
Attack Detection Using Evolutionary
Computation

Martin Stehlik, Vashek Matyas and Andriy Stetsko

Abstract Wireless sensor networks (WSNs) are often deployed in open and poten-
tially hostile environments. An attacker can easily capture the sensor nodes or replace
them with malicious devices that actively manipulate the communication. Several
intrusion detection systems (IDSs) have been proposed to detect different kinds of
active attacks by sensor nodes themselves. However, the optimization of the IDSs
w.r.t. the accuracy and also sensor nodes’ resource consumption is often left unre-
solved. We use multi-objective evolutionary algorithms to optimize the IDS with
respect to three objectives for each specific WSN application and environment. The
optimization on two detection techniques aimed at a selective forwarding attack and
a delay attack is evaluated. Moreover, we discuss various attacker strategies ranging
from an attacker behavior to a deployment of themalicious sensor nodes in theWSN.
The robustness of the IDS settings optimized for six different attacker strategies is
evaluated.

Keywords Attacker strategy ·Evolutionary algorithm · Intrusion detection system ·
Multiobjective optimization · Wireless sensor network

1 Introduction

Wireless Sensor Networks (WSNs) are highly distributed networks often deployed
in open or even hostile environments. Sensor nodes are usually small low-cost and
resource constrained devices with no tamper resistance employed and can be eas-
ily captured by an attacker. Furthermore, malicious devices considered as benign
by other sensor nodes can be deployed in the network. Possible attacks on WSNs
range from passive eavesdropping where an attacker listens on the ongoing traffic in
promiscuous mode to active interfering and manipulating of the communication.

M. Stehlik (B) · V. Matyas · A. Stetsko
Masaryk University, Brno, Czech Republic
e-mail: xstehl2@fi.muni.cz

© Springer International Publishing AG 2017
A. Abraham et al. (eds.), Computational Intelligence in Wireless Sensor Networks,
Studies in Computational Intelligence SCI 676, DOI 10.1007/978-3-319-47715-2_5

99

100 M. Stehlik et al.

In this chapter, we aim at the detection of such active attacks by sensor nodes
themselves with respect to restricted capabilities of the sensor nodes. Each sen-
sor node can be equipped with an intrusion detection system (IDS) [1]. Thus, an
entire network area can be monitored for malicious behavior in a distributed manner.
Several detection techniques have been proposed to detect various kinds of attacks
on WSNs. Unfortunately, many of them are proposed for a specific case or their
optimization is left unresolved. Moreover, incorporating an IDS brings necessary
additional demands on sensor nodes’ resources. In our work, we aim at automatic
configuration of these detection techniques for a specific application scenario, topol-
ogy and environment, using evolutionary computation having both the IDS accuracy
and resource consumption in mind.

In this work, we demonstrate the functionality of our optimization framework
consisting of a simulator and an optimization engine utilizing multi-objective evo-
lutionary algorithms on two detection techniques proposed in [2]. The detection
techniques are aimed at two kinds of active attacks—the selective forwarding attack
and the delay attack. Our optimization framework provides Pareto front approxi-
mations consisting of different IDS settings with respect to three objectives—false
positives, false negatives and memory consumption. We elaborate on these IDS set-
tings found by evolution. Furthermore, we discuss various attacker strategies that
can be used by an attacker and discuss the robustness of the IDS settings found for
a specific attacker strategy in cases where another attacker strategy is used.

The contributions of this work are the following:

1. We provide a complex optimization framework for optimization of IDSs for
WSNs. Various multi-objective evolutionary algorithms (NSGA-II, SPEA2,
IBEA) can be used for optimization. The optimization framework can be eas-
ily extended to solve another optimization issue in WSNs.

2. We demonstrate the functionality of the optimization framework through exten-
sive experiments on detection techniques detecting two different attacks—
selective forwarding and delay attack.

3. We discuss and evaluate various attacker strategies. The IDS is optimized for six
different attacker scenarios. Robustness of optimized IDS settings for each of the
attacker strategy is evaluated on every other attacker strategy.

The chapter is organized as follows. In Sect. 3, we present our intrusion detection
system and describe detection techniques used to detect the selective forwarding
attack and the delay attack. Our optimization framework utilizing evolutionary algo-
rithms and the metrics we use to compare resulting populations are described in
Sect. 4. Various attacker strategies that can be used by an attacker are discussed in
Sect. 5. In Sect. 6, we specify the settings of the evaluated IDS and of the experi-
ments. Also, our test caseWSN is presented. Experiment results are elaborated upon
in Sect. 7. Related work is discussed in Sect. 2 and the chapter is concluded in Sect. 8.

