymous ‘Epistola pro eminente mathematico ... contra quendam ex Anglia
antagonistam scripta’, AE, July 1716, pp. 296-315.
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proportional to the squares of the distances of places from the centre,
and that the absolute value of the force is known; it is required to
determine the line which a body will describe that is let go from a given
place with a given velocity in the direction of a given right line’. Newton’s
intention in that proposition was not to prove the inverse problem, since
in the construction he assumed that the curve is a conic section, but only
to provide the scale or size of the conic. However, his proof could be
modified in such a way that the inverse problem results as a corollary. In
1716 Keill claimed that proposition 17 contained a demonstration of the
inverse theorem. In his reply through his student Johann Kruse, however,
Johann Bernoulli objected that proposition 17 assumes the result rather
than proving it. Surprisingly Johann Bernoulli’s most talented pupil and
possibly the most gifted mathematician of the Enlightenment sided with
Keill: Leonhard Euler, in his 1736 Mechanica, claimed that the inverse
problem of central forces could be solved on the basis of proposition 17,
book L4

The change in perception of mathematical notions can be grasped by
comparing proposition 41 in the Principia with a modern solution within
‘Newtonian’ mechanics. While Newton’s geometric treatment was based
on the ratio between variable areas, modern formulations are based on
constant parameters such as energy and angular momentum: the import-
ance of constant factors has grown considerably in the way a problem is
conceived, tackled, and solved. The role of constants emerged in the
controversy between Johann Bernoulli and Jakob Hermann. The proof
provided by the latter involved two integrations: the first, however, was
carried out without adding the arbitrary constant factor. Johann
promptly pointed out that this omission affected the rigour of the
demonstration, since it was conceivable to suspect that curves which are
not conic sections might have been excluded. His article in the same
1710 issue of the Paris Mémoires starts from an improved version of
Hermann’s proof, where Johann takes into account the integration

41 J, Keill, ‘Défence du Chevalier Newton’, p. 427. J. H. Kruse, ‘Responsio ad CL Viri
Johannis Keil’, AE, Oct. 1718, pp. 454-66, on p. 461. My understanding of these events
differs somewhat from the account in NMW, 6, pp. 146-9, n. 124 and pp. 349-50, n. 174.
L. Euler, Mechanica (St. Petersburg, 1736) = Opera Omnia, 11, I, pp. 221-2; see also J. B.
Biot’s review of Edleston, Correspondence, Journal des Savants, 1852, p. 532. E. J. Aiton,
‘The contributions by Isaac Newton, Johann Bernoulli and Jakob Hermann to the inverse
problem of central forces’, SL, Sonderheft 17, 1987, pp. 47-58. In recent years there have
been lively debates as to the adequacy of Newton’s proof of the inverse problem. In this
rapidly growing literature see: R. Weinstock, ‘Dismantling a Centuries-old Myth: Newton’s
Principia and Inverse-Square Orbits’, American Journal of Physics, 50, 1982, pp. 610-17;
‘Long-buried Dismantling of a Centuries-old Myth: Newton’s Principia and Inverse-square
Orbits’, ib., 57, 1989, pp. 846-9. E. J. Aiton, ‘The solution to the inverse problem of
central forces in Newton’s Principia’, AIHS, 38, 1988, pp. 271-6. B. H. Pourciau, ‘On
Newton'’s proof that Inverse-Square Orbits must be Conics’, AS, 48, 1991, pp. 159-72.
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constant neglected by his colleague. Hermann had to publish an
appendix in which he considered constant factors in the first integration.
A few years later Jacopo Riccati, countering Johann Bernoulli’s further
accusation that Hermann’s solution was artificial and ad hoc, attained the
same integral by means of a general elegant technique involving the
substitution of variable. This brief example testifies to the specific skills
involved in the application of the differential calculus and in the transi-
tion from geometry to algebra. The inverse problem marks a significant
stage in the process of algebraization of mechanics.*?

9.5 Epilogue

As we have seen in the previous chapter, in 1714 Keill published a
ruthless attack on the Tenramen in Willem ‘sGravesande’s Journal
Litéraire, claiming that Leibniz’s essay was the most incomprehensible
piece of philosophy which had ever appeared. Selecting from the ample
material provided by Newton, the Savilian Professor of Astronomy
focused on the issues of second-order infinitesimals and centrifugal
force. Keill accused Leibniz of incompetence concerning the first issue
because of the mistake by a factor of two in the calculation of centrifugal
conatus. Turning to Leibniz’s 1706 corrections, Keill objected to the
polygonal method of calculation employed by Leibniz. Unlike Varignon,
however, who accepted that the polygonal method leads to the correct
result, Keill argued that the force produces a continuous deflection
which cannot be represented with straight lines.** Concerning
mechanics, Keill claimed that the outward tendency or centrifugal force
is clearly related to the inertia of a body; since centrifugal force is
nothing but the body’s reaction to the force which makes it deviate from
the rectilinear path, Keill concluded that centripetal and centrifugal
forces are always equal and opposite. As we have seen, these views had
been provided by Newton, and were in agreement with the ideas
expressed by Huygens, Varignon, and in slightly different forms by the
mathematical community at that time.

2 J. Hermann, ‘Metodo d’investigare l'orbite dei pianeti’, GLI, 2, 1710, pp. 447-67, on
p. 459f,; the problem had been posed by Johann Bernoulli in a letter in which he had not
given the solution; J. Hermann, ‘Breve aggiunta’, GLI, 6, 1711, pp. 441-9, and ‘Extrait
d’une lettre’, MASP, 1710, pp. 519-21. J. Bernoulli, ‘Solution du probléme’, MASP, 1710,
pp- 521-33.J. Riccati, ‘Risposta ad alcune opposizioni’; N. Bernoulli, ‘Annotazioni sopra
lo Schediasma del Sig. Conte Jacopo Riccati’, GLI, 20, 1715, pp. 316-51.

3 Keill's mathematical criticisms are discussed in Aiton, ‘Mathematical basis’, pp.
223-4.
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Leibniz’s champion Christian Wolff sent him Keill’s article and urged
his master to reply, but Leibniz was adamant in his refusal:*4

I wish to have no dealings with a man of that sort ... Those who look into the
paper on celestial motions will see that there is no error there, only a phrase
concerning centrifugal force which I later rendered more suitable. For what I
have demonstrated, that the Keplerian ellipses result from a combination of the
harmonic circulation with gravity, certainly is true and will remain so.

Significantly, Leibniz omitted any reference to Kepler’s third law, and
had nothing to say about the relations between centripetal and centri-
fugal forces. As we have seen in Section 7.6, Leibniz himself had come to
doubt his own theory of centrifugal force already in 1690. In the
correspondence with Samuel Clarke in 1715-16, and indeed already in
the Specimen Dynamicum of 1695, Leibniz had abandoned the project of
presenting a theory capable of competing with Newton’s. Despite his
subtle philosophical and theological objections, in the eighteenth century
Leibniz had left Newton master of celestial mechanics.

This chapter presents a picture of Newtonian and Leibnizian celestial
mechanics as they were conceived and practised around 1700. The rival
intellectual constructions in the 7entamer and in the relevant portions of
the Principia were perceived differently from what a modern reader
would a priori expect. Leibniz’s difficulties in reconciling Kepler’s laws
with the harmonic vortex, for example, are fully consonant with our
judgement. The interpretation of centrifugal force given by Newton,
Huygens, Varignon, and several other mathematicians at the beginning of
the eighteenth century, however, is not; likewise, the belief that
centrifugal force could not decrease following the inverse-cube law, is
alien to our perception. And yet this interpretation undermined the
consistency of the Tentamen. In this regard mechanics and the three laws
of motion played an important role, though again not in a way a modern
reader would a priori expect. Newton’s analysis of orbital motion
depended on the first law for the body’s tendency to fly away along the
tangent, on the second for the deviation from the tangent, and on the
third for the explanation of centrifugal force and the reciprocity of
attraction. Thus if Newton’s account did not provide physical or causal
explanations for gravity, it incorporated the laws of mechanics more
satisfactorily than Leibniz’s.

Addressing the question of the reception of the Tentamen with respect
to Newtonian celestial mechanics it is useful to establish a comparison
with a major debate of the same period, namely the vis viva controversy.

44 NC, 6, pp. 179-80, Wolff to Leibniz, 22 Sept. 1714; pp. 216-18, Wolff to Leibniz, 24
April 1715; pp. 222-3, Leibniz to Wolff, 7 May 1715; Aiton, ‘Mathematical basis’, p. 225.
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Thanks to the works by Carolyn Iltis, we have come to appreciate the
interplay of rational and social explanations alike. Iltis has stressed the
lack of mutual understanding of rival communities entrenched in the
defence of their respective positions.*> As a consequence of the priority
dispute over the invention of the calculus, the mathematical community
was radically polarized, and yet, despite differences in mathematical
notions and physical theories, we find considerable common ground
between Newtonians and Leibnizians. Keill understood perfectly well
that the Tentamen was based on the polygonal representation of curves;
Johann Bernoulli worked in the framework of the Principia rather than
of the Tentamen; Varignon, occupying a crucial middle position between
the opposing camps, grasped the subtle differences between the
Newtonian and Leibnizian approaches, though he followed more
decidely the Principia and relegated the Tentamen to a mathematical
exercise.

These observations on the reception of Newtonian and Leibnizian
theories lead to some final considerations. At the beginning of the eight-
eenth century the interplay of mathematics, mechanics, and physics,
acted not simply statically in the purely intellectual evaluation of the pros
and cons of each theory, but also dynamically in the practice of the new
problems and solutions which were emerging. The Principia constituted
an extraordinarily fertile field for further researches on the inverse
problem of central forces, cometography, the shape of rotating bodies,
perturbation theory, lunar theory, and tides. Although the Tentamen was
known to the most prominent mathematicians at the beginning of the
eighteenth century, it failed to elicit a response and to serve as a basis for
further investigations, at least with regard to the reconciliation of math-
ematics and physics. Johann Bernoulli’s decision not to develop the
Tentamen despite his general agreement with Leibniz in mathematics and
physics is revealing of the difficulties he perceived in his ally’s essay.
Interest in it vanished with the generation following Newton and Leibniz.
However, many of the researches stimulated by the Principia were
carried out on the Continent using more and more sophisticated versions
of the differential calculus.

By the beginning of the eighteenth century Leibniz’s worries over
priority in celestial mechanics had become less and less important. If the
reasons for his defeat were mainly intellectual, the particular form of the
reception and success of Newton’s theory was largely shaped by the
skills and interests of the scholars who had worked on the Principia. In
the years covered by my research I have identified an astronomical

* C. Itis, ‘The Leibnizian-Newtonian debates: natural philosophy and social
psychology’, BJHS, 6, 1973, pp. 343-77; ‘The decline of Cartesianism in mechanics: the
Leibnizian-Cartesian debates’, Isis, 64, 1973, pp. 356-73.
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tradition in Britain and a mathematical one on the Continent. Hermann
divided his Phoronomia into two books on the motion of solid bodies,
and on the motion of fluids respectively; a third book on the system of
the world, as one finds in the Principia, was missing. With respect to the
problem of physical causes, his works, together with those of Varignon
and Johann Bernoulli, mark the collapse of the specific form of the
Keplerian programme defended by Leibniz and the emergence of a more
pragmatic approach in which the relationships between mathematics and
physical interpretations had to be redefined. At the beginning of the new
century celestial mechanics was already showing autonomous features
from the works by Newton and Leibniz, despite the central role played
by the two contenders.



Appendix 1
TEXTS AND COMMENTARIES

Before presenting the most important and representative texts, [ wish to
specify my general editorial conventions. Each manuscript or group of
manuscripts is introduced by a brief characterization including the
analysis of papers and watermarks, a description of the documents, my
dating criteria and other features relevant to the intelligibility of the
material. All manuscripts in this selection were private drafts and were
not written with the intention of publication. Each text is reproduced in
its entirety. My aims differ from those of the Akademie edition, hence
my decision to adopt different editorial conventions. These conventions
are specifically devised for a limited selection of essays rather than for a
complete edition of approximately one hundred thousand manuscripts.
Initially my transcriptions included all passages crossed out by
Leibniz, but later I decided to omit slips or stylistic changes, whereas
portions showing a significant change of thought or which may include
interesting information are retained. If these are short, they are enclosed
in angled brackets and marked with a horizontal bar; longer passages are
indicated with two vertical bars in the margin. This system does not
reproduce all stages of composition of a text; however, it has two
desirable features. First, full justice is done to important cancellations
which appear in the text rather than in the apparatus; secondly, the
elaborate calculations in many of those cancellations are not printed in
small character at the bottom of the page. Interpolations are indicated
between corners, thus |....|. As with cancellations, I have tried to select
those variants which in my opinion contain useful information, rather
than aiming at completeness. For reasons of clarity I occasionally insert
in angled brackets punctuation marks and words omitted by Leibniz;
square brackets and dots are used by him and are not a part of the
editorial apparatus unless otherwise specified. The symbol ///// denotes
a damaged or missing portion. Capitalization is set according to modern
criteria; accents are neglected. Contractions, like a horizontal bar over a
letter such as U’ (um), or ‘&, ‘4’ (con), ‘#’ (pro) and f)f (potest), are
expanded; abbreviations, like ‘triang., are kept as in the original. Con-
cerning mathematical notation, indices are lowered and fractions have
been written on one line when convenient; a/b-c¢ means a/(bc),
whereas a/b ¢ means (a/b)c. 1 recall that a horizontal bar over an
expression is equivalent to its enclosure in brackets; commas are
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used as separation symbols, both at the beginning (reversed) and at the
end of an expression.

1 Leibniz’s Notes to the Principia Mathematica
LH 35, 10, 7,f. 32-5 (compare Figs. (a) and (b))

The manuscripts reproduced here consist of two sheets folded in quarto
which appear to have been written in continuous succession. The first
sheet bears no watermark, the second has one identical with that
numbered 695 in the catalogue at the NLB, letters ‘MR’. Leibniz used
the same kind of paper in Vienna in 1688. The analysis of orbital motion
is considerably less sophisticated than in the Tentamen, and the circulatio
harmonica or motus paracentricus is not mentioned. This suggests that
the present manuscripts were written in Vienna during the autumn of
1688.

Leibniz’s observations are often enclosed within brackets and
asterisks; sometimes he provided the reference to the portion of the
Principia to which his notes refer. When this is not the case, [ indicate in
the margin in angled brackets the portion of the text concerned.
Whenever this is possible, these references are used in the commentary
as a substitution for line-numbers. Not all passages require explanation,
therefore indications in the margin do not necessarily imply that there is
a corresponding section in my commentary.

My aim in the commentary is to explain Leibniz’s fragmentary and
extemporaneous observations considering them together with Margin-
alia, Excerpts, and with relevant texts such as Dynamica and Specimen
Dynamicum. 1 also cite some of the relevant secondary material on
Newton.

Neutoni philosophiae naturalis principia mathematica

(Def. 1)  Densitatem materiae ponderi proportionalem esse reperi per
experimenta pendulorum accuratissime instituta uti posthac
docebitur. Def. 1 (pag. 1). Scilicet se non habere rationem
fluidi interlabentis notat. 5
(Def. 3) Materiae vis insita, seu vis inertiae, est potentia resistendi
seu perseverandi in suo statu (p. 2) eaque semper proportionalis
est suo corpori, licet quiescat, tamen impetum habet, quatenus
(Def. 4)  corporis in ipsum agentis statum mutare conatur. Corpus quod
semel novam vim impressam accepit, postea illam retinet per 10
solam vim inertiae.
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Fig. (a) LH 35,10,7,f.32r-33v,, Leibniz’s Notesto Newton’s Principia.
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Fig. (b) LH 35, 10,7, 1. 34r.-35v., Leibniz’s Notes to Newton’s Principia.



Appendix 1

(Def. 6) Unum centrum (ad instar magnetis) fortius attrahit quam
{Det. 7)  alterum. Major est gravitas propiorum terrae.

Motum absolutum aestimat a loco absoluto, scilicet respectu
spatii immoti (p. 6).

(Pag. 9  Motus veri et relativi distinguuntur per vires, v.g. quibus
11)  corpora tenderent fila, seu conatus recedendi ab axe motus
circularis.

Lex 2. Si vis aliqua motum generet, dupla duplum, (tripla)
triplum generabit. (+Non assentior+) (+Si impressio sit
conatus tantum seu celeritas infinite parva, admitti,
opinor poterit. +)

Lex 3. Actioni corporis in corpus semper aequalis est
alterius corporis reactio; quantum quis premit et trahit,
tantum premitur et trahitur.

{Cor. 5)  Si moveatur navis uniformiter in directum, omnia perinde
erunt, respectu corporum in navi motorum ac si navis
quiesceret, ob additionem communem motus navis.

(Pag. 21) Si pendulum ex R demissum post oscillationem unam
(fig. 1) .~ redeat usque ad V, et ipsius RV sumatur in medio
e pars quarta ST, haec exhibebit retardationem in
R<:' »Cdescensu ab S ad A quam proxime, itaque si cadat
5\\ _.-" corpus ab S, tunc velocitas eius in A absque
Ty~ ~-i-- errore sensibili tanta erit, ac si in vacuo

A
descendisset a T. Chorda autem TA celeritatem descensus in
(Pag. 22) arcu TA in vacuo, metitur. Hac ratione correctis motibus
pendulorum, rem in (pedum) 10 pendulis tentando, in
aequalibus et inaequalibus, sic ut corpora de intervallis
amplissimis pedum 8, 12, 16 concurrerent, reperi semper
actionem reactioni aequalem, et servatam summam vel
differentiam motus, ita ut nunquam fuerit error trium
(Pag. 23) digitorum in mensuris. In imperfecte elasticis vis
elastica imperfecta, facit corpora redire ab invicem cum
velocitate relativa, quae sit ad relativam velocitatem
concursus in data ratione. Idque in pilis ex lana arte
conglomerata et fortiter constricta, tentavi, erat semper
in variis casibus velocitas relativa separationis, ad vim
relativam concursus, ut 5 ad 9 circiter; in vitreis autem
proportio erat 15 ad 16.
(Pag. 20) Vocat Wrennum, Hugenium et Wallisium huius aetatis
geometrarum facile principes.

p.85 p.105 p.122 p.139 (p.141 .142) p.264 p.481
p.411 vacu{u)m necessario datur

(+NB vim centripetam reciproce esse in planetis, ut quadrata
distantiarum a centro. Jam radiorum lucis densitates sunt
autem reciproce ut quadrata distantiarum a sole. +)
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(+ praeter &) inertiam materiae seu resistendi, est et
alia vis in materia, nempe unitatis seu cohaesionis, quatenus
omnis massa pro uno fluido aliqua tenacitate praedito haberi
potest. Oriturque etiam ex principio servandi status, quia 60
quod cohaesionem abrumpit, motum conspirantem perturbat. Itaque
non tantum consideranda est corporum resistentia privata, sed
et cohaesio sive unio, seu resistentia systematis; contra
omnem magnam mutationem. Videndum an ex privata sequatur
publica, nam si magna est mutatio in toto systemate, erit et 65
in singulis. Atque ita videtur, nec opus foret peculiari
principio cohaesionis sive unitatis. Illud generale sufficit
principium motus corporum sese invicem magis magisque
accomodare, ut quam minime obstent, mutenturque. +)
Motus verus et relativus distinguuntur a viribus impressis 70
seu causis. Ex fune contorto pendeat situla, impleatur aqua,
libertas detur funi se relaxandi, initio situla magnum habebit
motum relativum, exiguum absolutum, (_2,)¢deneevi-tmpresse}(+an quod
cum situla initio non agitatur satis +) donec motu situlae communicato
aquae, cum ea incipit revolvi, tunc decrescit relativus, crescit 75
verus, et aqua quando non videtur cum vase revolvi sed eundem cum eo
locum servat, movetur realiter, et elevat se versus extremitates
ut concava sit eius superficies (+ Experiendum an initio aqua in
situla non sequatur eius motum, sed magnum habeat motum
relativum +). 80
Actio semper contraria est reactioni, et corporum duocrum
actiones inter se semper sunt aequales et in partes contrarias
diriguntur. Siquis digito lapidem premit, premitur digitus a
lapide, si equus lapidem trahit lapis equum retrahit, nam funis
utrinque tensus suo relaxandi conatu aequaliter equum agit versus 85
lapidem, et lapidem versus equum tantumque impedit progressum
unius, quantum promovet progressum alterius. Hinc mutationes
velocitatum in contrarias partes factae, sunt corporibus
reciproce proportionales.
Corpus si agatur vi AB, et AC ibit vi AD (malo dicere 950
conatu). (+ Sed non explicat quomodo moveatur corpus, si
debeat ire vi AB, AE, AC. Nempe ibit per centrum
gravitatis. Operae pretium erit, investigare qua linea
moveatur corpus, si simul conetur in quolibet radio
ex A ad curvam BEC ducto. {Patet-ex-prineiptis-meis; 95
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{fig. 4)

o EPURERRRENIR, P4

i teis—bi - Ostendi scilicet

alia scheda separata directionem ex omnibus compositam
tendere ad centrum gravitatis curvae, aliaque pulchra

ea occasione inveni.

Dubito autem an nostris demonstrationibus intellectis
defendi possit ratiocinatio Neutoni quod mobile ex A, tendens
ad D, aeque (ve)lociter ad DB perveniat ut ante, quia vis in AC
et parallelis nihil immutet. Nescio enim an hoc sit necesse,
neque apparet quomodo hoc applicabile ad compositionem
ex tribus conatibus. Illud considerandum, si tres
conatus DA, DB, DC compositi dent lineam DK, posse duci
per K parallelam ipsi DC occurrentem ipsi DA in F, et
aliam per K parallelam ipsi DA, occurrentem ipsi DC in G.
Idemque ergo est ac si duo essent conatus DF et DG.
Similiter si KH parallela DB, et KL parall. DH, et H sit
in DC, et L in DB si opus productis, perinde erit ac
si conatus esset compositus in DH, et DL. Sed ex conatibus
in DA, et DB sumtis non potest componi conatus in DK quia
non cadit DK inter DA et DB. At in extremis res semper
succedit. +)

Quantitas motus quae colligitur capiendo summam motuum, in
easdem partes et differentiam ad contrarias, manet eadem
(rectius dicerem: summam progressus esse eandem, non motus.)
Nam cum actioni aequalis sit reactio, aequales in motibus
efficiunt mutationes versus contrarias partes. Ergo summa ad
easdem partes eadem manet quae prius (+ ostendendum est
prius {eestimandam-progressus—vim-a-quantitate) vim

actionis et reactionis se per quantitates progressuum

vel regressuum exerere, revera se exerit per quantitatem
recessus a se invicem. +)

Neutoni lib. 1. De motu corporum sect. 1 De methodo rationum

primarum et ultimarum, cuius ope sequentia demonstrantur.
Lemma 1. Quantitates ut et quantitatum rationes (+ hae etiam

sunt quantitates +) quae ad aequalitatem dato tempore

constanter tendunt, (+ an aequabiliter? +) et eo pacto

propius ad se invicem accedere possunt, quam pro data quavis
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differentia, fiunt ultimo aequales. Si negas sit earum
ultima differentia D, ergo non possunt propius ad aequalitatem 135
accedere quam pro data differentia D contra hypothesin.
(+ Dubitari potest an sit aliqua ultima differentia +).
Lemma 2 (+ hoc ita meo more effero +): parallelogramma curvae
particulis, si latitudine (lateribus) minuantur, numero
augeantur in infinitum,, figura inscripta, circumscripta et 140
curvilinea sunt aequales, nam differentia inscriptae et
circumscriptae figurae est summa parallelogrammorum, quae
minor quavis data fit. Ergo adhuc multo minor differentia
inter inscriptam vel circumscriptam et curvilineam.

(+idem applicari potest etiam ad polygona 145
A__B (fig. 5a)
1
3 d
|
s 8
i
'
'
b C (fig. 5b)

ubi differentiae inscriptae et circumscriptae

figurae est summa triangulorum. Supponit

Neutonus in demonstratione bases

parallelogrammorum 12, 34, 56, esse

aequales et ita summam omnium esse aequalem parallelogrammo 150
ABCD sub eadem basi et summa omnium altitudinum; verum

et si sint inaequalia manet tamen eadem demonstratio,

sumendo maximam omnium basium, tanquam ea semper maneret,

quae cum adhuc sit inassignabilis, etiam eo casu summa

omnium erit infinite parva, multo magis ergo si quaedam 155
sint minora. Idem est de summa triangulorum polygoni,

quae {aequatyry summae omnium chordularum seu basium

(non majori quam est curva) in maximam altitudinem,

minor est, vel aequalis huic summae in eandem altitudinem,

si ubique aequalis demonstrari etiam poterit differentiam 160
inter ambitum polygoni interni et externi minorem fieri

quavis data. | (+ Video post et Neutonum hoc usum. +)|

Nam si angulus sit infinite obtusus, differentia inter

basin ad summam laterum infinitesimam rationem habet ad

(fig. 6) B
/
1y
Uil
A EFDG C
basin, nam sit triangulum ABC, basis (AC) 165

centris A, C radiis AB, CB describantur
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arcus BD, BE, erit ED differentia baseos et summae laterum,
demittatur perpendicularis BF secans ED in F, et sit BG
normalis ad AB occurrens ipsi AC in G. Patet BG majorem
esse quam FG, ergo et quam FD. Jam BG est infinities minor
quam AB (alioqui infinities majus foret triangulum ABG,
quam ABC pars toto,) ergo et FD est infinities minor, quam
AB, ergo et duplum FD, seu ED. +)

Lemma 6. Angulus comprehensus tangente unius
puncti curvae, et chorda ex illo puncto ad
aliud punctum continue minuitur in infinitum

A C

{fig. 7)

et evanescit si alterum punctum puncto
tangentis satis accedat. Hinc differentia inter tangentem

(et chordam evanescit). Hinc ob angulum BAC infinite parvum,

differentia inter BAC evanescet. Ergo et inter chordam

et arcum medium (+ multa adhuc demonstranda differentia
manet inter latera trianguli cuius angulus infinite parvus
lateribus comprehensus, sed ea est infinite parva respectu
laterum. +)

A D

(fig. 8)

Si DB sit ut AD?, AD?, AD* etc tunc primo casu ubi est ut

AD? angulus contactus est énfinities) (requalis-eirenlart)

ejusdem generis cum circulari, sequenti ubi ut AD?, est infinities

minor circulari, et sequenti AD*, adhuc infinities minor ipso

AD3 et 1ta porro in mﬁmtum ({-+sr&t—A—B—efn—mﬁmﬁes

Sed siut AD, AD“, AD*3, etc erit infinities major
circulari, et sequens semper infinities major praecedente
(+ non probat, pendet ex meis principiis de aestimando angulo
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contactus. Videndum an ang. contactus infinite parvus conferendus
cum eo qui restat si ferdinartum) circularem subducas ab hoc
ipso, qui ei censetur homogeneus, seu circuli v.g. ab angulo
contactus parabolae in vertice. +)(+ Hinc videtur rationi
consentaneum metiri genera angulorum contactus loco circuli, et
ovalium per parabolas et paraboloeides,, videndum quod de
hyperboloeidibus. Nimirum videndum an inter curvam et rectam
tangentem possit duci parabola, et si non videndum an
paraboloeides aliqua, et quae parabolae proxima. Forte et
inveniri poterunt ovales, seu quasi circuli his
paraboloeidibus respondentes, ut &e+y2=ad)
ax?—x* =y’ ubi posito x =0 coincidit cum ax* = y*. +)

Lemma 9 Si AB, A(B) inassignabiles, erunt triangula ADB in
ratione laterum duplicata (+ nempe intelligendum est

(D) (B)

D
(fig. 9)

A

triangula esse similia, adeoque angulum BA(B) ad angulum

DAB habere rationem infinite parvam, sed non videtur

verun, quia in triangulo AB(B) latus B(B) assignabilem habet
rationem ad AB vel A(B) adeoque ad AD, et DB. Licebit investigare
relationem illam hoc modo. Triangulum ADB est

xy/2, et ratio inter duo ejusmodi triangula est:

A C ©)
fig. 10
D B (fig. 10)
(D) (B)

xy:x+dx - y+dy. Jam in casu novissimo, si

ponamus x =a/b dx et y=1/m dy fiet:

al/bm dx dy:1 +a/b-dx- 1+1/m - dy. Seu fiet ratic ADB: A(D)(B)
novissima; al:a + b - [+ m. Verum, ut relatio quoque ipsius y

per x exprimatur, scribamus :
y=a+bx+cx? +ex’ etc. fietque xy seu
ADB=ax+bx2+cx*+ex‘etc. et x+dx in y +dy seu

A(D)(B) =ax +bx? +cx? +ex* etc +adx + 2bxdx + 3cx?dx + dex’dx etc.

jam in eo casu quo X est prima aliqua seu aeque inassignabilis

quam dx, eique homogenea, tunc ponendo x = h dx, fiet

ADB:A(D)(B)::a+bx+cx?+exdetc: +a +bx +cx? +exietc,
+ lha+2hb..+3hc..+3he

195

200

205

210

215

220

225



(Lem. 10)

Appendix 1 229

{namgeneraliter Sea ADB-ADBHB =y y+Hxfdx—dy) seu
ADB:A(D)(B)::ydx:y dx +x dy quod generale est etiam
€0 casu quo x et dy sunt heterogenea, nam
y=a+bx+cx? etc et ADB seu yx =ax +bx> + cx’ etc.
pono communiter dy =b dx + 2¢x dx + 3ex*dx. 230
Etx+dxiny+dy erit: ax + bx? + cx’ etc + a dx + bx dx + cx*dx etc
bx dx + cx*dx etc
+b dx? + 2cx dx? + 3ex?dx? et rejiciendo dx? fiet:
A(D)(B) seu x +dx in y + dy = ax + bx? + cx’ etc +adx + 2bx dx + 3ex2dx
etc. Sed haec differentialibus procedit tantum 235
Verum hoc loco, quia ad casum respicimus quo dx et x possunt
fieri inter se assignabiles, non contemnenda est decurtata
differentialibus, et fit dx = dx et dx? = 2x dx + dx’ et
dx®=3x%dx + 3x dx? +dx%, et
dx* = 4x3dx + 6x2dx? + 4x dx® + dx*, et ita porro. 240
Sijam dx = hx, quod fit quando D(D) seu dx est ad
AD seu x, ut h numerus ad 1, tunc erit
dy=bhx +2ch x>+ 3eh %’ etc.
ch?x? 3ehx® jam x +dx in y + dy = xy + xdy + ydx + dxdy

leh®s? Ergo cum ADB 245
seu yx sit ax+ bx’+  cx*+ exletc
fiet AD)(B) | ax+ bx?+ cx*4+ ex‘etc =yx Ex his non video
ahx+hbx’+ ch x*+ ehx*etc=ydx  quomodo defendi
+bhx?+ 2ch x®+3ehx*etc=xdy  possit quod
Ich?  3eh? statuit Neutonus, 250
leh’ ADB et A(D)(B)
+bh?x? + 2ch?x* + 3eh?x* =dxdy in casu initii,
Ich®  3eh? seu cum X
leh* ipsis dx homogenea
est,, esse ipsis 255
seu A(D)(B)=|ax+ bx?+1 cx*+1ex* |etc. Ergoex ADB,fit A(D)(B)
h+ 3h 4h in initiis, si pro x
2h 302 6h? ponas 1 +hx quod jam tum
h? 1h3 4h’ poterat praevideri.
1h* Posito scilicet h=dx:x, 260
seu D(D):AD

Hoc loco igitur subtilitas ingeniosissimi Neutoni deliquium

aliquod passa est. Dum putat semper ultimo areas ADB in

duplicata ratione laterum AD ut asseruerat Lemmate 9 cuius

demonstrationem perplexiorem examinare non vacat. Unde nec 265
admitti potest Lemma 10 quod inde infert tale: spatia quae

corpus urgente quacunque vi regulari describit, sunt ipso

motus initio in duplicata ratione temporum, exponendo enim

tempora per AD, velocitates per DB, erunt spatia ut ADB

(ipse pro DB, (D)(B) scribit DB, EC). Sed vel hoc ipsum 270
corollarium admonere erroris potuerat, cum aliqua initia

alterius naturae esse possint, et omnia initia certa aliqua
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(f. 34r.)

