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Abstract

The thesis aims to introduce a field of bio-inspired programming. It focuses mainly on
the neural networks and genetic algorithms. The areas are presented in a form of Java applets
that solve given tasks whereon capabilities of aforementioned approaches are easy to see.
Neural networks are used for a language recognition of a text based on occurrence frequen-
cies of letters. And a task of Robby, the soda-can-collecting robot makes use of genetic al-
gorithms. Demonstrated applets are appropriately supplemented with a theoretical back-
ground, which is necessary for understanding applications’ architecture. At last, results of
a few experiments conducted with applets’ various settings are presented.
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Chapter 1

Introduction

In the second half of the last century computer science came up with a new approach. All
methods professing this approach, form a group called bio-inspired computing. As the term
signifies, this group comprises the areas having one common trait – inspiration by nature.
A lot of nowadays well-known methods fall within bio-inspired computing. Let’s name
a few of them:

Neural networks denote parts of one’s neural system in neuroscience. Single network is
defined by a population of neurons. Neurons are the base elements that provide the propa-
gation of excitement through the network. Simply speaking, when fingertips touch a table,
the information about what happend, starts to propagate through the body to the effectors.
And a transport of the excitement is carried out by means of neurons shaped into neural
network.

Artificial neural network is a computational model inspired by its biological pattern. It con-
sists of an interconnected group of artificial neurons. The information is distributed through
the neurons, nevertheless the main trait is the ability to learn. It is referred to as adaptation.

Genetic algorithms represent a set of computional procedures utilizing basics of evolution-
ary biology. It is a search technique for solving optimization problems. The main idea of
this approach is to make use of evolutionary tools such as inheritance, selection, crossover and
mutation.

Members shaping a search space of a problem are encoded as strings of characters.
At first, a random population of a given number of individuals is generated. A following
generation of the population is evolved by using the evolutionary tools. Subsequently a next
generation based on the just evolved one is created in the same way. And the process con-
tinues, where every other generation aims to get closer to a solution of the problem.

Let’s briefly mention a few more examples: Cellular automata are used for artificial life
modelling; Emergent systems denote complex systems arisen out of relatively simple interac-
tions; field of swarm intelligence describes and trades on the collective behaviour of indepen-
dent agents.

The aim of the thesis is to elucidate two above-mentioned bio-inspired areas. The work
itself is divided into two parts. Chapter 2 deals with Neural networks and chapter 3 treats of
Genetic algorithms. Both sections are independent of one another, therefore it is possible to
start reading any of them. Each chapter comprises two parts. While the first one is devoted
to theory, the second presents a practical task. Solution of the task is represented as a Java ap-
plet. Certain theoretical aspects are thereon discussed as well.

2



Chapter 2

Neural networks

At first starts this chapter with a biological pattern of neural networks, consequently contin-
ues with a brief historical summary of developing first artificial models. Then it follows with
a divison of networks activity into three parts: architecture, active phase, adaptation. Finally
models of Perceptron and Multi-layer network are described.

Second part presents an implementation of the neural networks on a simple task, lan-
guage recognition of the given text. Solution is discussed from the user’s and programmer’s
point of view.

2.1 Theory

2.1.1 Biological inspiration

Elementary results of a research of biological neural networks came up in the second half of
the nineteenth century. They were published by a philosopher Herbert Spencer (1820 – 1903),
a neuropathologist Theodor Meynert (1833 – 1892) and a well-known neurologist and a psy-
chologist Sigmund Freud (1856 – 1939). They were trying to clarify basic behaviour of
a human brain. However, the fundamental idea in a neuroscience called neuron doctrine
was formally formed by an anatomist Heinrich Wilhelm Gottfried von Waldeyer-Hartz
(1836 – 1921). Neuron doctrine stands for the theory that a nervous system is made up of
discrete individual cells. The term of neuron as the name of an individual cell was coined by
Waldeyer as well.

Although the idea of the interconnected neurons forming networks was known in
the early twentieth century, the fundamental break-through came with a research of
anatomist Santiago Ramón y Cajal (1852 – 1934). He made use of a silver staining method1 to
stain the cells in a nervous tissue. Consequently the neurons became better observable and
hence was the way for studying neuron opened.

Outer structure of a neuron can vary in some parameters as a shape or size, nonetheless
the inner structure is more or less the same for all (see figure 2.1). A neuron consists of
a body called soma and its input and output extensions. Input channels, named dendrites,
are directly connected with a soma. Their number varies depending on a neurons function,
nevertheless it can be up to one hundred thousand per neuron. On the contrary, there is just
one output called axon. However, the end of the axon has got a great number of furcating
terminals. This means, that a single axon terminal can be considered as a single output, but
each of the terminals carries the same information at the moment. That is the opposite to
the dendrites, that are able to take over different information to each other.

1. Silver staining method, called Golgi’s method, was developed by a physician Camillo Golgi (1843 – 1926).
Potassium dichromate and silver nitrate are used to impregnate nervous tissue, in consequence the cell fills by
microcrystallization of silver chromate.
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2. NEURAL NETWORKS

Figure 2.1: Neuron structure, source: http://en.wikipedia.org/wiki/Neuron

Let’s continue with an inter-neuronal communication, that we started a little bit. The idea
of the neural network is that neurons have the ability to transmit the information. Each neu-
ron has a given threshold within. When the threshold is reached or exceeded, the neuron
sends the information forward. This process happens in the place named synapse (see fig-
ure 2.2), where an axon terminal and a dendrite are very close with one another (about 20
nanometers). As we said, when the threshold is reached, a neuron decides to hand its infor-
mation over. Membrane covering a soma and an axon generates an electrical impulse that
starts a chemical process in the synapse. In consequence, a neurotransmitter2 is released from
an axon terminal into the another neurons dendrite and hereby the information is transmit-
ted.

However, it does not clarify the main function of neural networks – memory. Neurons
form the memory paths that represent some memorized information. The ability of mem-
orizing is provided by varying permeability of the membrane covering the neuron. When
the membrane permeability of the neuron in the certain path increases, the memory path
becomes stronger, whereas by decreasing permeability, the memory path weakens or ceases.
In this way one learns or forgets.

This is surely not a comprehensive explication, but hopefully it presents the basic ideas of
neuron structure and inter-neuronal communication. For more information, we recommend
the book called Biological Neural Networks: Hierarchical Concept Of Brain Functions written by
Konstantin V. Baev[1].

Let’s end with Lyall Watson’s3 quotation:
“If the brain were so simple we could understand it, we would be so simple we couldn’t.”

2. Neurostransmitters are chemicals such as acetylcholine or amino acids glycine and adrenaline
3. Lyall Watson (1939-2008) was a South African botanist and zoologist
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2. NEURAL NETWORKS

Figure 2.2: Inter-neuronal communication, source: http://en.wikipedia.org/wiki/Chemical synapse

2.1.2 History

Note: Since now we call the artificial neural networks just neural networks.
The same holds for terms of artificial neuron and neuron as well. It would not
be misleading, because next sections deal mainly with the artificial phrases. If
the biological terms are mentioned, it is appropriately emphasized.

A paper written by Warren McCulloch and Walter Pitts[2] in 1943 can be treated as a birth
of the artificial neural networks. They brought in the simple mathematical representation
of the biological neuron and constructed a primitive neural network based thereon using
electrical circuits.

Although the basic model of a neuron was framed, still a proper characterization of
a learning process was missing (i.e. description of a biological process of varying membrane
permeabilty – see section 2.1.1). In 1949 wrote Donald Hebb a book called The organization
of behavior [3], where he pointed out that neural paths are strengthened each time they are
used. If two neurons in the path fire together, their connection is amplified. Otherwise it is
weakened.
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2. NEURAL NETWORKS

In the next years a few neurocomputers were constructed and put into operation, but in
general went unnoticed. Thus continued the theoretical research. In 1957 Frank Rosenblatt
developed a new neuron model – perceptron[4]. It was an extension of the original model
by McCulloch&Pitts to the real numbers. Rosenblatt formulated a new learning rule and
mathematically proved its convergence to net configuration solving given task (provided it
exists).

Two years later came up Professor Bernard Widrow and his graduate student Ted Hoff
with an improved learning rule applied to a new neuron model named ADALINE4[5]. A net-
work of ADALINEs, called MADALINE5, is used up to the present day. An example of its
application is a system for eliminating echos on phone lines.

Early sixtieth experienced neural networks accruing interest of researchers as well as
general public. Unfortunately the interest was one of the causes of gradual decline started
a few years later. Initial enthusiasm was a cause of excessive expectations and as time went
on, the research progress was slower than expected. The final nail in the coffin was a book
Perceptrons[6] written by Marvin Minsky and Seymour Papert. They argued that a single per-
ceptron cannot compute XOR logical function and put a question, if the concept of neural
networks is worthwhile, when it cannot manage with this simple task. It was already known
that this problem solves a two-layered network with three neurons, unfortunately the learn-
ing rule for multiple-layered perceptron network was not known. Despite of the fact, that
some of ideas in the book were not proved, the criticsm were taken over by research com-
munity. Next decades are known as a AI winter6.

Fortunately the eighties came up with a neural network renesance. Thereto largely con-
tributed physicist John Hopfield who interconnected the physics and neural networks in his
model commonly known as Hopfield networks[7]. Success of his approach benefited mainly
from bidirectional connected neurons.

In 1986 published David Rumelhart, Geoffrey Hinton and Ronald Williams[8] a learning
algorithm for multi-layer network – backpropagation. Thereby they solved the criticism of
Minsky and Papert from 1969. Interesting is, that backpropagation was in silent described
by Arthur Bryson and Yu-Chi Ho already in 1969[9].

Since then the neural network research was fully reestablished and produced some
promising project such as NETtalk7. Now the research on the field of neural networks contin-
ues and the progress lies mainly in the developement of specialized hardware. Near future
shows whether it is worthwhile.

2.1.3 Fundamentals of an artificial neuron

Previous two sections elucidated the biological insipration and historical ground of the neu-
ral networks. Therefore we can move forward to artificial neuron scheme and its principles.
Consequently, we assign and clarify a few terms, that are helpful to beware of any mislead-
ing. Following theory is based on the book of czech scientists Jiřı́ Šı́ma and Roman Neruda
called Theoretical issues of neural networks[10].

4. ADALINE – ADAptive LINear Element
5. MADALINE – Multiple ADALINE
6. AI – artificial intelligence
7. NETtalk is the project of Terrence Sejnowski and Charles Rosenberg presented in the mid-eighties. It is prob-
ably the best-known example of applying backpropagation. Intention of their research was to convert english
written text into spoken word
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2. NEURAL NETWORKS

The scheme of artificial neuron results from the biological pattern. Let’s describe all its
parts from the inputs to the output according to figure 2.3.

ξ σ

w1x1

w2x2

wnxn

ξ

w0

x0

yinputs

weights

bias

inner potential

activation function

output

Figure 2.3: Artificial neuron model

• inputs – Neuron consists of n inputs representing dendrites of the biological model.
We can formally denoted them as a vector (x1, x2, . . . , xn).

• weights – Each input is weeded with its synaptic weight. The weight simulates the per-
meability of the membrane. The bigger the weight is, the more permeable membrane
would be in the corresponding biological neuron. Therefore we can write the weights
as a vector of n numbers (w1, w2, . . . , wn).

• bias – According to biology, the neuron provides an output when the threshold is
reached. Negative value of the threshold t is represented as a weight of a special input
in the artificial model called bias. It means w0 = −t. For its formal input x0 holds that
at any time x0 = 1. Hence the value of bias w0 is fully used when computing an inner
potential.

• inner potential – The weighted sum of all inputs (including the bias) is called inner
potential. Formally:

ξ =
n∑
i=0

wixi (2.1)

• activation function – Inner potential is evaluated by an activation function. There are
more various functions used in the field of neural networks. When using the most
basic one, unit step function8, the value of the function is (see figure 2.4 for its graph
representation):

σ(ξ) =
{

1, ξ ≥ 0
0, ξ < 0

(2.2)

8. Also called Heaviside step function.
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2. NEURAL NETWORKS

0

1

ξ

y

Figure 2.4: Activation function – Unit step function

• output – The value of the activation function is denoted by y. It is the output of the neu-
ron:

y = σ(ξ) (2.3)

Let’s make a short excursion and demonstrate the function of a bias representing a threshold.
According to formula 2.2 it could seem that the neurons threshold equals 0. Nevertheless,
the threshold is figured by a bias (as defined above). As consistent with the formula 2.1 and
assuming that at any time x0 = 1 holds

ξ = w0 +
n∑
i=1

wixi . (2.4)

Substituting an inner potential ξ on the right side of the formula 2.2, we can reform it into

σ(ξ) =
{

1, w0 +
∑n

i=1wixi ≥ 0
0, w0 +

∑n
i=1wixi < 0

(2.5)

and consequently in accordance to the definition of bias w0 = −t where t is a threshold to

σ(ξ) =
{

1,
∑n

i=1wixi ≥ t
0,

∑n
i=1wixi < t

. (2.6)

Therefore the neuron outputs 1 when the weighted sum of its inputs x1, x2, . . . , xn
reaches or exceeds threshold t and 0 otherwise.

The function of the previous equations could be hard to imagine, hence the mechanisms
of a neuron can be more obvious in a graphical interpretation illustrated on the figure 2.5.
Let’s suppose that for the inner potential in the formula 2.4 holds ξ = 0. Hereby we get
an equation

w0 +
n∑
i=1

wixi = 0 . (2.7)
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2. NEURAL NETWORKS

En

S1 S2

S
′
1

S
′
2

w0 +
∑n

i=1wixi = 0

w
′
0 +

∑n
i=1w

′
ixi = 0

A = (x1, x2, . . . , xn)

B = (x
′′
1 , x

′′
2 , . . . , x

′′
n)

C = (x
′
1, x

′
2, . . . , x

′
n)

Figure 2.5: Geometric interpretation of the neuron function

This equation determines an object that splits the Euclidean spaceE of a dimension n into
two subspaces S1 and S2. The object varies depending on the dimension ofE. It is a line forE
of dimension 2 and a plane for dimension 3. Let’s call it generally separator. Space E contains
three points – A(x1, x2, . . . , xn), B(x′1, x

′
2, . . . , x

′
n) and C(x′′1, x

′′
2, . . . , x

′′
n). These points repre-

sent three diverse inputs of a neuron. For the points (A,B as well) involved into the subspace
S1 holds

w0 +
n∑
i=1

wixi > 0 (2.8)

and on the contrary, points (e.g. C) from the subspace S2 satisfy

w0 +
n∑
i=1

wixi < 0 . (2.9)

Notice that ξ = w0 +
∑n

i=1wixi. Hence neuron inputs from the subspace S1 outputs 1
as consistent with formula 2.2, conversely inputs within the subspace S2 outputs 0. To cover
the whole space E of input vectors, we have to add that points determining the separator
output 1 (see formula 2.2).

