

FYZIKA VE FIRMĚ

Martin Zadražil, 9.11.2011

Forensic Applications in SEM :

Gun shot residue analysis (GSR)
Bullets and cartridge investigation
After car crash filament and bulb investigation
Tool marks investigation
Analysis of hairs, textiles and papers
Paints, prints and ink analysis
Counterfeit signatures, bank notes
Minerals, soils and metals analysis
and many others...

GSR Analysis

Gunshot Residuum analysis.

- Identification of the shooter
- According GSR particles on hands/clothes
 - Typical size, shape
 - Typical composition: Pb, Sb, Ba.

Fig. GSR Particles composition in ternary chart

Beam interruption – Beam blanker

Beam blanker electro-statically deflects the electron beam

TESCAN TRACE GSR Hardware Integration

TESCAN TRACE GSR

Scanning Generator

- Powerful 50 MHz internal Pattern Generator
- 2 x DAC for each stage of deflection coils (X, Y)
- 16-bit scanning ramp DACs (65,536 x 65,536 virtual write field)
- Variable dwell time
- Static and dynamic distortion correction
- Digital compensation of field errors
- Automatic control of electrostatic beam blanker (10 MHz)

TESCAN TRACE GSR

First Class Detectors

Fig. On-line SE/BSE signal mixing

Dwell/pix	1Mpix	100 fields
		analysis
50 us	50 s	> 1 hour
100 ns	0.2 s	< 3 min

Fast detectors save time!!

Synthetic YAG crystal

- High efficiency low noise
- Fast response
 - Unlimited lifetime
- Suitable for high vacuum

SE – Everhardt-Thornley type with YAG

Fast imaging rate (20ns/pix)

Fig. Everhart-Thornley SE Detector

Fig. Phase identification by material contrast Used for GSR particles location

Backscattered Electron Detector

- Crucial for GSR applications
- Detection of particles containing heavy elements

Tescan R-BSE detector

Testing sample: Gold on Si imaging standard

· • • . . . • • • • <u>.</u> • 0 N 0 . . • 0 . • • • • • •

Low-end solid-state BSE detector 1us/ pixel Middle-class scintillation BSE detector 500ns /pxl Latest generation Tescan YAG scintillation BSE 100ns /pxl

Other accessories EBIC, Absorbed current measurement, IR chamber view camera and many other

Stage movements

During GSR analysis the sample is divided into individual fields. Location and analysis of the particles is done filed-by-field using stage movements.

Positioning accuracy is critical parameter for GSR analysis.

Tescan XM Stage:

XY Range : 130 x 130 mm Min. Step : 300 nm Relocation accuracy: < 2um guaranteed Speed: 5 mm/s

Image montage from 1048 BSE image fields with two submicron GSR particles found from totaly 48 detected particles.

Classification by Area

Classification by Roundness

Classification by Extension (Compactness)

- Object size and shape classification
- Over 40 parameters
- Object filtering
- Statistical output

Roundness: R²/(4*đ*Area)

- Circle = 1
- Square = 1.3
- Triangle = 1.5
- Ellipse = 2
- Dendrite ~ 15
- Thread ~ 25

Extension:

- Circle = 0
 - Square = 0.3
 - Triangle = 0.5
- Ellipse = 2.5
- . Dendrite ~ 4
- Thread ~ 14

TRACE GSR Results

	Plano	TESCAN,
	GmbH	a.s.
10/15/20 μm	3	3
0,5 μm	38	36
0,7 μm	30	29
1 µm	33	32
1,5 μm	32	30
2 μm	27	27
2,5 μm	27	27
total no.	190	185

TESCAN TRACE GSR

TESCAN TRACE GSR

Nanotechnology Workbench

What's Inside?

Why SEM + FIB on One System?

Ion Beam Imaging

- ■SE generated by ions
- ■Ion imaging resolution < 5 nm
- ✓ High surface sensitivity with ions
- High channeling effect contrast
- Ion imaging is destructive!