(Prop. 1)
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regula possint continuari. Adde quod interdum x et dx in

ipsis initiis manent inassignabilis rationis. {Imo

forte et hoc nihil est.| At solidius est Lemma XI quod

primae abscissae AD sunt in duplicata ratione chordarum

AB, scilicet quando, ut ego loqui soleo circulus describi

potest, qui curvam in A osculatur,, nempe circulus per puncta

A, B, (B) transiens est ipse osculans, cuius centrum est in axe
AD(D) producto, in circulo autem AD sunt ut AB2. Haec breviter
meo more demonstrandi. Convincitur autem hinc ingeniosissimum
Neutonum, falsum eius esse Lemma 9, et quomodo se habeant ADB;
nam prima y sunt ut y2x — xx. Ergo prima xy sunt ut J2x* — x*%,

et quadrata primorum ABD sunt in composita ratione x> et

2—x. Videamus quid fiat parabolam substituendo pro circulo.
Vult etiam CB esse ultimo in duplicata ratione ipsarum AC,

sed hoc non consentit ei quod AD sunt in duplicata ipsarum

AIG, nec licet fingere parabolam quae circulum tangat in

vertice simul habere puncta B(B) duo cum eo communia adeoque
in summa sex. Unde mihi videtur nimia subtilitate sibi

nonnihil excidisse. Postremo omnibus consideratis suspicor

totam hanc subtilitatem inanem esse, et in ipsis initiis

progressus infinitis modis posse assignari. Videndum ubi

reali problemati haec applicabuntur.

{(+ Brevius: si mobile motu simul centripeto et concepto feratur,
areas radii ex centro abscindent temporibus proportionales,

vel si corpori jam in motu posito superveniat vis centripeta
perpetua, nullaque alia accedat, actio vim habet quod diximus. +);
Areae quas corpora in gyros acta radiis ad immobile centrum
virium ductis describunt et in planis immobilibus consistunt,

et sunt temporibus proportionales et vicissim .

Dividatur tempus in partes aequales et prima

{fig. 11)

temporis parte describat mobile rectam AB,
ergo si nihil obstet altero tempore in AB
recta continuata in K percurret BK = AB. Sin

in B positum mobile impellatur versus De lineis gravium et
centrum, ita ut deflexum secundo tempore levium projectitis,

percurrat BC erit CK parallela BS (ex quales omnes lineae
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motuum compositionibus) et triangula ASB,
et BSC erunt aequalia. Nam BSC =BSK, (quia
eadem basis BS, et sunt inter easdem
parallelas BS et CK.) et BSK = ASB (quia
bases aequales et eadem altitudo ab eodem
scilicet vertice, S, in eandem rectam KA
productam si opus in qua ambae bases)

231

€SS8€ possent respectu

centri gravium 310
dati, si modo

sint tempora

areis per radios

ex centro descriptis

proportionalia 315

ergo BSC=ASB etc. Quod erat dem.

Eodem modo demonstrabitur esse CSD =BSC, et ita porro.

Itaque areae ASD sunt ut tempora. Porro in eodem plano

esse etiam satis patet. Hinc in mediis non resistentibus,

si areae non sint temporibus proportionales, (+hee-est
Cell .. .

sinttemporibuspropertionales+}) vires non tedunt ad

concursum radiorum. Et rursus in mediis omnibus si
arearum descriptio acceleratur vires non tendunt ad
concursum radiorum, sed inde declinant in consequentia.
(+ Posita quacunque curva et sumto quocunque centro ut S,
potest ita curva secari in elementa, ut triangula sint
aequalia, et definiri potest évis-eentripeta) nisus
centripetus, seu progressus ipsarum BE seu KC. Miror
etiam non considerasse Neutonum theorema eius non esse
reciprocum, sed habere etiam locum in vi centrifuga,

quod apparet substituendo (C) in locum C. Itaque sic
pronuntiari potest, quamdiu linea concavitatem obvertit
centro vim esse centripetam, quamdiu convexitatem esse,

centntugam Hine patetetiammirabilevimeentrifagam

q&eéﬂeﬂ-eapte% Hmc dublum non apparet quomodo centrlfugus

motus possit a centro incipere, neque-enimreeta AB{C)ad
eentr) letsempereentrifugus manere nistalieubthabest
flexurmreontrarium) Nam linea (C)BA non potest ad centrum

usque continuari nisi alicubi fiat flexus contrarius, ergo
fiet motus ex centrifugo centripetus. Et si linea aliqua
curva a centro incipiat, non potest centro obvertere
{eoneavitatem) convexitatem initio. Unde sequitur omnem
motum ex centrifuga vi (et concepto compositum a centro
incipientem esse in linea recta]. Motus autem centripetus

intelligi non potest qui a centro incipiat. {CumBCsitaequalis
B{C)y Corpus quod énetu-eentripete-meve) impetu centripeto

et concepto movetur in aliqua linea, non potest in illa
linea regredi motu centrifugo et concepto. Si corpori
jam in motu posito [extra centrum constituto| superveniat vis
centripeta vel centrifuga linea sit curva, si quiescenti,
recta. Et curva habebit proprietatem quam diximus, ut areae
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sint proportionales temporibus. [Corpus quod impetu composito

ex concepto et centripeto vel centrifugo movetur dicatur

centrum resEicere_.J Si centrum sit mobile, tunc demto eius

motu a corpore centrum respiciente, debent areae abscindi
(Prop.3) temporibus proportionales +). Itaque si corpus (eentrum

respieiens) respectu centri mobilis areas describat

temporibus proportionales, revera (ronrmovetar motuile

eentripete; non est simpliciter centrum respiciens sed

movebitur vi composita ex centripeta, et vi acceleratrice

qua corpus alterum urgetur. Haec ita Neutonus (+ haec

consideranda aliquando accuratius, posset clarius primarium

theorema ita pronuntiari: si corpus aliquod in motu jam positum,

nullo alio novo quam gravitatis vel levitatis conatu urgeatur,

describet curvam, cuius areae radiis abscissae erunt temporibus

proportionales, si non jam sit in motu positum describet rectam;
(v.) et linea curva non alio differt a parabola Galilei quam quod

apud Galilaeum centrum intelligitur infinite distans, et

gravitas vel levitas ubique agit uniformiter. Neutonus autem

rem generalissime considerans, nam communem omnibus

proprietatem invenit, quam observavit Keplerus. &¥idendum-an

Omitisrotus-nonpotes dierad-stnpheemgravis

generaliter lineae a gravi aut levi projecto descriptae,
si omnis alia actio vel resistentia sequestretur, sunt lineae
planae, unde radiis ex centro gravium ductis abscinduntur
areae temporibus proportionales (nec refert |levitas vel]
gravitas sit ubique uniformis an immutetur.) Et haec
propositio etiam reciproca est. Quod si durante motu novae
superveniant projectiones, vel resistentiae, jam alia linea
orietur. Examinandum quomodo proposita aliqua linea et data
relatione inter tempus et areas ab aliquo dato puncto
abscissas,,, sciri possit an detur aliud punctum cuius
respectu areae sint temporibus proportionales. Hoc datum

punctum ponere possumus infinite distans, {(stigitursint

etdinatas) Sit curva C.C. cuius axis B.B. ordinatae BC, quasi

radii respicientes centrum infinite distans, et rectangula
{M),B,B sunt arearum incrementa, tempora sint
ut BE (ordinatae curvae EE) utcunque, quibus

scilicet mobile percurrit ,C,C, ,CC, etc.

MNI© B (fig12)
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Quaeritur punctum P, tale, ut triangula P,C,C (P,C;C,) sint

datis BE proportionalia (Sit-AB;%etBCyvet BE) &it
AR=t et RP=p-et-CPipsiaxtocenrratin2g) Ducatur CT

curvam tangens in C, cui occurrat ex P ipsa PN parallela

ipsis BC, cui in BC sumatur aequalis ,B,M, utique spatia
M,B,B sunt ipsis triangulis proportionalia, itaque ipsae

BM demta vel addita recta constante debent esse ipsis BE
proportionales. Itaque tempora insumta in curvis projectariis
a gravi vel levi descriptis, sunt ut PN resectae e centro
gravium P, (auctae forsitan certa quantitate vel diminutae.)
Sed cum augmenta nihil immutet, cum a detracta respondenti

parte computari tempus possit, patet éempera-procedereut
b . thibrek
et P

sufficere ut dicamus aequalibus temporibus aequales esse
differentias resectarum, ut linea projectitia esse intelligatur.
Ubicunque autem P. ponatur in recta RP nihil refert, eaedem enim
manent differentiae, demta semper communi RP. Sed si P ponatur
altius quam R vel inferius, videndum an hinc varietas

vel res quae uno casu non succedit alio possit. Et videtur

quod non, quia axem AB pro arbitrio assumsimus, unde cum

in uno axe assumto res nihil referat in qua ipsi AB parallela
locatum sit puctum B, etiam in alio nihil referet,,, sed

hinc videtur absurdum nasci quod sequeretur quodvis punctum
assumi posse, si unum succedit.

Corpus incremento temporis BE percurrit elementum curvae ,C,C
et ita porro; et proinde, quia B,B, et ,B;B aequales poni

possunt, patet spatium ,C,C percurri tempore ,E,B,B,EE.

Jam quaeritur jan detur| punctum P tale, ut si spatium interceptum

inter ,B,E, et ,B,E, sit aequale spatio intercepto inter ,B,E et
3B,E; sint etiam aequalia trilinea P,C,C, et P,C,C. Ponamus
curvas esse infinite parvas, adeoque |E,E, ,E,E item ,C,C, et
,C5C esse rectas. Ergo si trapezia |E,B,B,E et ,E,B;B,E sunt
aequalia, etiam triangula P,C,C, et P,C,C erunt aequalia.

Patet autem crescentibus BE, necessario decrescere intervalla
1B,B, ,B3B, etc. Ducatur , T;C curvam tangens in ;C quam per P
ducta ordinatis parallela secet in | N, et resecta P,N transferatur
in \B;M. Patet (ex alibi a me demonstratis) rectangulum ;M,B
aequari duplo triangulo P,C,C. Et proinde existentibus aequalibus
trapeziis ;E;B,B,E (adeoque triangulis P,C,C) erunt etiam
aequalia trapezia ;M;B,B,M, ergo quadrilinea ut \E;B;B,EE

et \M;B,;B;M;M sunt proportionalia. éb‘ﬂé&éemqﬁ&seqmtﬁf
BM—vel—PN—fesee&is—essepfepefﬁeﬂa%eﬁempeﬂbﬂs
progressuum; BE:) (Unde deniquesequiturinromnteurva
projeetaria-ex-centro-gravisautlevis, reseetas BM-vel

PNy-esse-propertionalestemporibus) Adeoque etiam ordinatae BM
vel PN, et BE sunt proportionales. dtaque-habemus-pracelarum
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theoremasifromatcurva projectaris-centrumeravis) Ergo

resectae sunt ut incrementa temporum quibus ,C,C ideo denique

quadrilinea ;M; B;B;M; M sunt temporibus quibus arcus ,C;C percurruntur 445

proportionalia. Itaque habemus postremum theorema tale, sane
praeclarum: si sit curva projectaria a gravi aut levi projecto
descripta eiusque sumantur arcus duo ,C,C, et ,C,C intercepti
inter parallelas ,B,C, ,B,C, ;B;C et per centrum gravium vel
levium P ducatur ipsis parallela PN, cui tangentes curvam in

:C, ,C, ;C, occurrant in | N, ,N, ;N et ipsae PN, transferantur

in BM sumtas in ipsis BC, erit quadrilineum ;M,B,B,M ad
quadrilineum ,M,B;B;M,M, ut (hoc est trilineum ; CP,C,C ad
trilin. ,CP;C,C) ut tempus quo percurritur arcus ;C,C ad
tempus quo percurritur arcus ,C,C, sive quadrilinea resectarum
ex parall(el)a per centrum a tangentibus factarum ;M,B,B,M|M,
hoc est areae per radios ex curva abscissae P,C,C, sunt
temporibus quibus percurruntur arcus ,C,C proportionales.
Curva CC non potest incidere in P. Ergo curva MM accedens ad
axem AB, ubi infra P descendit ab ipso iterum recedit ibique
erit flexus contrarius, et temporis incrementa cum antea
decreverint, nunc crescent.

Jam calculo quaeramus PN. Sit AB, x, et BC,y, et v=PN et

AR, 1, et RP,p. CQ:QN::TB:BC::dx:dy
jam CQ=r—xetQN=v—-PQ.JamPQ=y-p.

T
(fig. 13)

. F F L
B 1
1 IH / 2C
2B iEn A N N i

2 '2T
R P ,Q,Q N M s

Linea TT sit temporum  Et fiet QN =v —y +p. Ergo habemus:
seu BT temporaintegra r—x(:)v—y+p(::)dx:dy=0seu

impensa. Tangens fiet: rdy ¢ ~x(d)y=vdx+p— p—ydx ) seu
ipsius T occurrat AF r—xdy/dx+y—p=v=dtexplicataergo v, ety
inL,etsitILM per x, itemque O et ) , debent r et p sic
parallela et aequalis posse assumi, ut aequatio fiat identica.

ipsi AR, et ipsi RM t=[vdx=bis ,CP,C,C(=)[r—x dy seu

occurrat LT in S. ,Q,C+y—pdxseu ,H,C. Ergo triang.
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Debent esse MS {H,HL+,Q,QK erit = quadrilatero PLDKP
proportionales ut obiter dicam. Alioqui quaesitum 475
ipsis PN. impossible est.
Sunt autem v temporum incrementa. Vel
r—xdy/dx+y—p=v.Jam tempora tota
seu [v dx sunt ry — [x dy=y dx — px. Nam
fvdxbis ,CP,C,C et hoc=PL.,C+,CL,C.C, 480
A
H M C
1B 1771 1
HM/ |p\Nc (ig14)
B 7L \
K
R A
P 1Q QN N
MM

vel,CHPQ,C,,C~ ;CHP-,C.QPjam
,C.HPQ,C.C= jy dx (seu ,C.,B.,B.,C.,C)
+,C,BR~BR.Pjam,C,BR=(y)in

r—(x).;BRP=pinr—x., , CHP=y-pinr—(x):2et
,C.QP=r~(x)in(y) —p:2. Ergo denique }[vdx=,C.P,,C.,C 485
= [y dx (seu ;C.;B,B,C.;O) +(y)inT—(X) —pinT—x—y-pinr—(x):2
-1—(x) in{y)— p:2 seu ¥ [vdx seu tempus = [y dx + (y)r

+px(CE i+ Wy + G po-Oex - OryGim)

-~ WYELpe)

Seu%fv-dxseutempus=[y-&+r(y)-y—p(x)—x—% X+ (y)-y 490

seutempus=[ydx+r—3 (x) - {y) —y—p- (x) —x=t.
Superest ut quantitatem conatus centripeti vel centrifugi
investigemus, quae respectu motus jam concepti est infinite

CP:PH sunt ut
ipsae NL et si
AB aequales sunt
ipsae NL

ipsis ,C,C
proportionales.

\V,V/CV sunt
ut anguli ,C,CK
seu deflexus

parva. Nempe curva ;C,C;C contrario

ordine evolvi intelligatur, sitque 495
evoluta VV, et per V ducatur VW parallela

ipsi PC, et per ,C, ipsa ;CK eidem

parallela, quae conatum exprimit

centrifugum, respectu conatus concepti

,C.XK ubi apparet ;CK esse infinite 500
parvam respectu ,CK et infinities infinite

parvam PC. Jam , V.,V et ,C,C=,C K sunt
homogeneae, ut et ,V,V et ,VW; at ;CKestad
VW ut ,C,C ad ,C,(V) seu ut infinite

parva ad ordinariam. Itaque jam sit 505
4CK:,C4C:: VW:,C,V (unde patet sumtis

| V.W semper aequalibus, fore summam conatuum
centripetorum seu ipsarum ;CK, ut logarithmos



236 Appendix 1

c (fig. 15)

arcuum evolutorum ,C.V.) Jam ratio ,V.W ad | V,V ita

habetur: per P ducatur parallela ipsi curvam tangentiin C, 510
seu ipsi ,C,V et per V ducatur recta parallela ipsi CP (quae

est | V.W continuata) itemque recta tangens curvam VV

evolutione ipsis CC descriptam in V, (quae erit ipsa ,V,V

continuata) occurrentes ipsi per P ductae, illain F,

haec in G, et fiet | V.W:,V,V::,V.F: V.G. Ergo substituendo hunc 515

valorem | V.W fiet: :CK:,C,C::, V,V.VE:VG.CV.

|Est autem angulus VGF rectus, et VF=CP, et PH perpendicularis

ad tangentem ipsius C, erit = VG, ergo CH = GE.| Ergo vires

centripetae (vel centrifugae) sunt in compositis rationibus

directis quidem elementorum curvae CC et eius evolutione 520
descriptae et radiorum, seu rectarum CP; reciprocis autem

rectarum CV. et PH.

Commentary to Leibniz’s Notes

(Def. 1) The observations in Section 5.2 above can be seen together with
Leibniz’s definition of density in Dynamica. Leibniz writes that strictly
speaking he does not believe that the same quantity of matter can occupy
a smaller or a larger volume, this being what appears to our senses. He
continues by suggesting that lighter matter is spongier and does not
occupy the whole of its volume, but leaves some space to another subtler
matter which does not pertain to it and should not be considered together
with the body or when calculating its motion. This passage is directly
linked to definition 1 in the Principia. In the definition of moles—mass or
quantity of matter contained in a moving body—and pondus—weight or
quantity of matter of a heavy body—Leibniz repeats that the fluids in the
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pores must be excluded.! Of course, Leibnizian weight cannot be mass
times acceleration; in his system mass and weight are homogeneous
magnitudes, the former applying in the general case, the latter in a special
one.

Thus Newton used definition 1 as the first step in the attack on the
Cartesian philosophy. Leibniz swiftly accepted the proportionality
between mass and weight without considering it in relation to subtle
fluids—whose existence he considered unquestionable. In Dynamica he
reinterpreted Newton’s definitions and crucial experiments within his
own philosophy.

(Def. 3 and 4) The definitions of vis insita or inertiae and vis impressa are
not commented upon by Leibniz. These were well known to him when the
Principia appeared, as we have seen in Chapters 1 and 2.

(Pag. 20-3) These pages refer to the first part of the Scholium on the third
law, where Newton seeks to prove the law of action and reaction for
impacts. Leibniz devotes particular attention to collisions in which the
relative velocity of the concurring bodies is greater than after the impact,
or, as we would say, to ‘inelastic’ collisions. He discussed this topic in the
Essay de Dynamique; on this issue compare Section 2.4 above.

(Pag. 85) This is the first of a series of page-numbers listed by Leibniz
proving that he was reading the entire book and not just some extracts.
The striking correlation with the Marginalia leads to the following
conclusion: the present notes and the great part of the Marginalia were
drafted at the same time and have to be interpreted together. Page 85
contains lemma 22: ‘To change figures into other figures of the same
class’.

(Pag. 105) Here we find lemma 28: ‘There exists no oval figure whose area
cut off at will by straight lines might generally be found by means of
equations finite in the number of their terms and dimensions.’ This lemma
is rightly criticized both in the Marginalia and in the second set of
Excerpts, where Leibniz writes: ‘est error: tales sunt margaritae Slusii’.
The ‘pearls’ or ‘margaritae’ appear in the correspondence between René
de Sluse and Huygens; their general equation is y*=ax™(a —x)* (n, m
and s are positive integers). The problem with these curves is that they
are not bounded; the ovals Newton is considering ‘are not in contact with
conjugate figures proceeding to infinity’. In a letter to Huygens Leibniz
proposed a better counter-example: a’x?=a?y?— y* this, however, is
inconvenient in having two loops crossing at the origin, so that, properly

' Compare Dynamica, LMG, 6, pp. 297-8.
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speaking, it is not an oval. A counter-example is provided by Tom
Whiteside, who discusses the issue in detail.?

(Pag. 122) On this page in the Marginalia Leibniz underlined corollary 2
to proposition 38, which refers to the case of a force proportional to
simple distance, such that bodies reach the centre of force from any point
in equal times (harmonic motion).

(Pag. 139, 141-2) In the Marginalia Leibniz underlined the series
expansions of the form (7 — X)” in the example following proposition 45.

(Pag. 264) In the Marginalia Leibniz underlined a passage in the first
example of proposition 10, book II, on the geometrical meaning of the
fourth and fifth terms of a series expansion.

(Pag. 481) There are no Marginalia or Excerpts relating to this page.
Newton’s text contains the end of corollary 1, as well as corollaries 2 and
3 to proposition 40, book III, on the orbits described by comets, and the
beginning of lemma 5. It is possible that Leibniz was reading the facing
page, from which he transcribed a few months later in the first set of
Excerpts that the heavens are destitute of any resistance.’

(Pag. 411) This reference is discussed in Section 5.2.

Two passages follow: the former deals with the analogy between light
and gravity based on their decreasing in accordance with the inverse-
square law (lines 54-6). We have seen in Chapter 7 that Leibniz referred
to this analogy in his last letter to Antoine Arnauld of 23 March 1690, in
the ‘zweite Bearbeitung’ of the Tentamen, and in the letter intended for
Huygens of October 1690. Further, in Chapters 1 and 2 it has been shown
that light played an important role in Leibniz’s philosophy from a very
early stage onwards. One can mention the Hypothesis Physica Nova,
Propositiones Quaedam Physicae, the letters to Fabri and Claude Perrault
of 1677. Ismael Boulliau criticized Kepler precisely on this point, for
failing to realize that light decreases according to the inverse-square law
and not to the simple inverse (Astronomia Philolaica, pp. 21-4).

The latter passage regards the causes of cohesion (lines 57-69), which
was a standard problem in the natural philosophy of the seventeenth
century. In the passage above Leibniz rejects a principle of cohesion, and
tries to explain unio et tenacitas by means of a qualitative principle of

2 LMG, 2, pp.83-5,2 March 1691, Leibniz to Huygens; NNW, 6, pp. 302-7; an account of
the history and properties of pearls is in Loria, Curve Piane, vol. 2, pp. 376-83.

* First set of Excerpts (from page 480): ‘Coeli resistentia destituunt alioqui cometae
turbarentur ab orbibus planetarum.’
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minimum according to which bodies tend to assume a configuration in
which their motions least obstruct each other. In Dynamica Leibniz states
that the cause of cohesion is motion; he deals with this more extensively
in the Animadversiones in Partem Generalem Principiorum Cartesian-
orum, where he criticizes Descartes’s inference that cohesion arises from
rest, and states his own belief that the cause of cohesion is ‘concurrent’
motion. A brief discussion and references on this problem are given in
Section 4.2.

Newton’s ideas were very different when he wrote the Principia: in the
introduction, for example, he expressed his wish to explain phenomena—
no doubt, cohesion was a prime concern—in terms of attractions and
repulsions. From his early works to the end of his life he pursued the
project of explaining cohesion. In Certain Philosophical Questions he
gave a Boylean account of cohesion resting on air pressure; in the last
edition of his Opticks he dealt with the problem, also related to alchemy,
in Queries 21-2, 28 and especially 31.#

(Cor. 1) We have seen in Section 3.3 that Leibnizian conatus has two
different meanings: the first has been mentioned above in the com-
mentary to the second law and is the differential of velocity, that is,
solicitation or an infinitesimal tehdency to motion; the other meaning is
‘velocity together with direction’. In his first comment on Newton’s
corollary on composition of forces Leibniz refers to the second meaning,
and prefers the term conatus to vis because he wants to convey the idea
of direction (lines 90-1).°

Leibniz criticizes Newton’s claim that the force along AC does not
influence the time in which the body in A reaches DB (lines 102-).
Newton’s statement is based on the parallelism between AC and DB. The
first corollary can easily be generalized to the case of several forces, but
Newton indeed gives no proof of this. In this more general case Leibniz
employs the ‘centre of gravity’, that is, the barycentre of the figure (ABDC

* See J. E. McGuire and M. Tamny, eds., Certain Philosophical Questions (Cambridge,
1983), pp. 292-5and 349-51. Halland Hall, Unpublished Scientific Papers, part 3,‘De Aereet
Aethere’, and Part 4, sections 3, 7 and 8 of the preface, conclusion and Scholium Generale to
the Principia; A. R.Hall,'Newton’s Theory of Matter’, Isis, 51,1960, pp. 131-44;‘Newton and
the Theory of Matter’, in Palter, Annus Mirabilis, pp. 54-68.1. B. Cohen, Papers and Letters,
chapter 3, especially the letter to Robert Boyle of 28 Febr. 1679.