With the help of figure 2.4 we would like to illustrate the most important function of
the neuron – ability of adaptation. What if the space E is not divided according to our expec-
tations? We can change the coefficients w0, w1, . . . , wn of E. Hereby we get a new coefficients
w′0, w

′
1, . . . , w

′
n and a separator w′0 +

∑n
i=1w

′
ixi = 0. As illustrated on the figure 2.5, altering

the coefficients causes reordering of the subspaces. PointB, originally placed in the subspace
S1 and outputed 1, newly lies in the subspace S′2 and outputs 09.

9. The whole example illustrated on the figure 2.5 supposes that points of subspace S1 outputs 1 and points of
subspace S2 outputs 0. Of course, the outputs could be mutually commuted. The assignment of the ouputs was
just our choice.
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2. NEURAL NETWORKS

2.1.4 Neural network

Neural network denotes a set of interconnected neurons, that influence each other by their
computation. Analogous with the biological neural networks (see section 2.1.1), the output
of one neuron is the input of other neurons.

For better understanding let’s figuratively divide the neural network into three parts:

• architecture – represents a structure of the network, how its neurons are connected. It
can be simply imagined as a view on the network from outside.

• active phase – is an opposite to the architecture. It describes the inwards of the net-
work – what happens from the moment, when the input enters the network till the
computations reach its output.

• adaptation – is a networks reaction on the ongoing computations. It denotes alterations
of the neurons weights.

Let’s shortly summarize the whole function of the neural network. At first we struc-
ture the neurons to shape some architecture. We have certain idea, what the network should
do, which task should it fulfil. Consequently, we prepare a set of learning data that fits in
the idea. Now we are ready to start the learning process – adaptation. When the adaptation is
finished, we can start to use the network by inputting the data and letting them compute –
to start the active phase.

2.1.5 Perceptron neural networks

As we went through the history of neural networks in section 2.1.2, we mentioned a neuron
model called perceptron. Perceptron is a widely used model up to these days. Therefore we
decided to use it in the application presented in section 2.2. Let’s define necessary theoretical
background at first:

Architecture Perceptrons are used in a multilayer structures. Layers are called input, hidden
and output layer in turn. Input and output layer is exactly one in contrast with hidden layers.
Perceptron neural network can contain unlimited number of hidden layers, nevertheless
usually are not used more than two10. Each layer is connected with just the next one in such
way, that inputs of each neuron in the given layer are outputs of all neurons included in
the previous layer (see the figure 2.6). Let’s just add, that neurons in the input layer have just
one input. This architecture is called feedforward.

10. Reasons for this low number of hidden layers is time-consuming computations and the fact, that the effect
of different hidden layers number has not yet been completely described.

10



2. NEURAL NETWORKS

Figure 2.6: Feedforward neural network

We summarize the notation of the neural network:

• Set X includes the neurons in the input layer. Vector x = (x1, . . . , xn) ∈ Rn de-
notes the input of whole network. Values x1, . . . , xn respectively represent the input
of the neurons in the input layer.

• Set Y contains the neurons in the output layer. Vector y = (y1, . . . , ym) ∈ Rm repre-
sents the output of the whole network. Values y1, . . . , ym are respectively the ouputs
of the neurons in the output layer.

• Synaptic weight wji (i = 1, . . . , n; j = 1, . . . ,m) belongs to the input of neuron j,
that represents the output of the neuron i at the same time. Bias of the neuron j is
represented as wj0 (see figure 2.7). Hence we coupled the weight to the input, we
have to complete the definition by adding, that input neuron’s weight is always set to
1, but there is no need to deal with them further.

• At last, we define the term configuration, that denotes a vector w of actual values of all
weights in the entire network.

i j
wji

wj0

Figure 2.7: Synaptic weight wji connecting two neurons

Active phase
Neural network itself computes the function f(w) : Rn → (0, 1)m, where w states for
configuration.

Whole computation starts from input layer X . Each neuron j within X has got just one
input xj and bias wj0 = 0. And by reason of wj1 = 1 is the inner potential ξj = x1. For
determination of the output yj is used the activation function

σ(ξ) = x (2.10)

11



2. NEURAL NETWORKS

and because of y = σ(ξ), the output of neuron j ∈ X is yj = xj . Hence the input neurons
can one imagine as a transfer stations, that spread the input further into the network (see
the figure 2.6 for getting better idea how the input layer works).

After the computation of the input layer neurons continues the active phase with the con-
tiguous hidden layer. The process is conformable to input layer, only used activation func-
tion differs. For each neuron in the given hidden layer is computed inner potential

ξ =
l∑

i=0

wixi (2.11)

where l stands for number of neurons in the previous layer.
Neuron in the hidden layer has got as many inputs as the number of neurons in the pre-

vious layer (see figure 2.6). Subsequently the activation function is used (see figure 2.8 for its
graph representation):

σ(ξ) =
1

1 + e−ξ
(2.12)

ξ

y

0

1

Figure 2.8: Activation function – Standard logistic sigmoid

Seeing that it holds y = σ(ξ), the formula 2.12 gives the output of neuron in the hidden
layer. The following hidden layers, in turn, are computed in this manner.

Computation of the last (output) layer proceeds the same way as any hidden layer. Num-
ber ofm neurons included with this layer produce the output of the network y = (y1, . . . , ym).

Adaptation
The most sophisticated part of neural network is the adaptation, that deals with the process
of learning. It is realized by altering the weights, or in other words, by changing the config-
uration of the network.

Adaptation cannot start without knowing the optimal state, where no further configura-
tion altering is necessary. Essential fact is, that the final state (state after last proceeded active
phase during adaptation) mostly doesn’t match the optimal state.

The optimal state is given by a set of patterns

T =
{

(xk,dk) |
xk = (xk1, . . . , xkn) ∈ Rn

dk = (dk1, . . . , dkm) ∈ [0, 1]m
k = 1, . . . , p} (2.13)

where xk represents vector of inputs and dk vector of desired outputs. Mathematically
speaking the aim of the adaptation is to attain during active phase the equation

y(w, xk) = dk k = 1, . . . , p . (2.14)

12



2. NEURAL NETWORKS

To simplify the monitoring of formula 2.14, we define network error

E(w) =
p∑

k=1

Ek(w) (2.15)

as a sum of errors of single patterns Ek. We define pattern error as follows

Ek(w) =
1
2

∑
j∈Y

(yj(w,xk)− dkj)2 . (2.16)

Simply speaking y(w,xk) − dk is a difference of real output y and desired output d of kth
pattern. The optimal state is represented by E(w) = 0, when the vector of real outputs y
equals to the vector of desired outputs dk.

The network configuartion is altered every time when the set of patterns T is learnt. Con-
sequently the network error E(w) (2.15) is computed and if it is small enough11, the adapta-
tion ends. Otherwise we repeat the process as many time as necessary.

Since the computation of the first pattern’s active phase in the set T cannot be accom-
plished without the values of weights, their initial values are preset. Before the first active
phase starts, random number on the interval [−1, 1] assigns to each weight. Therefore, the ini-
tial configuration w(0) consists of random values [−1, 1]. Accordingly, we will denote w(1)

the configuration after the first performance of the active phase, w(2) after the second, w(3)

after the third, etc. We define the configuration w(t) where t > 0 as

w
(t)
ji = w

(t−1)
ji + ∆w(t)

ji . (2.17)

As we can see, the endeavour to reach the optimal state is incremental. Because of our try
to minimize the network error E(w), we can use any of well-known optimization methods
(e.g. Newton’s method 12). For our purposes we chose gradient method where the increment
is defined as follows

∆w(t)
ji = −ε ∂E

∂wji
(w(t−1)) (2.18)

and 0 < ε < 1 stands for learning rate. As well as other optimization methods leads us
this gradient method to the local minimum of the function E by altering the weights – see
the figure 2.9 for an example. Properties of E and dependence on ε will be discussed later in
the section 2.2.

w

E

w(0) w(1) w(2) w(3)w(4) w(5) w(6)

Figure 2.9: Behaviour of the error value regarding to the altering of the configuration

11. ”Small enough” is not exact mathematical term, but it fits here the best, because it is just up to us which
value it will represent.
12. http://en.wikipedia.org/wiki/Newton_method_in_optimization

13

http://en.wikipedia.org/wiki/Newton_method_in_optimization
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Unfortunately the computation of the gradient 2.18 is not trivial and the first solution
of the problem was published as late as 1986 (see section 2.1.2). The algorithm is called
backpropagation and as the name implies the alterations of the neurons’ weights proceed from
the output layer through the hidden layers to the input layer.

At first we use the addition rule for derivatives

∂E

∂wji
=

p∑
k=1

∂Ek
∂wji

(2.19)

which says that [g(x) + f(x)]′ = g′(x) + f ′(x). Subsequently we use the chain rule

∂Ek
∂wji

=
∂Ek
∂yj

∂yj
∂ξj

∂ξj
∂wji

(2.20)

defined as a [f(g(x))]′ = f ′(g(x))g′(x). The idea of this step will be probably more obvious
when writing the chain rule for derivatives in Leibniz’s notation, dydx = dy

du
du
dx

13. At this time
we fragmentated the derivative of the function E into three parts that we can simplify by
appropriate modifications and solve. Let’s begin with the most right one

∂ξj
∂wji

=
∂(
∑n

k=0wjkyk)
∂wji

= yi (2.21)

where derivatives of all elements of the sum defining inner potential ξj except one where
k = i, are equal to 014.

For the second part of 2.20 we simply substitute formula 2.12 and differentiate

∂yj
∂ξj

=
∂( 1

1+e−ξj
)

∂ξj
=

e−ξ

(1 + e−ξ)2
=

1
1 + e−ξj

(1− 1
1 + e−ξj

) = yj(1− yj) . (2.22)

After that we substitute formulae 2.21 and 2.22 into 2.20

∂Ek
∂wji

=
∂Ek
∂yj

yj(1− yj)yi . (2.23)

To compute the remaining part of 2.20 we use the method that gave name to the whole
algorithm – backpropagation. We start with the derivative of neurons in the output layer Y
that are easy to differentiate by using the standard rules for derivatives. Consequently we
continue in turn with derivatives of neurons in hidden layers from output layer towards
the input layer where the values from previous layer are used. Hence the derivative of an er-
ror is ”back-propagated”.

For every neuron j ∈ Y we differentiate it by using formula 2.16

∂Ek
∂yj

=
∂(1

2

∑
j∈Y (yj − dkj)2)
∂yj

= yj − dkj . (2.24)

We used analogous method as in differentiating 2.2115.

13. Supposing that variable y depends on a variable u which in turn depends on a variable x.
14. ∂(

Pn
k=0 wjkyk)

∂wji
=

∂(wj0y0+wj1y1+...+wjiyi+...+wjnyn)

∂wji
= 0 + 0 + . . . + yi + . . . + 0 = yi

15. In more detail:
∂( 1

2
P

j∈Y (yj−dkj)2)

∂yj
=

∂( 1
2 [(y0−dk0)2+(y1−dk1)2+...+(yj−dkj)2+...])

∂yj
= 1

2
· 2(yj − dkj) = yj − dkj

14
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At last remains the derivative for neuron j /∈ X ∪ Y – with the help of the chain rule:

∂Ek
∂yj

=
∑
r∈J

∂Ek
∂yr

∂yr
∂ξr

∂ξr
∂yj

=
∑
r∈J

∂Ek
∂yr

(1− yr)wrj j /∈ X ∪ Y . (2.25)

The formula 2.25 substitutes the partial derivative ∂Ek
∂yj

by the computation of partial deriva-
tions of neurons r ∈ J . Set J represents the neurons, such that one of their inputs is an output
of the neuron j. It means that the set J includes the neurons from the following layer of neu-
ron j when supposing the direction from input to output layer (see the figure 2.10).

ONMLHIJKr1

ONMLHIJKj //

??����������

��?
??

??
??

??
?

ONMLHIJKr2

ONMLHIJKr3

J

Figure 2.10: Example of the set J
Partial derivations ∂ξr

∂yj
and ∂yr

∂ξr
are computed similarly to the formulae 2.21 and 2.22 (re-

spectively). Finally, when computing the partial derivation ∂Ek
∂yr

, we start with neurons in the
output layer, where we use the formula 2.24 and consequently proceed through the hidden
layers by using 2.25 in the direction of input layer. In conclusion, let’s summarize the process
of adaptation – as an algorithm in the box below and graphically on the figure 2.11.

1. Prepare a set of patterns T. Each pattern is a pair (x,d).

2. Randomly generate initial configuration w(0), where a weight wij ∈ [−1, 1].

3. Set an error counter Eji = 0 for every weight wji. Eji represents an error
after one learning cycle of a set T.

4. For every pattern (x,d)

(a) compute its output y according to formulae 2.10 – 2.12.

(b) calculate ∂E
∂wji

for every weight wji with the help of formulae 2.23 – 2.25.

(c) add the current ∂E
∂wji

to the each weight’s error counter Eji.

5. Set new weights for every wji according to formula 2.17 and 2.18. Substitute
∂E
∂wji

by Eji, because the error counter for given weight holds the sum of

values ∂E
∂wji

for every pattern.

6. Calculate net error E with help of formulae 2.15 and 2.16.

7. If the net error is not small enough, continue with step 3. Otherwise end.
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Prepare the adaptation process by steps 1 – 3 from the box on the previous page.
For every pattern go through the step 4. At first calculate the output according to substep 4a:

WVUTPQRSh1

))SSSSSSSSSSSSS

##FF
FF

FF
FF

FF
FF

FF
FF

F

// ONMLHIJKx1 //

55kkkkkkkkkkkkk

))SSSSSSSSSSSSS

##FFFFFFFFFFFFFFFFF
WVUTPQRSh2

//

))SSSSSSSSSSSSS
ONMLHIJKy1 //

// ONMLHIJKx2 //

55kkkkkkkkkkkkk

))SSSSSSSSSSSSS

;;xxxxxxxxxxxxxxxxx WVUTPQRSh3

55kkkkkkkkkkkkk // ONMLHIJKy2 //

WVUTPQRSh4

55kkkkkkkkkkkkk

;;xxxxxxxxxxxxxxxxx

x y

(2.10)
(2.11), (2.12)

(2.11), (2.12)

Subseqently continue with substep 4b – calculate ∂E
∂wji

for every weight starting from inputs
of output layer and proceed in the direction of input layer:

WVUTPQRSh1

))SSSSSSSSSSSSS
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FF
FF
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F

// ONMLHIJKx1 //

55kkkkkkkkkkkkk

))SSSSSSSSSSSSS

##FFFFFFFFFFFFFFFFF
WVUTPQRSh2

//

))SSSSSSSSSSSSS
ONMLHIJKy1 //

// ONMLHIJKx2 //

55kkkkkkkkkkkkk

))SSSSSSSSSSSSS

;;xxxxxxxxxxxxxxxxx WVUTPQRSh3

55kkkkkkkkkkkkk // ONMLHIJKy2 //

WVUTPQRSh4

55kkkkkkkkkkkkk

;;xxxxxxxxxxxxxxxxx

x y

(2.23), (2.25) (2.24), (2.25)

In conformance with step 4c add the current value of ∂E
∂wji

of each weight wji to correspond-
ing error counter Eji.
When a learning cycle consisting of all training patterns is finished, continue with the step 5.
Add corresponding values of Eji to all weights wji. It holds that ∂E

∂wji
= Eji.