Attack Detection Using Evolutionary Computation 101

2 Related Work

The related work is divided into two parts. First, we discuss related detection tech-
niques for WSNs. Second, we discuss computational intelligence-based solutions
for IDSs in WSNs.

2.1 Selective Forwarding and Delay Attacks

Selective forwarding attack has been among the most discussed attacks in WSNs
during recent period. Karlof and Wagner [3] introduced selective forwarding attack
in WSNs and discussed the possibilities of an attacker to place a malicious sensor
node on a path between data source and base station. da Silva et al. [1] defined a
“retransmission rule” as listening to a packet by an IDS whether it was forwarded
by monitored sensor node or not. Krontiris et al. [4] set a threshold value for the
percentage of packets dropped to 20%. Another proposals of detection techniques
for selective forwarding attack where the parameter setting is left unresolved can
be found, e.g., in [5, 6]. To the best of our knowledge, no work has been published
on such a complex parameter optimization for collaborative detection of selective
forwarding attack.

The delay attack detection has not been discussed very much. da Silva et al. [1]
defined a “delay” rule as a timeout beforewhich a retransmission bymonitored sensor
node has to occur. Liu et al. [7] used the forwarding delay timemeasurement for their
complex insider detection technique but its parametrization was left unresolved. To
the best of our knowledge, we are the first who present a complex collaborative
detection technique aimed at the delay attack detection.

2.2 Computational Intelligence-Based Solutions

A fewpapers utilize computational intelligence-based solutions to secureWSNswith
IDSs.

Khanna et al. used single-objective evolutionary algorithms for several optimiza-
tion issues inWSNs [8–10]. In [8], the authors aimed at minimizing power consump-
tionwhilemaximizing the coverage and exposure by switching the sensor nodes to the
following states: (1) inactive sensor node; (2) active sensor node; (3) cluster-head;
and (4) inter-cluster router. In [9], Khanna et al. presented an approach on a WSN
deployment how it can be optimized dynamically and considered from the security
point of view as well. The authors considered deployment of cluster-heads and inter-
cluster routers allowing encryption and authentication, respectively. Finally, in [10],
Khanna et al. incorporated local monitoring nodes into the network that observed
suspicious behavior like data message patterns, message collisions and sensor

102 M. Stehlik et al.

positioning in their neighborhood. An IDS placement problem was addressed by
adding evaluation of local monitoring nodes to the fitness function used in [9]. In all
papers [8–10], all the objectives were blended into a single fitness function.

To the best of our knowledge, Heady et al. were the first introducing
evolutionary algorithms to the area of IDSs for wired networks and the work of
Khanna et al. [10] is the only work on optimization of IDSs [11] using evolutionary
algorithms for WSNs except of our IDS optimization framework. We introduced
multi-objective evolutionary algorithms to IDS in WSNs in [12].

Several works on another metaheuristics utilized for IDSs inWSNs can be found.
Banerjee et al. [13, 14] used swarm intelligence—ant colony—for localization of
the source of intrusion. The ants traverse the sensor nodes via edges that connect
the neighboring sensor nodes. Adjacent sensor nodes with maximum number of
violations represented as pheromone are preferred. When an ant visits an edge, the
application of the local update rule makes the edge pheromone level diminish to
the edge becoming less attractive. Mukherjee and Sen [15] detect intentionally sent
erroneous data on the base station using neural networks. A hierarchical network is
assumed where non-leaf sensor nodes aggregate data from their descendants. The
neural networks predict the sensed data of a node N , provided the data reported by
neighbors of the node N are given.

3 Intrusion Detection

Sensor nodes are vulnerable devices given by the nature of wireless communication
and because of other limitations. They are usually deployed in open or even hostile
environments where they can be easily manipulated or even stolen by an attacker. In
order to keep their price low and to consume little energy, the nodes consist usually of
a simple hardware where some conventional security countermeasures are unusable.
Furthermore, a typical sensor node is not tamper resistant.

Attackers on WSNs can be categorized into two following classes [3, 16]:

1. Passive attacker uses his own device to listen on the ongoing communication to
obtain sensitive data without any manipulation of the traffic within the WSN.