5 Another definition of ‘conatus’is in Dynamica, LMG, 6,p. 471.Leibniz’s published works
on composition of motion appeared in the Journal des S¢avants in 1693: ‘Reégle Générale de la
Composition des Mouvemens’, pp. 417-19= LMG, 6, pp. 231-3; a modified version is in
Costabel, Dynamique; ‘Deux Problems Construit par M. de Leibniz, en Employant la Regle
Générale de la Composition des Mouvemens’, pp. 423-4=LMG, 6, pp. 233-4. Some
passages from Dynamica are similar in content: LMG, 6, pp. 487-8.
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in fig. 2), in order to determine the direction in which the body moves:
this is along the line between the starting point and the centre of gravity of
the figure, and this distance times the number of acting forces gives the
intensity of the resultant.

(Cor. 3) Newton states the principle of conservation of quantitas motus.
Whereas for ‘quantity of motion’ Leibniz means a scalar quantity,
‘quantity of progress’ carries for him the concept of direction. In the
second set of parentheses (lines 123-7) his idea seems to be that living
force is conceptually most important, and it should be shown first how to
measure it from the mutual recession of the two bodies.’

(Lem. 1) The rest of this folded folio is devoted to the lemmas in section
1. On the first point, that ratios are also quantities, I cite Leibniz’s reply
to Samuel Clarke’s fourth letter—paragraph 14—:3 ‘As for the objection
that space and time are quantities, or rather things endowed with
quantity; and that situation and order are not so: I answer, that order also
has its quantity; there is in it, that which goes before, and that which
follows; there is distance or interval. Relative things have their quantity,
as well as absolute ones. For instance, ratios or proportions in mathem-
atics, have their quantities, and are measured by logarithms; and yet they
are relations’.’

In the Marginalia Leibniz writes that the two quantities considered by
Newton should tend uniformly to equality, and that asymptotes should be
excluded, otherwise there could be no last difference and yet the two
quantities would not become equal.!® Newton, however, considers a finite
time, and in the scholium at the end of section 1 makes clear that by ‘last

¢ Concerning the ‘scheda separata’ mentioned by Leibniz, see LH 35, 10, 7, 1. 41r., Si trium
punctorum quaeratur centrum gravitatis; the top of the manuscript reads: ‘Haec bona sed melius
in aliam schedam translatam’. This is probably LH 35, 14, 2, f. 18-19, Si sint duo conatus
corporis. This manuscript is on a kind of paper used by Leibniz in Vienna in 1688, watermark
510 in the catalogue at the NLB (letters ‘M R’). The top right corner of £. 18r. reads: ‘Hic de
compositione directionum etiam infinitarum et mira de modo describendi lineam centrorum
gravitatis arcuum curvae, item data linea centrorum, inveniendi curvam. Ostensum etiam hic
vulgarem directionum compositionem non procedere. Et elegantia de decompositione
rationum et de earundem additione.

7 ‘Essay de Dynamique’, LMG, 6, pp. 215-31, pp. 216-17 and pp. 227-8.

8 Leibniz—-Clarke Correspondence, Leibniz’s fifth paper, par. 54.

° See also Loemker, Papers, pp. 704 and 706, and paragraph 47 of the same letter. The
theory of relations is an important area of Leibnizian studies. See B. Mates, The Philosophy of
Leibniz. Metaphysics and Language (Oxford, 1986),chs. 12 and 13; M. Mugnai, ‘Bemerkungen
zu Leibniz’ Theorie der Relationen’, SL, 10, 1978, pp. 2-21.

10 Marginalia, M 26 A:‘Si ad aequalitatem tendant uniformiter, aut promtius, aut saltem
non asymptotos” M 26 B: ‘Si asymptotae sint potest esse nulla differentia ultima, et tamen
nunquam fient aequales.’
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ratio’ he understands that ratio not before the two quantities vanish, nor
after, but with which they vanish. On this issue see Sections 3.4 and 7.5.

(Lem. 2 and 3) Leibniz is eager to state that the same result proved in
lemma 2 on the quadrature of curves by exhaustion can also be obtained
by his own method, by which he means the transmutation theorem (see
Section 3.2).

Concerning triangle ABC (lines 163-73, Fig. 6), where the angle in B
differs infinitesimally from a plane angle, Leibniz’s reasoning is not
completely rigorous. He draws two infinitesimal arcs of circumference,
BD with radius AB centred in A, and BE with radius BC centred in B.
However, ED is twice FD only if ABC is isosceles. Further, since the
angles in C and A are first-order infinitesimals, and EF, FD are the
versed sines of those angles respectively (namely they are as 1 —cos), EF
and FD must be second-order infinitesimals.

(Lem. 6 and 7, lines 174-84) Leibniz’s claim that there is much to be said
on the difference between two sides of a triangle enclosing an infinit-
esimal angle may be related to his idea that this difference is not
evanescent, as stated by Newton, but infinitely small. On this issue see
paragraph 5 of the Tentamen.

(Schol., lines 185-205) Leibniz accepts Newton’s results, but he criticizes
him for not proving that in the sequence AD?, AD32, AD*3 etc., the
corresponding angles of contact are infinitesimal with respect to the
preceding ones. His reasoning in lines 194-7 can be paraphrased as
follows: we must find whether subtracting from a ‘circular angle of
contact’—between a circumference and its tangent—an angle homo-
geneous to it, such as the angle between a parabola and its tangent at the
vertex, we are left with an infinitely small angle of contact. I illustrate this
problem with the following example; y=x? is the equation of the
parabola, y=(1:2) —J(1:4) — x? the equation of the semi-circumference
osculating it at the origin. The angle of contact obtained by taking their
difference is of the same order as that between the curve y =x* and its
tangent at the origin.

In lines 197-205 Leibniz wonders whether he can measure different
angles of contact by means of paraboloids and hyperboloids, whose
equations are a™ "x"=y™ and a™*" =x"y™ respectively, m and n being
positive integers and a constant.!! The problem amounts to finding a
measure of the angle of contact between a standard curve, such as
y=|xl¢ and its tangent at the origin. However, if e is equal to or greater
than 1 all possibilities are covered and other cases can be reduced to the

' LMG, 5, p. 103, ‘Compendium Quadraturae Arithmeticae’.
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following: if e is greater than 2 the angle of contact is incomparably
smaller than that between a circumference and its tangent; if e =2 the
angles of contact are of the same order; if e ranges between 1 and 2 the
angle of contact is incomparably larger; lastly, if e =1 the curve becomes
a straight line.

(Lem. 9) Leibniz believes lemma 9 to be wrong, because B(B) is not
infinitesimal with respect to AB or A(B), and hence to AD or DB; this
implies that triangles ADB and A(D)(B) are not similar (see fig. 9 and
Section 3.4). Of course, this does not refute Newton’s lemma, because
they become similar if B, (B) tend to A, or if AD, A(D) are vanishingly
small (or infinitesimal). Leibniz’s reasoning can be summarized as
follows: AD=x, DB=y, A(D)=x+dx, (D)(B)=y+dy. He thinks of
expressing dx as hx, where h is an infinitesimal constant, and checking
whether the areas of triangles ADB and A(D)(B) are proportional to the
square of the sides AD and A(D) respectively. Leibniz does not consider
that AD, A(D), as well as DB, (D)(B), become infinitesimal, and makes
A(D) tend to AD and (D)(B) to DB. Further, he expresses y in terms of
x by means of the series y=a + bx + cx?>+ex3+ ..., and fails to realize
that a =0, because when x =0 also y = 0; he began in the correct way ina
part subsequently crossed out for no clear reason (line 218). After some
calculations which are the consequence of his two erroneous premisses,
he arrives at the conclusion that in order to obtain A(D){(B) from ADB it
is necessary to substitute (1+ h)x, or x +dx, for x, taking into con-
sideration the various orders of infinitesimals. Following ILeibniz’s
notation, we ought to have y=bx+cx?+ex3+...; then,
xy=bx?+cx3+ex*+ ... If x becomes infinitesimal, the terms in x3, x*,
... are negligible, and the area of ADB(=xy/2) is indeed proportional to
AD?(=x3?).

In the Marginalia Leibniz marked this lemma with his distillatur,
meaning that the matter deserves further investigation, and added that
Newton’s construction in the demonstration could be dispensed with.
From Leibniz’s perspective Newton’s proof was needlessly cumbersome.
These observations show the close connection between the present notes
and the Marginalia: probably Leibniz first wrote distillatur, then checked
the result without reading the demonstration for lack of time (lines 264-
5), and lastly accepted Newton’s proof but criticized its lack of
directness. Indeed, when using differentials correctly instead of Newton’s
construction, the proof is immediate. In the first set of Excerpts lemma 9
is transcribed without commentary, and seems to be accepted without
difficulty.

(Lem. 10) Lemma 10 states that a body acted upon by a regular force at
the beginning of motion describes spaces proportional to time squared.
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This generalization of Galileo’s law of fall is presented as a corollary, in
mechanical terms, to lemma 9; therefore, Leibniz’s rejection of the
former is a consequence of his rejection of the latter (see Sections 4.2
and 7.5). Since for him force is proportional to solicitation, at the
beginning of motion spaces should be proportional to simple time.
Nevertheless, here he believes that in an infinitesimal time the spaces
described by a body urged by a regular force need not be proportional to
the square of the times, but could also follow a different law. This
appears so obvious to him that in his opinion lemma 10 could have made
Newton realize his ‘mistake’ in the preceding lemma. These are probably
Leibniz’s first impressions on lemma 10.

(Lem. 11) Leibniz originally believed that the present lemma was
sounder than the two preceding ones, and that there was a contradiction
between lemmas 9 and 11. But in that case the angle between the curve
AB(B) and the line AD was given (that is, finite), whereas in the
present case AC is tangent to the curve AB(B) in A (fig. 10). Later
Leibniz added the sentence ‘Imo forte et hoc nihil est’, thus rejecting
lemma 11 as well (lines 274-5). Referring to his own fig. 10, he writes
that according to Newton CB would be proportional to AC? (equivalent
to DB proportional to AD? in Newton’s diagram, because in fig. 10
letters C and D are inverted with respect to the Principia; see Figure
5.1). Referring to Newton’s diagram he claims that AD is proportional
to AIG?, where I(=J) is the extreme opposite to A on the osculating
diameter; however, if B tends to A then AD?=AIG - BD. In corollary 3
Newton states that ultimately the curvilinear areas between a curve and
its tangent are two thirds of the areas of the corresponding triangles for
the known property of parabolas. Further Leibniz seems to infer that
following Newton’s reasoning a parabola would have six points of
contact with a circumference in its vertex! This statement appears to be
related to Newton’s construction: considering that » and B approach
right up to A4, and the corresponding three points on the tangent,
Leibniz draws his paradoxical conclusion about six points.

In the Marginalia lemma 11 is referred to in three instances. On page
33 Newton claimed that since BD, in the case of a vanishing subtense, is
vanishingly small compared with AD (BC and AC respectively in
fig. 10), any given change in the inclination of BD does not alter the
conclusion. Leibniz wrote non videtur sequi under the words quae prius,
thus failing to grasp this point. In the other two comments he
questioned the generality of lemma 11 and accepted it only when the
curve is a circumference.!? Newton’s lemma is valid only for a curve

2 The relevant passage from the Principia reads: ‘Inclinetur jam BD ad AD in angulo
quovis dato, et eadem semper erit ratio ultima BD ad bd quae prius, adeoque eadem ac AB
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with a finite curvature, when its infinitesimal arcs can be approximated
by the corresponding arcs of the osculating circumferences, as he
explicitly wrote in the subsequent scholium. The extent of Leibniz’s
failure here is stunning: obviously he read the text superficially and went
as far as mocking Newton’s ‘exaggerated subtlety’, probably referring to
their correspondence in 1676.

(Prop. 1 and Cor. 1) Here Leibniz follows the text very closely. By
motus conceptus Leibniz means the rectilinear inertial motion which has
been acquired by the body (line 295). In the marginal note (lines 306-
15), Leibniz introduces the notion of linea projectitia, that is, the curve
described by a body with respect to a centre of attraction or repulsion,
such that the areas are proportional to the times.

There is a manuscript fragment where Leibniz states that Newton did
not explain how one or the other ellipse, and in particular a circum-
ference, are obtained; this would be clear in Leibniz’s own account.
Considering also the second sketch on the opposite side, which seems
to represent the polygon described by a body acted upon by central
impulsions, I propose that Leibniz may have had in mind proposition 1,
where Newton does not explain the nature of the curve described; see
Fig. (c).!> Leibniz was possibly referring to paragraph 30 of the
Tentamen, which provides a classification of planetary orbits.

Z

(Cor. 2) In the first part of the commentary Leibniz considers an
arbitrary curve and an arbitrary point S, claiming that it is possible to
cut the curve so that all triangles centred in S have equal areas.

The following comment refers to proposition 1 (lines 329-): if the
areas swept out by the radius from the centre of force are proportional

Fig. (c)

quad.ad Abquad. Q.E.D. See Marginalia, M 41 B:‘Suspectum hoc Lemma generale. In circulo
tamen res vera speciali ratione, quia abscissae in circulo sunt ut quadrata chordarum’; and M
42 A:‘Quia Lemma 11 generale nondum admitto, . . ” See also NMW 6, p. 117, n. 55.

13 LH 35, 10, 1, f. 2: ‘Non explicuit Neutonus quomodo alia vel alia ellipsis, et in specie
circulus oriatur, quod in mea ratione patet” Compare also NMW, 6, pp. 35-7, n. 19 and
proposition 17 in book L.
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to the times, force is not necessarily attractive, but can be also repulsive
because triangles SBC and SB(C) have equal areas (fig. 11). Leibniz
makes the same point in the Marginalia to proposition 2, still referring
to centripetal force.™

In the following lines (332-60) Leibniz lists some properties of
motion under central forces. For example, a body moving with recti-
linear and centripetal motion, or with rectilinear and centrifugal motion,
cannot move along the same curve. Here Leibniz is referring to a
motion resulting from a repulsive force rather than an attractive one.
However, as proposition 12 of the Principia and paragraph 30 of the
Tentamen show, the same hyperbolic branch can indeed be traversed
under the action of opposite forces, attractive towards the internal focus
and repulsive from the external one. The words centrum respicere are
underlined by Leibniz: this expression is used as a definition for a body
moving of its own inertia under the action of central solicitation
(line 358).

(Prop. 3) Leibniz’s commentary after the transcription of proposition 3
still refers to proposition 1. His reformulation of Newton’s theorem
states that curves described by a body urged by central forces are
planar, and the areas swept out by the radii are proportional to times
regardless of whether force is attractive or repulsive, or of its
dependence on the distance from the centre, and vice versa. Notice the
reference to Galilean parabolas (lines 371-2), which is developed in
several later manuscripts such as Galilaeus and De Motu Gravium, and
the claim that Newton generalized Kepler’s area law (lines 373-5).
Leibniz repeated a similar observation in De Motu Gravis, as we have
seen in Section 5.4.

Below (lines 385-9) Leibniz states the following problem: given a
curve and a relation between times and areas swept out by a radius
drawn from a given arbitrary point, to find whether there exists another
point with respect to which the areas are as the times. In the Tentamen
he identified a physicomathematical criterion related to the existence of
vortices, equivalent to Kepler’s area law, and which characterizes the
composite class of curves described by bodies urged by central forces.

The remaining part of the manuscript can be divided into four
sections. The first two sections (lines 391-420 and 421-62 respect-
ively) consist of as many attempts relevant to the problem we have just
seen; in the third Leibniz seeks a procedure for determining the centre
of force, and goes on to provide conditions for the solution to this
problem (lines 463-91). In these attempts he employed the transmuta-

14 Marginalia M 38: ‘Imo etiam a centrifuga’
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tion theorem for an obvious reason: in motion under central forces it is
convenient to calculate the areas to the centre of force, and his theorem
relies precisely on such areas concurrent to a centre. This idea,
however, turned out to be less fertile than Leibniz had hoped. Hence
the first three sections contain cumbersome calculations which are
difficult to follow and are not directly linked to the rest of the work.
None the less, they are an interesting document of Leibniz’s struggle
with the Principia. In the fourth section he tried to find an expression
for centripetal or centrifugal conatus (lines 492-522); those calcula-
tions are definitely more interesting and ought to be compared with the
following manuscript De Conatu.

In the first section CCC is the curve described by the body and CN its
tangent, which is the prolongation of the chord (see fig. 12; I indicate a
missing segment in angled brackets. The sketch at the top might be the
beginning of a diagram for the transmutation theorem). P is the centre
with respect to which the areas are in the given ratio to the times, that is,
the areas P,C,C, P,C;C are in the ratio to the times given by the curve
EE; in fact, Leibniz sets BE proportional to the times necessary to
traverse the corresponding arcs of the curve CC. He intends to transform
the curvilinear figure P,C,C;CP into one of double its area, namely
1B M,M,M,B. The resectae PN, namely the segments cut by the tangents
on the ordinate through P, are equal to the corresponding segments
BM."® In Leibniz’s figure the distances PN are not drawn equal to BM
and the curve MMM is not consistent with EEE, since both ought to be
proportional to time (line 393). T explain this point with the help of
Fig. (d), which reproduces the relevant portion of fig. 12. P, N is equal to
G,B; the letter G is not indicated in the corresponding portion of fig. 12
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Fig. (d)

15 The notion of ‘resecta’ is defined in LMG, 5, p. 101, ‘Compendium Quadraturae Arith-
meticae’; see also LMG, 5, pp. 113-16.
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and can be approximated by ,M if the angle in P is infinitesimal; the axis
AB has been taken through P; PH is perpendicular to |N,C and ,CL to
B; M. On the basis of the transmutation theorem, and from the similarity
between triangles L;C,C and H, NP, the area of triangle P, C,C equals
half the area of |M,B,BG, because ,C,C:P,N::L,C:PH and
PH -, C,C =twice the area of triangle P,C,C=P,N-L,C. In order for
this to be applicable to the case studied by Leibniz, triangle P, C,C must
be infinitesimal, so that the chord and the arc ,C,C can be represented
by the tangent ;C, N, as he specifies in lines 426-8. Before analysing
Leibniz’s solution, I outline a possible procedure starting from the same
premisses.

P must be placed on a straight line through ,C and must satisfy the
condition that the areas of triangles P, C,C and P,C,C are proportional
to the times required to traverse ; C,C and ,C;C. It is easy to show that if
a point Z satisfies this condition, any other point along ,CZ satisfies it as
well. Therefore, in order to determine P on this straight line, it is
necessary to repeat the same reasoning for another portion of the curve,
obtaining another straight line which intersects the former in P: this is
the common centre of attraction. This reasoning is valid if we already
know that there exists a centre of force, otherwise it is necessary to verify
that the point P satisfies the same conditions for the whole curve.

We examine now Leibniz’s procedure, which is affected by many
mistakes. In the crossed-out lines 396-420 times are taken proportional
to PN, but this is true only if , B,B, ,B;B are equal (lines 403-4; see also
lines 422-3). Since PN is determined apart from a constant factor
(‘auctae forsitan certa quantitate vel diminutae’, line 405), Leibniz tries
to consider the differences between the resectae, {N,N, ,N;N, thinking
that these could be uniquely determined. But this is obviously wrong: as
we have seen, PN, as well as NN, depends indeed on a parameter, which
is the proportionality constant between the increments of the times and
the areas of the triangles P,C,C, P,C,C. Leibniz was mistaken in
thinking that he could determine an abscissa or an ordinate; what he
could determine by his method with three points on the curve CCC was
a ratio between abscissae and ordinates. His disappointing conclusion is
that the centre P can be placed everywhere on the line RP, and the same
would happen if P were lower or higher than R, therefore this
arbitrariness appears to be unavoidable. This seems to be absurd to
Leibniz (lines 419-20). He crosses out his first attempt and tries again.

In the second section (lines 421-62) Leibniz sets ,B,B=,B,B and
proves that if there is a point P such that the areas swept out by the radii
PC are as the times, then the following proportion holds:

\E\B,B,E :,E,B,B,E ::,M,B,B,M:,M,B,B,M::,CP,C:,CP,C.
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This proportion, which follows from the transmutation theorem (line
433), expresses the times needed to traverse the arcs | C,C and ,C;C by
means of the areas of three different figures. Further, Leibniz states that
the curve CC cannot fall upon P, probably implying that P is a singular
point where velocity would become infinite (line 459).!¢ In the descrip-
tion of the curve MM Leibniz refers to a flexus contrarius in correspond-
ence with R along the axis AB (lines 459-62).

In the third section Leibniz seeks to determine PN by means of a
calculation (fig. 13, lines 463-91). In the end, however, he finds that the
area of the quadrilateral PLDKP must be equal to the sum of the areas
of triangles | H,HL and ,Q, QK (lines 473-4, fig. 14). This result can be
easily verified by means of elementary geometrical methods. Notice that
Leibniz tries to introduce an abbreviated notation (lines 467-70). In the
same fig. 14 the curve MM is incorrectly drawn, because the resectae PN
are not equal—or even proportional—to BM. With regard to the
following calculation (lines 477-91 and fig. 13), I try to clarify Leibniz’s
notation and point out the slips, leaving the details to the reader:
(x)=A,B, (y)=,B,C, x=A,B, y=,B,C, RP=p, AR=r. Since (,C is
infinitesimal there is no need to integrate xdy. The calculation is almost
correct, apart from the area of triangle | C, HP being (y —p) - (r —x):2—
Leibniz writes (x) instead of x—; in line 488 Leibniz writes —1:2 ry
instead of —1:2 r(y). Taking into account these remarks and corrections
the result is:

area | CP,C= (1:2)(y = p)((x) = x) + (1:2)(r = (x)((y) = y).

In fig. 13 the curve , 7,7 represents time. Leibniz named a third point
with the same letter 7. Notice that the tangent CN appears to be the
prolongation of the chord, whereas L,7TS does not touch ,7. In the
marginal note between lines 466-76 MS is proportional to PN because
the areas PC(C) are proportional to the times 7(T ). Thus curves CC
and TT ought to be similar.

Lastly, in lines 492-522 Leibniz tries to determine centripetal or
centrifugal conatus. His attempt is probably related to corollary 7 to
proposition 4, which is examined in the commentary to De Conatu.
Leibniz’s idea of using the curve VV descripta ex evolutione from the
evolute CC is not useful in this context because it does not help in
finding any of the unknowns. In fig. 15 he seems to take the tangent ;C, V
to be the prolongation of the chord ,C;C, but the other tangent ,C, V is
not the prolongation of | C,C; this introduces an inconsistency into the
analysis of curvilinear motion, as in fig. 13. It is possible that Leibniz

16 Newton dealt with a similar case inbook I, proposition 7. Inthe Marginalia, M 45, Leibniz
writes and crosses out: ‘nescio an hoc possibile’.
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thought of using his construction remembering his conversations with
Huygens some 15 years earlier (see sections 2.3, 4.3, 5.2, and 5.3). The
following lines (494-) are similar to De Conatu, and will be examined in
the commentary to that essay.

In line 492 and in general in the whole calculation Leibniz seems to
imply that centripetal and centrifugal endeavours are equal and opposite.
In the Tentamen, however, they are different in general. In the present
manuscript his analysis of curvilinear motion is altogether different and
more primitive than the ideas he adopted from 1689 onwards.
Moreover, I find it surprising that he wrote such lengthy notes relating to
the area law and to the mathematics of planetary motion without ever
mentioning any of the results and concepts of the Tentamen. In the
following essays we shall witness all the steps leading from the present
stage to the Temfamen including mathematical technicalities as well as
physical and mechanical interpretations.

2 De Conatu
LH 35, 10, 7,1f. 29-30 (compare Figs. (e) and (f})

De Conatu consists of one sheet folded in quarto. Leibniz develops the
calculation of centripetal or centrifugal conatus based on the evolute and
evolvent first introduced at the end of his notes to the Principia
Mathematica. This can be inferred from the contents of the two
manuscripts—notice the similarity of figs. 15 and 16—and from the edge
of sheets 34-5 matching the edge of sheets 29-30. Therefore, De Conatu
dates after Leibniz’s reading of the Principia. Further, a series of features
indicate a date of composition preceding the 7Tenramen. The most
important among these features are the lack of any reference to the
circulatio harmonica, the notion of conatus paracentricus, which is either
centrifugal or centripetal and is represented by a one-term expression,
the observation that centripetal and centrifugal endeavours are always
equal and opposite, and the faulty remark about the order of infinit-
esimal of the conatus along the rotating ruler.

Initially Leibniz’s writing went directly from the first to the fourth side,
which was marked as pag. 2. Here, soon after having written the first few
lines (152-6), Leibniz crossed them out and started again on the second
side with the same words: ‘Sed ut definiamus’ (line 38). Later he crossed
out the whole of the second side and began anew with the same words on
the third. In the left margin of the second side he noted the letters A to
N, which I do not reproduce because they are unrelated to the text. A
marginal note at the bottom of the second side (lines 77-81) and a series
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of calculations in the margin of the second and third sides have been
inserted at the appropriate places in the running text (lines 113-34). The
reader can see the original structure of the manuscript in the enclosed
reproduction.

De conatu centripeto aut centrifugo (vel generaliter paracentrico) | {pag-+
mobilis in aliqua curva incedentis

Sitlineac leurva quaecunqu _j CC.C. é&esﬂmaﬂdﬁmesfquaﬂﬂm&eeﬁﬂms

datumque punctum quodcunque P, aestnmandum est, quantus sit &4s) | conatus; 5

{eentripetus-aut) centrifugus mobilis in curva lati, seu qua velocitate inter

movendum conetur recedere a puncto P, sumto tanquam centro; vel quod eodem

redit qua conatus ad centrum P tendentis vi opus sit ad mobile in orbita sua

retinendum, ne per tangentem abeat. Unde idem est &vis) (conatus| centrifugus

mobilis ex natura curvae, cum &4 | conatu | centripeto in orbita retinente. 10

fVis) | Conatus) autem mobilis a centro aliquo Gntra-eoneavita) ex concava

parte posito recedendi per tangentem, est {eadenrenmvia-eentro) (vis)

conatus ejusdem mobilis ad centrum aliquod a convexa parte positum accedendi

per tangentem. Et longe differt conatus iste centrifugus vel centripetus, a

conatu in regula circa P mota, qui alteri motu compositus lineam CC 15

describere potest, nam conatus centrifugus est infinite parvus respectu

&metus) conatus in regula PC motum in linea componentis; praeterea motus in

Hinea-eompenens) regula motum in curva componens varius intelligi potest,

prout alius assumitur alter motus simul cum ipso componens; sed &motus

eentriftgus) conatus centrifugus semper est idem. | Figuram vide pag. 3] 20
Sit elementum curvae ,C,C et aliud elementum sequens ,C,C. Productae ,C,C

ultra ,C [in K ut sit ,CK = ,C,C] occurrat ;CK parallela P,C eductae ex centro P,

eique in P,C sumatur aequalis et parallela G,C ut compleatur parallelogrammum
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G,CK,C, patet mobile ex ,C in ,C ferri (smets) conatu| composito ex priore ;C,K
seu ,CK, et ad centrum P tendente ,CG seu K,C. Itaque conatus centrifugus vel
magneticus ad centrum attrahens, (centrifugum destruens, eique aequalis,
(generaliter paracentricus)) est ,CG vel K;C. Patet elementum conatus
centrifugi esse infinite parvum respectu elementi curvae, seu velocitatis in
curva, atque adeo infinities infinite parvum respectu éreetae) communis

lineae ut PC {namPH)¥angulus-CK-C nonsitrectus-tamen-subtensa), Si

angulus ,CK,C esset rectus foret K,C sinus anguli cuius radius ,C,C est autem
angulus K,C;C infinite parvus et sinus anguli infinite parvi est ad radium
infinitesimus. Ubi obiter annoto si K,C esset non parallela PC, sed tendens ad

P, ut ,CQ differentia inter has duas ob angulum K,CQ erit infinities infinite
parva. Idque etiam praevideri potest quia sine errore fingi licet conatum
centralem non esse perpetuum, sed intervallis interruptum, et durante
intervallo, considerari ut parallelum.