WVUTPQRSh1
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FF

FF
FF

FF
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F

// ONMLHIJKx1 //

55kkkkkkkkkkkkk

))SSSSSSSSSSSSS

##FFFFFFFFFFFFFFFFF
WVUTPQRSh2

//

))SSSSSSSSSSSSS
ONMLHIJKy1 //

// ONMLHIJKx2 //

55kkkkkkkkkkkkk

))SSSSSSSSSSSSS

;;xxxxxxxxxxxxxxxxx WVUTPQRSh3

55kkkkkkkkkkkkk // ONMLHIJKy2 //

WVUTPQRSh4

55kkkkkkkkkkkkk

;;xxxxxxxxxxxxxxxxx

x y

(2.17), (2.18)

Compute a current value of the net error E. If it is not small enough, continue with a next
learning cycle. Otherwise end (step 6 and 7 – formulae 2.15 and 2.16).

Figure 2.11: Adaptation process – step by step
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2.2 Application – language recognition applet

Second part of chapter 2 deals with an application of neural networks. It presents a real-world
task – an applet recognizing a language of a given text – to demonstrate their usage. At first
we define the assignment and slightly outline the concept of the solution. Subsequently we
present the applet, go through its parts and describe their structures. Next to the last section
discusses the results of experimenting with the applet’s setup. We try to show the potential
of neural network regarding to its parameters in this section. Final part sums up how to use
the applet in a brief User’s guide.

2.2.1 Assignment

We tried to choose the assignment to be illustrative enough and easy to understand. There-
fore we chose the topic of language recognition of given text based on relative occurrence
frequencies of letters.

We have a vector of 26 values representing the relative letter frequencies occured in
a given text. Letters of the english alphabet (A, B, . . . , Z) are used. The vector can be entered
manually or as a text file. If the second option is chosen, the applet computes the input vector
itself. The process of language recognition will be provided by neural network. As a set of
patterns will be used the relative letter frequencies of ten languages – Dutch, English, French,
German, Italian, Polish, Portuguese, Spanish, Swedish, Turkish (see the table 2.1 on the page
18). User should be able to control the teaching process by setting up some parameters of
neural network. Animation, illustrating the teaching and recognition process of network,
will be part of the applet. It would help a user to follow up the work of the applet.

Once upon a time
there was a white
house . . .

. . .

. . .

. . .

. . .

+3

A //

B //

C //

Z //

// EnglishNeural network

Figure 2.12: Concept of the applet
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Letter Dutch English French German Italian Polish Portuguese Spanish Swedish Turkish
A 7.490 8.167 7.636 6.510 11.740 8.000 14.630 12.530 9.300 11.680
B 1.580 1.492 0.901 1.890 0.920 1.300 1.040 1.420 1.300 2.950
C 1.240 2.782 3.260 3.060 4.50 3.800 3.880 4.680 1.300 0.970
D 5.930 4.253 3.669 5.080 3.730 3.000 4.990 5.860 4.500 4.870
E 18.910 12.702 14.715 17.400 11.790 6.900 12.570 13.680 9.900 9.010
F 0.810 2.228 1.066 1.660 0.950 0.100 1.020 0.690 2.000 0.440
G 3.400 2.015 0.866 3.010 1.640 1.000 1.300 1.010 3.300 1.340
H 2.380 6.094 0.737 4.760 1.540 1.000 1.280 0.700 2.100 1.140
I 6.500 6.966 7.529 7.550 11.280 7.000 6.180 6.250 5.100 8.270
J 1.460 0.153 0.545 0.270 0.000 1.900 0.400 0.440 0.700 0.010
K 2.250 0.772 0.049 1.210 0.000 2.700 0.020 0.010 3.200 4.710
L 3.570 4.025 5.456 3.440 6.510 3.100 2.780 4.970 5.200 5.750
M 2.210 2.406 2.968 2.530 2.510 2.400 4.740 3.150 3.500 3.740
N 10.030 6.749 7.095 9.780 6.880 4.700 5.050 6.710 8.800 7.230
O 6.060 7.507 5.378 2.510 9.830 7.100 10.730 8.680 4.100 2.450
P 1.570 1.929 3.021 0.790 3.050 2.400 2.520 2.510 1.700 0.790
Q 0.009 0.095 1.362 0.020 0.510 0.000 1.200 0.880 0.007 0.000
R 6.410 5.987 6.553 7.000 6.370 3.500 6.530 6.710 8.300 6.950
S 3.730 6.327 7.948 7.270 4.980 3.800 7.810 7.980 6.300 2.950
T 6.790 9.056 7.244 6.150 5.620 2.400 4.740 4.630 8.700 3.090
U 1.990 2.758 6.311 4.350 3.010 1.800 4.630 3.930 1.800 3.430
V 2.850 0.978 1.628 0.670 2.100 0.000 1.670 0.900 2.400 0.980
W 1.520 2.360 0.114 1.890 0.000 3.600 0.010 0.020 0.030 0.000
X 0.040 0.150 0.387 0.030 0.000 0.000 0.210 0.220 0.100 0.000
Y 0.035 1.974 0.308 0.040 0.000 3.200 0.010 0.900 0.600 3.370
Z 1.390 0.074 0.136 1.130 0.490 5.100 0.470 0.520 0.020 1.500

Table 2.1: Relative frequencies of letters’ occurrence – percentage unit used
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2.2.2 Solution concept

Before programming itself, we had to think out some fundamental problems and prepare
the concept of the applet. At first, we decided to use Java as a programming language for its
passable visualization features. Therefore the resulting application will be the Java applet.

Figure 2.12 from the page 17 shows the concept of the applet. It outlines two separate
tasks. An easier one – to parse the given text file – and a more difficult one – to prepare
the concept of the neural network that is figured by a black box without knowing its inwards.

Text file parser
As mentioned in the assignment, the relative frequencies of letters in the text can be entered
manually or automatically calculated from a given file. The first choice is trivial, the second
relatively as well. There just has to be decided in which way single letters will be processed.

We decided to work with ten languages mentioned in the table 2.1 by reason of avail-
ability of the data. We simply used the relative frequencies of letters’ occurrence in the
text presented on the Wikipedia16. One can argue that our data source is not fully reliable,
but we think that today’s Wikipedia provides relatively accurate data without emphasis on
the values far beyond a decimal point at most. And that is sufficient for the applet because its
main task is not to build up a new multi-purpose translator, but only to illustrate the usage
of neural networks.

Unfortunately all languages contained in the table 2.1 do not use just 26 letters of the en-
glish alphabet (A, B, . . . , Z). Nevertheless we have to work just with them, because we need
the set of letters included in all languages that we work with. Hence we devide the text
characters into three groups:

• Letters of english alphabet – The letters a, b, . . . , z, A, B, . . . , Z belong here. It holds that a
is the same letter as A, b as B, etc. We count the number of each of them. Let’s imagine
it as an array of the size 26. Each of its fields holds the number of single letter.

• Another countable characters – National characters and other characters such as :, !, ?, etc.
We define this set as characters that do not belong to the first neither the third set. We
count the total number of them, but do not distinguish between single kinds.

• Uncountable characters – Control characters (also called non-printing characters) are
the last set. In addition white space and break belongs to this set. We do not count
them.

After parsing the text file character by character, we calculate the relative frequency of oc-
curence for each letter

letter rel freq =
|letter of english alphabet|

|Letters of english alphabet|+ |Another countable characters|
· 100

(2.26)
where letter of english alphabet stands for a single field of Letters of english alphabet array.
This way we get a percentage value for each letter of the english alphabet. Deeper discussion
of programming the text parser is presented in the Resulting applet section (2.2.3).

16. http://en.wikipedia.org/wiki/Letter_frequency
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Neural network concept
The most important task before programming is to decide how the neural network will be
shaped. We decided to use Perceptron multilayer neural network without cycles – feedforward
model. It is completely based on the section 2.1.4 and 2.1.5. If you are not familiar with it,
please start with these sections, because if necessary, we just refer to the theory described in
the whole section 2.1 from now. We expect better readableness of not interlacing the practical
task description by equations. Therefore we decided to separate theory from the rest.

At first, we choose the number of layers. We let us inspire with the NETtalk project in-
tended to convert an english written text into a spoken word. They used three layers model
– one input layer, one hidden layer and one output layer and developed wellworking sys-
tem. Hence we chose the same three layers architecture.

Consequently we have to assess the number of neurons in each layer. If we have a look at
the above-mentioned NETtalk, we find out that they used 203 input neurons, 80 neurons in
the hidden layer and 26 output neurons. These numbers are not random. 203 input units cor-
respond to 7 sets of 29 neurons. Each of these sets represents one letter, because the NETtalk
was capable to work with words of lenght 7 at most. Number of 29 symbolizes 26 letters of
the english alphabet (A, B, . . . , Z) and a dot, a comma and a space. There was just one neuron
of the set active at the moment (exactly the one representing required character). 26 output
units symbolize the english phonemes. And finally the number of neurons in the hidden
layer was assessed heuristically.
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7 x 29 = 203 input neurons

80 hidden neurons 26 output neurons = PHONEMES

Figure 2.13: NETtalk
But let’s go back to our task. We have to assess the numbers of neurons in the layers:

• Input layer – By reason of using the english alphabet that contains 26 letters, we de-
cided to use 26 input neurons. Thus each neuron represents one letter. More precisely,
input neuron holds the relative frequency of corresponding letter in percentage.

• Hidden layer – It is relatively difficult task to assess the most suitable number of neu-
rons in this layer. We drew inspiration from the NETtalk and general practice. It al-
ways depends on the current task, but it is recommended to use a few more units than
in the input layer. How uncertain this recommendation can be, shows NETtalk that
doesn’t adhere it at all and works relatively well.

Therefore we left this layer’s neuron number as a parameter by which user can influ-
ence the capability of the nework. Default value is set to 40.
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• Output layer – Compared to the previous layer, the output layer contains exactly 10
neurons. This value conforms to the number of languages, that we want to recognize.
The neuron (and a corresponding language) holding the highest value is declared
the winner.

A // ?>=<89:; ?>=<89:;
B // ?>=<89:;
C // ?>=<89:;
D // ?>=<89:;
E // ?>=<89:;
F // ?>=<89:;
G // ?>=<89:;
H // ?>=<89:;
I // ?>=<89:; ?>=<89:; // Dutch

J // ?>=<89:; ?>=<89:; // English

K // ?>=<89:; ?>=<89:; // French

L // ?>=<89:; ?>=<89:; // German

M // ?>=<89:; ?>=<89:; // Italian

N // ?>=<89:; ?>=<89:; // Polish

O // ?>=<89:; ?>=<89:; // Portuguese

P // ?>=<89:; ?>=<89:; // Spanish

Q // ?>=<89:; ?>=<89:; // Swedish

R // ?>=<89:; ?>=<89:; // Turkish

S // ?>=<89:;
T // ?>=<89:;
U // ?>=<89:;
V // ?>=<89:;
W // ?>=<89:;
X // ?>=<89:;
Y // ?>=<89:;
Z // ?>=<89:; ?>=<89:;

40 neurons
(default)

Figure 2.14: Language recognition – concept of the neural network
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2.2.3 Resulting applet

After preparing the concept, we should continue with giving an account of the programming
phase. Nevertheless, we suppose that it is more beneficial to switch to the top-down strategy
and start with the presentation of the entire resulting Java applet. Consequently we divide it
into single parts, when each of them solves accurately bounded subtask.

Since the following section deals with applet’s functionality in depth, we recommend
to continue with the section 2.2.5 named User’s guide, if you just want to try it out from
the user’s point of view.

Applet as a whole
Let’s start with the whole applet at first (see the figure 2.17 on the page 23). It is devided into
two parts of almost the same size. The left one serves as a control panel, where a user regulates
the whole functionality of the applet. In contrast, the right one is more or less passive and
works as a visualization display.

Control panel itself can be subdivided into six smaller sections. We present them
one by one on the following pages. Their names can sometimes look awkwardly, but we
decided to leave their titles the same as they stay in the applet for greater clarity. In addition,
we discuss the functionality of the visualization display in the end.

Status

Figure 2.15: ”Status” section

This is the least complicated component of the applet. It just serves to inform about the ap-
plet’s status. It also displays error messages, if occur.

Create new net

Figure 2.16: ”Create new net” section

The first user serviceable component serves for creation of the new network. By clicking
the Create button, the neural network with specified number of the neurons in the hidden
layer is generated. Default value is set to 40. Allowed range contains any integer from the in-
terval (0, 65536). The upper bound of the restriciton is appointed due to the capacity of the
used data types and conversions between them. On the other hand, this is just the technical
boundary, the logical value17 is not greater than 100 neurons. Unfortunately we are not able
to support these statements by any proofs. This value, that is still quite exaggerated, is based

17. Value that makes sense to use to obtain various, but still correct results.
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Figure 2.17: Language recognition – resulting Java Applet
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on the consideration of the task complexity, general practice and testing procedures (see
the section 2.2.4 for their results). Let’s add, that the creation process includes an upload
of the patterns (the relative letter frequencies from the table 2.1 on the page 18), generating
random weights of all synapses from the interval [−1, 1] and computing the current net error.
The network is now fully prepared for learning the patterns.

User can also watch the animation that starts in the visualization display and changes
when clicking other buttons.

Teach the net by setting the parameters

Figure 2.18: ”Teach the net by setting the parameters” section

Following step after creating the network is to teach it the patterns. It fully conforms
to the theory described in the section 2.1.5 about adaptation. If you are interested in
the mathematical background, please switch to this section. We just continue with describing
the applet’s characteristics herein and referencing to the theory section if necessary.