SE imaging FIB ▲, SEM▼

Electron Beam Imaging

- High Electron Imaging Resolution
- Lower surface sensitivity especially for light elements
- Nondestructive reason for "dual beam" systems

Gas Injection System Option

FIB + GIS Capabilities

- Enhanced Milling (Etching) examples: XeF₂ enhances Si, SiO₂ and W etching by factor of 5-100 times; H₂O of PMMA and diamond 10-20 times
- Selective Milling (Etching) combination of enhanced and reduced milling. Examples: H₂O greatly reduces etching of Al, Si and SiO₂; XeF₂ of Al.
- Material deposition Adsorption of the precursor molecules on the surface, ion beam (or e-beam) induced dissociation of the gas molecules, deposition of the material atoms (e.g. Pt, W, C, SiO_x).

Common SEM+FIB Applications

- ■Nano-structuring
- IC process inspection and failure analysis
- ■Nano-tomography
- ■Local cross-sectioning, thin film thickness measurement
- TEM sample preparation
- Biology
- Materials science
- Mineralogy
- Fossils analysis
- Forensic applications

Simulteneous Imaging

Forensic Application

Gun Shot Residue Volume Analysis

Simultaneous imaging of the milling process.

Questions ?

The collectors after assembly on Earth before flight

Activity Name	Start Date	Finish Date	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Feasibility Study	9/1/97	11/30/97	Feasibility	Study										
Selection	12/1/97		▼											
Planning & Design	12/1/97	7/31/98	Planı	ning & Design										
Preliminary Design Review	7/20/98			▼										
Development	8/1/98	10/31/99		Der	velopment									
Critical Design Review	6/16/99				▼									
Assembly & Test	11/1/99	8/8/01				Assembly 8	Test							
Launch	8/8/01						▼							
Flight & Sample Return	8/8/01	9/8/04						Flight & S	Sample Return					
Halo Orbit Insertion	11/16/01						▼							
Sample Collection	12/5/01	4/1/04					[Sample	Collection					
Earth Return	9/8/04									▼				
Sample Analysis on Earth	9/9/04	9/30/08									S	ample Analysis	on Earth	
Extended Analysis	10/1/08	12/31/08												Extended

Genesis Timeline

Although the mission was a success with solar wind atoms implanted into the collectors, the return to Earth was '**non-optimal**' with the parachutes failing to open.

Gravity switch

Monument purchased and designed by Genesis team members to commemorate the return to Earth

Hundreds of collector fragments were retrieved

Activity Name	Start Date	Finish Date	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Feasibility Study	9/1/97	11/30/97	Feasibility	Study										
Selection	12/1/97		V	/										
Planning & Design	12/1/97	7/31/98	Plan	ning & De <mark>sign</mark>										
Preliminary Design Review	7/20/98			V										
Development	8/1/98	10/31/99		De	velopment									
Critical Design Review	6/16/99													
Assembly & Test	11/1/99	8/8/01				Assembly 8	Test							
Launch	8/8/01						V							
Flight & Sample Return	8/8/01	9/8/04						Flight & S	Sample Return					
Halo Orbit Insertion	11/16/01						V							
Sample Collection	12/5/01	4/1/04						Sample	e Collection					
Earth Return	9/8/04									_				
Sample Analysis on Earth	9/9/04	9/30/08									S	ample Analysis	on Earth	
Extended Analysis	10/1/08	12/31/08												Extended
Genesis Time	eline													

REQUIREMENT> SEM-EDS instrument with the ability to perform fast, automated detection, location and quantification of 10-µm clay-based dirt particles, molybdenum coating and platinum substrate over the entire area of minimum 16 cm x 16 cm square) crumpled Pt-Mo foils. Approximately 8000 cm2 Pt-Mo foils will be imaged in total. **Gold Foil Post-landing** < Gold Foil Collector – post landing

VEGA 3 XMU – X8M5

TESCAN's automated particle analysis

Value & Excellence in SEMs

TESCAN

PERFORMANCE IN NANOSPACE