Sed ut definiamus progressum conatuum éeentratium) paracentricorum, produci
intelligantur tangentes seu elementa curvae, ;C,Cin N, et ,C;C in H sitque PH
ex P educta perpendiculariter occurrens ipsi ,C;C productae in H, et porro
occurrens ipsi ;C,C in N. Denique in ;C,CN recta sumatur

E A

e

(fig. 17)

M, sic ut sit HM parallela PC, erit ;CK:MH::,C,C:CH. Rursus

ob triangula ,CPN, et MH(N) similia, erit MH:HN::CP: PN vel

PH seu ;CK:PH:HN- CP::,C,C:CH. Verum ut aliter inveniamus

MH et HN intelligatur evolvi curva CC, et quidem ordine

retrogrado ;C,C,C, ita ut ;C,V=L,C, et ,C,V=L,C,C, in ,C,V sumatur, ut sit
VW parallela CP erit ;CK:, VW::,C,C:CV rursus , VW:,V,V::CP:PH. Ergo

3CK PH:,V,V-CP::,C,C:CV éEfge-tp&&e—G{(—eenaﬂrs-pefaeeﬁmet—saﬂt} Ergo

3CK=,V,V-CP-,C,C:PH-CV seu conatus paracentrici ,CK, sunt in directa

ratione, radiorum {CP),,, elementorum curvae motus (,C,C), elementorum

curvae evolutione descriptae (,V,V), et in reciproca ratione distantiarum centri

a tangente (seu ipsarum CP), et curvae evolutae (seu CV) vel in reciproca ratione

triangulorum CPV. Porro ipsae ,V,V elementa curvae evolutione descriptae sunt

in composita ratione arcuum evolutorum (CV) et angulorum deflexus [ VC,V seu
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;C,CKergo cum ;CK sint ut | V,V-CP-,C;C:PH-CVet |V, Vsint ut anguli deflexuum 35
et CV ergo 3CK flem ut anguh deﬂexus et 2C C-CP:PH. éAssmﬂﬁﬂfdtfeefﬂx

m%efm—S} Idem vero jam poterat ex superlor]bus der1var1 nec promde opus
fuisset lineae evolutione, nam invenimus ;CK-PH:HN-CP::,C,C:CH. Ergoipsae ;CK, 60
sunt in directa ratione HN, CP, ,C,C, et reciproca PH+ CH, jam ipsae HN (ob
angulum HNC recto aequivalentem) sunt in composita ratione ipsarum CH, et
sinuum angulorum flexus N,CH, quos sinus vocabimus Z; erunt ipsae ;CK, in
directa ratione £, CH, CP, ,C,C et reciproca PH, CH, ergo erunt ipsae ;CK in
directa ratione £, CP, ,C,C et reciproca PH seu conatus {eentra) paracentrici 65
sunt in directa ratione velocitatis in curva (,C,C), sinuum angulorum
deflexus (), et radiorum CP, et reciproca distantiarum tangentis a centro PH;
paulo ante autem eadem inveneramus, nisi quod pro sinubus deflexus prodierant
ipsi anguli deflexus, sed in anguhs 1na331gnab1hbus sinus sunt anguhs
proportionales. (Puea ; e
ffaﬂseai—pefP—eeﬂifum—&té éE*eeﬁtfe-P—éueafuf) Sumatur si placet recta
constans quaecunque positione et magnitudine determinata, ut PE (educta si
placet e centro P, et parallela axi curvae AR cui PR perpendicularis ex curva
occurrit in R) et angulo PES, aequali ipsi HCP, educatur ES occurrens ipsi PS
et PE normaliter eductae (ita ut ES semper cadant inter parallelas AE, PR). 75
Patet esse ES:EP::PC:CH, ergo quia EP constans fient ES, ut PC:CH.
{Sint autem ES ut secantes anguli PES vel CPH ergo denique data curva
quacunque CC assumto centro quocunque P conatus paracentrici ,CG (vel ;CK)
sunt in composita ratione velocitatum in curva, (,C,C) angulorum deflexus
curvedinis et contactus, (2) et secantium pro angulis tendentiae centralis ad 80
tendentiam in curva seu radii PC, ad tangentem curvae CH. |
Sed ut definiamus in qua ratione sint conatus paracentrici, idque generali
quadam ratione, ex centro P educatur perpendicularis PN ad tangentem curvae
CN, nempe ad ,C,CN et eadem PN proximam tangentem ,C,CH secet in H, denique
ex H ad CN ducatur HM parallela PC, erunt triangula HMN et PNC similia. Ergo 85
PC:PN::HM:HN. Rursus ;CK:HM::,C,C:CH. Ergo ;CK-PN:HN-PC::,C,C:CH, seu
;CK suntut: HN-PC+,C;C:PN - CH. QﬁﬁiﬂN—Sﬁrﬂi—eﬁiﬂpﬁSﬁﬁf&ﬁeﬂe—ﬁﬂ&ﬂﬂﬂﬂgﬂh
eurvedinissetrdeflexus) Jam ,C,C sunt ut velocitates mobilis in curva tanquam orbita.
HN sunt in composita ratione ipsarum CH, et sinuum anguli deflexusquem facit
impulsus centralis, a priore directione, ] sive curvedinis N,CH seu K,C;C; vel 90
(quia anguli infinite parvi sive inassignabiles sunt ut sinus,) in composita
ratione ipsarum CH, et sinuum quos habent anguli deflexus K,C,C (quorum
anguli externi sunt ;C,C;C). Hos angulos vel sinus eorum vocemus Z, fient HN,
ut = CH, et HN:CH ut Z. Denique rationes PC ad PN, (seu PC:PN) sunt ut secantes
angulorum PCN, quos secantes vocemusczs. Erunt ergo PC:PN ut 6. Ergo in 95
proportionalibus ipsis K;C, HN:CH et PC: PN, substituendo proportionales illis
2, hisev erunt K,C, ut ,C,C-ov- .

Ergo denique in curva quacunque CC, proposito ~ ;CK =,C,C 2 6v'/a? posito
centro quocunque P conatus paracentrici ,CG Z esse sinus angulorum
(vel ;CK) sunt in composita ratione | lmo| deflexus, 6u esse 100
velocitatum mobilis in curva tanquam in secantes angulorum quos

70




Appendix 1 255

orbita (seu percursorum ea velocitate radii ex centro faciunt
elementorum curvae, ,C,C)| 2do | angulorum deflexus ad curvam, at a esse

(K,C;C seu 2) quos a curvae directione ;C,CK, radios.

facit centralis conatus ,CG dlvertens moblle 105

a,CK ad ,C,C); ¢et-ang :
feﬂéeﬂﬁ&eeenffa}es}ulo_; et secantlum (GU') quos habent anguh (HCP)
directionum [seu tendentiarum| curvae (CH) (et radiorum) et tendentiarum
centralium (CP) sive anguli radiorum ex centro, (PC) [seu radiorum ex centro
ad curvam, [ et tangentium curvae (CH). Hinc eadem manente curva et velocitate, 110
mutatis centris conatus paracentrici sunt ut secantes angulorum quos radii ex
diversis centris in eodem puncto ad curvam faciunt.|

|Sit E centrum circuli curvam osculantis in CC, patet angulum ,CE;C
aequalem esse angulo deflexus K,C,C. Sunt autem &veleeitates) elementa curvae
in composita ratione radiorum osculi EC, et angulorum deflexus. Ergo anguli 115
deflexus sunt in ratione composita ¢veleeitatumy elementorum directa et
radiorum osculi reciproca. Ergo denique conatus paracentrici sunt in ratione
duplicata velocitatum composita cum simplicibus directa quidem secantium
quos habent anguli radiorum ex centro conatus ad curvam facti reciproca vero
radiorum osculi. i in radio osculi CE sumatur CT aequalis sinu totiangulo 120
mensuranti, a, unde recta TQ occurrat radio centrali PC in Q, erit
CQ secans anguli quem facit radius paracentricus ad curvam, denique juncta
EQ, ducatur T parallela ipsi EQ, patet fore Car ad sinum totum CT, ut
CQ secans ad CE radium osculi. Ergo K;C conatus paracentrici sunt in
ratione composita ex celeritatis ;C,C duplicata, et rectarum C simplice. 125
Eritque K,C = ,C,C?Ca:a? vel K;C=,C,C?- CQ:CT- CE. Posito ,C,C esse
velocitatem mobilis in curva, CQ secantem anguli quem facit radius paracentricus
ad curvam, CT sinum totum, CE radium circuli curvam osculantis. In circulo si
centrum conatus sit in circuli centro, coincidunt E et P et Q et fit
K,C=,C,C%:CP. Concludendo {conatus paracentricus-aequatur) progressus conatus 130
paracentrici (K;C) aequatur quadrato elementi curvae (;C,C) seu progressus
mobilis in curva ducto in secantem anguli quem facit radius paracentricus
(PC) ad curvam, et applicato ad radium circuli osculantis, (CE) et sinum
totumy. )

Possunt etiam anguli deflexuum exhiberi in circulo, ut si centro P radio 135
quocunque PF describatur circulus, ducanturque radii tangentibus punctorum C
curvae CC paralleli, ut PF ipsi ,CN, et PG ipsi ;CH, angulus FPG exprimit
quantum directio mobilis inter progrediendum in curva ab
1C ad ;C deflexa sit, qui angulus si sit infinite parvus,
erunt anguli deflexuum momentanei seu incrementales. 1 140
Fingi autem posset mobile dum curvam describit ferri in
regula aliqua rectilinea, et durante motu regulam semper

(fig. 18)
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gyrari circa mobile ipsum tanquam centrum, quod fiet si mobile grave sit, ut

regulam plano subjecto fortiter apprimat, impulsus enim in regulam factus

ipsam aget circa mobile tanquam centrum. 145
Ope huius motus, si regulae circumactio ponatur aequabilis, dabitur modus NB NB
assignandi angulos laterum curvae aequales inter se, quo casu curvae

evolutione descriptae elementa sunt ut arcus evoluta, et hinc sequitur quod

areae evolutione descriptae posita rectificatione curvae semper sunt

mensurabiles, seu ut arcuum evolutorum éguadeata) cubi; quia autem fictio 150
haec in potestate est, patet rem semper veram esse.

huius paginae || Sed ut definiamus {guantitatem) progressum conatuum centralium

contenta sunt Evolviintelligatur eurva) (Considerandum-quid-fiatst
resumenda mfef—evel—veﬂéum%}umpeﬂafuf—ﬁweﬁﬁ&emeﬁﬂ{afem 155

Considerandum dxhgenter quae prodeat linea, s (m—ﬁfb&aﬁqﬂephﬂe

penatury planum (horizontale) agatur circa aliquod centrum, per sua transiens
vestigiatinstarorbistretieirea) | seu circa| axem sibi perpendicularem (wie

ein Teller;) et corpus libere alicubi in plano illo positum, extra centrum, 160
&) conatu centrifugo seu recedendi a centro per tangentem ex ipsa

circumactione concepto continue incitetur. Nempe sit centrum P mobile M, quod
rotatione plani P,M,M circa P incitatum transeat ex ;M in ;M. In P;M sumatur

Q N
1 /ZM R

(fig. 19)

P,Q=P,Met QN parallela M, M, ipsi P,M productae occurrens
in \N; et ;Q,N transferatur éa-MzMrengulo-HPMreetoctita 165
perrey in ,MH angulo P,MH recto et continuetur
M, M, usque in ,MR, aequalem ipsi ;M,M, fereturque mobile
P motu composito ex ,MR, et ex ,MH, id est completo
parallelogrammo R,MH,M feretur mobile in diagonali ,M;M.
Hae lineae variabuntur si planum non ponatur esse unum continuum gyrans, sed 170
interscissum in orbes concentricos inaequaliter gyrantes per quos dum
transit mobile, diversos per tangentem accedendi impetus concipit. Differunt
autem lineae istae (v} conatu tangentem prosequendi descriptae, a lineis
projectitiis paulo ante descriptis, nam illic R;M parallela fuisset ipsi P,M,
hic est ipsi ,MH, adeoque perpendicularis ad radium PM, cum in projectitiis 175
sumatur in radio. An dicemus potius grave duplici motu ferri, uno orbis cui
insistit; altero quem descripsimus, illaque linea composita apparebit
spectanti extra orbem posito, linea autem a nobis designata, describetur in
ipso orbe. Idem igitur videtur observandum et in motu projectitio, €t si enim
nobis in orbe nostro circumeunte positis linea projecti gravis appareat 180
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parabolica, tamen si quis spectaret eam ex alio orbe, erit ipsi composita ex

{parabelies) motu parabolico et circulari, et si gyratio orbis in locis a centro

recedentibus minus crescat, quam pro distantia a centro, non quidem motus

compositus erit ex lineis {parabelieseteit) projectitia et circulari,

sed ex conatibus in projectitia et in aliquo circulo. Has compositiones non 185
videtur Neutonus in rationes revocasse, quae tamen videntur habere locum. | Et

hoc modo in orbe ubi non aequabilis gyratio non videntur gravia in ipso orbe

spectata recta ad centrum ire.| Considerandum an fluidi partibus recedere

conantibus per tangentem, solidae quae minus recedunt eo ipso in sola recta

linea detrudantur, an potius retineant aliquid et a suo proprio impetu, et hoc 190
videtur verius. Itaque si gravia ubique in recta linea feruntur ad centrum

terrae, non poterit derivari vis gravium a &alteirenlatione) rejectione per

tangentem. Sed motus varii in omnes partes in fluido erunt assumendi

fortiores tamen in majore a centro distantia, vel saltem majoris materiae, ubi

revera est, et ita grave recta detrudetur. 195

Commentary to De Conatu

De Conatu can be divided into four sections, which approximately
correspond to the four sides of the manuscript. The first side contains
some introductory remarks on centrifugal and centripetal conatus, which
is called paracentricus. The second section comprises an attempt to
determine paracentric conatus for a body moving along a curve. This
attempt is based on the construction of the evolvent of the curve
described by the body. Half-way down the second side Leibniz realizes
that his geometrical construction is redundant, and after a few more lines
he crosses out the whole of the second side and starts again on the third.
There Leibniz succeeds in finding the most general expression for the
paracentric conatus of a body moving along an arbitrary curve with
respect to an arbitrary centre. The fourth side is largely devoted to some
reflections on motion studied by different observers in motion or at rest.
It is not until the very end of the essay that mathematical calculations
give way to physical conjectures on the action of aethereal fluids and on
gravity.

Within the manuscripts I found, and according to my dating, this is the
first time Leibniz uses the term paracentricus, meaning ‘towards or from
a centre’ (line 1). As we have seen in the Notes, Leibniz realized that the
area law is valid for all central forces regardless of their sign. Now his
coinage designates a concept which corresponds to this property. From
now onwards paracentric conatus will be a distinctive element of his
theory of planetary motion. However, from the title of the essay it is
evident that by ‘paracentric’ Leibniz understands ‘either centrifugal or
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centripetal’, not both at the same time, and this is a notable difference
with respect to the Tentamen.

Leibniz considers an arbitrary curve CCC and an arbitrary point P,
and tries to determine the centrifugal conatus with respect to P with
which a body moving along CCC tends to escape. He claims that this
leads to the same result as the calculation of centripetal conatus (lines 5—
10). This and other similar remarks in the essay cast some light on his
views concerning curvilinear motion. Referring to fig. 16, Leibniz seems
to identify centrifugal conatus with K;C, in the concave portion of the
plane delimited by the curve CCC; ,CG, which represents centripetal
conatus, is in the convex part of the plane (in fig. 16 there are two letters
G). From 1689 onwards Leibniz believed that centrifugal and centripetal
endeavours were different in general. In the Tentamen he calculated
centrifugal conatus in a different way, and also employed a different
expression for the outward tendency in an arbitrary curve, namely
conatus excussorius, which in the present case would correspond to q,C
(fig. 18). In the particular case of the circumference, Leibniz retains the
Huygensian term centrifugus.

In the first paragraph Leibniz’s concepts and terminology are very
uncertain. He claims that centrifugal or centripetal conatus is infinitely
smaller than the conatus along a rotating ruler PC, which is a component
of the orbital motion of the body (lines 16—17). In more detail, he seems
to imagine motion along CCC to result from the component along the
ruler PC, and the component due to the rotatory motion of the ruler;
these ideas are developed in Inventum a me est, De Motu Gravium, and
appear in print in paragraph 3 of the Tentamen. Here Leibniz states that
the conatus along the ruler is very different from paracentric conatus,
which is infinitesimal with respect to it (lines 14-16). Indeed, the conatus
measured in a Newtonian way by the distance from the tangent does
differ from the conatus measured along the rotating ruler. In De Motu
Gravium Leibniz began to realize that the conatus measuring the
deviation from the tangent is only attractive, whereas the conatus along
the rotating radius is the difference between two terms, infinitesimal of
the same order, one repulsive and the other attractive. Motion along the
ruler varies according to its degree of rotation; the combination of these
motions gives the resultant CCC; centrifugal conatus, on the other hand,
would always be represented by the same segment (‘conatus centrifugus
semper est idem’, line 20). Leibniz probably believes that the rotatory
motion of the ruler can vary, therefore radial motion along it must also
vary accordingly in order to produce the given curve CCC. In the case of
a component along the tangent to the curve and a component along the
radius, paracentric conatus is uniquely determined. Leibniz does not
explain why centrifugal conatus should be infinitely smaller than the
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conatus along the rotating ruler. Furthermore, although he is talking
about infinitesimals of different orders, he always uses the term ‘conatus’
and does not distinguish between impetus and conatus or solicitation, as
he does in paragraph 5 of the Tentamen. The figure referred to in line 20
probably corresponds to fig. 18.

In the second paragraph Leibniz states that the element of conatus is
infinitely smaller than the velocity in the curve (lines 27-9); this shows
how equivocally the term ‘conatus’ is used, meaning first- or second-
order differential interchangeably. He considers two infinitesimal arcs of
curve, ;C,C and ,C;C. From ,C he prolongs the chord ;C,C to K, so
that ,CK is equal to the chord ;C,C. K;C is parallel and equal to G,C
and ;CG is equal and parallel to ,CK. Leibniz imagines that the motion
of the body is decomposed into ,CK and K;C, which is called ‘conatus
centrifugus vel magneticus’. 3CQ is the prolongatlon of the radius P,C.
Leibniz correctly claims that since the angle K CQ is infinitesimal, KQ
is infinitesimal with respect to ,CK. This follows because the central
conatus can be represented as interrupted in infinitesimal intervals, and
during each interval it is parallel to itself (lines 35-7). Leibniz con-
sidered curvilinear motion as composed of infinitesimal rectilinear
segments, which are the chords | C,C, ,C5C, etc. During the time in
which the body traverses each of them, the central conatus remains
parallel to itself and deviates the body acting like an infinitesimal
velocity. Therefore, Leibniz does not consider accelerations, but merely
instantaneous infinitesimal changes of intensity of the central conatus at
each vertex ,C, ,C, ;C, together with their directions. This is confirmed
by what Leibniz says on the second side of the manuscript, where he
makes clear that the tangents are elements of the curve, or prolongations
of the chords (line 39).

The ensuing calculations result from the parallelism between P,C and
HM, K;C and ,VW, and from the similarity between triangles ,CPN
and MHN (see fig. 17; lines 42-). He establishes the proportion
K,C-PH:HN-CP: 2C3C CH, and this gives K,;C.

Lelbmzs reasoning is based on the evolvent |V, of the evolute
[,C,C, C. The evolvent is constructed by unfolding a well-stretched string
from the position[;C,C,C to V;C,V and , V, C, C. In figs 16 and 17,1,V
should meet ;C,C,C at right angles. It is not until half-way down the
second manuscript side that Leibniz realizes that his geometrical
construction is  redundant. From the equation K,;C=
W V-CP-,C,C:PH - CV, since the angle of deflection is proportional
to V,V:CV and can be expressed without the evolvent, we have that
K;C is equal to the angle of deflection times CP -,C,C:PH (lines 59-
60, see Sections 2.3 and 5.3).

On the third side Leibniz repeats mutatis mutandis the same argu-
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ments without using the evolvent. He obtains the equation:
K,C=,C;C-HN-PC:PN-CH=,C,C S

HN:CH is equal to sin K263C, where K2@3C=§, or, since the angle is
infinitesimal, to itself, which 1is the angle of de/{]ection;
PC:PN=1:sin PCN =06, which is the secant of the angle PCN. The
cquation above for K;C is an important result which expresses para-
centric conatus (Newton would say ‘centripetal force’) for a given curve
CCC and a given centre P.

The following paragraph corresponds to a series of marginal notes
later inserted in the text b),/\ Leibniz (lines 113-34). He points out that
the angle of deflection K,C;C between two tangents to infinitesimally
distant points is equal to the angle 2Cﬁ ;C, where E is the centre of the
osculating circumference (see fig. 18). This can be easily proved both
when ,CK is the prolongation of the chord or is the standard tangent.
Since the angle 2CE»;C is equal to ,C;C over the radius EC, we have
that paracentric conatus is directly proportional to the square of ,C;C
(which represents velocity) and to the secant 6 = PC: PN, and inversely
proportional to the radius of the osculating circumference CE. Thus
K,C=(C,C)? v :EC.

In the same paragraph (lines 120-) Leibniz writes his equation in a
slightly different fashion. He fixes an arbitrary constant C7T=a along
the radius CE (see fig. 18); TQ is perpendicular to CT; CQ is CT
times the secant of the angle PCK between the paracentric radius CP
and the curve CCC; EQ and Tmx are parallel. We have
Cr:CT::CQ:CE and, since CE and PN are parallel, paracentric
conatus can be expressed as K;C=(,C,C)2Cx:a* and K,;C=
(,C,C)*CQ:CT- CE. In the special case when the curve CCC is a
circumference and its centre is the centre of attraction, we have the
well-known result K;C = (,C,C)%: CP.

We return to the text after the marginal notes (line 135). The attempt
to represent the angle of deflection in a circumference centred in P is
followed by an obscure passage in which Leibniz seems to adumbrate
an explanation for gravity. He claims that while the body describes the
curve, it is also driven by a rectilinear ruler rotating round the body
taken as a moving centre. Interpreting Leibniz’s thought, I believe that
the ruler must have two motions, one around the body and the other
along the trajectory of the body. This passage seems to echo some pages
by Descartes, Principia Philosophiae, part 3, propositions 59-61.
Leibniz goes on to claim that this would be the case if the body were
heavy, therefore pressing the ruler more vigorously, and that the
impulse exerted on the ruler sets it in motion around the body taken as
a centre.
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At the bottom of the side (lines 146-51), in a portion crossed out
later, Leibniz states that if the motion of the ruler is uniform, it is
possible to assign equal angles of deflection between the infinitesimal
sides of the curve. I try to explain his reasoning by means of the
auxiliary fig. (g). DB 1is the evolvent of the evolute AB, namely DB is
produced by unrolling a stretched thread from B to Dj; hence AD is
equal to the evolute AB. The elements FZ of the evolvent are equal to
the arcs BS=38Z of the evolute times the angle of deflection FEZ.

Fig. (g)

According to Leibniz the area between the evolute AB, the evolvent BD
and its radius AD is proportional to the third power of AB. Calling the
infinitesimal arc of the evolute ES=ds, the arc of the evolute
BS = $Z = s, the infinitesimal angle of deflection FEZ = d6, we have that
FZ = sd6; since df is constant, Leibniz can say that the elements of the
evolvent are as the arc of the evolute. The area of the triangle
FEZ =5?d0:2. Further, df =ds: CE, where CE = CS is the osculating
radius of the evolute. In conclusion, the infinitesimal element of the area
is equal to s?ds:2CE, and this is proportional to s* only if CE is
constant, or if the evolute AB is a circumference.

We have now reached the last side of the essay; the first crossed-out
lines (152-6) were marked in the margin as ‘page 2’, and were originally
the continuation from the first side. A later note in the margin shows
that Leibniz thought the content of this side worth reconsidering. He
studies the case of a horizontal plane rotating along its axis; the remark
in German enclosed in brackets reads ‘wie ein Teller’, like a plate (lines
159-60). He considers the case of a body moving freely on the rotating
plane under the action of centrifugal conatus due to the rotation.
Leibniz imagines that under the initial conditions the body moves from
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M to ;M (see fig. 19), perpendicularly to the radius PQ. M,M fixes
the initial velocity; in the successive interval of time the body would
move from ,M to R because of its inertia. During this interval of time,
however, the body, while moving from , M, also has a tangential velocity
,MH, perpendicular to P,M, due to the rotation of the plane from ,Q to
,M. Therefore, the resultant will be the diagonal ,M;M. Leibniz states
that the curves so described would be different if the rotating plane
were divided into concentric orbs, each rotating with a different velocity
(lines 170-2). He is beginning to look for mechanical explanations.

Leibniz claims that a heavy body has a twofold motion: the first is
common to the motion of the orb in which it is situated; the second is
the ‘motus projectitius’ described above (lines 176-9). Their composi-
tion will be observed from outside the orb. He also gives an example of
this composition: a line described by a falling body appears parabolic to
us, but if it were observed from outside our orb it would be the
composition of a parabolic path and a circular motion (lines 179-82). If
the circular motion increases in a proportion which is inferior to that of
the radius, or, as we would say, if angular velocity decreases in some
relation with distance, Leibniz believes that it would be necessary to use
endeavours, that is, differentials. In his opinion these remarks were
neglected by Newton (lines 185-6). Further, in an orb in which rotation
is not uniform, heavy bodies seen from the same orb in which they are
situated would not move towards the centre.

With these qualitative remarks on relativity of motion Leibniz seems
to be looking for a complement or an alternative to Newton (lines
185-). The very end of this manuscript is devoted to some physical
considerations on the actions of fluids with respect to gravity. Two
alternatives are considered: either the particles of the rotating fluid
receding along the tangent push more solid bodies, with a smaller
tendency to recede along the tangent, in a straight line towards the
centre; or the solid bodies tend to keep some of their impetus. The
second alternative appears to be more reasonable to him. Therefore, if
heavy bodies tend everywhere on the surface of the Earth along straight
lines towards the centre of the Earth, this cannot be explained by means
of their rejection along the tangent, but it is necessary to assume
motions in all directions in the fluid, which are swifter the further away
from the centre, where there is more matter; this would explain vertical
descent.

The reference to a motion which is swifter the further away from the
centre implies a law opposite to the harmonic circulation; hence this
explanation of gravity cannot be easily extended to planetary motion.
Soon we shall see Leibniz shifting his interest from vertical descent to
Kepler’s laws.
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3 Inventum a me est
LH 35,10, 7,f. 36-7

This manuscript consists of one sheet folded in quarto. The last side is
blank. The essay is on a kind of paper used by Leibniz in Vienna in
1688. The watermark is identical with that numbered 510 in the
catalogue at the NLB, letters ‘M R’ of a slightly different type from
those of f. 34-5. The edge matches perfectly that of f. 16-7, De Motu
Gravis in Linea Projectitia, on which compare Section 5.4, and this
suggests a close date of composition for the two essays.

The first paragraph contains a reference to a text which can be easily
identified as De Conatu: the analysis of paracentric conatus in the two
essays is identical. Leibniz’s investigations are purely mathematical. As
in the previous manuscript, Leibniz does not mention the circulatio
harmonica, and this is even more striking because here he develops
ideas leading to that concept. Although Leibniz begins to analyse
motion along a rotating ruler, paracentric conatus is still calculated with
respect to the deviation from the tangent, as Newton had done. Thus
conceptually this essay is a hybrid between two approaches. Inventum a
me est was composed in Vienna in autumn 1688, shortly after De
Conatu and before the Tentamen.