This component offers the user another possibilities to influence the applet’s functionality
by another two parameters. The first one defines a number of learning cycles – how many
times the set of the patterns should be taught. The value has to be an integer greater than
0 and lower than 2 147 483 647. The upper bound is restricted by the capacity of the Java
int data type. It is preset to 10 000. The second parameter is a learning rate. The learning
rate represents the parameter ε in the equation 2.18 on the page 18. Simply speaking, it
controls the size of the weights’ changes after each learning cycle. The parameter’s range is
an interval of the real numbers (0, 1). The higher the value is, the bigger impact the change
causes. It is preset to 0.01.

Although the parameters serve for testing the optimal configuration, we strongly recom-
mend not to use the high value of learning cycles at once. The speed of the learning process
naturally depends on the performance of used hardware and the combination of the other
parameters (number of neurons in the hidden layer and learning rate). It seems to be better
to split the learning process into more parts, when each of them amounts to 100 000 cycles
at most.

After clicking the Teach button, the learning process of the network starts. Functions of
other applet’s buttons are disabled to ensure the stability. The learning procedure takes place
in the new thread by using the Java class SwingWorker18, that provides required functionality.
It serves to processing the long running task in the background and provides the possibility
to hand over intermediate results to the applet’s main thread. Therefore the applet is able to
show the progress bar, when the learning process is on the run. At the end of the learning
procedure, other applet’s buttons are re-enabled. Let’s just add, that this component illus-
trates its functionality in the visualization display as well as the Create component.

18. See the Java API documentation for more information:
http://java.sun.com/javase/6/docs/api/javax/swing/SwingWorker.html
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Teaching results

Figure 2.19: ”Teaching results” section

It is important to know the results of the teaching process. This function is fulfilled by passive
component called ”Teaching results”. It provides a few important statistics of the currently
loaded network. At first, a number of learned cycles and current net error are displayed here.
After that follows the text area, that holds the information about the network gathered dur-
ing whole teaching process. It is stored and updated here until a new network is created.
The largest area of this component is filled by a graph, that displays the current net error
with respect to number of learned cycles. All of these statistics are updated after every teach-
ing process. In other words, everytime when the Teach button is clicked and consequently
the other buttons are re-enabled, the data is updated.

Let’s go back to the plotting tool for a while. We used Java chart library called JFreeChart,
version 1.0.1319. This useful utility provides wide range of classes for plotting various graphs.
It is downloadable under the LGPL20 licence, that means that it is free to use. We intended
to plot the graph online during the teaching process, unfortunately it wasn’t possible due to
high performance requirements. Therefore we had to put up with plotting the graph just
once at the end of every teaching process.

Recognize the language
Moving to the next component we get to the core of the applet (see the following page for
the figure). It provides the upload of letter occurrence frequentions and a language recogni-
tion procedure itself.

At first, let’s follow the concept of the text file parser outlined in the section 2.2.2. In
accordance with it, there are two options of uploading the letter frequentions. The first is
a text field, where user can manually insert the sequence of 26 real numbers greater than or
equal to 0. The compulsory data format is: A frequency–B frequency–. . . –Z frequency.

19. See the project’s homepage http://www.jfree.org/jfreechart/ for a free download.
20. LGPL = GNU Lesser General Public License
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Figure 2.20: ”Recognize the language” section

The second option is to upload the text file, whereon the relative frequencies are computed.
Because of the miscellaneous extensions of files that can contain the text, we do not con-
strain their upload. It means, that every file is processsed. We did not decide for this solution
by the reason of our laziness, but because not to discriminate different text file extensions
that are used by diverse operating systems. Since the files are processed character by charac-
ter, it is up to the user’s judgement, which files to upload. All of them are processed without
error messages, but some of them will output nonsencial results after language recognition
procedure (e.g. image files – jpeg, tiff, . . . ).

Let’s attend to the processing of the uploaded file now. The parsing procedure fully fol-
lows the concept specified in the section 2.2.2, hence we just want to add how exactly it is
computationally realized. We use the ASCII codes21 to distinguish to which group the cur-
rent character belongs:

Letters of english alphabet Another countable characters Uncountable characters
Letter ASCII code Letter ASCII code Letter ASCII code

A 65 0 (Null)
B 66 1 (Start of heading)
...

... All the ASCII codes,
...

...
Z 90 that do not belong to 30 (Record separator)
a 97 the first neither 31 (Unit separator)
b 98 the third set 32 Space
...

... 127 Delete
z 122 160 Non-breaking space

Table 2.2: Division of the letters into three groups based on ASCII codes

Consequently, we compute the letters’ relative frequencies of the occurrence with the
help of the formula 2.26 on the page 19 and get the resulting vector.

Afterwards, we can move forward to the language recognition process itself. The active
phase characterized in the theoretical section 2.1.5 starts by clicking the Recognize button.
Its output is a vector of ten real numbers from the interval (0, 1) that each represent one lan-
guage. The highest value is declared the winner. The higher the value is, the more probable
the selection of the winner was correct.

It is again possible to watch the animation of the recognition process in the visualization
display.

21. The American Standard Code for Information Interchange (ASCII) is a character-encoding scheme based on
the ordering of the English alphabet. (source: http://www.wikipedia.org)
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Recognition result

Figure 2.21: ”Recognition result” section

The last component of the control panel is a recognition results display. When the compu-
tation provided by previous component is finished, the results are figured here. They are
displayed with an accuracy of ten decimal places and the highest value is highlighted by
a red color. If a new net is created, the previously calculated results are discarded.

Visualization display

Figure 2.22: ”Visualization display” section – ”create”, ”teach” and ”recognize” illustrations

At last, let’s take a look at the visualization display that forms the whole applet together with
the control panel. It doesn’t directly interfere with the applet’s functionality, because it just
serves to visualizing the ongoing partial processes. The figure 2.22 illustrates its phases when
the buttons Create, Teach and Recognize are pressed (from left to right respectively). Each
of the visualizations includes the explanatory text and an appropriate figure. The ”Create”
figure is passive, while the ”Teach” and the ”Recognize” figures act as slow animations.
Their pictures change over every four seconds. User can pause and restart the visualization
by clicking the button in the lower right corner at any time. The animation is set as running
by default.
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2.2.4 Experiments with network’s setup

When the applet is ready, we can step further to test its functionality by a few experiments.
We discuss here how the parameters’ settings influence the result. The most correct pro-
cedure would be to turn back to the theoretical chapter 2.1.5. and mathematically try to
prove the capabilities of the network. Nevertheless, we do not proceed in this way, because
it would exceed the scope of the thesis. We are going to focus just on the view from outside
and present some hypotheses based on the results of the observations for diverse parameters
settings.

Initial configuration
At first, we take a brief look at the first configuration that is randomly generated when
the network is created. This is the parameter that user cannot influence, nevertheless it can
be very useful to know, what is the highest possible net error evoked by generated weights
at the first time.

The first configuration is created by assigning a random value from the interval [−1, 1] to
the each weight. As we mentioned, it can be done just by modifying the source code. Thus
we set the configuration w = (1, 1, . . . , 1), because the inputs of all neurons are fully used
at this time, therefore the error of the net is the highest possible. It means, that the formula
2.11 dealing with computing the inner potential of the neuron can be modified as follows:

ξ =
l∑

i=0

1 · xi . (2.27)

Therefore the inner potential ξ is equal to the sum of its inputs. If we recall the formula
computing the output

σ(ξ) =
1

1 + e−ξ
(2.28)

we can see, that the higher the value of ξ is, the less it influences the resulting neuron’s
output and the closer the output is to the 1. By increasing the number of the hidden neurons,
the inner potential grows up and consequently the output of the network converges to 1.

Number of neurons
Current net error

in the hidden layer
1 3.4982203849
2 4.0844132089
5 4.4777769609
10 4.4998496886
24 4.4999999999
25 4.5000000000∗

50 4.5000000000∗

100 4.5000000000∗

65535 4.5000000000∗

Table 2.3: The net error values produced by the initial configuration w = (1, 1, . . . , 1).

* This value is rounded up to 4.5 due to variable’s capacity. The value just converges to
the value 4.5 in fact.
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Considering the results presented in the table 2.3 we can add, that the higher the number
of hidden neurons is, the less difference in the net error it makes. The accuracy to ten decimal
places is not even enough to distinguish the errors of the nets containing 25 hidden neurons
and more.

We can say that the potential highest initial net error value is not higher then 4.5 for
any number of the neurons in the hidden layer. Hence the error of the new net falls within
the interval [0, 4.5).

Number of neurons in the hidden layer
We have to say at the beginning, that it is a hard task to determine the influence of
the number of hidden neurons to the network. It is not completely described in the scien-
tific literature till today. Therefore we decided to implement the tests as follows:

1. Generate the network with one neuron in the hidden layer, then with two neurons,
etc.

2. For each of the networks check, if the initial error of the net falls within the interval
(0.5, 1.0). If not, generate a new net with the same number of hidden neurons. We try
to keep similar conditions for all generated networks this way22.

3. Write down the initial net error for the given network and let the network learn in
10 000 cycles with the learning rate equal to 0.01.

4. Note down the current net error. See the graph, whether the value of the net error
converges to 0 or higher value. It is highly probable that if the net error does not
converge to 0 in 10 000 learning cycles, it will not change later (see the figure 2.23).

5. Continue with the step 1 and add one more neuron into the hidden layer.

Figure 2.23: Example of a non-convergence to 0 – number of hidden neurons: 2; initial net
error: 0.9695094319; learning rate: 0.01

22. We can rewrite the applet’s source code to generate a network with an initial configuration such as
w = (1, 1, . . . , 1). Though we acquire the configuration with stable unchanging net error, it does not help us.
If all the network weights are the same value, they adapt at the same way (and with same values). It does not
lead to convergence to the net error equal to 0, but it stops on higher value.
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Number of neurons
Initial net error

Net error after
Convergence to 0

in the hidden layer 10 000 cycles
1 0.5272004713 0.4500119399 no
2 0.7419732453 0.4731141539 no
3 0.7329472083 0.7329472083 no
4 0.5057308142 0.4413027152 no
5 0.5911028575 0.0169021708 yes
6 0.7283564301 0.4234247987 no
7 0.8770494018 0.0422623487 yes
8 0.6717495837 0.4446630096 no
9 0.6127882926 0.0299530839 yes
10 0.9335715424 0.0452230382 yes
11 0.7568231373 0.0193755085 yes
15 0.5609105269 0.0269727833 yes
20 0.6439693842 0.0122087790 yes
40 0.5400990343 0.0044145720 yes
100 0.5404234588 0.0011327514 yes
400 0.5125725123 0.0002678197 yes
425 0.5085622729 0.0001190930 yes
450 0.5009852977 0.5000069320 no
500 0.5163263139 0.49999925986 no
1000 0.7439909072 0.5000014892 no
1000 0.5012490964 0.4999996920 no
1000 0.6626659575 0.0000182860 yes

Table 2.4: Results of the test – various number of hidden neurons used

We can infer some hypotheses from the results presented in the table 2.4. There seems to be
lower and upper bound of the number of the hidden neurons, that is able to solve the given
problem. As we can see, networks with less than 5 hidden neurons do not converge to 0.
Following four rows show, that the net converges two times and two times don’t. All con-
tiguous networks (with number of hidden neurons equal to or higher than 9) converges to 0.
On the other hand, the upper bound seems to be less obvious. The networks with 450 hidden
neurons or higher do not tend to converge to 0.

Let’s summarize the experiment’s results. They can be interpreted just as a help to set
up the most optimal number of neurons in the hidden layer, because they heavily depend
on the initial configuration (and computed net error therefrom). Small difference of the first
configuration causes, that network’s error converges to 0 one time and doesn’t another (for
the same number of hidden neurons). See the last three rows of the table as an example.

It seems, that the language recognition task can be solved by the network containing
10 hidden neurons at least. We think, that this boundary corresponds to the complexity of
the task. On the contrary, the upper boundary indicates that the networks with 450 hid-
den neurons and more do not tend to converge to 0. It is due to too high complexity of
the network and inability to adapt the patterns. Noting the results of the experiment, we
suppose that sufficient number of the neurons in the hidden layer is 20–100.
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Number of learning cycles
An influence of this parameter was broached in the previous section. It holds in general, that
the more learning cycles we use, the lower the resulting error of the network is. The correct
course of the recognition process is illustrated on the figure 2.24. Nevertheless, the net error
does not converge to 0 every time. Considering the figure 2.23 as an example, if the error
converges to higher value than 0, the additional learning cycles mostly do not help.

Figure 2.24: Example of a correct course of the recognition process – number of hidden
neurons: 40; initial net error: 0.5416811635; learning rate: 0.01

Learning rate
The last parameter, that we discuss here is the learning rate. According to the theory men-
tioned in the section 2.1.5, the value of the learning rate determines, how influential the alter-
ations of weights at the end of one learning cycle are. Its value has to fall within the interval
(0, 1) and it holds, that the higher the value is, the higher the alteration’s influence is.

Therefore the high value promises a faster convergation of the net error. Unfortunately,
there is a drawback of using high learing rate. A lower value of a net error can be over-
leapt and start to grow again (see the figure 2.9 on the page 13 and 2.25 on the following
page). On the other hand, if too low value is used, the convergence process can be very
time-consuming.

Consequently the applicable trade-off has to be found. Therefore we conduct a similar
experiment to the recognizing the effect of the various number of hidden neurons presented
hereinbefore. Its scope is the observation of an influence of varying learning rate to the speed
of net error’s convergence. As well as the last time, we set the conditions – the number of
neurons in the hidden layer: 40; the initial configuration interval: (0.5, 1.0); the number of
learning cycles: 10 000.

The results, presented in the table 2.5, have to be considered tentatively, because they
are influenced by varying initial configuration. As we can see, the net error decreases with
the increasing learning rate. A value, when the overleaping occurs at the first time, falls
withing the interval 0.440–0.441. Following values of the learning rate do not converge to 0.
Therefore the usable trade-off between speed and the result attainability could be the value
0.2.