2. Active attacker uses his own device to disrupt the functionality of the WSN,
manipulates the content of the ongoing packets, drops the packets, presents a
fake identity to other sensor nodes or jams legitimate transmissions.

While passive attacks can be prevented by encryption, intrusion detection systems
(IDSs) are used to detect some kinds of active attacks. In this chapter, we focus on
distributed IDSs [1] where sensor nodes themselvesmonitor the overall network area
by promiscuous listening on the transmissions among their neighbors.

We demonstrate the usability and benefits of IDS optimization using evolutionary
computation forWSNs to detect selective forwarding and delay attacks. The descrip-
tion of these attacks and of our detection techniques proposed to detect these attacks
follows.

Attack Detection Using Evolutionary Computation 103

3.1 Selective Forwarding Attack

Selective forwarding is one of themostwidely discussed attack inWSNs [1, 3–7, 17].
When performing a selective forwarding attack, an attacker inserts amalicious sensor
node into a WSN, where this node is believed as legitimate by the other (benign)
sensor nodes. Once becoming a participant in packet routing, such amalicious sensor
node can easily drop all the packets routed via itself (blackhole attack [3]) or can
forward them selectively based on their contents, sensor measurements, source IDs
or just randomly. Various attacker strategies are discussed in Sect. 5.

3.2 Delay Attack

The prerequisites for the delay attack are similar as for the selective forwarding
attack—a malicious sensor node has to become a member of a routing tree in a
WSN. Consequently, instead of dropping, the packets are intentionally delayed but
finally forwarded. This kind of attack is aimed at time sensitive applications for
WSNs where the delivery time of the packets to the BS is of a crucial importance.
Such applications involve fire detection, people or animal movement detection and
others. The same attacker strategies as for the selective forwarding attack can be
applied for the delay attack.

3.3 Detection Techniques

We use distributed detection [1] where the IDS runs on each sensor node deployed in
a WSN. Thus, the entire network area can be monitored to detect malicious behavior
by sensor nodes themselves. However, this approach requires additional resources
(e.g., memory and energy).

We provide two approaches of distributed detection:

1. Non-collaborative detection—noadditional communication among the IDSnodes
is required.

2. Collaborative detection—IDS nodes collaborate on the decision about monitored
sensor nodes using exchange of voting packets.

We use the following notations to explain the functionality of the IDS [18]:

Notation 1 The set A = {a1, . . . , anm } is a set of all malicious nodes in a network.

Notation 2 The set C = {c1, . . . , cnb } is a set of all benign nodes in a network.

Notation 3 The function x :N → N takes a sensor node index as an argument, and
returns a number of the neighbors that consider this node benign.

104 M. Stehlik et al.

Notation 4 The function y :N → N takes a sensor node index as an argument, and
returns a number of the neighbors that consider this node malicious.

Notation 5 The function n :N → N takes a sensor node index as an argument, and
returns a number of the neighbors of this node.

Notation 6 The function m :N → N takes a sensor node index as an argument, and
returns the amount of memory (in bytes) used by an IDS on this node.

Neighbor bk ∈ C ∪ A of a node c j ∈ C is each node such that c j overheard at
least one packet from bk since the beginning of the WSN operation time.

Monitored neighbor bl ∈ C ∪ A of a node c j ∈ C is such a neighbor of the node c j
that the IDS running on the node c j collects the statistics of the packet forwarding of
the node bl . The selection process for the set of the monitored neighbors is described
in Sect. 3.4.

Solution s is a specific configuration of the IDS in a form of a detection technique
and specific values given to each of the parameters used by that technique.

Ranges of values of IDS parameters discussed in the following text are then
discussed in more detail in Sect. 6.3.

3.4 Non-collaborative Detection of Selective Forwarding
Attack

In [12], we evaluated multi-objective evolutionary algorithms (MOEAs) on a simple
IDS detecting selective forwarding attack. An IDS was running on each sensor node
and continuously monitoring its own sent and also overheard packets addressed
to all monitored sensor nodes whether they were forwarded or dropped by those
monitored sensor nodes. Since the collaborative version used for the experiments is
an extension of the non-collaborative version, we first describe the functionality of
the non-collaborative version.