Inventum a me est et alia scheda explicaturn, mobilis in orbita curva

incedentis conatus ad punctum aliquod certum tanquam centrum respicientes,

sive paracentricos, esse in composita (1) ratione velocitatum mobilis in

orbita, (2) angulorum deflexus, et (3) secantium quos habent anguli radiorum

ex centro eductorum cum curva concursu facti, vel esse in quadrata ratione 5
celeritatum composita cum directa secantium ipsorum angulorum quos faciunt

radii paracentrici ad curvam, et reciproca radiorum quos habent circuli

osculantes.
Pergamus jam ad lineas projectitias nempe gravis aut levis alicuius
corporis, quod impetu aliquo jam impresso fertur, et interim vi gravitatis aut 10
levitatis aut magnetismi, ad centrum aliquod tendit
vel ab ipso recedit. In his enim peculiares debent 3

esse respectu conatus paracentrici proprietates.

Ponamus igitur mobile C moveri in curva ,C,C,C ete. C i€
. . —

et cum esset in [ C habere velocitatem et

directionem ,C,C, ita ut dato temporis incremento L

{fig. 20)
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aequabili absolvat ;C,C, ergo si nihil mutaret, continuata eadem directione
aequali tempore percurreret ,CK aequalem ipsi ,C,C, et cum ea in directum
jacentem. Itaque in ,C positum, habet ab impetu concepto conatum et
directionem ,CK, ponamus jam a gravitatis impulsu accipere conatum
paracentricum ut ,CG. Itaque ducta KC parallela et aequali ipsi ,CG, ad
partes P (nam si conatus esset levitatis ad contrarias duci deberet) et
jungatur ,C,C, erit utique ,C,C velocitas et directio composita ex ambabus
qua mobile perget in curva projectitia.

Cogitari potest eadem linea describi motu composito ex circulari regulae
indefinitae P]circa centrum P, et rectilineo mobilis C in regula versus
centrum tendentis, quanquam ad ipsum pervenire |in linea huiusmodi projectitiaj
nunquam possit. Ex ;C in P,C demittatur perpendicularis ;C,L, manifestum est
in angulo ,CP,C inassignabili, haberi posse pro arcu, et perinde esse ac si
mobile ex ,C in ,C feratur motu composito ex ,1,C, et ex ,C,L. Sunt ergo ipsae
,L;C progressus circulares in composita ratione angulorum progressus

circularis, et radiorum, seu distantiarum a centro PC. Jungatur PK. Triangulum
,C,CP aequale est triangulo ,CKP, (quia idem est vertex P, et bases aequales
C,C, et ,CK, in eadem recta ,C,CK) et triangulum ,CKP aequale est triangulo
,C;CP (sunt enim super eadem basi P,C, inter parallelas easdem P,C, et K,C).
Itaque triangula ,C,CP et ,C,CP, seu areae radiis abscissae incrementa,
aequalibus existentibus temporum incrementis (eo ipso quia ;C,Cet ,CK
sumsimus aequales) sunt aequalia, areae igitur radiis |ex centro emissis|
abscissae, (quae ex his triangulis componuntur) sunt ut tempora motu
projectitis gravis insumta. Porro triangulum ,C,CP fit ex ductu radii P,C in

progressum circularem ,L,C, et similiter triang. ,C,CP fitex P,Cin L,C. Et
generaliter triangulum C(C)P quod est incrementum areae radiis abscissae, fit
ex ductu radii PC in progressum circularem LC. Itaque incrementa arearum
radiis abscissarum sunt in composita ratione radiorum et progressuum

circularium. Sunt autem incrementa arearum aequalia, aequalibus temporum

mcrememls [imo sunt mcremema arearum ut temporurm éEfgeﬂﬁmﬁﬂeqﬁahb&s

Ltaque generalner temporum incrementa sunt in comp051ta ratione radiorum

paracentricorum, et progressuum circularium. | Ergo sumtis aequalibus temporum

incrementis in motu projectorum, erunt radii paracentrici PC reciproce ut

1
LC) = PC = PC-ang

ergoPC-PC-ang =1

progressus mobilis circulares L(C).
Sunt autem progressus circulares L(C) in
composita ratione radiorum P(C) et angulorum

circulationis CP(C). (Stacquabilis-sttmotus
prejeettgravistasugorbita)| Ergo temporum

incrementa sunt in composita ratione duplicata
radiorum paracentricorum, et simplice angulorum
circulationis incrementalium.| Ergo aequalibus
sumtis temporum incrementis in motu projectitio
gravis alicujus vel levis centrum certum

respicientis, erunt anguli circulationum circa
centrum in ratione duplicata reciproca radiorum {ex

eentro-emisse) paracentricorum. Ut autem
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exprimantur integra tempora, sumatur recta ex A
puncto assumto infinite producta AB inque ea 65
sumantur ipsae AB aequales ipsis PC, et|ad has

€ (fig. 21) ordinate| ipsae BE proportionales areis PCN, N
assumto pro motus initio, itaque si AJ=PN habebimus
lineam (J)EE temporum seu arearum; per A ducatur AF

C parallela ipsis BE, et porro ducantur EF parallelae 70
et aequales ipsis AB. Patet temporibus | vel areis)
existentibus AF, radios | paracentricos| fore AB vel
FE, in AF sumatur AQ aequalis ipsi AJet per Q
K ducatur QH parallela ipsi AB, et ET curvam tangens

inE, occurrat axi AB in T, et ipsi AH in H. Sumatur 75
€ in QH ipsa QR aequalis AT et jungatur TR
perpendicularis ad QH. Erunt ipsae RH ut radiorum

A F F Q
M
2M/K
T .y R
]
B E
B
2
2E
(fig. 22) H

incrementa LC seu ut progressus rectilinei. Progressus autem circulares cum

sint reciproce ut radii, et angulorum seu circulationis incrementa reciproce

ut radiorum quadrata, itaque si ducatur linea JMM talis, ut FM sint ad AJ 80
reciproce ut quadratum AJest ad quadratum FE, erunt ordinatae FM ut

circulationum seu angulorum incrementa, et spatia JAFM Jut anguli integri

NPC.

Nunc istis repertis adjungamus quod ex alia scheda repetivimus, (eonatus)
(progressus] paracentricos ut ;CK esse in duplicata ratione progressuum in 85
orbita ,C,C composita cum directa secantium angulorum PCK inter radios et
curvam et reciproca semidiametrorum VC quos habent circuli osculantes |seu
angulorum contactus sive curvedinum|. Itaque nunc demum, omnia ad calculum
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revocemus. Radius paracentricus PC sit x, circulatio seu angulus sity et LC

erit dx, et incrementum circulationis seu angulus CP(C) erit dy, (sumtus pro 90
elemento arcus circuli dati radii a()), est autem progressus circularis

L(C) =dy-x:a et areae incrementum L(C) in x erit dy x = dt, quia repraesentat

tempus; seu t = [dy x. Et porro elementum curvae ,C;C = /dx* + dy? = dc. Sunt autem
elementa curvae in composita ratione incrementorum temporalium dt,

et velocitatum in orbita quas vocabimus w, seu Jdx? +dy’ =dy xxw:aa. Jam 95
velocitates mobilis in sua orbita, seu conatus pergendi in tangente, sunt ad

velocitatem circulationis dy seu ad conatum rectae mobilis in circulo moti

cuius arcus sunt mensurae angulorum. ut dx’ + dy’ ad dy. Ergo w = (interrupted)

et velocitatum in orbita, quas vocabimus w, fiet: /dx* + dy> = dy xw:a. Et
w=a/dx’+x¥/a’ dy2:x-dy. Seu w velocitates sunt in composita ratione directa 100
quidem Jdx? + dy? seu C(C) ad dy seu L(C) et inversa radiorum x. Jam C(C) est ad

L{C) ut secans anguli sub curva {et) radio paracentrico ad sinum totum, ergo

velocitates in orbita sunt in composita ratione directa secantium quos habent

anguli curvae ad radios paracentricos et reciproca radiorum paracentricorum.

Et quia secans anguli ad curvam est ad sinum totum ut Jdx* + dy” ad dy seu ut 105
xJdx? + dy? ad xdy fiet sec. in xdy/a = sin. tot. in x/dx’ + dy>. Seu erunt

incrementa temporum in ratione |composita] progressuum orbitae, et radiorum, et
reciproca secantium quos habent anguli curvae ad radios. Et progressus

paracentrici [seu incrementa descensus vel ascensus| in projectitia linea,

erunt in triplicata progressuum in orbita et reciproca composita progressuum 110
circularium atque &adierum) te i

setty curvedinum. Curvedines autem seu angulos contactus intelligo qui sunt ut
semidiametri circulorum curvam osculantium. Superest ergo ut radii isti seu
semidiametri inveniantur. Ubi tamen nullum inde novum compendium generale

prima fonte deprehendo tantum enim deprehendo semidiametrum osculi seu 115

mensuram curvedinis CV esse = dx:d dy:dc + wdx:adc. Posito w esse elementum anguli
sive circulationis sive elementum arcus circuli cuius radius a, quo casu

dy=1xw:a.Jam d dy:dc=dy ddc — dc ddy,:dc?. Ergo in linea projectitia elementum
descensus vel ascensus gravis aut levis projecti seu K,C est

=dc*d dy:dc+wdx:adc:dx-dy seu 120
K,C=dc?-dyddc —dc ddy:dec + wdx:a:dx- dy.

4 Investigatio Semidiametri Circuli Osculantis

LH 35, 10,7,1f. 31

The essay reproduced here covers one side of a quarto manuscript sheet.
The verso is blank. The contents are directly connected with Inventum a
me est, because the equation for the radius of the osculating circum-
ference attained in the present text is used in Inventum a me est in order
to determine paracentric conatus.
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Investigatio semidiametri circuli curvam in proposito
puncto osculantis, si pro ordinatis adhibeantur convergentes
ad certum punctum

Sit curva ,C,C,C, unde radii convergentes P ad
centrum radiorum P; quaeritur V centrum circuli 5
osculantis, adeoque CV eius semidiameter, sint
elementa arcuum ,C,C, ,C,C, unde ex ,C et ,C extremis
perpendiculariter eductae concurrent in V.Ex ,C in
P,C perpendicularis ,C,L et ex Vin P,Cet P,C,
perpendiculares V,Z, V,Z ex quibus V,Z secat 10
(producta) P,Cin 4, et V,Z secat P,Cin .

(fig. 24)

P

In triangulo characteristico ;C,L,C, vocetur: ,C,L, dx; ,L,C, dy; et ,C,C,
deet PC, x; ob triangula ,C,L,C, et CZV similia fit CZ: CV': dy: dc. Rursus ob
triangula V,Z4 et P,Zé similia fit 6,Z:6,Z" VZ : PZ. Denique ob triangula
P,Z4 et P,L,C similia fit ,Z4:,L,C seudy": PZ: PC. Tollendo 8,Z ex analogia 2 15
per analogiam 3 fit 6,2 PC:dy- PZ "' VZ :PZ seu 8,2 :dy . VZ:PC.Si ,Z4 et f,Z
considerentur ut elementa arcuum centro P radiis P,Z, P,Z descriptorum, patet,
sumi posse 6,Z pro=f,Z seu 6,Z esse differentiam inter P,Z et P,Z, adeoque

6,7 esse=dPZ = dy- VZ:PC per 5. Jam PZ = PC - CZ. Ergo dPZ = dPC ~ dCZ jam

dPC =dx, et dCZ = CV d dy : de per 1 quos valores substituendo in aeq. 9 fit 20
—i11) —==(12) {13} (14} .

dPZ=dx-CV-ddy:de=dy-VZ:PCper7.Jam VZ:VC::dx:dcetdy=xw:aposito w

esse anguli seu circulatonis circa P elementum, radio a; nam |L,C seu dy sunt in

ratione composita radiorum PC seu x, et angulorum ,CP,C. Ergo dy: PC=Wia, Ergo

denique ex aeq. 12. 13. 14 fitdx—CV d d_y:&E)CP- w-dx CV:{x)-a-dc.

Ergo CV=dx:d dy:dc+wdx:adc. Jam d dy : dc = dy ddc — dc ddy, : dc?. Ergo 25

CV=dx:dy*ddc—dc-ddy:dc?+ wdx:adc.

Commentary to Inventum a me est and Investigatio Semidiametri
Circuli Osculantis

Inventum a me est investigates the properties of the lineae projectitiae,
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that is, the lines described by a body whose trajectory is the resultant of
its own impetus (inertial motion) and of the action of gravity, levity or a
magnetic force. The opening sentences in lines 1-8, and lines 25-32 and
49-52 are translated and discussed in Section 5.3.

In lines 28-63 (see fig. 20) Leibniz studies the properties of the ‘motus
projectitius™ ,C,L and ;C,L are perpendicular to the radii P, C and P,C
respectively and are taken as approximations of the arcs described by the
radii P,C and P;C with angles zCﬁl C and 3Cﬁ2 C. This approximation is
correct when the angles are infinitesimal, as in our case. ,C,L and ;C,L
are named ‘circular progressions’, and are proportional to their
respective angles and radii. Leibniz shows that if the time intervals are
equal, triangles | CP,C and ,CP,C have equal areas. These areas are pro-
portional to (CP times ,C,L and to ,CP times ;C,L respectively, or
more generally the increments of the areas are proportional to the radii
and circular progressions. Taking equal increments of the areas, Leibniz
draws two conclusions: first, the paracentric radii PC are inversely
proportional to the circular progressions L(C); second, the angles of
circulation are inversely proportional to the square of the radii. The first
of these properties expresses the law of harmonic circulation. The
beginning of the second side (lines 50-2) marks the moment of birth of
the most famous concept in Leibniz’s theory of planetary motion. At this
stage his argument is purely mathematical and descends directly from
proposition 1 of the Principia Mathematica. Vortices do not enter the
stage yet, nor does Leibniz christen the property he has just found
‘circulatio harmonica’.

Next (lines 63-) Leibniz seeks to determine the times and the angles
NPC (see figs. 21 and 22). AB ought to be equal to PC, and in particular
Al= PN, where N represents the starting point. BE are taken to be
proportional to the areas PCN. The curve JEE represents times or
equivalently areas with respect to the radii AB. AF are parallel to BE,
AQ is taken equal to AJand QH is parallel to AB; TH is the tangent in
E; RH is proportional to the rectilinear progression along the radius LC
(this refers to fig. 20) or, as we would say, to radial velocity. If time is
given, circular progression is inversely proportional to the radius and the
increments of the angles of circulation are inversely as the square of the
radii. Therefore, if we draw a curve JMM such that FM is inversely
proportional to the square of FE, that is, inversely proportional to the
square of the radii, FM will represent the increments of the angles, and
the area AFM1A will be proportional to the angle NCP. In fig. 22 the
curve JMM is not consistent with the curve EE. The area of AFM1A is
proportional to the integral of dt/r?, where ¢ is proportional to AF and
1/r? is proportional to FM.

From the following paragraph onwards, Leibniz employes the differ-
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ential calculus (line 84-). The ensuing remarks are affected by the
following problem: he is uncertain whether to fix circular progression
L(C) equal to dy x:a, or simply equal to dy. In the first case dy would
measure the arc of a given circumference with radius g, whereas x
represents the radius PC; in the second case dy represents directly the
arc or its approximation L (C). Once this problem has been pointed out,
Leibniz’s reasoning becomes straightforward. Since he obtains the result
PC:PN=C(C):(C)L, the expression for the paracentric conatus K;C
from De Conatu can be written as K;C=(,C,C)*/CV+,L,C, meaning
that paracentric conatus is equal to the third power of orbital velocity
C(C) over the radius CV of the osculating circumference and circular
progression L(C) (lines 108-12; I introduce brackets for convenience).

At this point Leibniz probably interrupted writing Inventum a me est
in order to find a suitable expression for the radius of the osculating
circumference, and composed a new essay on a separate sheet of paper,
Inquisitio in Semidiametrum Circuli Osculantis si pro Ordinatis Con-
vergentes Adhibeantur Ope Calcui! This draft was followed by the
Investigatio Semidiametri Circuli Curvam in Proposito Puncto Osculantis,
which is very clear and surprisingly correct. The only mistake (line 25) is
trivial; at the right member of the second equation one should have the
opposite sign.

Rather than going through Leibniz’s reasoning in detail—this task can
be easily carried out by the reader—I prefer to draw a comparison
between the present manuscript and a similar calculation in an essay
published by Leibniz a few years later in the Acta Eruditorum,

Fig. (h)

' LH 35, 10, 7, f. 41v. The manuscript is not reproduced.
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Constructio Propria Problematis de Curva Isochrona Paracentrica.? In this
essay Leibniz uses a similar method to determine the osculating radius of
the curve, and finds the expression —dx:d(dy:dc). It is easy to obtain
this expression for the osculating radius CV. In the enclosed Fig. (h},
OE=x,,CE=y, OZ=f, ,C,C=dc, ,CH=dx, ,CH=dy, and ;C,CH is
the characteristic triangle. We have

CV:EZ:: C,C:,CH,

hence (dy:dc)CV =f— x. If we differentiate this equation taking CV and
OZ constant (compare equation 10, line 20 in the text), we find the
equation CV=—dx:d(dy:dc).

In our case Leibniz uses as abscissae the radii  CP, ,CP, etc.—which
are not parallel among themselves—and as ordinates their perpendic-
ulars L(C). We have CZ:CV:: L,C:,C,C (see figure24). If we
differentiate this proportion with C¥V constant, but CZ varying according
to the inclination of CP, we have

CVd(L,C:,C,C)=d(,Z,C) =d(P,C) —d(P,Z) =dx —wCCVdx:adc;
after some elementary operations this equation becomes:
CV=dx:[d(dy:dc) + wdx:adc}.

This example shows how the difference in the coordinates generates the
additional term +wdx:adc at the denominator and a difference in sign.
Going back to Inventum a me est (lines 116-21), we see that Leibniz
substitutes the expression for CV he has found in Investigatio. From the
equation K;C =(dc)*:CVdy one has

K;C = (dc)?*[(dcd?y — dy d*c):dc + wdx:a]:dxdy,

where I have corrected the sign error mentioned above.

5 Repraesentatio Aliqua
LH 35,10,7,f. 12

The manuscript reproduced here is on a kind of paper used by Leibniz in
Vienna in 1688—watermark number 695 in the catalogue at the NLB,
letters ‘M R’. On the basis of comparison with other similar texts,
Repraesentatio Aliqua can be shown to date from autumn 1688. These

2 AE Aug. 1694, pp.364-75= LMG, 5, pp- 309-18, on p. 310. See also Bos, ‘Differentials’,
pp-40-2.Inthe copies of the 1694 Acra 1 have consulted, after page 392 pagination starts again
from page 312.
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texts are briefly discussed in Section 5.4, but one of them, Galilaeus, is
considered in more detail and extracted in the commentary.

In the title Leibniz had originally written impetus instead of conatus.
Other variant readings consist of trivial stylistic changes and are omitted.
The letters ‘A’ and ‘L in the text correspond to the same points ‘4’ in the
figure. In lines 46, 52 and 59 (inside the integral sign) I have substituted
C(4) for CA.

|etror|
Repraesentatio aliqua curvae quae describitur a
gravi projecto in lineis ad centrum concurrentibus
conante et ubique acquales conatus novos accipiente

Ponatur grave in A positum projici versus t 5
directione et celeritate A;t. Dum vero progreditur
ex Ain t, descendet velocitate A, 4, et completo
parallelogrammo A, t,C, 4 ibit composita celeritate
et directione At, seu dum sine gravitate
pervenisset in ,t, nunc accedente primo gravitatis 10
impulsu perveniet in ;C. Rursus positumin ;,C

N
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habebit pristinam directionem impressam ,C, K, aequalem ipsi A, t, seu t,t, et
directionem descensus ,C,4 compositam ex aequali pristinae A4, et novae.

Ponantur esse aequales fiet C,4 dupla A, A, et completo parallelogrammo

,.C,K,C, 4, eodem tempore quo antea mobile venit ex A in ,C, nunc percurret 15
,C,C; tempore scilicet t,t, vel ,C, K= At etita porro. Hinc patet velocitates

seu impetus gravitate quaesitos esse temporibus proportionales; patet etiam

pro indesignabilibus, triangulum PAC coincidere triangulo PC(C),, est autem

triangulum PAC=AC in PB. Ergo ipsis PB vel earum dimidiis aut tertiis

translatis in tq, tunc posito angulum PAt esse rectum, erunt spatia Aq 20
proportionalia areis APCA. Et proinde in omni linea projectitia si areae

elementa dividantur per altitudinis a distantia centri et verticis detractae

residuum, (posito rectam per centrum et verticem directioni impressae

normalem esse) prodibunt temporum incrementa. Si differentia inter duas

quantitates ut hoc loco duo triangula P,C,C et P,C,C sit infinite parva, 25
respectu ipsorum non debet negligi quando de summa ex omnibus P,C,C, P,C,C,

P,C,C agitur; summa enim ex summis est summa summarurn ex differentiis; sed si

negligi potest, debet esse infinities infinite parva. Potest etiam tempus ita

in unum colligi. Ex C in (L)(C) demittatur C( ) erit AC=4 2 + 2 C.Jam [IC = At

et [ C=BCergo At= H /++BC.Jam obtriangula C( /2 )(1) et PLC similia fit: C( p2) 30
seu dx (posito AB=x):(4)(/2):C(4)::PB:BC:CP. Ergo: (1){ /1) :dx::BC:PB seussit
BC=yet AP=hfietPB=h-x,etfiet A m=dx-y:h—x.Seu [A = [dx-y:h—x. Ergo
fiet: At=[dx-y:h—x+y=t.Idem aliter investigemus. Areac APCA quaeramus
incrementum, hoc dividamus per PB, habebimus temporis incrementum, qualium
summa dabit } t. Jam area APCA= [ydx +y-h—x:2. Huius differentia est: 35
ydx + 4 hdy — 4 ydx — 4 xdy seu + ydx+ ¢ dy-h—x, quae divisa per h — x dabit

} ydx:h=x+ 4 dy; unde summando fit 4 [ydx:h~x+4 y =4 t quod succedit.

Pergamus nunc ad aliquam collectionem descensuum. Ducatur P8 parallela

At cui tangens C(C) occurrat in , manifestum est triangula C(4)(C) et CP6 esse

similia, eritque C(4):(1)(C):C(C)::CP:P#:C8 seu est ut elementum descensus (id 40
est iisdem temporis incrementis velocitas); elementum progressus paralleli seu

temporis; elementum orbitae seu curvae. Quia autem tempus assumi potest constans
quaeramus (any in curva data projectitia, PC, P8 sint aequales, quae P9 sit

Q, eaque PO(=)Q(vel eius proportionalis ()) transferatur in IN seu 4tN.

Atque haec erit mensura seu unitas, facile exhibentur t€ proportionales ipsis 45
C(4) elementis descensuum, seu fiat t&:IN, ut PC quaecunque ad constantem €,

ubi in casu simplicissimo, quando conatus gravitatis impressus semper €st

aequalis, fit AEN recta, quia t& sunt ipsis At proportionales, sicut est si

constet, quomodo ipsae t& seu ipsis proportionales C(4), crescunt cum

tempore, id est aucta vicinia centro, nam ex relatione ad distantiam a centro, 50
potest haberi relatio ad tempus; licet interdum non nisi transcendenter.

Summa autem ipsarum t£ seu figura At dabit summan ipsarum C(4). Sit ,C,q
perpendicularis ex ,C in ;C,4 seu (C)q perp. ex (C) in C(4). Patet triang.

C(A)(C) esse =B(B) seu dx in dt, seu (1)}{C) = C(4)({seu elementum descensus} in

(C)q jam (C){(g) est progressus circularis. Ergo elementum descensus in 55
progress. circ. = elem. abscissarum dx in dt elem. temp. seu elementum descensus
convergentis, est ad elementum temporis seu progressus paralleli, ut

elementum abscissarum sive paralleli descensus, seu abscissarum y est ad
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elementum progressus circularis. Porro C(4) =Cq+q(4). Ergo |C(4) seu summa
descensuum est J’Cq seu AP-PC+ fq,l. Est autem g4 = J (C)(A)?-C(C)*+Cq 60
Seu g4 = Jdt? — dx? — dy? + dv?, posito radium PC vocari v. Supra autem habuimus dt
quem valorem tollendo habebitur q4 per x et y nam et v haberi potest per x et y, et

ita per haec et eorum differentias habebitur et 4.

tJam adeo quae sit vera ratio hanc methodum instituendi, in praecedentibus
enim erratum fuit. 65

Commentary to Repraesentatio Aliqua

This manuscript is marked at the beginning with the word error and ends
with an admission of failure in which Leibniz wonders how the problem
can be solved. Both comments are later additions.

Repraesentatio Aliqua is similar (see Section 5.4) and complementary
to another manuscript essay, Galilaeus tractare incipit de linea gravium
projectorum; since their contents are to some extent mutually clarifying, [
discuss the two essays together. Galilaeus starts with the claim that
Galileo began dealing with curves described by bodies moving with
uniform rectilinear motion composed with acceleration of gravity acting
along lines parallel to one another. In the attempt to generalize Galileo’s
reasoning, Leibniz studies curves described by a body tending towards a
centre at a finite distance, with a conatus depending on the distance from
the centre. This is the inverse problem of central forces.'

In Galilaeus and in the present manuscript Leibniz studies the motion
of a body tending towards a centre and acquiring a constant conatus.
The relevant portion of the figure in Galilaeus corresponds to that of the
present essay. Notice that in fig. 25 C(C) is a rectilinear segment.
Leibniz’s mistake is obvious from the figures, and in Repreaesentatio

! LH35,10,7,f.18v.-19r. The whole essay has been crossed out by Leibniz. The watermark
(number 695 in the catalogue at the NLB, letters ‘M R’) is identical to that of Repraesentatio
Aliqua. We have seen in Section 5.5 that the edge of Galilaeus matches perfectly that of Si
mobile aliquod ita moveatur, LH 35, 10, 7, f. 38-9. The opening passage reads: ‘Galilaeus
tractare incipit de linea gravium projectorum, quae motu composito ex semel impresso
aequabili, et gravitatis accelerato feruntur. Posuit autem quod ipsi ad scopum praefixum
sufficiebat, gravia omnia descendere conari in rectis inter se parallelis, et quolibet temporis
incremento aequalem a gravitate ipsi imprimi conatum descendendi novum, prioribus
addendum. Verum prosequendo hanc speculationem, considerare porro licet, quae sit linea
projectorum gravium, si gravia, ut revera fit ponantur tendere ad unum aliquod gravium
centrum, et praeterea quod fiat, si ponatur conatus novus impressus aequalibus temporibus
non esse aequales, sed crescens vel decrescens, pro distantiis scilicet a centro, vel aliis causis.
Ponamus primo gravia ad centrum aliquod tendere, conatus autem a gravitate impressos
semper esse aequales.” Leibniz seems to believe that the case of a constant conatus is very
simple; in Repraesentatio Aliqua this is called ‘casus simplicissimus’ (line 47).
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Aliqua from the first lines of the text (lines 11-13); Leibniz tries to
consider rectilinear inertial motion on the one hand, and the sum of the
impressions of gravity on the other, and then tries to find their com-
position. I have called this ‘pseudo-Galilean’ motion. From this
representation it follows that at each point C we have to consider the
sum of all previous impressions of gravity, which in the present case,
unlike Galileo’s, are not parallel.