31



2. NEURAL NETWORKS

Figure 2.25: Example of a high value of the learning rate – number of hidden neurons: 40;
initial net error: 0.5133976759; learning rate: 0.5

Learning rate Initial net error
Net error after
10 000 cycles

0.001 0.5963302914 0.0356159682
0.01 0.5519294621 0.0040699484
0.05 0.9084064743 0.0008747488
0.1 0.6968796094 0.0003196628
0.3 0.6010278287 0.0001462317
0.44 0.9653188698 0.0001407894
0.441 0.5998601806 0.4999664417
0.445 0.5147035657 0.3750413861
0.45 0.5551048284 0.4001229088
0.5 0.5748253598 0.3734122487
0.7 0.6668643170 0.4999999195
0.9 0.7598394836 0.4500009156

Table 2.5: Results of the test – various learning rate used

Recognition process
At last, we just briefly summarize the potential of the applet. We decided not to present
an embracive evaluation of the success of the recognition, because it highly depends on two
main parameters – a network, that is used (mainly on the value of the net error) and a text,
that is intended to being processed. Therefore, we just bring here the results of the exper-
iment with a random initial configuration and a default settings. After learning phase, we
let the network recognize ten files containing a short fragment of the text gathered from na-
tional versions of the Wikipedia23. The shortest one has got 881 characters, while the longest

23. These texts were displayed on the main site of the Wikipedia’s national version websites on 14th November
2009.
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one contains 1580. It should be enough for the applet to work properly. The files are a part of
the enclosed compact disk and they can be downloaded on the applet’s internet page as well.
Hence, the settings of the applet was following:

• Number of neurons in the hidden layer = 40

• Initial net error = 3.9242268992 (randomly generated configuration of the network)

• Learning rate = 0.01

• Net error after 10 000 learning cycles = 0.0048374695

Text file Number of characters Result Recognized correctly
test dutch.txt 1580 0.4003799379 yes

test english.txt 1092 0.8306231621 yes
test french.txt 924 0.3237752449 yes

test german.txt 1069 0.8066869342 yes
test italian.txt 1310 0.6125173902 yes
test polish.txt 1030 0.8086577918 yes

test portuguese.txt 1330 0.4423335938 yes
test spanish.txt 881 0.6204429594 yes
test swedish.txt 931 0.5648895081 yes
test turkish.txt 1816 0.8280184014 yes

Table 2.6: Results of the recognition process

All the recognition experiments presented in the table 2.6 were successful. The worst
result was performed by the french text (0.3237752449) and the best was the english one
(0.8306231621). Next testing is left on the user.

2.2.5 User’s guide

The last section serves as a short user’s guide for those, that just want to start playing with
the applet without knowing the details presented in the previous sections of the chapter 2.2.

Figure 2.26: User’s guide: Create – Teach – Teaching results – Recognize – Recognition results
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Please, watch the Status in the top left part of the applet, it informs about current activity.
The right half of the applet serves for a visualization of its functionality. It starts and sub-
sequently changes automatically, when appropriate button is clicked. You can pause it and
rerun at any time.

1. Set a number of neurons in the hidden layer. The default value is 40. A recommended
range is 20–60. Click the button Create to establish a new network afterwards.

2. Set the parameters of the teaching process – a number of learning cycles and a learning
rate. The higher the chosen learning rate is, the longer the teaching process takes. It is
better to start with lower values and repeat it more times. Default value is 10 000 and
we do not recommend to use more than 50 000 cycles at once. Learning rate is preset
on the value 0.01. Do not use higher values than 0.3 – it tends not to find the correct
result. At last, click the button Teach to start the teaching process.

3. When the network is taught, see its result. A current net error indicates the quality
of the network. The lower the value is, the higher chance for correct recognition of
the language is. A graph that figures a course of the teaching process is worthwile
to see as well. You can continue in teaching the network or take a step forward to
the recognition process.

4. There are two options how to upload the data into the applet. The easier one is to click
the button Choose file and find the requested text file. The little more difficult is to enter
the vector of 26 numbers, that represents the frequency of the letters occurrence. See
the section 2.2.3 for more details about the manual entry. Click the Recognize button
afterwards.

5. See the results of the recognition process. The higher the value is, the more reliable is
the result. The highest value is highlighted in a red color and declared the winner.

Feel free to play with the network’s parameters and watch how they influence the recogni-
tion process. Check the section 2.2.4, where a few experiments and their results are discussed.
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Chapter 3

Genetic algorithms

The thesis deals with a topic of genetic algorithms in its second part. As well as the first
one, this part is divided into two sections. At first, it introduces a biological inspiration and
a history of the genetic algorithms. A theoretical background is clarified afterwards.

The second section describes an application of the genetic algorithms approach on an op-
timization task called Robby, the soda-can-collecting robot. The solution is discussed in detail
and finally presented in the form of a Java applet.

3.1 Theory

3.1.1 Biological inspiration

Genetics is a discipline of biology focusing on a research of heredity and a variation in living
organisms. The name is derived from a unit of heredity called gene and was established by
William Bateson1 in the year 1906. Genetics is rapidly developing science nowadays.

Let’s start with an evolution theory which forms a so-called wrapper to the genetics. It
treats of birth and evolution of a life. Many theories came up during the past, but nowa-
days the term of evolution theory denotes a research based on the work of Charles Darwin2

and Alfred Russel Wallace3. They brought in the idea, that the evolution proceeds by small
alterations in organisms during generations. These alterations are set so that good traits of
ancestors are retained by their offspring. This concept is called Darwinism.

Darwin and Wallace drew up their work without having a deeper knowledge of molec-
ular biology. Independently of them, a czech naturalist Gregor Johann Mendel4 founded
a new scientific discipline – genetics. Genetics deals with a heredity on a level of cells, hence
it just confirmed the ideas of Darwinism and provided a new knowledge for deeper research.
A synthesis of darwinism and genetics is collectively called Neo-Darwinism.

A cell is a functional basic unit of all known living organisms (see the figure 3.1). Its
the most important component from the genetic point of view is a nucleus. The nucleus con-
tains chromosomes, that are organized structures of Deoxyribonucleic acid (DNA) and proteins.
DNA consists of ordered sequence of nucleotides5 that holds the hereditary information.

1. William Bateson (1861 – 1926) was a british geneticist. He defined genetics as ”Study of plant breeding”
originally and the word was used for the heredity of all organisms later.
2. Charles Darwin (1809 – 1882) was a British naturalist. He is considered as a founder of an evolution biology.
3. Alfred Russel Wallace (1823 – 1913) was a British naturalist and biologist that originally worked on a theory
of evolution independently of Charles Darwin, but later became his cooperator.
4. Gregor Johann Mendel (1822 – 1884) was an Augustinian priest. He is known as ”father of modern genetics”
nowadays. Mendel became famous posthumously as late as William Bateson translated his works into English
and popularised them.
5. Nucleotides consists of one of five nitrogenous bases – cytosine (C), guanine (G), adenine (A), thymine (T)
and uracil (U). It identifies a type of nucleotide’s information.
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Figure 3.1: A diagram of the cell’s components important from the genetic point of view
source: U.S. Department of Energy Genome Programs, http://genomics.energy.gov

The description of a cell is by far not exhaustive, but it should be enough for our pur-
poses.

At last, we have to mention a reproduction process of cells. It is a complicated procedure,
therefore we just notify here parts that are interesting for us from a computational perspec-
tive. The reproduction of gametes is called meiosis6 and consists of four phases7. Simply
speaking, chromosomes are separated and form new cells then. During the meiosis, an op-
eration called crossover takes place – two chromosomes mutually swap parts of their DNA.
Rarely happens another genetic operation – a mutation. The mutation stands for a change of
types of nucleotides in DNA. These two operations were mentioned, because they served as
a pattern for computational genetic algorithms.

3.1.2 History

First mention of genetic algorithms’ ancestors can be found around the year 1960, when
evolutionary biologists were inquiring a potential of involving computers into their research.
Hence it was necessary to formalize a natural evolution. At that time, researchers did not
have any idea, that they just laid foundations of a computational technique applicable to
solving a broad set of problems.

Nevertheless, Ingo Rechenberg8, a german scientist, introduced a technique named by

6. Other body cells are reproduced by a process called mitosis.
7. The phases in turn are: prophase, metaphase, anaphase, telophase.
8. Ingo Rechenberg (1934) is a german computer scientist and professor at the Technical University of Berlin.
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him as the evolution strategy. This procedure was still quite far from that, what we call ge-
netic algorithm today, but the concept was promising. He generated one random initial in-
dividual and with use of the operation of mutation evolved one offspring, compared them
to one another and used the better of them for next rounds of evolution. Hence, a usage of
population instead of one individual and the crossover operation was not known yet.

In the year 1966 Lawrence J. Fogel9 presented a book Artificial intelligence through simu-
lated evolution10[11] where he introduced a technique called evolutionary programming. It de-
rived benefit from usage of finite-state automata and Rechenberg’s evolution strategy. Thus,
the terms of population and crossover stayed still undiscovered.

That changed John H. Holland11 by introducing his book Adaptation in natural and ar-
tificial systems[12] in the year 1975, where he presented a usage of populations, crossover
and other recombination operators. Thereby he described genetic algorithms how they are
known today.

Since then an interest in this technique rapidly increased. By the early 1980s, genetic
algorithms were used in a broad range of tasks – from mathematical NP-problems like
bin-packing or graph coloring to engineering issues such as pipeline flow control. A few
years later a genetic algorithms fever started to spread behind borders of university labora-
tories into the commercial sector. It caused, that evolutionary computing found its place in
various, earlier unimaginable sectors – biochemistry, molecular biology, aerospace engineer-
ing, microchips design, stock market predictions, scheduling at airports and many others.

3.1.3 General concept of genetic algorithms

We fragmentary alluded to genetic algorithms in term of computer science in the last two
sections. Hence, it will be very useful to sum up a general concept and provide a compre-
hensive sight of them.

With regard to natural evolution, we decompose the process into three compact parts
(see the figure 3.2 on the page 38):

• Initialization consists of setting paramters (e.g. size of population) and determining en-
coding sample. Another important part is to shape a fitness function. Finally, an initial
generation can be created.

• Selection is a subprocess, when the individuals in a current generation are evaluated
and ranked. Conseqently a probability of selection is assigned to each of them. It pro-
ceeds once for a generation.

• Reproduction is a part responsible for picking out a pair of individuals in accordance
with the probabilities of selection at first. Afterwards, the chosen individuals are re-
produced by applying genetic operations of crossover and mutation on them. Result-
ing offsprings become members of a next generation. A reproduction proceeds as long
as the next generation does not have a same size as the current.

Following sections go into details of the aforementioned parts of a genetic algorithm and
clarify all their aspects.

9. Lawrence J. Fogel (1928 – 2007) was a pioneer in evolutionary computation.
10. It was co-authored by Alvin J. Owens and Michael J. Walsh.
11. John Henry Holland (1929) is an American scientist and Professor of psychology, electrical engineering and
computer science at the University of Michigan. He is known as the father of genetic algorithms.
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INITIALIZATION

Set paramters
Set an encoding sample
Shape a fitness function
Create an initial generation

SELECTION

Compute the fitness for every individual
Rank the population by fitness
Assign probabilities to individuals

Select two individuals

REPRODUCTION

Apply crossover
Apply mutation

Add the individuals into
the following population

Final generation

Run for a preset
number of generations Repeat until

the next generation
has a size of

the previous one

Figure 3.2: General schema of a genetic algorithm
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3.1.4 Initialization

A first phase of a genetic algorithm is called initialization. It proceeds just once for the whole
algorithm and right on its beginning.

Parameters
A few parameters have to be set at first – population size, number of generations and mutation
probability.

• Population size stand for a number of individuals in a population. A population con-
tains same number of individuals in every generation.

• Number of generations determines how many times a new set of individuals should be
reproduced from the current one.

• Mutation probability specifies a chance, that an operation of mutation will be used dur-
ing the reproduction phase. It will be discussed in a greater depth in a description of
that phase.

Encoding sample
Each individual is identified by its DNA in a nature. Being able to start a computational
genetic algorithm, each individual of a problem’s search space has to be encoded into a string
of integers12. Let’s illustrate a simple encoding example:

We want to use a genetic algorithm for evolving the word baggage from scratch. A search
space of the problem consists of seven characters long strings, where each of their letters falls
into an english alphabet a, b, . . . , z. Considering that the highest letter from the beginning of
the alphabet in the word baggage is g, we can reduce each character’s range to a, b, . . . , g.
It does not mean big savings on a time of a computation in this case, however it can be
significant in real problems.

Encoding sample puts up itself: a = 1, b = 2, c = 3, d = 4, e = 5, f = 6, g = 7. One can argue,
that there is no need to use any encoding into integers. Yes, it is true for our simple example.
Nevertheless, a usage of an integer encoding is very helpful during the implementation and
crucial when solving a real task.

Hence, the search space of our problem is a set of 77 strings from 1111111 to 7777777,
where the word baggage is represented as 2177175.

Fitness function
Continuing with our example, we need a formula for ranking the individuals within a gen-
eration. It is called fitness function. The higher a functional value of the fitness function is,
the higher the current individual is ranked. Therefore, we shape the function as follows:

f(individual) =
number of correctly located integers in an encoded individual

length of an encoded individual
. (3.1)

The more correctly located integers (encoding letters) in the string are, the closer
the string’s fitness value to 1 is. The fitness value for a word baggage equals to 1.

12. It is possible to use another type of representation – e.g. floating-point numbers. However, it brings difficul-
ties and fits better into a concept of the evolutionary programming.
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Random initial generation
Before moving to the selection phase, an initial generation of a population is created. Each of
population size individuals is chosen at random.

3416174
6327145...

population size...
1746372

Figure 3.3: Initial generation of a population in the baggage example

3.1.5 Selection

After the initialization phase follows the selection phase. It proceeds once for a generation,
thus number of generations times for a whole algorithm. It can be perceived as an initialization
of a generation, because the individuals are being prepared for the reproduction phase here.

Compute the fitness
At first, the fitness value is computed for every individual in the current generation.

Rank the population by fitness
Next step is to sort the individuals by fitness. The main idea of the fitness function is
to find out, which individuals are the best in the current generation and give them higher
chance to be reproduced and included in the next generation.

Assign probabilities to individuals
A last task of the selection phase is closely associated with ranking the population. There are
several methods for the individuals’ selection. One of them is a roulette wheel method.

The roulette wheel method stands for an approach, where a probability of selection
based on the fitness value is assigned to each individual. The higher the fitness value is,
the higher probability of being selected the individual has. The inspiration by a roulette
wheel in a casino is quite clear. A sum of fitness values of all individuals in a generation is
considered as the whole wheel. A proportion of the wheel is assigned to each of the individ-
uals based on their fitness values.

Let’s consider a generation of the size 3 in our baggage example. Its members are:
3416174, 6327145 and 1746372. The bold digits are correctly located in the requested
word baggage (encoded as 2177175). Therefore the fitness values of the strings are 0.2857,
0.4286 and 0.1429 respectively (rounded to four decimals). When normalizing them to
percents, we get 0.3333, 0.5000, 0.1667 as chances, that a given individual will be chosen
(see the overview of the computation in the figure 3.4 on the page 41).