The basic principle is illustrated in Fig. 1. The black dots represent sensor nodes
that are placed within communication range of sensor node bi ∈ C ∪ A and, thus,
can monitor bi for selective forwarding attack. However, the number of monitored
neighbors is limited to p1 (max monitored nodes), not only due to memory reasons—
the IDS can have incomplete information about furthest neighbors (the IDS nodes
can be interfered, far from the monitored node or hidden behind an obstacle) causing
additional false positives. Thus, each IDS monitors at most p1 nearest neighbors
(according to received signal strengths). The arrows represent routing directions of
the packets—bi forwards all received packets to a parent node b j ∈ C ∪ A. The IDS
maintains a table, where each of p1 rows corresponds to a certain monitored node.
The table contains the number of packets received (PR) and forwarded (PF) by each
monitored node.

The IDS stores all overheard packets addressed to all monitored neighbors in a
single buffer limited to p2 packets (buffer size). Each time a packet P addressed to

Attack Detection Using Evolutionary Computation 105

Fig. 1 Non-collaborative
intrusion detection

a monitored node bi is overheard by the IDS, the PR counter of bi is incremented
and packet P stored in the buffer. Once the node bi forwards the packet P , the IDS
increments PF of the node bi and packet P is removed from the buffer. In case the
packet P is being the oldest one and the buffer is full, it is removed from the buffer
without incrementing the PF counter.

Finally, during the evaluation phase, a sensor node bi is considered as attacker by
the IDS node if two following conditions hold:

1. The IDS node has overheard (or sent) at least p3 packets (min received packets)
addressed to bi .

2. The ratio of forwarded and received packets (PF/PR) is lower than p4 (detection
threshold).

Objective function 1The number of false negatives (f n) of a solution s is calculated
as follows:

f n(s) = 1

|A| ∗
∑

ai∈A

x(ai)

n(ai)
. (1)

The values of f n range from 0 to 1. If every malicious node in the network is
correctly detected by all its neighbors, f n is equal to 0 and if none of malicious
nodes is detected by any of its neighbors, f n equals to 1.

Objective function 2 The number of false positives (f p) of a solution s is calculated
as follows:

f p(s) = 1

|C | ∗
∑

ci∈C

y(ci)

n(ci)
. (2)

The values of f p range from 0 to 1. If every benign node in the network is
considered benign by all its neighbors, f p is equal to 0 and if all benign nodes are
considered malicious by all its neighbors, f p equals to 1.

Objective function 3 The consumed memory (mem) in a solution s is calculated as
follows:

106 M. Stehlik et al.

mem(s) = 8 ∗ p1 + 16 ∗ p2, (3)

8bytes are required for every monitored neighbor (4 bytes for node ID, 2 bytes
for PR counter and 2 bytes for PF counter) and 16 bytes are required for one slot
in the buffer (4 bytes for source address, 4 bytes for receiver address, 4 bytes for
destination address in a case of multiple base stations in the WSN and 4 bytes
for unique ID of a packet). The memory demands come from our real security
middleware (“WSNProtectLayer” for WSN [19]).

The values ofmem range from 0, where the IDS is potentially switched off, to 288
bytes for our upper bounds of p1 = 30 and p2 = 3 used for the selective forwarding
attack. For the delay attack, the upper bounds of p1 = 30 and p2 = 10 results in
the maximum memory consumption of 400 bytes. The upper bound of p1 (max
monitored nodes) is based on our experiments. There is no significant improvement
of any of the objectives with p1 higher than 30. See Sect. 7 for more details. The
upper bounds of p2 (buffer size) are based on throughput analysis in the simulator.

3.5 Collaborative Detection of Selective Forwarding Attack

Collaborative detection of the selective forwarding attack that we first presented in
[2] is an extended version of the non-collaborative detection discussed in Sect. 3.4.
The idea behind the collaborative approach basically comes from [4] regarding to
voting scheme and time windows. However, we enriched the collaborative approach
presented in [4] by parameters “voting threshold” and “minimum received votes”.

The monitored nodes are not evaluated by the IDS nodes at the end of the simula-
tion. Instead, the simulation time is divided into windows of size p5 (time window).
The time windows are of the same fixed size among all the IDS nodes, but they are
asynchronous—the first window of each IDS node is started randomly within the
time interval of p5. At the end of each time window, all monitored neighbors are
evaluated by the IDS node and if an attack was detected, a voting process can be
executed.