Let us consider the text. In fig. 25 time is proportional to the segments
CK, or equivalently (). Motion from A to ;C entails no problems: the
body has an initial velocity A,¢ and is acted upon by gravity A, A. Once in
1 C, the body would be acted upon by gravity ; C,4, and keep its velocity
1C1K in the direction previously impressed At which is not tangent to
the curve in ;C. The action of gravity ;C,4 is the composition of the
previous action A, with the new one acquired in , C. If the new and the
old actions are equal, he states that ; C,4 is equal to twice A;4 (line 14).
This decomposition is not correct: first, it does not take into proper
consideration the changing directions of gravity; secondly, if C(4) is the
sum of all previous impressions of gravity, it ought to start from a point ¢
on the tangent rather than on the curve. In Fig. (i) I have adopted a
representation whereby KC represents the deviation from the tangent or
the instantaneous impression of gravity, whilst the curve tKC results
from the sum of all previous impressions. At each point C the body

A " 2! 3t
- K
=2
C/R~ I
2 ~ /K
C RN
3 \\\ ~ .
N
N
N
N
Fig. (1)
P

2 This problem is clearly stated in Galilaeus: ‘Similiter aggregatum ex omnibus C(1}, seu
1C4, 2C 34, constituit aggregatum spatii descensu percursi. Quamvis nec omnes C(4), nec
omnes A C hic facile in unam rectam componi possit, quod in eo casu facile est quem Galilaeus
tractavit, quando descensus sunt paralleli’ In Galilaeus the letters L and 4 are used indiffer-
ently: for convenience I use only the latter; further, itsindices are shifted with respect to those in
Repraesentatio Aliqua. In order to make the comparison of the two essays easier I have
rearranged the notation; altered indices are enclosed in angled brackets.
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tends to continue its rectilinear uniform motion along C(K). If the curve
PC(C) is a circumference, in the limit the deviations KC from the
tangent At to the curve C(C) coincide with its evolvent, as we have seen
in Section 2.3 on Huygens.

Below Leibniz explains that the curve ;¢q,g represents the decreasing
heights PB, hence the areas between the curves g{q) and t(¢) are
proportional to the areas of the triangles PC(C). In fig.25 the
perpendiculars from g do not follow on to the points ;¢ and ,¢ The
provisional conclusion is that in every linea projectitia the increments of
time are proportional to the infinitesimal areas of triangles PC(C) over
PB, namely the difference between AP and AB (lines 21-4). In fig. 25
the letters ,g,qg are not related to the letter g along ,4,C.

The text continues with a passage (lines 24-8) which can be better
understood in connection with Galilaeus, where Leibniz used both the
area law and his own construction according to which the segments CK
measure time. In Galilaeus Leibniz had originally taken the difference
between triangles P,C,C and P,A,C to be infinitesimal, and therefore
negligible. But later he added the following point in a marginal note:
triangles ; C,CP and (,,4,CP are different, and a fortiori triangles , C,CP
and ,C;CP. Since each triangle PC(C) differs from the preceding one,
when taking their sum we have to consider the progressively larger
differences between them. This means that it is necessary to perform two
summations: first, a summation over the difference between each
successive pair of triangles, in order to determine the area of the nth
triangle; second, a summation over all triangles PC(C). Unless the
difference between the areas of two contiguous triangles is at least a
second-order infinitesimal with respect to the areas of the triangles, this
difference cannot be neglected. In fact, the difference between the areas
of C,CP and ,C,,,CP is the sum of n —1 terms. The tacit assumption
is that since the number of triangles is infinite, the difference between
their areas cannot be neglected if it is a first-order infinitesimal with
respect to the areas of the triangles. According to the marginal note in
Galilaeus this mistake had been made by Newton; possibly Leibniz had
in mind proposition 1 of the Principia, but his criticism is not justified
because Newton did not decompose motion in the same way as Leibniz.?

* Thetextfrom Galilaeus reads: ‘Nam triangulum ;C,CP differt indesignabiliter a triangulo
»42CP [(id est differentiarum ratio ad ipsa est minor quavis assignabili) imo error; hic necesse
esset ipsam differentiam esse infinities infinite parvam respectu differentium, in hoc lapsus est
Neutonus, nam repetuntur semper omnes errores priores et error sit summa summarum,
ideoque assignabilis]’. I have inserted the marginal note within square brackets. From the
words ‘imo error’ onwards the hand is slightly different and the ink darker; this argues for alater
addition.
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In Galilaeus Newton’s representation of the area law was first accepted
and successively criticized in the marginal note. The contents of that
note are now included in the present manuscript. This may suggest that
Repraesentatio Aliqua follows Galilaeus and Leibniz’s first reading of
the Principia. With respect to the dating, notice also the expression
progressus circularis (line 55) for the perpendicular ,C to the radius
P,C—the same expression is used in Inventum a me est—the lack of any
reference to the mathematical notions of the Tentamen and to the action
of a vortex.

The following lines (52-63) are affected by the initial mistakes. Once
these have been clarified, the reader can follow them without difficulty.
Leibniz wants to determine the total time (lines 28-37), and the
collection of descents (lines 38—63); in the similar triangles C(4)(C) and
CP@, C(4) and CP are homologous. Transferring P8 on to 4N, which is
taken to be constant, he finds (line 46): t£:IN:: PC:Q; Q is fixed and is
equal to a given radius PC; IN is also fixed; t& and PC are the only
variables and they are proportional. Further, they are also proportional
to C(1). However, Leibniz overlooks that the proportionality constant is
different for each triangle PC#, and this introduces an inconsistency in
his representation. According to him, the descents C(4) grow uniformly
because attractive endeavours are constant; therefore ¢£, which is
proportional to them, is represented along a straight line AEN. This
reasoning is based on the wrong assumptions that motion can be
represented in this way and that descents remain parallel among
themselves.

At first sight it seems almost unbelievable that Leibniz adopted such
an unsatisfactory decomposition of motion and ignored that although the
impressions of gravity are equal, they are not parallel. We can conjecture
that he was groping his way to both an understanding of the Principia,
and the development of a different approach to orbital motion.

6 De Motu Gravium
LH 35,10,7,f. 1,2, 3, 25 (compare Figs. (j)—(1))

The manuscripts reproduced here are on two separate folded folii,
numbered 1-25 and 2-3 respectively. They are on a kind of paper used
by Leibniz in Vienna in 1688, watermark ‘cross the cavalier’, number
564 in the catalogue at the NLB. The first three sides of the first folded
folio have been written in continuous succession and form the proper
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Fig. (j) LH 35,10,7,1. 1r., De Motu Gravium vel Levium Projectorum.
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Fig. (k) LH 35,10, 7,f.25r., De Motu Gravium vel Levium Projectorum.
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essay De Motu Gravium. The fourth side contains some complementary
remarks not directly connected with the preceding text.

The second folded folio contains three clearly separate sections. The
first one, f. 2, presents a development of some calculations on para-
centric conatus from the preceding essay. The second section, f. 3 recto,
consists of two attempts to prove lemma 12 in book 1 of the Principia.
The last section, f. 3 verso, is an independent essay on planetary
motion. I reproduce the texts in the same order as they appear in the
manuscripts, taking the complementary sections as Additions. The main
essay and the appendices are drafts and contain several truncated lines.

In the essay we find some calculations in which Leibniz begins to see
paracentric conatus as the difference between a centrifugal and a
centripetal term. The terminology employed by Leibniz, while different
from that of the Tentamen, is more precise than in the preceding essays.
He introduces a vortex rotating with a speed inversely proportional to
the distance from the centre, and calls the curves described by a body
carried by such a vortex lineae vorticales or dinobarycae. The manu-
scripts appear to date from the same period; Addition 2 is the con-
tinuation of the essay and in both folii Leibniz does not make the
mistake by a factor of two in the term representing centrifugal conatus.
The texts are influenced by Newton, who is referred to twice on folii 2
recto and 3 recto. The present manuscripts date from autumn 1688.

De motu gravium vel levium projectorum,
composito ex &netu} | impetu| impresso projicientis, et impeto quaesito a
teonaty) perpetua impressione gravitatis aut levitatis

Si conatus gravitatis vel levitatis sit in lineis rectis parallelis ubi
centrum infinite | hoc est incomparabiliter | abesse intelligitur|, semperque 5
ejusdem sit gradus, qui est casus simplicissimus, linea projectionis erit
parabola communis ut ostendit Galilaeus. Proximus casus est, ut centrum
certum |finitae abhinc distantiae| respiciatur, sitque conatus respiciens
centrum, seu paracentricus etiam ubique aequalis, nondum quod sciam linea
determinata est, haec autem Gtay ut| fiat | primum generalia omnium centro 10
parabolicarum, sic enim appellare placet, exponemus|. Ponamus mobile G positum
in A projici determinata quacunque celeritate |et directione |, simulque ob
gravitatem incipere tendere versus centrum © atque ita ferri directione
composita, et ad punctum aliquod incomparabiliter vicinum progredi, ubi
rursus novam accipiat impressionem a gravitate, atque ita directione 15
decomposita ex [directione | composita priore, et impressione gravitatis nova
feratur, et mox super decomposita, atque ita porro; describaturque linea AG;
l \ si jam impressio nova gravitatis semper sit aequalis, habebitur éprejeetaria)

{eentroparabeltea) paracentrica primi gradus, nempe casus nunc propositi.
Ponamus | mobile in hac linea| a puncto ;G pervenisse ad punctum 20
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incomparabiliter vicinum ,G directione et velocitate ,G,G. Manifestum est si
nulla nova gravitatis solicitatio vel alia
impressio accederet, pervecturum esse ad M, in

A

(fig. 26)

©

tangente ;G,GM, celeritate et directione ,GM

aequali ipsi ;G,G. Verum existenti in ,G

superveniat nova impressio a gravitate, versus @,

cuius celeritas et directio repraesentetur recta GH

sumta in radio ©G et completo parallelogrammo

M,GH,G, utique ex nota compositione motuum, feretur

grave celeritate et directione ,G,G, qua perveniet ad punctum ,G
incomparabiliter vicinum ipsi ,G. Nam effectus velocitatis momentanei, seu
qui ipso temporis cuiusque initio {vel prioris partis fine) fiunt,,, sunt
decursus per lineolas seu spatia incomparabiliter parva, quae etiam elementa
sive incrementa appellare soleo, et aequalibus sumtis temporis initiis sive
incrementis, spatia elementalia repraesentant velocitates et directiones, ut
hoc loco a nobis est factum, igitur temporis elementa, quibus mobile venit ex
G in ,G, etex ,G in 3G, positis ipsis ;G,G et ,GM aequalibus, sunt aequalia;
quodsi fuissent inaequalia, tunc tempora forent ipsis proportionalia; quia

eaedem velocitates sunt qua mobile venit ex ,G in ,G, et qua pergeret secundum

tangentem ex ,G in M, nisi vi gravitatis in curva linea retineretur, Cum ergo
velocitates in ;G,G, et ,GM sint aequales, erunt tempora motus |in elementis

curvae seu| per ;G,G et ,G,G ut spatia ,G,G, ,GM. Rectas autem ,G,G, et ,G,G
incomparabiliter parvas, quae sunt portiones tangentium curvae, vel chordarum

curvam in duobus punctis indesignabiliter distantibus, vel incomparabiliter
vicinis secantium, hoc est latera polygoni infinitanguli curvae inscripti,
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aut circumscripti voco curvae elementa. Jam ex punctis ;G et M agantur in

0,G, 0,G normales, ,GN, MR(;) erunt triangula ,GN,G, et MR, G similia, et in casu
temporum aequalium, aequalia. Rursus in ©,G, ©,G ex punctis ,G, ;G agantur

normales ,G,L, ;G,L. Patet etiam triangula ©,L,G, et ON, G fore similia, itaque

0,G ad |GN (seu RM, seu ,G,L) ut ©,G ad ,G,L, sunt ergo ipsae ,G L, ;G,L, ipsis 50
0,G, 0,G reciproce proportionales, [et rectangula sub ©,Gin ,G,L, et sub ©,G

in ;G,L., horumque dimidia nempe triangula ,G,G©, ,G;GO, erunt aequalia, ergo
temporum incrementis sumtis aequalibus, etiam triangula haec erunt aequalia,
eodemque modo facile ostendi poterit, temporibus seu ipsis | G,G, ,GM

existentibus inaequalibus, triangula dicta iisdem proportionalia fore. Cum 55
vero triangula haec sint elementa sive incrementa vel si mavis, (omnia enim

eodem redeunt) differentiae arearum, A, GO, A,GO, A,GO, erunt areae AGO
temporibus quibus percurruntur arcus AG proportionales] porro, velocitates
circulationum mobilis circa centrum ©, in quovis puncto G, sunt

proportionales ipsis (G)L (nempe ,G L, ;G L) jut notum est,; ergo erunt 60
reciproce proportionales radiis seu distantiis ©G (nempe 0,G, ©,G). Itaque

deprehendi easdem esse lineas centroparabolicas, quas nunc tracto jaequae

describuntur projectione gravium aut levium,; et lineas gravium vorticales,

seu dinobarycas, quae describuntur a gravi|vel levi| in vortice delato

celeritate tanto minore proportionaliter, quanto magis abest a vorticis 65
centro; simulque ad vorticis centrum ob gravitatem tendente; vel ab eo ob

levitatem recedente. Nunc |inventis circulationibus ,G,L, ;G,L, seu (G)L (vel

si mavis ;G ;N seu GN, sunt enim GN = (G)L verbigratia ;,G,N = ;G ,L},| superest ut
inveniamus etiam descensus ,G,L, ,G,L seu GL, quo appareat, quomodo
centroparabolica, etiam dinobaryce, hoc est compositione circulationum et 70
descensuum describatur. Compendii causa ©,G seu radius sit r, et ;G,L

sit dr nempe differentia inter duos inassignabiliter differentes, ©,G et ©,G,

et ,G,L erit differentia  proxime sequens inter duos radios ©,G, et ©3G, quae

proinde erit dr + ddr, decrescentibus r, ut in figura, vel dr — ddr crescentibus.

Nempe ut dr mihi est differentia inter radios, ita mihi ddr est differentia 75
differentiarum inter radios. Itaque ©,G est r — dr. Jam M,G vel R,L vocemus m,

qua detracta a ,G,L. restat ,GR, seu ,GN, quae proinde erit dr + ddr—m.

ON=0,G +,GN(=)r —dr +dr +ddr — m. Habemus ergo ob triangula ©,L,G, ON,G
similia @,G,r:©,G,r —dr::ON,r + ddr — m{:)®,L,r - dr. Unde necesse est esse ddr=m,
seu msive ,GM quae repraesentat impressionem novam gravitatis | esse differentiam 80
inter differentias duas proximas proximorum radiorum, seu inter duos descensus,

1G,L, ,G,L, sive quod eodem redit inter |duos proximos | impetus integros

descendendi, jam acquisitos, quod etiam praevideri poterat ex ipsa natura

impetus descendendi totius acquisiti, quippe qui ex omnibus conatibus novis

in quovis loco curvae impressis colligitur; jaddito forte jaut ademto| primo 85
aliquo impetu versus centrum aut a centro, si qua in ipsius projicientis

prima impressione continebatur, quod si projectionis impressus impetus

computari ponatur a puncto A, ubi radius ad curvam AG angulum facit rectum,

|quale utique in curva assumi potest,| cessat primi alicuius impetus versus

centrum additio aut detractio utcunque autem computes, cum commune additum 90
vel detractum differentias non minuat, manet | conatus a gravitate, esse

impetuum seu gravitationum incrementa seu differentias. Unde etiam
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intelligitur évmy | conatum ) gravitatis ad gravitationem seu évmy collectum
aliquandiutino descensu impetum esse infinite seu incomparabiliter parvum.
Unde soleo conatus appellationem magis tribuere infinite parvis

celeritatibus, quarum vim appellare suevi mortuam, qualis est initio

gravitatis, at &dmy | celeritatem accelerando acquisitam ex infinitis

conatibus compositam, magis appellare amo impetum, et vim huius impetus voco
vivam. Ostendi etiam vires mortuas esse in composita ratione celeritatum et
corporum, sed vires vivas in composita ratione corporum simplice, et
celeritatum duplicata. Quorum confusio plerosque in errorem induxit. Unde et
cum de viribus mortuis servandis agitur, eadem servatur quantitas motus [seu
summa motuum |, (eum-de-viviseademservatury quod in vivis locum non habet,
etsi eadem servetur quantitas progressus, id est modo summa modo differentia
motus. Ne quis autem miretur, quod ;L.,G sumsimus pro circulatione circa
centrum, quasi coincideret arcui circulari ,GK centro @ descripto, dabimus
regulas aliquas quae pro filo erunt in labyrintho incomparabilium sive
infinitorum aut infinite parvorum; nempe in omni triangulo, cuius duo latera
sunt comparabilia, si tertium sit ipsis incomparabile, erit et angulus cui
subtenditur recto incomparabilis, | vel contra, et porro| erit differentia

duorum laterum, inter se comparabilium, ipsis incomparabilis. Hinc fit etiam
ut dentur non tantum infinite parva, sed etiam infinities infinite parva, et
infinitesies infinities parva, et sic porro sine fine. Quae tamen in geometria

et motuum computatione locum habere possunt, ut vel hinc patet. Sic ob angulum
1GO,G infinite parvum utique in triangulo ;G,GO cum radii seu latera inter se
comparari possint, seu homogenea sint, et quidem hic pro aequalibus habenda,
subtensa ;G,G erit respectu radiorum incomparabilis, ac proinde cum radii
sint quantitates ordinariae, subtensa ;G,G quae velocitatem mobilis in sua
orbita repraesentat, erit infinite parva. In ipso autem triangulo ,G,L,G

licet latera sint infinite parva, erunt tamen comparabilia inter se, et

assignari potest triangulum ordinarium, tali (quod characteristicum curvae
olim appeliabam) simile sed si angulus ad L sit rectus, et jungatur recta K,G,
patet ob arcum circularem K, G, fore KL, , L, G, ;LO continue proportionales,
ergo, ut est |L,G incomparabiliter minor ipsa ,LO fore et K, L

incomparabiliter minorem ipsa ,L,G, (efg&drffefeftﬂ&mteffeet&m—elé—et
%Efpﬂmmﬁpe&f&bihﬁme&nﬁer—lreefafe&m%eiﬁfaeﬂe

™1 -2

Habemus €rgo mfmmes 1nf1n1te parvam K L, et tahs mﬁnmes 1nf1mte

parva est etiam ,GH, cum enim velocitas viva seu impetus exprimatur per
quantitatem infinite parvam, ut per latera trianguli ,G,L,G, utique velocitas
mortua seu infinite parva, sive primus conatus descendendi exprimetur per
infinite parvam. Sed ecce aliam infinitesies infinities parvam, nempe
differentiam inter ,GK, et ,G, L, nam si centro ,G radio ,GK describatur radius
secans ipsam G, L ultra ;L productam, distantia inter ,L et punctum
intersectionis, erit haec differentia, quae ipsis ,G, L infinite parvae, ;LK
infinities infinite parvae tertia proportionalis, adeoque uno adhuc gradu
inferior infinita parvitate secundi gradus. Unde patet tanto magis ,G,L pro
aequivalente ipsi ,GK imo et arcui K,G adeoque pro circulatione haberi posse.
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eritdr—k, et,G,L eritdr + ddr — (k) et O, N erit ©,G + ,GN, et ,GNest ,G,L-R,L 140
seum, ergo O,N= r +ddr — (k) — m, Ergo correximus tandem calculos
nostros, et {deseensus-estaggregatim) una cum conatu descendendi a gravitate,

conjungenda est vis centrifuga a circulatione. Nempe vis centrifuga a

circulatione, ut K,L vel QQ est ut ,L,G*:©,L, jam ;L,G sunt ut 1:Q,L, vel

1:0,G, ergo si mobile émevea’cuf—vafﬂeah{er} circuletur in vortice 145
celeritate reciproca radiorum, erunt vires centrifugae in triplicata ratione

reciproca radiorum, vel triplicata directa circulationum. Idem est si pro vi

centrifuga sumas ipsam ;G 4, sumto descripto ex © arcu G et sumta 74 =et

parall. \.L,G.

Hinc patet {ad) ab elementis descensibus elementaribus édds) dr 150
(éeifaheﬂdam} {addendam) detrahendam esse summam conatuum centrifugorum seu

G — ,Q Hinc patet si addantur in unum omnes conatus a
i S T gravitate m, et ab hinc detrahantur omnes conatus
Q  centrifugi k, habitum iri impetum descensus ,G,L,
K"“~~\\ seudr=fm—fk,seuddr=m—k.Jamksuntsemper 155
L ~¥.,G ba?@:r>. Posita 6 constante infinities infinite parva,

fiet ddr=m —ba?8:r’. Hinc si m = 8 fiet
dr-ddr=6dr - ba?6dr:r*. Ergo dr?:2 = fr - ba’6: 3%

{fig.27)
©
Ab hac aequatione | differentiali ad absolutam ita veniri. Aequatio differentialis est
dr?:2 = fr—ba’g: 3r2. Pro # infinities infinite parva scribamus dt*:a et fiet: 160

adr-r/3=dt/ar’ - ba’ [2()a/3[dr r: Jar’ —ba’ =12, quae est relatio inter tempora

seu areas, et radios. Si ponatur m=r*dt?:a* + ba- dt?: 3r2 fiet

atfa:2dr:r?=dtet az\& :2r=t et hoc demum casu erunt tempora radiis (reciproce)
proportionalia. Unde eo casu quo temporum et radiorum relatio haberi potest,

patet aream curvae esse quadrabilem. Sed quando m seu vis gravitationis est 165
simplex, non aeque facile radiorum et temporum relatio habetur.

Una adhuc aequatio est ex figura, nempe ,G,N*+,N,G*=G,L* + L,G* Est autem
:GL=dp+ket N;G=adt:p-dpet,G,N=(dp) + (k) —mseudp +ddp + (k) ~met
L,G=adt:pseu ,\N,G? - L,G?=,G N2 = |G, 1@ seu a’dt?:r —dr’ — a’dt*:r? et fiet:
T, D) + 2r0r (), 2 ar ) = @) () #3885+ 28+ 170
2ddp(k) (C2dpm) - 2ddpm - 2(km+m*(=3p?) (=2dp k) (ZK.
Generaliter pro omni ¢eegquatione) curva sit AB x, BG y, AC, h, CG, rerit

r=yy +h? - 2hx + x? ergo rdr = ydy — hdx + xdx. Seu rursus sit circulatio e, fiet
dx? +dy? =dr? +e2. Sit jam e? = a’dt?: r? fiet dx? + dy® =dr? + a’dt?:1?
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AT=6 AN=n BG=y AC=h AB=x 175

T =
CH ,G,G=C,G-L,G; est nam CH:CT::dx:dy.
rdr =dyyrr — hh + 2hx — x* — hdx + xdx seu
r-dr=Jdri+e2—dx?-r!—h?+ 2hx— x? jam y2 = 2ax # a/qx%.
Al N Fiet r?—h?+ 2hx —x?=2ax » a/q x°.
G 2a-2h 2. 2. 212
B | x+l# 2/ x+0%4=0%4+1r"-h" 180
L G
P o (fig. 28)
c Q

Sit©%:4—h2=3fietx + ©:2= [ + 3%, et 3 =22~ 2ah (3h’ 1), T+ a/q?
dx=r-dr:qmetfiet
r-dr=4dr + e - i+ 32 @ - h2+ 20l + 37 -h0(-r) - 3 + 0 +32.07:4
jam —h?-h@-0©:4=h?+2ha-2h%:T+ a/q-a2+2ah—h2:1# Za/q +a’/q’=
@m+a2/q2 h2+2ha—@h2 # 2hat/q (7 a/q),: T# alq = 185
a’h? + 2haq? —h?q? # 2ha’q,:q* # 2aq +a’.
a’h’—¢°h? +2haqq+ a,:q # a’=a » q h’+ 2haq,:a # q.
Brevius: (-h?)-hQ - 0%:4(- 32=) -0%:4(+h) = ~hO - 07:2.
h+0:2=(h) a/qh+a(=h),..1 #a/g, ¢ = +ah #qa,: 7q+a.
Jam si C sit umbilicus ellipseos et q distantia centri a vertice primario, 190

fieri distantia focorum. Fieth +# q=f, seufietaf:a » q=h+ 0:2.
Jama=12-¢%.q.

rdr=v.dr2 + ¢ —r2dr? rP+32,h+0:2 2\/r2+32

seu r*dr? + 3°r 2—.Jrfﬁzdrzﬂezaf atq 2\F+3 +Za 2h

# a/q

seudr= ej 2P +324+0,:,r +312 ) 2P+ 32+ 0, (interrupted} 195
x+2q - x:y¥(::)q%:b? fiet 2qx = x? = g*/b? y? multiplicatur per a/q fit

2ax—a/q x*=aq/b? y>.

q+fvelq~-f.Ergoh—q=f;f=¢*-b’jambb=aq. Ergo f?=¢’ # aq.

(Addition 1;f.25v.)
In ellipsi accessus ad focum vel ab eo recessus seu
crementum radiorum ejusdem foci est ad
circulationem circa eundem focum, ut sinus
complementi semianguli inter radios duorum focorum
est ad sinum rectum. 5
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Sit ergo angulus sub duobus radiis EG, FG ex focis,

bisectus a recta GP ipsam EF bisecante in P et

agatur PL normalis ad EG in L. Quaeritur ratio GL:LP,

ex datis radiis EG, FG et recta EF. Ob angulum autem

(EGF) bisectum est EG:FG::EP:FP.Ex Gsit in EF 10
L perpendicularis GH. ELP sim. EHG. Ergo EH:EG::EL:EP.

(fig. 29)

G
'
3
t
|
]
!
1
i

H

P E
EG,r, FG,n EFe EH,h FH,f GH,g EL,1 PL.m EP,p FP.x
f2+g’=n’ete’+gl=1%
ETr FGq-r EPp FP:EP::q-r:irseuFP=pg—r:r ELx,PL,y GH,(w

G 5t4+3=12 15
5+4-3=6
(fig, 30) 5-4+3=4
—5+4+3=2
< 24 24 36
N 6 |
+e +r +tq-r =etq
+e +r —qtr=e—q+2r
+e -r tq-r=e+q-2r
e Hr +g-r(=lk-q

20

quibus in se invicem ductis fit Je? - g7, - .2 = 2r-q%, = area 8” trianguli FGE, quae

divisa pere, dat GH=v. 25
20%:q-r=EM=t. Et GM=r’-q—r* —48%:q—r=m. Jam si GN bisecet angulum

EGF, fiet MN:ME::GM:GM + GE seu m:n::m + r:t. Tanfum ergo quaerenda quantitas

m+r:tseu Jrig—r’—48*+26? ,,:292: =Jrq-r’—48*-1+1.
Porro m + r:t ut differentia radiorum ad circulationem quae est a8 :r posito
6 temporis elemento. Ergo fiet:y. .. ... +1=drr:a6 seudr? (interrupted) 30

G (fig. 31)
(Addition 2; f. 2)
Ponamus (corpus) in curva ferri motu composito ex
descensu versus C et ex circulatione circa C, cuius
velocitas sit in ratione reciproca distantiae CG.
Sit temporis incrementum seu areae seu triangulum
C 1G,GC expositum per constans a6. Sitque radius r=CG; 5
,GL=a6:r. Porro vis centrifuga circulantis est ad #%:a, ut a*:r’ seua?62:r3, et
sit m vis gravitatis, fiet: m = ddr + a26:1* nam vi centrifuga detracta a vi
gravitatis, fit demum novus descendendi conatus prioribus superadditus. Sit
jam m = #%r":a%*+! seu in relatione ¢uniterming) unimembra, sive ratione
simplice aut multiplicata directa aut reciproca radiorum. Fiet: 10
62r":a2tl=ddr+a?6%:r’. Seu fiet #2r"dr:att!=dr- ddr +a262dr:1’, Ergo fiet:
62rmtlin+1-axtl=dr?:2 +a20%: 2r?, cuius aequationis dextrum latus prodit. Ergo

§=dr:Jria®tt:n+1-a%:r% Sitjamn= —2seum=0%a:r’. Fiet § =dr-r:/ —ar:2 - 2*

.G
L
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seu t tempus, vel area integra, t = [dr -r:J—ar:2 —a% Hac ergo res redit, ut inveniamus
aream seu summanm talium: J’ﬁ r:‘/r—ﬁ. Sitr+1=v. Fietr=v2—-1etdr=2vdv. 15
Ergo fiet inde in rationalibus [2v+dv+v? - 1:v2=vv~2[dv:v quae pendet ex

quadratura hyperbolae, non ergo curva GG potest esse ellipsis, ubi areae ex radiis

per quadraturam hyperbolae non determinantur. Agat gravitas in ratione

distantiarum reciproca triplicata, fiet n+ 1 = — 2. Et fiet § = dr r/const. Fiet {6

seu t ut r, seu tempora insumta erunt in duplicata ratione radiorum. 20
Investigemus qualis sit figura, in qua areae A, GC, A,GC sint ut quadrata

radiorum C,G, C,G.Sit BG=yet AB=xet AC=h.