At last, we just mention a few other selection methods13. A tournament selection method is
often used in practice. Individuals take part in several tournaments and then they are ranked
based on the results. Tournaments can have a various form. Among simplier methods are
stochastic random or top percent (just a top percent of individuals has a chance to be selected).

13. Consider that all the methods are not applicable to all tasks.
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Individuals Fitness Probability Roulette wheel

3416174 . . . 2
7 = 0.2857 . . . 0.2857

0.8572 = 0.3333

6327145 . . . 3
7 = 0.4286 . . . 0.4286

0.8572 = 0.5000

1746372 . . . 1
7 = 0.1429 . . . 0.1429

0.8572 = 0.1667

Σ = 0.8572

Figure 3.4: Overview of the probabilities computation in the baggage example

3.1.6 Reproduction

The last phase is called reproduction. It begins with a random selection of two individuals
based on probabilities computed in the selection phase14. The chosen pair will be modified
using two genetic operators – crossover and mutation. The two descendants created this way
become members of a next generation.

The reproduction phase is repeated until a next generation contains the same number of
individuals as the current one.

Crossover
The first genetic operator is called crossover. It is applied on the both selected individuals
at once. When their strings are crossed, the result is two new strings, where each of them
contains a substring of each of the parents. Let’s use our baggage example for make the oper-
ator’s working clear.

parent 1:

parent 2:

3416174

1746372

crossover point

child 1:

child 2:

3416372

1746174

Figure 3.5: Crossover operator forming offsprings in the baggage example

At first, a crossover point is randomly chosen. The point represents such position in indi-
viduals’ strings, that the subchains before and behind the position are concatenated in a way,
that each descendant’s string consists of substrings inherited from both parents.

Mutation
The crossover is followed by another genetic operator – mutation. In contrast to the crossover,
the mutation is applied just on a single individual. In our case, it proceeds on the selected
pair of individuals in turn without influencing each other.

Among the paramaters defined in the initialization phase is a mutation probability. Each
single position of the individual’s string has got the mutation probability, that a new random
value is generated and assigned to the current position (see the figure 3.6 on the page 42).

14. One can argue that this action fits better into the previous phase by reason of its name, however it directly
precedes the reproduction phase and functionally stands between them. Therefore, we decided to place it into this
phase.
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1746174 1146574

New random values assigned to positions 2 and 5

Figure 3.6: Mutation operator forming an offspring in the baggage example

3.1.7 Summary

We presented a general concept of genetic algorithms in the subsections 3.1.3 – 3.1.6 (see
the summary in a box below). It should be noted, that it naturally does not provide ex-
haustive description of the topic. There are a lot of modifications based on the initialization–
selection–reproduction backbone. We just demonstrated the aforementioned theory with re-
gard to an implementation part of the thesis presented in the section 3.2.

For those that are interested in additional information and deeper studies in the field of
genetic algorithms we recommend a few titles. The computational beauty of nature[14] writ-
ten by Gary William Flake introduces computer methods and their inspiration in the context
of nature. On the other hand, Rolf Pfeifer’s and Josh Bongard’s book How the body shapes
the way we think[15] deals, among others, with evolutionary methods used in robotics and
artificial intelligence. Those titles just illustrate how widely genetic algorithms can be used.

1. Set paramters population size, number of generations, mutation probability.

2. Set an encoding sample.

3. Shape a fitness function.

4. Create an initial generation.

5. For number of generations do

(a) Compute the fitness function for every individual.

(b) Rank the population by fitness.

(c) Assign probabilities to individuals.

(d) For population size/2* do

i. Randomly select two individuals based on computed probabilities.
ii. Apply crossover on them.
iii. Apply mutation in turn on both of them, use mutation probability.
iv. Put the offsprings into a new generation.

6. Get the final generation.

* If population size is odd, a small modification has to be made in the last loop of the reproduction phase,

when there is only one place left in a new population. It proceeds as usual during the steps i–iii. When

putting the offsprings into a new generation in the step iv, just a first descendant is used. The second

is discarded.
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3.2 Application – Robby, the soda-can-collection robot

Section 3.2 is a demonstration of a genetic algorithm’s usage in practice. The section presents
a solution of a task firstly published in a course CS 441/541 Artificial intelligence taught by
Professor Melanie Mitchell at the Portland State University. The task was chosen for its clear-
ness and attractive assignment, that directly suggests itself to introduce genetic algoritms in
an interesting form.

We are going to follow the schema used in the section 2.2, where a language recognition
applet is presented. At first, we define an assignment of the task. Then follows a concept of
a solution. After that, a result in a form of Java Applet is introduced. Next to the last section
is devoted to a demonstration of applet’s capabilities and finally, the last part contains a brief
user’s guide.

3.2.1 Assignment

As we mentioned, the task we chose to implement was published as a homework in
the course CS 441/541 Artificial Intelligence[16] taught by Melanie Mitchell15. Therefore, we
present the assignement in an unchanged form[17]:

Robby, the Soda-Can-Collecting Robot
Robby’s job is to clean up his world by collecting the empty soda cans. Robby’s world, illustrated
in figure 3.7, consists of 100 squares (sites) laid out in a 10× 10 grid. You can see Robby in site 0,0.
Imagine that there is a wall around the boundary of the entire grid. Various sites have been littered
with soda cans (but with no more than one can per site).

Figure 3.7: Robby’s world: A 10×10 array strewn with empty soda cans on random positions
source: CS 441/541: Artificial Intelligence – Homework 6[17]

15. Melanie Mitchell is a professor of computer science at Portland State University. Her major work areas are
complex reasoning, complex systems, genetic algorithms and cellular automata.
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Robby isn’t too intelligent, and his eyesight isn’t that great. From wherever he currently is, he
can see the contents of one adjacent site in the north, south, east and west directions, as well as
the contents of the site he’s currently in. A site can be empty, contain a can, or be a wall. For example,
in the figure 3.7, Robby, at site 0,0, sees that his current site is empty (i.e., contains no soda cans),
the “sites” to the north and west are walls, the site to the south is empty, and the site to the east
contains a can.

For each cleaning session, Robby can perform exactly 200 actions. Each action consists of one of
the following seven choices: move to the north, move to the south, move to the east, move to the west,
choose a random direction to move in, stay put, or bend down to pick up a can. Each action may
generate a reward or a punishment. If Robby is in the same site as a can and picks it up, he gets
a reward of 10 points. However, if he bends down to pick up a can in a site where there is no can, he is
fined 1 point. If he crashes into a wall, he is fined 5 points and bounces back into the current site.

Clearly, Robby’s reward is maximized when he picks up as many cans as possible, without crashing
into any walls or bending down to pick up a can when no can is there.

The task is to write code for a genetic algorithm to evolve control strategies for Robby the Robot.

3.2.2 Solution concept

The task assignment[17] includes also a concept of a solution. Hence, we took that con-
cept over and complemented it with selected parts of a book Complexity: A guided tour[18]
written by Melanie Mitchell. The autor elaborates the solution in greater depth there. This
section contains an extraction from these two sources (italics) completed with our comments
and specifications (base font).

Robby’s strategy should be encoded as a look-up table that gives, for every possible state – i.e., sit-
uation he can encounter – the action he should take when in that state.

There are five different sites (north, south, east, west, current), each with three possible types of
contents (wall, empty, can). Thus there are 3× 3× 3× 3× 3 = 243 different “possible” situations.
Of course this number includes some “impossible” situations, such as those in which Robby’s current
site contains a wall (since Robby will always bounce back from a wall). However, these don’t have to
be filtered out; they can be just left in the table, since they won’t have much affect on the GA.

Here’s an example of a strategy – actually, only part of a strategy, since an entire strategy would
be too long to list here.

Situation Action
North South East West Current site
Empty Empty Empty Empty Empty Move north
Empty Empty Empty Empty Can Move east
Empty Empty Empty Empty Wall Move random
Empty Empty Empty Can Empty Pick up can

...
...

...
...

...
...

Wall Empty Can Wall Empty Move west
...

...
...

...
...

...
Wall Wall Wall Wall Wall Stay put

Table 3.1: Example of a strategy, source: CS 441/541: Artificial Intelligence – Homework 6[17]
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For example, Robby’s situation in figure 3.7 is

North South East West Current site
Wall Empty Can Wall Empty

A situation is a pentad of four sites around Robby completed with his current site. Han-
dling the pentad in its verbal representation seems to be unpractical, therefore we turn it into
a numerical form (see the table 3.2).

Site Numerical representation
Empty 0

Can 1
Wall 2

Table 3.2: Numerical representation of sites

Hence, Robby’s situation in the figure 3.7 is numerically represented as a string 20120.
Thereby we obtain a format which is easy to represent in any data structure when program-
ming.

Robby’s world can be converted into a numerical form as well. We extend the original
10 × 10 array to 12 × 12 grid. Two added rows and columns stand for a border of Robby’s
world (see the figure 3.8 representing the figure 3.7 in numerical format).

2 2 2 2 2 2 2 2 2 2 2 2
2 0 1 0 1 1 0 0 0 0 0 2
2 0 0 0 1 0 0 1 0 0 0 2
2 0 0 1 0 0 0 0 0 0 0 2
2 0 1 0 1 0 0 0 0 0 0 2
2 0 0 0 0 0 1 0 1 0 0 2
2 0 0 0 0 0 0 0 0 0 0 2
2 0 0 1 1 0 1 0 0 1 0 2
2 1 0 0 1 0 0 0 1 0 0 2
2 0 0 0 0 0 1 0 0 0 0 2
2 0 1 0 0 0 0 0 0 0 0 2
2 2 2 2 2 2 2 2 2 2 2 2

Figure 3.8: Numerical representation of figure 3.7, Robby’s position is bold

Robby never enters site evaluated by 2. It just serves as an indicator, when Robby tries to
move into a wall. When it happens, Robby stays put and is fined 5 points.

Therefore it is easy to keep the current state of Robby’s world this way. When Robby
performs an action, we just simply alter affected sites.

To decide what to do next, Robby simply looks up this situation in his strategy table, and finds
the corresponding action to take.

The “chromosome” to be evolved by the GA is just a listing of the 243 actions in the rightmost
column of the strategy table, in the order given. The actions are numbered as follows:
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Action Numerical representation
Move north 0
Move south 1
Move east 2
Move west 3

Move in a random direction 4
Stay put 5

Pick up can 6

Table 3.3: Numerical representation of actions

Then the chromosome representing the strategy demonstrated in the table 3.1 would be

0246 . . . 3 . . . 5

The GA remembers that the first action in the string (here action 0: Move north) goes with
the first situation (“Empty Empty Empty Empty Empty”), the second action (here action 2: Move
east) goes with the second situation (“Empty Empty Empty Empty Can”), and so on. In other words,
the situations corresponding to these actions don’t have to be explicitly listed; instead the GA remem-
bers the order in which they are listed.

We decided not to keep exactly the order outlined in the table 3.1. Correspond-
ing numerical formats of situations stand in following order in our implementation:
00000, 10000, 01000, . . . , 00001, 20000, . . . , 00002, . . . , 00002, 11000, 10100, . . . 22222. The more
number of zeros in the situation are, the earlier in the chromosome it occurs.

Anyway, different order of situations does not change anything in following lines that
specify the genetic algorithm solving Robby’s problem. It fully conforms to the theory de-
scribed in the sections 3.1.3 – 3.1.7.

Generate the initial population. The genetic algorithm starts with an initial population of
POPULATION SIZE random individuals (strategies). As described above, each individual strategy
is a list of 243 numbers, each gene between 0 and 6, which stands for an action (0 = Move north, 1 =
Move south, 2 = Move east, 3 = Move west, 4 = Stay put, 5 = Pick up can, and 6 = Random move).
In the initial population, these numbers are filled in at random.

Repeat the following for NUM GENERATIONS generations:

1. Calculate the fitness of each individual in the population. The fitness of a strategy is deter-
mined by how well the strategy lets Robby do on NUM SESSIONS different cleaning ses-
sions. A cleaning session consists of putting Robby at site 0, 0, and throwing down a bunch of
cans at random (each site can contain at most one can; the probability of a given site containing
a can is 50%). Robby then follows the strategy for NUM ACTIONS PER SESSION actions
in each session. The score of the strategy in each session is the number of reward points Robby
accumulates minus the total fines he incurs. The strategy’s fitness is its average score over
the NUM SESSIONS different cleaning sessions (each of which has a different configuration
of cans).

2. Rank the population by fitness. Assign to each individual in the population an inte-
ger: 1 for the individual with highest fitness, 2 for the individual with next highest fitness,
and so on. Any ties can be broken at random.
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3. Apply evolution to the current population of strategies to create a new population. That is,
repeat the following until the new population has POPULATION SIZE individuals:

• Choose two parent individuals from the current population probabilistically based on
fitness rank. In more detail, the probability that each individual will be chosen is equal
to:

POPULATION SIZE − fitness rank + 1
1 + 2 + . . .+ POPULATION SIZE

.

• Mate the two parents to create two children. That is, randomly choose a position in each
number string; form one child by taking the numbers before that position from parent A
and after that position from parent B, and vice versa to form the second child.

• With a probability MUTATION PROBABILITY, mutate numbers in each child. That is,
for each number in child’s chromosome, with probability MUTATION PROBABILITY
replace that number with a randomly generated number between 0 and 6.

• Put the two children in the new population.

4. Once the new population has POPULATION SIZE individuals, return to step 1 with this
new generation.

According to the step 1, NUM SESSIONS different playgrounds16 are generated during
a computation of the fitness function. There is not explicitly mentioned in the assigne-
ment, if the playgrounds in cleaning sessions have to be exactly the same for all strategies
in a generation or just with same properties (especially a probability of a can occurrence).
We decided to choose the second option. Hence, each strategy in a generation is tested in
a set of NUM SESSIONS randomly generated playgrounds. We think, that it helps to find
globally best strategies and not only strategies, that are successful in the same given set of
playgrounds.

Following section presents a resulting applet, where the concept is specified and ex-
plained deeper thereon as neccessary.

3.2.3 Resulting applet

Resulting applet section proceeds in a same manner as the section 2.2.3 devoted to a presen-
tation of the language recognition applet. A whole applet is described at first. Subseqently,
we continue with sections where each of them deals with an applet’s part solving particular
subtask.

Before we start with a description, we would like to advert to a section 3.2.5 named
User’s guide, where a brief applet’s manual is presented for those that are not interested in
the applet’s functionality in a greater depth.

Applet as a whole
The whole applet consists of three optically separated parts – control panel, playground
visualization and theory visualization (see the picture 3.9 on the page 48).

Control panel on the left half of the applet is used to regulate its whole functionality by
setting parameters. Playground visualization located on the right half of the applet illustrates

16. We use a term playground for a grid randomly strewn with cans corresponding to Robby’s world.
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Figure 3.9: Robby, the soda-can-collection robot – resulting Java Applet
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Robby when performing any strategy. The last part – theory visualization – placed on
the bottom of the applet is a completely passive unit used just for demonstrating a theo-
retical background of the genetic algorithm.

We can further divide these parts into smaller utilities. Following sections list them
in turn and elucidate their functionality.

Status

Figure 3.10: ”Status” section

This component cannot be left unmentioned, even though it does not directly serve for ap-
plet’s control. Status line informs about current applet’s activity.

Create a world

Figure 3.11: ”Create a world” section

We decided not to keep a whole genetic algorithm’s settings of a piece, because it con-
siderably reduces possibilities of testing. User has to set all paramters of the algorithm
in a beginning and eventually does not have a chance to continue in an evolution pro-
cess. Therefore, we decided to separate parameters into groups. The parameters, that should
stay unchanged during whole evolution process, sets user in this component. Population size,
Number of sessions and Number of actions per session belong among them. This way, a world,
where an evolution can start, is created (see the figure 3.13 on the page 50).

Parameters’ upper boundary is set to 4999 (inclusive). It should be sufficient for effective
solving Robby’s task. Number of sessions and Number of actions per session have to be an integer
greater than 0. Population size does not have to be lower than 2. If it was, a crossover oper-
ation would not be applied, because two individuals are needed thereto. Default settings
is 200 individuals in a population, that are tested in 50 sessions, when each of them counts
50 actions.

Evolution settings
When a world is created, the evolution itself can start. There are two parameters to be set
– Number of generations and Mutation probability, that are preset to 100 and 0.005 as default
(respectively). Number of generations has to fall into an interval of integers (0, 50 000) and
Mutation probability is a decimal between 0 and 1 (inclusive). By clicking the button Evolve,
a loop of an algorithm described in the section 3.2.2 on the pages 46 and 47 is started.
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Figure 3.12: ”Evolution settings” section

While the computation is finished, user can still continue with setting another value
to the parameters and start the algorithm again. Therefore, it is better to start with lower
number of generations and eventually increase it afterwards.

Following figure illustrates the idea of dividing the algorithm’s parameters into two
parts.

2645 . . . 1415...
0534 . . . 3526

2645 . . . 2354...
1534 . . . 3526

2154 . . . 3345...
1523 . . . 6342

. . .

Evolution
Number of generations
Mutation probability

World
Population size
Number of sessions
Number of actions

per session

Figure 3.13: Division of the algorithm into two parts – World and Evolution

Evolution results

Figure 3.14: ”Evolution results” section

The ”evolution results” component consists of two parts – a textarea and a graph. The textarea
serves for informing a user about ongoing evolution. Each line represents single generation
and individuals within. Values on the line stand for individuals’ fitnesses in descending or-
der from left to right. The lines in the textarea are added continuously during an evolution.
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By contrast, the graph is updated once per evolution cycle – on its end. It represents
progress of the best individual’s fitness in a current population. When another evolution
cycle in the same world is finished, the graph does not illustrate overall progress, but only
a course of a current loop.

Both the units are erased and newly initialized when a new world is created.

Best evolved strategy

Figure 3.15: ”Evolution results” section

This component just completes the results of an evolution cycle by showing the best strategy
evolved on a current world. The best strategy can occur not just in the last evolved genera-
tion, therefore it is crucial to compare the best strategy in a current generation with the best
strategy overall which has been evolved by now.

The best evolved strategy is represented by its fitness value and a strategy chain.
The strategy chain consists of 243 integers, that describe Robby’s behaviour in various situ-
ations (see the section 3.2.2 for more detailed description). List of the situations is a content
of Appendix A on the page 60.

Playground visualization
A next to the last component is not directly involved in an evolution process. It serves for
visualizing Robby’s task and consists of 10×10 grid. By clicking the Create playground button,
a new playground randomly strewn with cans is established. It uses settings of a current
world – namely value of the variable Number of actions per session. Therefore this component
cannot be used before a world is created.

A strategy to be tested is specified in a text field Strategy chain. A currently best evolved
strategy is automatically inserted when an evolution loop ends. Alternatively it can be added
by user (see Appendix A on a page 60 for an order of situations in a strategy chain). When
the Test strategy button is clicked, a strategy starts being tested. Robby discovers his situation
and performs appropriate action. A period of one step is set to one second and Number of
actions per session actions is performed. It can happen that Robby, according to his strategy,
performs repetitively one step (e.g. hitting a wall and bouncing back). Therefore this com-
ponent contains a Stop testing procedure button.

By reason of limited space, we could not use any prettier graphics than simple icons.

Robby is figured as a red square: . When hitting a wall and bouncing back, a red line

in a direction of Robby’s move is added (Robby is moving south in this case): . And finally

a soda can is represented as a small black square: . Another situations are illustrated as
a combination of aforementioned icons (and rotated in some cases).
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Figure 3.16: ”Playground visualization” section

Theory visualization

Figure 3.17: ”Theory visualization” section

The last component occupies bottom part of the applet on its whole width. Its purpose is
to fill user’s time when a computation runs by giving a user brief description of a genetic
algorithm processed inside the applet. When the button Create world is clicked, a first part
about a strategy representation appears.

When an evolution is started by clicking the button Evolve, another part, dealing with
a course of genetic algoritm, is shown. It consist of 6 pages that can user scroll through.
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3.2.4 Experiments with applet’s setup

An another topic is directly connected to the applet’s description – experiments. Unfortu-
nately, a volume of this section does not conform to section 2.2.4 dealing with similar subject
in the field of neural networks. The main reason is, that a performance of genetic algorithms
greatly depends on a random intial generation. Simply speaking, if we were out of luck
during a creation of an initial generation and got some unfitting individuals, even the ge-
netic algorithm cannot find the most optimal solution then, because which individuals it
gets in the beginning, that only can use in its operations.

Therefore, we present here just a few findings based on our observations. Following para-
graphs discuss the applet parameters’ effect on the algorithm’s performance.

Population size
The first and the most important parameter is a size of a population. The larger the popu-
lation is, the wider options the algorithm has. Nevertheless, it does not guarantee a good
solution. In the beginning, the algorithm works with a large variety of individuals. With in-
creasing number of generations, the algorithm starts to work with smaller and smaller group
of individuals with high fitness. It can happen, that another individual outside this group
is chosen for reproduction, but it is not highly probable. Therefore, the other individuals
stay away and do not contribute to the evolution, despite they would improve a final result.
Another drawback of a large population is a time-consuming handling of it.

On the other hand, the evolution of smaller population takes significantly less time, but
its success depends more on a composition of an initial generation.

Therefore it is necessary to find such a population size that provides enough free scope
and its computation is not highly time-consuming. It is not a simple task and there is no sim-
ple solution. It is difficult to say, what a large population is. An individual’s string composes
of 243 situations. Each of them can be solved in 7 ways. Therefore, the total amount of strate-
gies is 7243 = 2.28 · 10205 and a large population could not be called one, that counts 5 000
and not even 10 000 individuals.

The applet’s paramter Population size has got a range of (1, 5000). Hence, it is not possible
to work with a really large population. But even if the boundary was higher, it would not be
more helpful, because computation time of the evolution process would become unbearable.

We suggest to work with smaller populations with a size of 200 − 400 individuals.
This size shoud offer enough free scope and bearable time of computation. It can happen,
that initial generation does not have such potential to evolve good solutions. Nevertheless,
the computation does not take too long, that we cannot start another try.

We conducted an experiment with three worlds that have same values of all parameters
except Population size. Values of 1000, 200 and 200 were used for this parameter. As we ex-
pected, time of computation was much lower for the worlds with population of 200. Never-
theless, their computation ended on scores 200.1 and 54.8, while the world with population
1000 gained a score 204.

As a result, we can say, that if a computation does not end on lower values, there is
no difference in using a population of 200 and 1000. Therefore it is better to use smaller
populations and if a computation stucks and does not grow, we can just start again. See
the table 3.4 on the following page for an overview.
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World 1 World 2 World 3
Population size 1000 200 200

Number of sessions 50 50 50
Number of actions per session 50 50 50

Number of generations 500 500 500
Mutation probability 0.005 0.005 0.005

Score of a best evolved strategy 204.0 59.8 200.1
Approximate computation time (min) 65 14.5 14.5

Table 3.4: Summary of an experiment with different values of Population size

Number of sessions
A value of the second parameter does not influence applet’s behavior as much as a size of
a population. The higher Number of sessions is, the more general meaning the fitness value
has. Simply speaking, this parameter conforms to the number of playgrounds, that strategies
are tested in. If a high number of various playgrounds is used, the more certainly the tested
strategy will not fail in any other. Accurate value is individual and its escalation costs addi-
tional time of a computation.

Number of actions per session
Number of actions per session is analogous to the previous parameter. The higher its value is,
the more general meaning the fitness function has. If Robby does more actions in a play-
ground, the better his current strategy is proven. It is important to remember, that a play-
ground consists of 10× 10 = 100 sites. We can simply construct a strategy, that goes through
all sites one by one in 100 steps and picks up 50 cans17. Hence its fitness value is 500. If we
want to evolve a strategy that shows better results, the strategy has to vector Robby in a way
that he picks up the cans faster than in 100 steps. Therefore we prefer, that the parameter
Number of actions per session is set to a value 100 at most.

Number of generations
Number of generations variable just performs a function of a counter. Its optimal value cannot
be set, because a course of the fitness function is unknown in advance. If the fitness value did
not grow in last generations, it is highly probable, that it will not grow in future either. Hence,
the current best strategy can be considered as a final. See the figure 3.18 for an example.

Figure 3.18: Stagnating fitness function

17. Every site has got the probability of 50% that it contains a can. Therefore we can assume in our example, that
the number of cans is exactly 50 without limiting the generality.
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Mutation probability
A genetic algorithm makes use of two operators – the crossover and the mutation. In gen-
eral, the first one is applied always and the second rarely. That is because the crossover
works with selected pair of strategies and consequently we get offsprings that again consist
of a modification of their parents’ strings. It is quite predictable process (when omitting the
exact placing of a crossover point).

On the other hand, the mutation’s result is completely random. Once the mutation is
applied, we can never be sure about a result. Therefore it should just serve as a support for
crossover and be applied very seldom. The applet’s default value of Mutation probability is
set to 0.005 and should be held very low. See the figure 3.19, where a result of the applet’s
run with Mutation probability equal to 0.1 is illustrated.

Figure 3.19: Applet run with Mutation probability = 0.1

How to evaluate results
At last, we briefly sum up how to interpret the applet’s results as a whole. When discussing
an influnce of the parameter Number of actions per session, we presented a simple idea, that
it is not very difficult to create a handmade strategy, which goes through all sites of a play-
ground in 100 steps and collects all cans. Therefore an evolved strategy should be better than
our handmade piece to be called successful. Of course, it is not possible to evolve strategy,
that gains more than 500 points, when there are just 50 cans in a playground. Successful is
a strategy that makes it faster. Talking in general, if Number of actions per session =< 100
and a strategy’s score is greater than

Threshold of success =
Number of actions per session

2
· 10 (3.2)

we can call it successful. Threshold of success represents a value of an aforementioned hand-
made strategy for Number of actions per session steps.

3.2.5 User’s guide

As well as the chapter 2, the section devoted to a topic of genetic algorithms ends with
a user’s guide that should serve as a manual for users, that do not want to study whole
theoretical background and just simply use the applet.
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3. GENETIC ALGORITHMS

Figure 3.20: User’s guide: World – Evolution – Interim results – Best strategy – Playground

There is a Status line at the top of the applet. Please notice the line, it informs about
current applet’s activity.

When the applet is working, there is a presentation of genetic algorithm’s theory running
in its lowermost part. It changes according to a currently running task. You can turn pages
by clicking arrow buttons.

1. Create a new world by setting parameters Population size, Number of sessions and
Number of actions per session. Their default values are 200, 50 and 50 (respectively).
Do not set Population size > 1000, running time of a computation rapidly increases
then. Keep remaining two paramters less than or equal to 100. These settings are
binding for all rounds of evolution run in this world. Complete the creation process
by clicking a button Create a world.

2. Set evolution parameters Number of generations and Mutation probability. The more gen-
erations you set, the longer the evolution takes. It is better to start with lower values
and run the evolution more times, if necessary. Leave the Mutation probability less than
0.01. The higher its value is, the more randomly the evolution proceeds and does not
lead to desired result. Click a button Evolve to run the evolution.

3. The process of evolution can take some tome. Check interim results published in a
textarea. Its one line conforms to one generation. Fitness values of strategies within the
generation are sorted from the greatest to the lowest in a direction from left to right.

4. When the evolution is finished, see its results. There is a graph, that figures changes
of best strategy’s fitness value in time. The best strategy overall is presented under
the graph.

5. The current best strategy is uploaded into a playground visualization in the right
part of the applet. Click the button Create a playground to initialize the playground.
By clicking Test strategy, Robby starts to move in accordance with uploaded strategy.
If he is not stopped by a button Stop testing procedure, Robby performs number of steps
determined by parameter Number of actions per session.

Try another parameters’ settings and observe how the results of evolution change.
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Chapter 4

Conclusion

We aimed to develop user-friendly applications, that would introduce an interesting area of
computer science – bio-inspired computing. We focused mainly on two of its methods – neural
networks and genetic algorithms. Each of the applications solves a task whereon capabilities
of aforementioned methods are easy to see. Neural networks approach was implemented
to solve a problem of language recognition of a text. And a task of Robby, the soda-can-collecting
robot makes use of genetic algorithms. Both the applications are presented in the form of Java
applets.

It can be looked upon the thesis as two separated parts. Both of them are further divided
into halves. The first is devoted to a presentation of theoretical background that is conse-
quently used in the second part describing an application itself.

Chapter 2 deals with a topic of neural networks. According to the aforementioned
schema, section 2.1 treats of biological inspiration and a history of neural networks. And
continues with a mathematical description of one of their variations – backpropagation. Sec-
tion 2.2 follows with a detailed explanation of the language recognition application. We con-
ducted a few experiments to test the applet’s capabilities as well.

Chapter 3 treats of a field of genetic algorithms. Section 3.1 is devoted to an inspira-
tion and a history of the topic. Further, a genetic algorithm is specified to fit our purposes.
Robby, the soda-can-collecting robot is a name of a task solved in a section 3.2. A detailed
description of a result is presented there too. As well as in the chapter 2, we present outcomes
of a few experiments conducted on the applet.

We used an object-oriented programming language Java. We placed an emphasis on easy
and intuitive control of the applets. They bring to users a possibility to study changes in
a behaviour of the algorithms by altering their parameters.