Fient [y-dx++y-h=x=y?+h?-2hx+x? seu [y-dx=y?+h? - 2hx +x* - 4y h—xet

fiet- (y-dx) ++ hdy m—% xdy, =2y dy - 2hdx +2x dx.
Ergo [x-dy=hy~2yy +4hx - 2x?. Ergo [y~ dx+ J'x dy hoc est 25

®.- @ P CED D ETDED - sy + Db~ D que

est aequatio ad hyperbolam. Imo fiat error in calculo. Repetimus
fy-dx+4y-h—x=y>+h?-2hx+x% Seu [y-dx=y?+h?~ 2hx+x*—+ yh— § yx
cuius aequatio differentialis est

3 ydx (ydx) = 2ydy — 2hdx + 2xdx — + hdy (= § ydx) (=  xdy)seu 30
4xdx + 4ydy = 3ydx + xdy + 4hdx + hdy seu 4xdx — 3ydx ~ 4hdx =xdy + hdy — 4ydy.
{Stquadratatemporam) Sit Idx + mxdx + nydx = pdy +qxdy + rydy et fiet
4x—3y-4hinp+gx+xy=x+h—4yin

1+ mx +ny + pxy + qx2 + ry? = 0. Fiet mdx + ndy + pxdy + pydx + 2qxdx + 2rydy =
(interrupted) Seu fiet mdx + pydx + 2qxdx = — ndy — pxdy — 2rydy 35
y=a+bx+cy+exy+ix?+gy? + hx’y +1xy? + mx® + ny’ etc.

Si tempora (interrupted)

h+x -4y
m+ 2gx+py
+hpy + pxy - 4py* 40
+2hgx -8qxy  +2¢x°
+hm+mx -4my
~4h+4x-3y
n+px+2ry
~bry? 45
Ad Neut. p.50 QR vocemus met CA, q
QR seu PX:PV:CA:CP porro GV-PV:QV2::PC?: CD2.
QX?:QT2: AC2: PR "1 CD?:CB. Sit L latus rectum primarium = 2BC2: AC. Ergo
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L-QR=2BC:AC, in PV CA :CP per 1 et 5. Rursus PVZ QV2 PC2:CD?GV ex 2.

Etex aeq. 6 fiet L QR =2BC?: (AC), in QV2PC®(CA),:CD*-GV- (CP) at 50
CD?=QX?-CB%:QT?ex 3 et 4; ergo ex aeq. § fiet L QR =2 @ QV?PCQT,:

QX?- (CBY- GV. Seu L QR=2PC QV> QT?,:GV- QX’. QR seu PX vocemus m, et PC, c,
etPV,v,et GV=2¢—v;et QX seu RP=h,et XV=netQV=h+net QT=k. Ergo

fit L-m+2c—v-h?*=h?+2hn+nn-2c-k?, ubi ipsius n infinities infinite parvae
quadratum (ut infinitesies infinite infinite parvum) negligere possumus. Porro ob 55
triangula PVX et PCE similia fit PV seu v: VX seu n,:PX seu m::PC seu ¢: CE seu

e:PE seua,etfietv=cm:aetn=em:a. ErgoL-m-2¢—¢m:a-h>=h>+2hem:a- 2¢ - k%
Ergo 2L m h?~ L m?h?:a=2h%k? + 2ehk’m:a. Si jam rejiciamus Lm?h?:a itemque
2ehk’m:a tanquam caeterarum respectu infinite parvas fit utique 2L mi? = 21?k?

seu m erunt ipsorum k quadratis proportionales, ut conclusit et Neutonus. 60

Vis centrifuga est =k2:r. Jam k=a#8:r posito 8 temporis elemento
et af area seu triangulo. Ergo vis centrifuga est a26%:r3 Jam

integrum hic | | si vis centripeta seu gravitas m sit k2L seu LO2: 12 seu (si
latus rectum || L=2a)af?:2r? fiet descensus integer seu ddr = 67:r> —a26%:13, 65

Etfiet [dr-ddr=6?[dr:r? - 62[dr:r’. Et + dr*=L.
Sit 8 temporis incrementum et a6 area seu triangulum constans. Jam vis
centrifuga k?:r. Et in casu arearum aequalium est k =a#:r (posito radio 1) fiet
vis centrifuga a?6%: 1%, Rursus vis centripeta seu gravitas m, sit k2:L, et
L=2a. Posito L esse latus rectum primarium, fiet: m=a?§%:2ar? seu a6?:2r>. Jam 70
ddr nova vis descendendi integra, est differentia vis centripetae et
centrifugae. Ergo fiet ddr=a#?:2r2—a26":r°. Et fiet:
[dr-ddr= 6%,[dr:2r’~a[dr:r’, et summando 1/2 dr* = 6%, 1: 2r—a:r? :2,
Etfiet =dr-r: far—aa et [6 seu tempus = fdr -1:Jar — aa. Sit Jar —aa =y, fit
r=v2+a’;aetdr=_2vdv+a’:a, et fit: tempus = [2¥dv:¥+ [a’dv:v seu tempus = 2v +
[a2dv:v. Verum hoc obstat, quod r radius non incipit ab infinite parvo. Ergo pro
r scribamus z - h, posita h distantia umbilici a vertice et fiet dz=dr et
ddz = ddr, et aequatio ita stabit dz- ddz=dz - a8?:2z>— 2zh + 2h? - dz a*6%:z—h’. Et
jam [dz()z=h?= - [dr:r’=h:a’~ L:ret[dz()z = h’=h:a?— 1:r” et fiet
1/22-d2* 2= =(3)1/2 9°hr’ - 22671 ( 6°hr?) + 97’ 80
seu/1/2a-dz-z=h,:/1/2h-z-h’—alz—h+a’,= 6.
Si sint temporum quadrata ut cubi radiorum, fiet t =h ~ 2%, Ergo = (interrupted)
Si planetae jovis ferantur circa jovem in circulis sintque temporum quadrata,
ut cubi distantiarum, et tempora sint areis ex centro proportionalia, erunt
sectorum CAB, C(A)(B) quadrata, id est radiorum CA, (C)A quadrato quadrata, 85
A proportionalia cubis suis quod est absurdum. Ergo si
B moventur in circulis et sint aequales non possunt tempora
habere areis proportionalia, quod si habent, necesse est ut
non in circulis, sed ellipsibus ferantur. Verum si planetae
(B) joviales inaequales, sintque (interrupted) 90

(A)

(fig. 33)
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Q (Addition 3; f. 3r.)

/Af\ y’:v=BQ=2ax—a/qxx:a—a/qx,=q-x

B X 2q—2xin‘/2.ax—_a/qxx=qin@
M seu 2q— 2x%in q—x-a—a/q x {seu) yy =aq’
p quod est absurdum
F
C
(fig. 34}
G

Parallelogramma omnia circa eandem ellipsin conscripta esse inter se 5
aequalia; a conicis scriptoribus dudum demonstratum est, sed placet idem
investigare calculo. Sit AGEV semiellipsis, sit centrum C, vertex primarius A,
oppositus V. AB sit x, BG, y, latus rectum a, transversum seu CA, q. Constat
esse 2ax +a/q x> =y etadx +a/q xdx =ydy. Seu dy:dx::a # a/q x,:y::BP:BG seuy.
ErgoBP=a+ a/qxetjam CA=qfit PC=q—(x)—a# a/qx,jam PF:PC::PB:PGet 10
PG2=2ax # a/q xx+a’ # 2a%/q x+a¥/q? x%. Etsitq—a=e. Fiet.et # a/q+a¥/q*=3
et2a+ a’:q=Saetfiet PG*=a’ + Sax+3x’ et PC=¢ # a/q x. Ergo
PF=a+ a/qx-e # a/qx:Ja’+ 5ax + 3x’ et GF = PG + PF. Fit autem quartae partis
parallelogrammi circumscripti integri, seu parallelogrammi GCK area ex ductu
ipsius GF in CK. Hanc ergo CK quaeramus. Et primum quidem CM et MK ob 15
triangula similia GBP et CMK sit CM:MK::GB seu y,()BP seua # a/q x. Sit AM m,
et MK, k, fiet 2am # a/qm*=k? et g— m:k::0::dx:dy et m=q— OK. Ergo fiet
2aq— 20K # a/q ¢2— 2qOK + O2K? =K? hoc est quia & = —fiet # aq+a/q ©O’K?=K?
seu K =Jaq:T-a/q ©% Jam CM =q—m. Ergo=0K. Et fiet CK=0’K? +K?=
KJ1+02 Ergo CK=1aq-1+©2:1-02GB:BP::0:1. Ergo GB? + BP?, seu 20
PG?:BP?::0?+1,:1. Seu PG =BP/O+1 et PC:PF::PG:PB: {07+ 1:1. Ergo
PF=PC:/®7+ 1. BC scribatur v=a # a/q x. Erit @ =y:vet PC=v—-BP.
GF=PG+PF=BP/O7+1+PC:/O7+1 seu PG+PF=BP/OT+ I +PC:{ seu
=BP- 07+ BC,: /07 + 1 =GF. Restat ut inveniamus. Jam BP=a # a/qx=vet
BC=q-xet®?=y:v. EtBP O?=y?:v=2ax+ a/qx’,;a 7 a/qxet BPO?+BC= 25

+aq :vz. 1-0%=a’#2a%/qx+x’—2ax+a/qx%,:v2

Parallelogramma omnia circa eandem ellipsin descripta esse inter se
aequalia ex scriptoribus constat, placet autem veritatem eius theorematis
investigare calculo.

Sit ellipseos AGEVK vertex A, oppositus V, centrum C, latus rectum a, 30
transversum seu AC, q. Diametri coniugatae GG, KK, ex puncto G et ex puncto K
in axem AV ducantur ordinatae GB, KM, erit AG, x, BG, y, AM, m, MK, k. Ex puncto
G sit perpendicularis GF in conjugatum diametrum CK, secans AC in P. Patet
parallelogrammum ACK, fieri ex ductu GF in CK. Investigemus ergo utramque.

Quia GB seu y:BP::dx:dy seu0:1 1quia GP perpendicularis ad tangentem in G, et~ 35
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aequatio ellipseos est 2ax —a/q x? 2 y? erit eius differentialis adx —a/q xdx 2 ydy.
Seudx:dy::y:a—ax:qergo fiet BP=a- ax:q“=)v. Sit AM=m, et MK =k, et CM,

q-m. Fietq—m:K(:S:‘O:l et 2am—am2:q(gKK. Exaeq.5 estmgq—OK quo

substituto in aeq. 6 fit: (2) aq ~21q(@)- C290K)+ OK?=K? Seu

gK?+a@K?=aq? seu K =aq:Jaq+aa®?=CK. Rursus ut inveniamus GF, est

GF=GP+PF jam quia GB:BP::0:1 fiet GP2=GB?+BP2,:BP2::02 + 1,:1. Sit BP, v.

Fiet GP= VJOTF—I-=m. BCsit ¢. Erit PC=¢ —v. Rursus
PC:PF::GP:BP::[0?+1:1 fiet PF=c—v: /07 + I =vc vy’ +v2. Ergo
GF=vJ0?+1+C-v: /07 +1 seu vO? Gy+ c@,:met explicando erit
GF=y2+vc: [y?+v? et CK =aqv: aqv? + aay2. Seu GF= GP+ PF=
W+mvzm=m,:W=GF Seu
CK=aqv:Jaqvaayy. Estautem y?+v2 = 2ax - ax?:q +a’ — 2a’x:q +a’x%:qq
seual+2ax—ax’:q:1-a:q.

k=1:/2;m=1-1:/2;m+k=1

2-2-1+2-1:2=1:2.

(Addition 4; f. 3v.)

Ponamus planetas ita ferri, ut ab orbibus suis ad circulandum impellantur

simulque vi eorum centrifuga deprimantur. Et quidem initio éviseentrifuga
est) vis circulandi est exigua, quia materia orbis est valde tenuis, ita ut

Gntra-certum-tempus-eirenlatiotlla) velocitas circulandi primum impressa,

habeat ad velocitatem circulandi ordinariam, rationem prope infinite parvam,

1ta ut parum admodum progredlatur éV-xs} éeeﬂafuseenfﬁ&fgmmafemeumﬁ
efbe-sxie-depe}}efuf'—paﬂ*aﬂmﬂﬁfem} Conatus autem centnfugus ipsi planetae

impressus cum sit infinitesimus circulationis, multo magis pro nullo
habebitur, et cum eenatus)| vis| descendendi planetae sit vis centrifuga orbis
demta vi centrifuga planetae; (unde si posterior excedit, degenerat in vim
ascendendi) ideo sola initio in rationes venit vis centrifuga orbis, qua

planeta deorsum lmpelhtur éSaﬂ{-efgﬂ-vﬁeeﬁaseﬁeﬁhndmmahs,—et
dm éSed-tameﬂ-eb-mafe*%aeefbtsfaﬁt&tem} Verum etipsaob

materiae obis raritatem parum initio operatur.

Ut res fiat clarior, sit {veloeitas) évis) potentia orbis v imprimenda ad
circulandam materiam seu &seliditas) (densitas) crassities m, évis-impressa)
planetae corpus p, si jam materiae soliditas orbis sit prope infinitesima
planetae, erit vis planetae mv, et potentia eius mv:p.

Et ut res fiat clarior consideretur corpus quo minores habet particulas, etsi

solidiores, eo alteri minus impetus &mprimere-Ttaque vis-eireulandiesta
parttbus-supefieiariis;sed-viseentrifugaesta) imprimere, nam tanta est

vis, quantus est numerus particularum stringentium, ideo vis impellendi eodem
tempore impressa est in ratione celeritatum, ob repetitiones particularum.
Sed his missis consideremus planetam cum impetu aliquo jam dato circulandi
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ferri PK, intereaque detrudi vi forbiseentrifuga)

impressa centripeta, quae sit oriunda a centrifuga orbis.

Ponatur autem sic moveri, ut areae sint temporibus

proportionales, seu ut ipsae PL circulationes éntegrae} 30
[collectae| sint radiis reciproce proportionales. Et si

linea sit ellipsis cuius umbilicus S, erunt ipsae ,P,G

reciproce ut quadrata distantiarum SP. Huius phaenomeni

ut causam inveniamus. Considerandum est novum ¢{deseessum
priottsuper) conatum descendendi priori superadditum, 35

! (fig. 36)

{qutestvis-centripetasimpressio} fieri detrahendo a

conatu gravitatis, conatum centrifugum circulationis.

Porro conatus {eentrifugus) novus componitur ex his

conatibus: impresso ;P;K (aeq. ,P;P) et gravitatis, et

impresso conatu circulandi. 40
Sit ellipsis PPP, via planetae, in cuius umbilico sol

S, et ponamus aequalibus temporibus aequales describi

areas, sunt ergo ipsae L(P) ipsis PS reciproce

s proportionales, et si dicatur (G)((P)) parallela P(P)

secans S(P) in (G) ob naturam ellipsis debent esse ipsae PG in reciproca 45

duplicata ipsarum SP |quae est centripeta impressio nova ex natura gravitatis,.

Compleatur parallelogrammum ,P,L.P,F, et centro S radio S,P describatur

arcus, secans ;P,F in m, erit mF, ut vis centrifuga novaj ex natura

circulationis; quodsi a ,,P,G detrahas m,F oritur impressio descendendi nova

seu excessus ipsius ,P,L super ;P,L. Verum hinc jam patet, si novum addamus 50

conatum circulandi additum a novo orbe, quem ingreditur mobile, ut Pw, cum

ille nihil faciat ad descensum in ,PS, atque adeo maneat P,G, ideo non posse

corcipi, ut maneat ,P,K aequal. ,P,P. Et proinde si novus impetus circulandi
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,Pw in quolibet orbe imprimitur, et servatur praeterea ,P,K impetus jam

impressus in priori orbe, non posse areas describi temporibus proportionales.

Non video igitur, quomodo excusari possit impressio nova a quolibet vortice,
nisi dicamus mox fieri ut delatus planeta in alium orbem circulationi se
orbis accomodet. Cum enim poni possit alicubi in orbe aliquo habere
celeritatem sui orbis, certe descendens in proximum, cuius paulo minor est
celeritas, parum differentem habet celeritatem, ut cum in eo aliquandiu
movetur, mox acquiret, vitandae perturbationis causa; celerius enim motu
resistit materia orbis. Si quod autem discrimen est, a nobis notari non
poterit. Idem est si recedens magis ab S in {eentrariumy) alium veniat orbem.
Ibi enim major est celeritas, adeoque continue acceleratur vis in orbe, donec
aequetur celeritas; verum sciendum est vim gravitatis descendere non a motu,
utrum scilicet celerior sit motus planetae, quam sui orbis, sed a soliditate,
ponamus enim planetae corpus habere spatia materiam vorticis excludentia,
quae sint instar bullarum vitrearum in aqua, tunc etsi motus orbis et
planetae sit idem, nihilominus vis centrifuga aequalis materiae quam planeta
loco suo expellit fortior est, quam vis centrifuga ipsius planetae, etsi enim
eadem sit utriusque celeritas, tamen differunt massa.
{Suntautemrvires-centrifugae) {ecleritates-eentrify) Conatus autem
centrifugi positi circulantium in ratione reciproca radiorum sunt in ratione
reciproca triplicata radiorum. Sed vis {eentrifuga) gravitatis est in ratione
composita conatus centrifugi et évirium) {massae) (gravitatis-sen
soliditatis-massae) densitatis massae, densitates autem massae sunt in
ratione radiorum directa; seu materia solida ab orbe remotior est. Et ratio
composita ex reciproca triplicata et directa simplice, est reciproca
duplicata. Sunt ergo vires gravitatis in ratione radiorum reciproca
duplicata.|Quando materia homogenea est, et orbes cum celeritates sunt ut
distantiae reciproce, tunc eadem est potentia in quolibet orbe.| Sin orbes ita
ferrentur, ut essent quadrata temporum ut cubi distantiarum, videamus quae
sit ratio potentlae posita massa crescente in ranone distantiarum. {G&ms:ﬂf

HiHH-ecleritatisrad—ad-eel-quad-—sesve (v vrvHr)) temporat,

radii r, veloci ///// t* ut 13, jam t directe ut circuli seu ut radii reciproce

et celeritates /////////1///11/1111/7/

Ut potentiae sint reciproce ut r, si massae ut r?, debent vr? esse ut 1:r seu
vZut 1:r%; jam tut r:v. Ergo t? ut 1?2 ergo t? ut 1:r; si t? ut r’, videamus
quod debeat esse m, ut potentiae p seu mv> sint ut 1:1. Sunt autem tut r:v.
Ergot?utr?:v jamt?ut r3ergorut 1:v2ergov?ut I:rergomut 1. Jamm
ur rs. Ergo rs ut 1. Ergo s ut 1:r ergo deberent densitates remotiorum orbium
esse minores, in ratione distantiae, et densiora esse prope centrum.
Generaliter p ut mv?, mut rs, t ut r:v. Quando densitates ut r, erunt m ut rr,
sijam v ut 1:r, erunt p ut r. Si sit globus g, globorumque medius motus, ut
quadrata temporum sint ut cubi distantiarum t ut r’, ut r:v%, ergo rut 1:v?,
ergo v ut 1:Jr. Ergo v2, seu potentiae in reciproca distantiarum quod si
densitates in directa distantiarum, erunt corporum ////////////// {h)inc
magnitudines, si massae ut distantiae, erunt aequales ut orbes /////////
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Commentary to De Motu Gravium

The opening of the present essay is similar to the first lines of Galilaeus.
Leibniz intends to classify the curves described by a body under the
action of central forces, which he calls lineae centroparabolicae (lines
10-11). The first instance is the parabola, which results from an infinitely
distant centre and a constant conatus. The second case results from a
constant conatus, which is called respiciens centrum seu paracentricus,
and a centre at a finite distance, hence the name ‘centroparabolic’ for the
curve. The denominations centroparabolica and projectitia or projectaria
are equivalent, as one can see from lines 18-19. The word centro-
parabolica was used in Si mobile aliquod ita moveatur, which 1 have
briefly described in Section 5.5, whereas the expression conatus centrum
respiciens was defined in the Notes to Newton’s Principia. The study of
centroparabolic curves begins at the end of the second manuscript side.
Before reaching that point Leibniz’s theory of planetary motion has
taken a new shape.

The remarks in line 11 and the following lines resemble those which
we have seen in De Conatu and Inventum a me est, and are free from the
mistake concerning decomposition of motion typical of the Repraes-
entatio Aliqua. Leibniz considers the curve as composed of infinitesimal
chords which he calls ‘elements of the curve’ and which are traversed in
equal times (lines 41-6). Then, following a reasoning which echoes a
passage in Inventum a me est, he shows that taking equal elements of
time, the velocities of circulation are inversely proportional to the radii
(lines 50-1).

In lines 62-6 Leibniz discovers a crucial proposition: the lineae
centroparabolicae are the same as the lineae vorticales or dinobarycae,
which are described by a body carried by a vortex with a speed of
rotation inversely proportional to the distance from its centre. Leibniz’s
proposition states that, with respect to the area law, central forces are
equivalent to a special case of vortical motion. This proposition, which
was implicitly mentioned in Inventum a me est in purely mathematical
terms, is now stated with greater clarity and with reference to the vortex.
Its role in Leibniz’s theory is crucial, because it transforms central forces
into a physically acceptable cause. The lack of any reference to the
harmonic circulation in this context, and the usage of alternative
denominations which have not been employed by Leibniz since 1689,
indicate that De Motu Gravium precedes the Tentamen. The following
considerations provide further arguments for the dating.

Leibniz wants to determine the descent ;L G, which he names dr,
representing the difference between the two radii ©O;G and O,G
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(compare fig. 26 and lines 71-9). Since the angles in ;L and N are right
angles, triangles &, L, G and @, N, G are similar and we can establish the
proportion:

0,G:0,G::O,N:O,L.

For Leibniz ©,G =r is a radius; @,G =r — dr is another radius infinit-
esimally distant; O, N=0,G +,G,N and ,G;N =,GR because Leibniz
takes the tangent , GM to be the prolongation of the chord ,G,G; MR is
perpendicular to ©,G, hence triangles ;G,G,N and ,GMR are equal,
because , G, G =,GM. Further, ,GR=,G,L — R,L and ,G,L = dr + ddr;
R,L = M,G = m is the deviation from the tangent and represents gravity;
therefore O, N =r+ ddr — m. Lastly, since Leibniz sets O,L =r — dr, the
proportion becomes

ri(r—dr)::(r+ddr—m):(r—dr),

hence ddr=m. Leibniz’s immediate reaction is that this result was
predictable (line 83): the conatus of gravity is the difference between two
descents or between two contiguous impetuses of descent.

At this point the reader has certainly realized the difference between
De Conatu and De Motu Gravium. In De Conatu Leibniz calculated the
attractive conatus, which was measured by the deviation from the
tangent. Here Leibniz is trying to calculate the difference in length
between two radii infinitesimally distant, and he compares them by
transferring one on to the other by rotation along a circular arc. He
begins to change one of the components of motion from uniform
rectilinear to uniform circular, and to use a representation along the
rotating radius. Motion from ;G to ,G should be composed of the
descent ;GK and of the uniform circular motion K,G. At this stage
Leibniz is not yet aware of the consequences of this change for the
component of motion along the radius, or for paracentric conatus.

A correct form of the preceding reasoning would be as follows:
K,L=k=1:2 centrifugal conatus; ©,G=r; O,G=r—dr; ON=
0,G+,G,L—R,L=r—dr,+dr,+k—m, where dr,=0,G - 0,G and
dr,=0,G—-0,G; ©O,L=r—dr,— k. Further, ddr=dr,—dr, and the
proportion above becomes:

ri(r—dr)::(r—ddr+k—m):(r—dr,— k).

Neglecting third-order infinitesimals, we have ddr=2k—m, or the
second-order differential of the radius is equal to the difference
between centrifugal conatus and solicitation of gravity. This calculation
is modelled on paragraph 15 in the Tentamen. Notice that motion along
MG is uniform because the tangent is the prolongation of the chord;
motion along K, L, however, ought to be accelerated because K,G is a
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circle-arc (see Section 4.2). This is the reason why the solicitation of
gravity is equal to m, whereas centrifugal conatus is equal to 2k.

In lines 95-8 we find some remarks on the distinction between
conatus and impetus, a problem which plagued several passages in De
Conatu. Leibniz also refers (lines 96 and 99) to dead and living force,
which he claims were confused by the Cartesians. They believed that
quantity of motion is conserved, not living force, but for Leibniz only
quantity of progress is conserved, that is, velocity with direction.

After a few observations on infinitesimals and on the characteristic
triangle (lines 108-25), Leibniz, while trying to determine ©O,N, carries
out some of the calculations we have seen above. He writes (expressions
in square brackets are mine):

\G,L=dr—k [=dr +k],
,G,L =dr+ddr— (k)[=dr,+ k],

where (k) denotes centrifugal conatus at the successive instance of time.
Since k and (k) differ by a third-order infinitesimal, they can be taken
to coincide, as we have seen in Section 8.4. Recalling that

zGN [=zGR] =szL - RzL N
we have a new expression for O, N, namely

O, N=0,G+,GN=0,G+,G,L-R,L=r—dr+dr+ddr— (k)—m
[r—dr,+dr,*k—m=r—ddr+k—m].

Thus the result found by Leibniz is ©O,N=r+ddr— (k) —m. On the
basis of the previously established proportion involving O, N, he claims
to have found a new expression for ddr contradicting what he obtained
above, that the second-order differential of the radius is equal to
gravity, ddr = m. Now Leibniz believes that his former calculations were
wrong, and that centrifugal force arising from the circulation should be
considered together with the conatus of gravity (lines 141-55). Leibniz
is not worried whether gravity and centrifugal conatus have to be added
or subtracted: with the word conjungenda (line 143) he seems to
indicate that gravity and centrifugal conatus act together. In the case
under consideration he sets the second-order differential of the radius
equal to the difference between gravity and centrifugal conatus,
ddr=m—k. An expression for ddr emerges more convincingly in
paragraph 15 of the Tentamen as the difference between two successive
differentials of the radius. In De Motu Gravium, however, Leibniz
obtains first the expression ddr=m + k by chance and, indeed, incon-
sistently: he does not prove, but rather simply infers that ddr results
from the composition of a centrifugal and an attractive term. The
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present essay, however, marks a crucial step in the evolution of
Leibniz’s theory with respect to De Conatu, because here he begins to
consider a two-term paracentric conatus. On the basis of the elements
pointed out so far we can conclude that De Motu Gravium dates after
De Conatu and Inventum a me est, and a fortiori after Leibniz’s notes to
Newton’s Principia. These elements also show the evolution between De
Motu Gravium and the Tentamen. Although the latter essay is more
coherent and better structured, the present text comprises all the
elements of the final theory.

Concerning the calculation of centrifugal force (see fig. 27 and
lines 143-9), Leibniz writes K,L=QQ0=,L,G?*/O L. Figure 27 is
based on the relevant portion of fig. 26; K,G and @ are circular
arcs with radii ©,G and O,G respectively. K;L ought to be equal to
4L,G)?*:(®O,L + K0O). Since the arc K,G is infinitesimal, K;L can be
set equal to (;L,G)%:2K0. Thus Leibniz neglects a factor of 2. This
mistake is purely mathematical and compensates exactly for the other
mistake regarding accelerated motion in the expression of centrifugal
conatus. The former was corrected in 1688 and does not appear in the
Tentamen, the latter was corrected thanks to Varignon in 1706. Thus the
lack of the mistake in the expression of centrifugal conatus, far from
indicating that Leibniz was already aware of it, appears as the casual
result of a less sophisticated theory.

In line 155 Leibniz provides a mathematical formulation of the
relation between impetus and conatus, dr=|m — [k. This equation is
written with no reference to time and entails no accelerations (see
Section 4.3).

From the bottom of the second side onwards Leibniz deals with the
problem formulated at the beginning of the essay, namely the problem
of investigating the properties of centroparabolic curves. He takes
constant gravity, centrifugal conatus k=ba?§:r’, where 6 is pro-
portional to the square of the differential of time dt, a and b are
constant factors whose meaning is not explained. He found above that
centrifugal force is inversely proportional to the third power of the
distance (lines 146-7).