The whole project is located on the web page:

http://is.muni.cz/www/139613/index.html

Along with Java applets, there is a brief introduction into the problematics and a user’s
guide. The text of the thesis is a part of the web page as well.
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Appendix A

List of Robby’s situations

Table A.1 defines meaning of positions in a strategy’s string. Content of one row means
following:

Position in a string North South East West Current site

Location in the string is placed in the first column. The second column characterizes Robby’s
situation (his surroundings and current site).

Situation Situation
1 Empty Empty Empty Empty Empty 31 Empty Empty Empty Wall Wall
2 Can Empty Empty Empty Empty 32 Wall Can Empty Empty Empty
3 Empty Can Empty Empty Empty 33 Wall Empty Can Empty Empty
4 Empty Empty Can Empty Empty 34 Wall Empty Empty Can Empty
5 Empty Empty Empty Can Empty 35 Wall Empty Empty Empty Can
6 Empty Empty Empty Empty Can 36 Empty Wall Can Empty Empty
7 Wall Empty Empty Empty Empty 37 Empty Wall Empty Can Empty
8 Empty Wall Empty Empty Empty 38 Empty Wall Empty Empty Can
9 Empty Empty Wall Empty Empty 39 Empty Empty Wall Can Empty
10 Empty Empty Empty Wall Empty 40 Empty Empty Wall Empty Can
11 Empty Empty Empty Empty Wall 41 Empty Empty Empty Wall Can
12 Can Can Empty Empty Empty 42 Can Wall Empty Empty Empty
13 Can Empty Can Empty Empty 43 Can Empty Wall Empty Empty
14 Can Empty Empty Can Empty 44 Can Empty Empty Wall Empty
15 Can Empty Empty Empty Can 45 Can Empty Empty Empty Wall
16 Empty Can Can Empty Empty 46 Empty Can Wall Empty Empty
17 Empty Can Empty Can Empty 47 Empty Can Empty Wall Empty
18 Empty Can Empty Empty Can 48 Empty Can Empty Empty Wall
19 Empty Empty Can Can Empty 49 Empty Empty Can Wall Empty
20 Empty Empty Can Empty Can 50 Empty Empty Can Empty Wall
21 Empty Empty Empty Can Can 51 Empty Empty Empty Can Wall
22 Wall Wall Empty Empty Empty 52 Can Can Can Empty Empty
23 Wall Empty Wall Empty Empty 53 Can Can Empty Can Empty
24 Wall Empty Empty Wall Empty 54 Can Can Empty Empty Can
25 Wall Empty Empty Empty Wall 55 Can Empty Can Can Empty
26 Empty Wall Wall Empty Empty 56 Can Empty Can Empty Can
27 Empty Wall Empty Wall Empty 57 Can Empty Empty Can Can
28 Empty Wall Empty Empty Wall 58 Empty Can Can Can Empty
29 Empty Empty Wall Wall Empty 59 Empty Can Can Empty Can
30 Empty Empty Wall Empty Wall 60 Empty Can Empty Can Can
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A. LIST OF ROBBY’S SITUATIONS

Situation Situation
61 Empty Empty Can Can Can 107 Wall Empty Empty Can Wall
62 Can Can Wall Empty Empty 108 Empty Wall Can Wall Empty
63 Can Can Empty Wall Empty 109 Empty Wall Can Empty Wall
64 Can Can Empty Empty Wall 110 Empty Wall Empty Can Wall
65 Can Empty Can Wall Empty 111 Empty Empty Wall Can Wall
66 Can Empty Can Empty Wall 112 Can Wall Wall Empty Empty
67 Can Empty Empty Can Wall 113 Can Wall Empty Wall Empty
68 Empty Can Can Wall Empty 114 Can Wall Empty Empty Wall
69 Empty Can Can Empty Wall 115 Can Empty Wall Wall Empty
70 Empty Can Empty Can Wall 116 Can Empty Wall Empty Wall
71 Empty Empty Can Can Wall 117 Can Empty Empty Wall Wall
72 Can Wall Can Empty Empty 118 Empty Can Wall Wall Empty
73 Can Wall Empty Can Empty 119 Empty Can Wall Empty Wall
74 Can Wall Empty Empty Can 120 Empty Can Empty Wall Wall
75 Can Empty Wall Can Empty 121 Empty Empty Can Wall Wall
76 Can Empty Wall Empty Can 122 Wall Wall Wall Empty Empty
77 Can Empty Empty Wall Can 123 Wall Wall Empty Wall Empty
78 Empty Can Wall Can Empty 124 Wall Wall Empty Empty Wall
79 Empty Can Wall Empty Can 125 Wall Empty Wall Wall Empty
80 Empty Can Empty Wall Can 126 Wall Empty Wall Empty Wall
81 Empty Empty Can Wall Can 127 Wall Empty Empty Wall Wall
82 Wall Can Can Empty Empty 128 Empty Wall Wall Wall Empty
83 Wall Can Empty Can Empty 129 Empty Wall Wall Empty Wall
84 Wall Can Empty Empty Can 130 Empty Wall Empty Wall Wall
85 Wall Empty Can Can Empty 131 Empty Empty Wall Wall Wall
86 Wall Empty Can Empty Can 132 Can Can Can Can Empty
87 Wall Empty Empty Can Can 133 Can Can Can Empty Can
88 Empty Wall Can Can Empty 134 Can Can Empty Can Can
89 Empty Wall Can Empty Can 135 Can Empty Can Can Can
90 Empty Wall Empty Can Can 136 Empty Can Can Can Can
91 Empty Empty Wall Can Can 137 Can Can Can Wall Empty
92 Wall Wall Can Empty Empty 138 Can Can Can Empty Wall
93 Wall Wall Empty Can Empty 139 Can Can Empty Can Wall
94 Wall Wall Empty Empty Can 140 Can Empty Can Can Wall
95 Wall Empty Wall Can Empty 141 Empty Can Can Can Wall
96 Wall Empty Wall Empty Can 142 Can Can Wall Can Empty
97 Wall Empty Empty Wall Can 143 Can Can Wall Empty Can
98 Empty Wall Wall Can Empty 144 Can Can Empty Wall Can
99 Empty Wall Wall Empty Can 145 Can Empty Can Wall Can

100 Empty Wall Empty Wall Can 146 Empty Can Can Wall Can
101 Empty Empty Wall Wall Can 147 Can Wall Can Can Empty
102 Wall Can Wall Empty Empty 148 Can Wall Can Empty Can
103 Wall Can Empty Wall Empty 149 Can Wall Empty Can Can
104 Wall Can Empty Empty Wall 150 Can Empty Wall Can Can
105 Wall Empty Can Wall Empty 151 Empty Can Wall Can Can
106 Wall Empty Can Empty Wall 152 Wall Can Can Can Empty
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A. LIST OF ROBBY’S SITUATIONS

Situation Situation
153 Wall Can Can Empty Can 199 Wall Wall Empty Can Wall
154 Wall Can Empty Can Can 200 Wall Empty Wall Can Wall
155 Wall Empty Can Can Can 201 Empty Wall Wall Can Wall
156 Empty Wall Can Can Can 202 Wall Wall Wall Can Empty
157 Can Can Wall Wall Empty 203 Wall Wall Wall Empty Can
158 Can Can Wall Empty Wall 204 Wall Wall Empty Wall Can
159 Can Can Empty Wall Wall 205 Wall Empty Wall Wall Can
160 Can Empty Can Wall Wall 206 Empty Wall Wall Wall Can
161 Empty Can Can Wall Wall 207 Wall Wall Wall Wall Empty
162 Can Wall Can Wall Empty 208 Wall Wall Wall Empty Wall
163 Can Wall Can Empty Wall 209 Wall Wall Empty Wall Wall
164 Can Wall Empty Can Wall 210 Wall Empty Wall Wall Wall
165 Can Empty Wall Can Wall 211 Empty Wall Wall Wall Wall
166 Empty Can Wall Can Wall 212 Can Can Can Can Can
167 Wall Can Can Wall Empty 213 Can Can Can Can Wall
168 Wall Can Can Empty Wall 214 Can Can Can Wall Can
169 Wall Can Empty Can Wall 215 Can Can Wall Can Can
170 Wall Empty Can Can Wall 216 Can Wall Can Can Can
171 Empty Wall Can Can Wall 217 Wall Can Can Can Can
172 Can Wall Wall Can Empty 218 Can Can Can Wall Wall
173 Can Wall Wall Empty Can 219 Can Can Wall Can Wall
174 Can Wall Empty Wall Can 220 Can Wall Can Can Wall
175 Can Empty Wall Wall Can 221 Wall Can Can Can Wall
176 Empty Can Wall Wall Can 222 Can Can Wall Wall Can
177 Wall Can Wall Can Empty 223 Can Wall Can Wall Can
178 Wall Can Wall Empty Can 224 Wall Can Can Wall Can
179 Wall Can Empty Wall Can 225 Can Wall Wall Can Can
180 Wall Empty Can Wall Can 226 Wall Can Wall Can Can
181 Empty Wall Can Wall Can 227 Wall Wall Can Can Can
182 Wall Wall Can Can Empty 228 Can Can Wall Wall Wall
183 Wall Wall Can Empty Can 229 Can Wall Can Wall Wall
184 Wall Wall Empty Can Can 230 Wall Can Can Wall Wall
185 Wall Empty Wall Can Can 231 Can Wall Wall Can Wall
186 Empty Wall Wall Can Can 232 Wall Can Wall Can Wall
187 Can Wall Wall Wall Empty 233 Wall Wall Can Can Wall
188 Can Wall Wall Empty Wall 234 Can Wall Wall Wall Wall
189 Can Wall Empty Wall Wall 235 Wall Can Wall Wall Can
190 Can Empty Wall Wall Wall 236 Wall Wall Can Wall Can
191 Empty Can Wall Wall Wall 237 Wall Wall Wall Can Can
192 Wall Can Wall Wall Empty 238 Can Wall Wall Wall Wall
193 Wall Can Wall Empty Wall 239 Wall Can Wall Wall Wall
194 Wall Can Empty Wall Wall 240 Wall Wall Can Wall Wall
195 Wall Empty Can Wall Wall 241 Wall Wall Wall Can Wall
196 Empty Wall Can Wall Wall 242 Wall Wall Wall Wall Can
197 Wall Wall Can Wall Empty 243 Wall Wall Wall Wall Wall
198 Wall Wall Can Empty Wall
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Appendix B

Java applet deployment

Although an applet deployment looks like a routine task, sometimes it can cause a lot of
problems. Therefore we present here the procedure that was used for our applets. Following
lines describe its application on the language recognition applet.

A Java platform includes a feature called deployment toolkit since the Standard Edi-
tion 6, update 10. The deployment toolkit is a set of JavaScript functions that can be helpful
when deploying applets across various browsers and operating systems. It seems to a user
as a simple button that starts the application.

Figure B.1: Java start button

Let’s have a little deeper look at what happens when clicking the button (the whole process
is illustrated on the figure B.2). The button itself is represented in the HTML code as follows:
1 <script src="http://java.com/js/deployJava.js"></script>
2 <script>
3 var url="http://is.muni.cz/www/139613/launch.jnlp"
4 deployJava.createWebStartLaunchButton(url, "1.6")
5 </script>

The deployment toolkit is loaded on the line 1 and consequently the function called
createWebStartLaunchButton creates the button on a current page. The url variable
defines a location of a JNLP file1. The second parameter defines a minimal version of the Java
environment required for running the applet.

Nevertheless, the more important task of the createWebStartLaunchButton func-
tion is to start the application when the launch button is clicked. It is realized by calling
the function launchWebStartApplication with a parameter, that specifies the location
of the JNLP file.

JNLP file defines how to launch the applet. It contains a XML schema that specifies in-
formation about the applet, a location of jar files, required java version, etc.

HTML
file

deployJava.js
JNLP
file

Java
applet

Figure B.2: Deployment procedure when using Java deployment kit

1. JNLP – Java Network Launching Protocol
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B. JAVA APPLET DEPLOYMENT

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <jnlp codebase="http://is.muni.cz/www/139613/" href="launch.jnlp"

spec="1.0+">
3 <information>
4 <title>Neural network - language recognition</title>
5 <vendor>David Kabáth</vendor>
6 <homepage href="http://is.muni.cz/www/139613/"/>
7 <description>Neural network - language recognition</description>
8 <description kind="short">Language recognition based on artificial

neural network.</description>
9 </information>
10 <security>
11 <all-permissions/>
12 </security>
13 <resources>
14 <j2se version="1.5+"/>
15 <jar eager="true" href="neural_networks_finish.jar" main="true"/>
16 <jar href="10204676/jcommon-1.0.16.jar"/>
17 <jar href="10204676/swing-layout-1.0.4.jar"/>
18 <jar href="10204676/jfreechart-1.0.13.jar"/>
19 </resources>
20 <applet-desc height="737" width="954" name="neural_networks_finish"

main-class="nn_backpropagation.nn_backpropagation_applet">
21 </applet-desc>
22 </jnlp>

Line 2 specifies the JNLP file itself by codebase and href. Following lines 3–9 contain
the description of the applet. Lines 10–12 check and provide the security. In this case,
the <all-permissions/> option allows the applet to access a user’s hard disc. Therefore
all jar files used by the applet have to be signed (or self-signed). Subsequently the lines 13–19
locate used jar files and finally the <applet-desc> section sets the property of the applet.
The most important is the main-class, where the name of the main class is specified
in the form ’package.class’. Please see the Java tutorials page for more detailed description2.
At last, the jar files defined in the JNLP file are downloaded and launched.

This procedure may seem to be a little more complicated than an applet deployment
provided by a simple HTML tag <applet>, but benefits of the deployment kit outweigh
its complexity. The greatest advantage is a Java environment checking, whether the applet
can be run on the current machine. If not, a user is redirected to the official website, where
the required Java version can be downloaded. Hence, it would not happen, that an applet
fails to start with an error message.

Among the other advantages we would like to point out the fact, that the sources of
the applet are defined in the JNLP file. Therefore, we can refer to more jar files. We used four
jar files in our example that are defined on lines 15–18. The first one is an application’s file
and the others are used libraries. Hence, we do not have to put it all in one jar file, but leave
it separated.

Finally, the complicacy of programming a JNLP file can be compensated with the use of
any development environment (e.g. NetBeans) that is able to generate jar files as well as
a JNLP script.

2. http://java.sun.com/docs/books/tutorial/deployment/deploymentInDepth/
jnlpFileSyntax.html
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Appendix C

Content of the enclosed compact disc

• Text of the thesis – PDF, TEX

• Applets – JAR, NetBeans Projects

• Web pages
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