The calculations which we are about to study are fascinating both
because they are based on very advanced techniques of integration of
differential equations, and because they illustrate an important aspect in
Leibniz’s dynamics (compare Sections 3.3 and 5.5). Leibniz’s study of
centroparabolic curves starts from the following equation:

ddr=m— ba?0:r’. (1)
Setting m = 6 and multiplying by the differential of the radius he finds
dr-ddr = 6dr — ba*6dr:r3. (2)



Appendix 1 297
Taking the integral of equation (2) Leibniz writes:
dr?:2=6r— ba*6:3r% 3)

Leibniz makes some standard mistakes, neglecting to change sign in the
second term at second member and to insert the integration constant;
the last constant factor should be 2 and not 3. Setting 6= d¢?:a, we have
(this equation is introduced by the editor for convenience):

dr?:2=4dt*r:a — badt*:3r?. (4)
From this equation Leibniz separates variables in two passages:

a'dr'r\/§=dtMJ§, (5

a\/g-dr-r:\/m=dt\/§, (6)

where a factor 3 has been forgotten in the first term of the radicand.
The last equation expresses the relation between time and distance.
Although Leibniz believes these calculations to be the easiest general-
ization of Galilean parabolas, the case which he is investigating involves
a non-trivial elliptical integral.

On realizing the difficulty in calculating the integral, Leibniz tries
again, giving a different value to gravity. He sets it as composed of two
terms, one of which cancels out the expression of centrifugal conatus
(line 162):

m=r4dt?:a®+ badt?:3r% (7)

the value of the second term is fixed according to the expression of
centrifugal conatus after the integration, in equation (4). Consequently,
the first term of m is not integrated. After this remarkable series of
errors, the result is that the radius is inversely (not directly!)
proportional to time:

a’ja:2 dr:r*=dt (8)
and
a’ja:2:2r=t; 9)

where the factor 2 and a sign are wrong. Leibniz is aware that this is a
mathematical trick for integrating the equation, and adds that when
gravity consists of a simple term it is not equally easy to find a relation
between time and radius (lines 165-6). This remark and the following
calculation on ellipses indicate that Leibniz had in mind Kepler’s laws.
We shall come back to this problem below and again in Addition 2.

Soon afterwards Leibniz adopts an approach similar to the one we
have seen above (line 167). He fixes (see figs. 26 and 28)

\L,G=dp+k,
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,GiIN=(dp)+(k)—m=dp+ddp+(k)—m,
{N,G=adt:p—dp,
L,G=adt:p.
From these equations we have the following relation:
NG?*— L,G*=,G,N*— G,L?,

at the right member signs should be inverted. From here Leibniz tries
unsuccessfully to find a relation between time and distance. In fig. 28
CH ought to be perpendicular to GH; the role of point P is not
explained.

From the equations above we should have:

a’(dt)?:(p—dp)*—a*(dt)?:p*=(dp + k)*— (dp — k)?;

neglecting the infinitesimal of higher order we have 2k =a?(dt)?/p3.
This expression, far from giving us a relation between time and distance
for the orbital curve, tells us that centrifugal conatus is inversely
proportional to p3.

Lastly, Leibniz tries a different approach based on the equations
r’=y2+h?—2hx+x? and dx?+dy?=dr’+e? where r is the radius
CG, BG=y, h—x=BC, e?=qa%dt?:r* (lines 172-). After a series of
substitutions which eliminate the variable y from the former equation
differentiated, rdr= ydy — hdx + xdx, Leibniz continues forgetting the
expression —hdx + xdx (lines 177-8). This example is typical of his
style of carrying out calculations which become hopelessly involved,
also because of his errors.

Throughout the present essay Leibniz deals with arbitrary curves
described by a body under the action of central forces. Towards the end
(line 178), however, he introduces the equation of the ellipse when the
symbol ‘#°, standing for ‘+’ or ‘—’, is a minus sign: a represents the latus
rectum, b and g the minor and major axes respectively. Lines 196-7
and 198 are written in the margin to lines 176-8 and 189-94
respectively.

Commentary to addition 1

This addition consists of a series of sketchy reflections and calculations.
Leibniz seeks the expressions for the descent and circulation of a body
in the specific case of ellipses. The opening sentence is based on the
property of ellipses that the perpendicular GP to the tangent at any
point G on the curve bisects the angle between the radii from G to the
foci E and F; in fig. 29 the ellipse through G is not drawn, but see my
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G G

Fig. (m)

enclosed Fig. (m). FE is the focal distance; GP bisects the angle in G. It
is easy to prove that the triangle GPL is similar to the triangle formed
by the velocity in the orbit (homologous to GP), the velocity of descent
(homologous to PL) and the velocity of circulation (homologous to
GL). In fact, the angle GPL is equal to the angle DG(G) in Fig. (m),
where (G) 1s the following point on the ellipse, and D(G) the perpen-
dicular to the radius GE. Thus triangles G(G)D and PGL are similar:
of course, this is an application of the characteristic triangle. Setting
PGE = ¢, we have the proportion GL :PL ::cos¢:sing; hence in lines
1-5 Leibniz ought to state that the velocity of circulation is to the
velocity of descent as cosg to sing. The proportion EG:FG::EP:FP
(line 10) can be proved by drawing the perpendiculars FR and EQ to
the prolongation of GP, as in Fig. (m), and considering the similar
triangles FPR and EP(Q), as well as GFR and GEQ; EG:FG::EQ:FR
and EQ:FR::EP:FP, and the result is proved.

In the second part of the text (lines 15-), Leibniz has recourse to the
formula for the area of a triangle given the sides a, b and c: the area is
equal to +J(a+b+c)la+b—c)(a—b+c)(—a+b+c). In spite of his
checking this formula by means of a numerical example, he neglects the
constant factor and a sign (line 23). Fig. 30 reproduces a triangle with
the same characteristics as FGE as in fig. 29. If EM is perpendicular to
FG, we have GM?*= GE?— EM?. If we recall that GF=q —r, where ¢ is
the major axis of the cllipse, and GE =r, we have that EM is equal to
twice the area of the triangle EFG over g —r. We know that GN bisects
the angle EGM the proportion GE:GM::NE:NM is proved immedi-
ately by drawing the perpendiculars MT and EQ to the prolongation of
GN, and considering the similar triangles GMT and GEQ, as well as
MNT and ENQ. Then we have (GE:GM)+1=(NE:NM)+1, hence
(GE+GM):GM::(NE + NM):NM, and therefore (GM + GE):EM::
GM:MN, which can be written as (m +r):t::m:n; namely GM =m,
EM=t, MN=n. Since GM:MN is (inversely!) proportional to the
descent dr over the velocity of circulation af:r, Leibniz finds a way of
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expressing those differential expressions in the case of an elliptical orbit
by means of known quantities.

The aim of these calculations is the same as in paragraph 18 of the
Tentamen, where Leibniz finds an expression for velocity of rotation,
orbital velocity and descent in terms of the parameters of the ellipse.
The present text appears to be a preliminary draft leading towards the
Tentamen.

Commentary to addition 2

The main points of this text are discussed in Section 5.5. The calcula-
tions on this folio appear to be the direct continuation of those on folio
25r., namely the last side of the essay De Morfu Gravium; both deal with
the same problem virtually with the same notation. Notice in line 6 that
1G{L ought to be equal to 2a6:r, and the lack of the mistake by the
factor 1/2 in the term representing centrifugal conatus.

Leibniz tries to find a relation between time of revolution of an
orbiting body and its distance from the centre of motion. The starting
point is an equation similar to that which we have seen towards the end
of the essay De Motu Gravium:

m=ddr+a?6%:r3, (1)

where m and r have the usual meaning; 6 is the constant differential of
time which was previously written as dr; a is the constant proportion-
ality factor between times and areas.

The expression for centrifugal force probably stems from the
proportion:

centrifugal force:8%/a::1/r*:1/a3 (2)

the second term seems to represent the centrifugal force of a body
moving along a circumference with radius a4, 6a representing the
constant infinitesimal elements of the area. At the end of the
Horologium Oscillatorium Huygens dealt with centrifugal force using
proportions in a similar way (see Section 2.3). Gravity is set propor-
tional to an arbitrary power of the distance:

m=80%r":a""}, (3)

which has the same dimensions as the expression for centrifugal force.
The rest of the calculation down to line 16 can be easily followed. In
spite of the remarkable series of mistakes involving mainly signs and
constant factors, the procedure adopted by Leibniz for both separation
and substitution of variables is correct.
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In lines 16-17 we find a passage which clarifies the purpose of the
whole calculation. Leibniz says that since the integral he has found
depends on the quadrature of the hyperbola, the curve GG cannot be
an ellipse. As in the essay De Motu Gravium, Leibniz aims at a relation
between times and areas for elliptical trajectories satistying Kepler’s
laws.

Since the integral does not seem to lead to the result he wanted,
Leibniz tries again with gravity inversely proportional to the third
power of the distance, n+1=—2 (line 19). Setting the integration
constant equal to zero, time becomes directly proportional to the square
of the distance. Leibniz tries (lines 21-37) to determine the figure
described by a body under the action of this force. After two un-
successful attempts in which he tries to use the relation between radii
and times rather than the differential equation of the curve, he crosses
out his calculations realizing that they are leading nowhere. For a force
inversely proportional to the third power of the distance, setting the
integration constant equal to zero, the curve is a logarithmic spiral,
where the angle of circulation is proportional to the logarithm of the
distance. We find a similar problem in the case of uniform paracentric
motion with ddr=480 in paragraph 13 of the 7Tentamen; the curve
described there is a hyperbolic spiral, where the angle of circulation is
inversely proportional to the radius.

The following calculations (lines 67-76) are discussed in Section 5.5.
At the end of the text (lines 82-90) we find some remarks on the
alleged incompatibility between Kepler’s second and third law; these
remarks show once again that Leibniz had in mind planetary ellipses. At
this point in the manuscript there is a figure which I do not reproduce
because it is unrelated to the text. The contents of the last lines are
similar to the manuscript Ponamus duos planetas joviales, LH 35, 9, 2,
f. 72.

Commentary to addition 3

This text consists of two attempts to prove lemma 12 in book I of the
Principia. Lemma 12 states that all parallelograms circumscribed about
any given ellipse have equal areas. In the second edition of the Principia
Newton makes clear that the parallelograms are described around
conjugate diameters of a given ellipse. Newton adds that this result is
known from the Conics.! A further attempt by Leibniz to solve the same
problemisin LH 35, 10, 7, f. 15r. (f. 15v. is empty).

! See Descartes, Geometria, ed. F.van Schooten (Amsterdam, 1659-1661); Newton’s copy
with marginal annotations is in the Wren Library, Trinity College, Cambridge, classmark
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The text and fig. 34 are affected by several inaccuracies. From line 1,
for example, we infer that BQ is on the prolongation of the major axis
AV; more seriously, both BC (line 22) and BP (line 24) are set equal to
v. Leibniz’s interest in lemma 12 was aroused by the crucial proposition
11, where the lemma is used in the demonstration (see NMW, 6, pp. 44~
9). As we have seen, proposition 11 is annotated in the Marginalia and
transcribed in Addition 2; line 48, point (4) relates to lemma 12.

Commentary to addition 4

Leibniz investigates the mode of action of vortices on planets, the
mechanism of gravity, the properties of vortices and their relation to
Kepler’s laws. The last paragraph, which extends into the margin, has
been included in the continuous text.

In the opening lines (1-16) Leibniz draws a series of distinctions in
the order of infinity of several variables. At the beginning of its motion
a planet has a small vis circulandi, or force of circulation; further its
velocitas circulandi, or circulation, is infinitesimal with respect to
ordinary circulation because the matter of the orb pushing it is very
subtle. Moreover, the planet’s centrifugal conatus is infinitesimal with
respect to the circulation, and at the beginning of motion the centrifugal
force of the vortex does not act much, because its matter is very subtle.
The force of descent of the planet is defined by Leibniz as the differ-
ence between the centrifugal forces of the vortex and of the planet; if
the latter is bigger than the former, the planet has levity instead of
gravity. This mechanism entails a problem, because it requires the
density of the planet to be comparable with that of the fluid matter. We
have seen in Section 1.2 that an analogous objection was raised by
Kepler in the Epitome, and that Leibniz was aware of it, although he
does not refer to this problem here.

In lines 21-5 we find a reference to Leibniz’s theory of motion in a
resisting medium. Although the sentence is partially crossed out and
unfinished, it is possible to infer what Leibniz wanted to say. First, if the
particles of a fluid body (referred to as corpus) become smaller, so also
does the impetus impressed on a solid body floating in it. In that
portion of the sentence which has been crossed out (lines 22-3),
Leibniz claims that the force of circulation arises from the surfaces of

NQ.16.203, ésp. p. 220. M. Galuzzi, ‘ marginalia di Newton alla seconda edizione latina della
Geometria di Descartes ed i problemi ad essa collegati’, Quaderno n.15/1988, Dipartimento di
Matematica, Universita di Milano, p. 14. See also G. A. Borelli’s edition of Apellonius,
Conicarum libri V. VI. VII (Florence, 1661), VII 31.
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the fluid’s particles. A description of this kind of action, or equivalently
of friction, can be found in the Schediasma de Resistentia Medii, dating
from the same time and based on Descartes’s ideas (see Section 2.2).
On the basis of the Schediasma, we can infer that in the present text
Leibniz intended to show that the force of circulation arises from
absolute resistance, because it depends on the surfaces of the particles
of the fluid, whereas gravity or levity arise from respective resistance.
According to Leibniz, since absolute resistance is the cause of circula-
tion, if the particles of the fluid are smaller, they impress less impetus or
velocity on the floating body; even if they have more solidity, this does
not influence the impetus of the body in the fluid, because only
respective resistance depends on solidity. This Cartesian account is not
entirely consistent with the claim that gravity is the difference between
the centrifugal forces of the body and of the vortex, because if gravity
and levity depend on the centrifugal force of the body, they must also
depend on absolute resistance. This may be the reason why Leibniz
crossed out these lines and abandoned this project. With regard to the
dependence of resistance on velocity compare Section 2.2. The passage
we have just examined is the only example I know of the application of
the theory of motion in a resisting medium to planetary motion in
Leibniz.

In lines 34-40 Leibniz states that the new conatus of descent is the
difference between gravity and centrifugal conatus, as he discovered in
the essay De Motu Gravium, and illustrates the components of the new
conatus of a planet: ;P;K which is equal to the preceding conatus ,P,P,
the conatus of gravity ,P,G, and the conatus impressed by the circula-
tion (see fig. 35). This statement highlights Leibniz’s belief that the law
of inertia holds in his representation of motion too.

In the second paragraph (lines 41-) Leibniz tries to determine the
conatus impressed by the circulation. At the beginning he constructs the
parallelogram ,P,L P,F (see fig. 36); m is the intersection between
,F3P and the arc drawn from ,P with radius S,P, and ,F represents
centrifugal force. ;P,G is parallel to | P,P, therefore ,G,P represents
gravity, and is set inversely proportional to the square of the distance
‘because of the nature of the ellipse’ (lines 45-6). Further, ,P,G —m,F
is the new impression of descent ddr, which is also equal to
2P,L — P, L. Leibniz improves his method developed in the essay De
Motu Gravium; however, he still makes two compensating mistakes in
the term representing centrifugal force. The main point in this para-
graph is that if we consider the vortex as acting on the body, and let this
action be represented by ,Pw, perpendicular to ,PS, the areas cannot be
proportional to the times. Leibniz’s solution is that the difference in
velocity between the planet and the fluid must be either zero or so small
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as to be undetectable. This solution is forced by the acceptance of
Kepler’s second law and is repeated in a similar fashion in paragraph 8
of the Tentamen. According to Leibniz, the equality in velocity between
the planet and the fluid orb entails no problem as to the cause of
gravity, because this originates from the different densities of the
matters of the fluid orb and of the body. Leibniz refers to the example
of water and glass as the constituents of the vortex and the planet
respectively; we have seen in Section 7.4 that in De Causa Gravitatis he
chooses mercury and glass.

In line 72 and following lines Leibniz states that centrifugal conatus
is inversely proportional to the third power of the distance. Since
gravity depends on centrifugal force and density of matter, which is
proportional to distance, it follows that gravity is inversely proportional
to the square of the distance. Lines 88-99 are devoted to a standard
topic in Leibniz’s manuscripts on planetary motion, namely the attempt
to reconcile Kepler’s second and third laws with the idea that gravity is
inversely proportional to the square of the distance, and the hypothesis
of equal forces for each vortex shell; the only variable is the density of
the fluid matter. However, all these constraints cannot be satisfied
simultaneously.
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CHRONOLOGICAL OUTLINE

The following chronological outline is based on Leibniz’s life and
publications. I have also inserted some references to the relevant data on
Newton.

1664-6 Newton’s ‘anni mirabiles’; invention of the fluxional calculus.

1660s Following the appearance of the 1664 comet Newton takes up
astronomy. Preliminary investigations on curvilinear motion
in the Waste Book, Vellum Manuscript, and other manu-
scripts.

1669 Leibniz excerpts Huygens’s paper on the impact laws in the
Philosophical Transactions.
Newton composes De Analysi, which remains unpublished.

1670 Leibniz reads Thomas Hobbes, De Corpore, whence he takes
the notion of ‘conatus’.

1671 The Hypothesis Physica Nova appears in Mainz.

1672 Leibniz moves from Mainz to Paris, where he establishes
contacts with Huygens, Edme Mariotte, Ismael Boulliau, and
Claude Perrault.

1673 Huygens publishes the Horologium Oscillatorium. Leibniz
reads Saggi di Naturali Esperienze, which refers to a Galilean
‘peso morto’. Leibniz mentions for the first time a ‘force
morte’ and ‘animée’ in a letter to Mariotte. First trip to

London.

1675 Invention of the differential calculus. Work on motion in a
resisting medium.

1676 Leibniz writes a letter to Claude Perrault on the cause of
gravity.
(June and October) Newton’s first and second letters to
Leibniz.

(October) Leibniz leaves Paris and visits London for the
second time.

1676 (December) Leibniz arrives in Hanover.
1677 Leibniz sends a letter on natural philosophy to Honoré Fabri.
1679 Hooke restarts his correspondence with Newton.

1680-1 Appearance of the big comet; Newton corresponds with
Flamsteed.
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1680s

1684

1686

1687

1688

1689

1690
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Leibniz excerpts part 3 of Descartes’s Principia Philosophiae
and astronomical texts: Observationes Astronomicae Novis-
simae.

Halley visits Newton in Cambridge; Newton drafts De Motu
Corporum.

Leibniz publishes Demonstrationes Novae de Resistentia
Solidorum and Nova Methodus pro Maximis et Minimis in the
Acta.

Leibniz publishes Brevis Demonstratio Erroris Memorabilis
Cartesii and De Geometria Recondita et Analysi Infinitorum in
the Acta.

Newton publishes the Principia Mathematica.

(November) Leibniz leaves Hanover for the Italian journey.

(May) Leibniz arrives in Vienna.

(June) Christoph Pfautz reviews Newton’s Principia in the
Acta.

(Autumn) Leibniz reads the Principia Mathematica and writes
the Notes and Marginalia. He composes in short succession
De Conatu, Inventum a me est, Investigatio Semidiametri
Circuli Osculantis, De Motu Gravis in Linea Projectitia,
Galilaeus, Repraesentatio Aliqua, Si mobile aliquod ita
moveatur, De Motu Gravium, Calculus Motus Elliptici and
Tentamen de Systemate Universi.

(January) Leibniz’s De Lineis Opticis and Schediasma de
Resistentia Medii appear in the Acta.

(February) Leibniz leaves Vienna. At the same time the
Tentamen de Motuum Coelestium Causis appears in the Acta.
(April) Leibniz arrives in Rome.

Leibniz writes the Excerpts from the Principia Mathematica,
and composes the Tentamen de Physicis Motuum Coelestium
Rationibus. He starts working on the ‘zweite Bearbeitung’ of
the Tentamen and Dynamica.

(November) Leibniz leaves Rome.

{December) Leibniz is in Florence. After talks with Vincenzo
Viviani he writes a memorandum on the censorship of the
Copernican system and an accompanying letter to the Jesuit
Antonio Baldigiani in Rome.

(March) Leibniz writes from Venice his last letter to Antoine
Arnauld summarizing his work on planetary motion.

(May) Leibniz’s De Causa Gravitatis appears in the Acta.
(June) Leibniz returns to Hanover.

(October) Leibniz composes De Causis Motuum Coelestium
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Appendix 2 307

and a letter for Huygens on planetary motion in which he
claims that he first saw the Principia in Rome. The letter is
not sent.

Newton composes De Quadratura Curvarum.

Leibniz composes the Essay de Dynamique for the Paris
Academy.

Leibniz’s Specimen Dynamicum appears in the Acta.

David Gregory publishes Astronomiae Physicae et Geo-
metricae Elementa, where he criticizes the Tenramen.
Correspondence between Leibniz and Pierre Varignon on
central forces. Leibniz writes the Illustratio Tentaminis; an
abridged version appears in the Acta.

Leibniz composes the Antibarbarus Physicus.

Leibniz publishes the Essais de Théodicée.

Second edition of the Principia Mathematica with a preface
by Roger Cotes.

Newton composes two memoranda on the Tentamen.

John Keill attacks the Tentamen in the Journal Litéraire.
Newton publishes anonymously in the Transactions his
Account of the ‘Commercium Epistolicum’.

Correspondence between Leibniz and Samuel Clarke.

Death of Leibniz.
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LIST OF MANUSCRIPT SOURCES

The following is a list of Leibniz’s manuscripts to be found at the NLB.
With the exception of the last three items, the classmark is ‘LH 35,
Mathematica’.

8, 30,

X
IS

f. 25 Pro curva sumatur linea polygona
f. 69 Keplerus plurimus aliorum inventis principium et
occasionem dedit

. 1-36 llustratio Tentaminis (clear copy)
. 37-52 Hlustratio Tentaminis (draft)
. 53 Sit ellipsis planetaria Kepleriana

54-5, 60~7, 74-8 ‘zweite Bearbeitung’ of the Tentamen
56-9 Tentamen (draft with later additions)
68-9 Massa materiae per se continua et uniformis

. 72 Ponamus duos planetas joviales
. 80 excerpts from Kepler, Astronomia Nova
. 29 excerpts from G. D. Cassini, Journal des Scavans

22 April 1686

. 30 Si motus sit aequabilis
. 1-2 Tentamen de Systemate Universi

3-4 Incrementa angulorum circulationis harmonicae

. 5-6 Calculus Motus Elliptici
. 7-8 Si mobile ex centro semel emittatur aut repellatur
. 9-10 Si mobile feratur motu composito

f. 1 Tentamen de Physicis Motuum Coelestium Rationibus
published in Leibniz, Vorausedition, Faszikel &

f. 1 and 3 De Causis Motuum Coelestium

f. 2 Non explicuit Neutonus

f. 4 Observationes Astronomicae Novissimae (excerpts)

f. 9 excerpts from Kepler, Harmonice Mundi

f. 10-11 Si mobile feratur motu composito

f. 12-13 Calculus de Elementis Radiorum Ellipseos

f. 14r. Tentamen (draft of paragraph 18)

f. 14v. De Lineis Opticis (draft)

f. 15 Si mobile lineam describat motu composito

f. 16-17 Compositio Motus (with separate observations)

f. 1 Ad Relationem Actorum (draft of De Lineis Opticis)

f. 1v.—2 Tentamen de Legibus Naturae Mundi
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. 1-3 and 25 De Motu Gravium

. 4v.=5 Inveniendus est Calculus Differentialium Ellipseos

. 8 Sit MM linea in qua gravia projecta

12 Repraesentatio Aliqua

13-14 excerpts from Pfautz’s review of the Principia
Mathematica

. 15 Clarissimus Neutonus (on Principia, book I, lemma 12)

. 16-17 De Motu Gravis in Linea Projectitia

18v.~19r. Galilaeus

20 De Areis Ellipticis

23-4 Constructio calculo inserviens

. 29-30 De Conatu

. 31 Investigatio Semidiametri Circuli Osculantis

. 32-5 notes to Newton’s Principia Mathematica

36-7 Inventum a me est

38-9 Si mobile aliquod ita moveatur

. 40 Nova Methodus Tractandi Lineas Corporum Gravium

41r. Si trium punctorum quaeratur centrum gravitatis

. 41v. Inquisitio in Semidiametrum Circuli Osculantis

18-19 Si sint duo conatus corporis

. 37-8 first set of Excerpts

. 31-6 second set of Excerpts

1 De Lineis Opticis (draft)

. 25-7 excerpts from Descartes, Principia Philosophiae

. 28-9 excerpts from Kepler, Epitome Astronomiae
Copernicanae

LH 1, 3, 8, d, f. 1-2 Tentamen de Physicis Motuum Coelestium

Rationibus, published in Leibniz, Vorausedition,
Faszikel &

LH 38, f. 120-1 Machina Coelestis (draft)

f. 122-7 Machina Coelestis, published by Gerland (1906,

pp. 134-41)

10, 7,

o h s b

—
S

,
N
N

e n

[
P\l\)

Texts with marginalia in Leibniz’s hand (classmark at the NLB: ‘Leibn.
Marg.’)
63 N.Mercator, Institutiones Astronomicae (London, 1676)
70 C.Huygens, Horologium Oscillatorium (Paris, 1673)
97 J. Kepler, Epitome Astronomiae Copernicanae (Frankfurt/M,
1635?%)
124 D. Gregory, Astronomiae Physicae et Geometricae Elementa
(Oxford, 1702)

Texts with marginalia in Huygens’s hand at the NLB, classmark Nm. A
104 G. A. Borelli, Theoricae Mediceorum Planetarum (Florence, 1666)



AE
AHES
AIHS
AS
BJHS
Excerpts

GLI
GOF

HOC

JBB
JBO

JHA
JHI
KGW
LBG
LMG
LPG
LSB
Marginalia
MASP
NC
NMW

NLB
NRRS

RHS
SHPS

ULC

ABBREVIATIONS

Acta Eruditorum

Archive for History of Exact Sciences

Archives Internationales d’Histoire des Sciences

Annals of Science

British Journal for the History of Science

Bertoloni Meli, D., (1988). Leibniz’s Excerpts from the
Principia Mathematica. AS, 45,477-504.

Giornale de’ Letterati d’ltalia

G. Galilei (1890-1909) Opere (ed. A. Favaro) Florence. 20
volumes.

C. Huygens (1888-1950). Oeuvres Complétes. La Haye. 22
volumes.

Johann Bernoulli (1955-). Briefwechsel. Basel.

Johann Bernoulli (1742). Opera Omnia. Lausanne, Geneva.
4 volumes.

Journal for the History of Astronomy

Journal of the History of Ideas

J. Kepler (1937-). Gesammelte Werke (ed. by W. von Dyck,
M. Caspar, F. Hammer ez al}). Munich.

Gerhardt, C. 1. (ed.) (1899). Der Briefwechsel von G. W.
Leibniz mit Mathematikern. Berlin.

Gerhardt, C. 1. (ed.) (1849-63). Leibnizens mathematische
Schriften. Berlin, Halle. 7 volumes.

Gerhardt, C. 1. (ed.) (1875-90). Die philosophischen
Schriften von G. W. Leibniz. Berlin. 7 volumes.

G. W. Leibniz (1923-). Sadmtliche Schriften und Briefe.
Darmstadt, Leipzig, Berlin.

G. W. Leibniz (1973). Marginalia in Newtoni Principia
Mathematica (ed. E. A. Fellmann). Paris.

Mémoires de I'’Académie Royale des Sciences de Paris

H. W. Turnbull, J. F. Scott, A. R. Hall, and L. Tilling (eds.)
(1959-77). The Correspondence of Isaac Newton.
Cambridge. 7 volumes.

D. T. Whiteside (ed.) (1967-81). The Mathematical Papers
of Isaac Newton. Cambridge. 8 volumes.

Niedersiachsische Landesbibliothek, Hanover

Notes and Records of the Royal Society of London
Philosophical Transactions

Revue d’Histoire des Sciences

Studies in History and Philosophy of Science

Studia Leibnitiana

University Library, Cambridge.
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