An example situation is depicted in Fig. 2. IDS node ck monitors (among others)
node bi and detected too many packets dropped by bi in a time window marked
as “Attack!” in Fig. 3. This decision is based on the same principle as for the non-
collaborative IDS discussed in Sect. 3.4. Since this time, IDS node ck considers a
node bi malicious “locally”—still no alert is produced.

Then, the decision of the node ck is checked with all neighbors of ck . Thus,
ck broadcasts a voting request to its neighbors (arrows from ck in Fig. 2 point the
neighbors of ck that can also monitor node bi). Each of the asked nodes that also
monitors node bi answers at the end of its own time window. If an asked IDS node
considerbi an attacker (either just locally or globally), it answers positively, otherwise
negatively. Node ck waits the following timewindow to collect the responses. Finally,
the monitored node bi is considered an attacker “globally” by ck and ck produces an
alert if two following conditions hold:

Attack Detection Using Evolutionary Computation 107

Fig. 2 Collaborative intrusion detection

Fig. 3 Time windows. Since the end of the window in which the attack was detected, node ck
always votes positively about node bi . Node bi can be globally considered malicious by ck since
the end of window following the one in which the attack was detected if the voting result is positive

(i) At least p6 votes (min votes received) were received.
(ii) The ratio of positive and all responses is at least p7 (voting threshold).

Malicious nodes can falsely report to the IDS nodes to defend another malicious
node. We consider this to be an specific attacker strategy that is discussed in Sect. 5.

Objectives We use the same three objectives as in Sect. 3.4.

3.6 Collaborative Detection of Delay Attack

Time related attacks result in long delays and traffic imbalance [20]. We believe that
a WSN should guarantee the delivery time for some applications (e.g., movement
monitoring or fire detection). In [1], the delay detection rule is defined as follows:
“The transmission of a message by a monitor’s neighbor must occur before a defined
timeout”. We adapt this rule to our IDS detecting delay attack.

A technique that is similar to that one used for the selective forwarding attack can
be extended to detect intentional delays. Using the buffering technique discussed
above, a packet can finally be considered forwarded even though some malicious

108 M. Stehlik et al.

node delayed its transmission. If the size of the buffer is not exhausted, the monitored
packet can be stacked in the buffer for a long time and finally forwarded by the
monitored neighbor with a big delay before being removed from the buffer by the
IDS. Thus, such a packet is undetected for selective forwarding attack, yet useless
for a base station if real-time sensing is required.

An important issue to consider is how long the IDS should wait until the packet is
considered delayed and howmany packets have to be delayed to consider amonitored
neighbor as a delay attacker. We suggest to assign a time attribute to each of the
buffered packets. If a predefined timeout passes, the packet is considered delayed.
As for the selective forwarding attack, an alert is produced when p5 time units pass
and the ratio of delayed packets is higher than p4. In such a case, themajority voting
scheme is applied for a decision about the delay attack.

Our detection technique of the delay attack was proposed in [2] and is evaluated
thoroughly in this chapter. The detection technique extends the selective forwarding
attack detection specified in Sects. 3.4 and 3.5. Aswe focus on collaborative detection
in this chapter, we do not consider non-collaborative detection of the delay attack.
We incorporate another parameter p8 (delay timeout) that is a timeout when a packet
in the IDS buffer is marked as delayed.

Objectives We use the same three objectives as in Sect. 3.4.

4 Computational Intelligence-Based Optimization

In this section, we present our optimization framework that was designed in [18].
The optimization framework consists of two main components: a network simulator
and an optimization engine. The simulator is used for evaluation of the candidate
solutions (in a form of IDS configurations) that were designed by the optimization
engine. Based on the simulation results in a form of metrics described in Sect. 3.4
(false positives, false negatives, memory), the optimization engine produces a new
generation of solutions.

We enhance the optimization framework to easily distribute the computation of the
individuals in each generation to multiple computers using BOINC (Berkeley Open
Infrastructure for Network Computing) distributed computing platform [21] and to
use MOEAs. The efficiency of MOEAs for the problem of IDS optimization for the
WSNs was evaluated in [12]. Also the MOEAs configuration issue was addressed
there. The findings are utilized in this work.

4.1 Simulator

We use the MiXiM simulator [22] that is based on OMNeT++ simulation platform
[23]. The selection of the simulator is based on our previous results on the comparison
of various simulators with the reality [24].MiXiM is a discrete event simulator with a

Attack Detection Using Evolutionary Computation 109

good support of wireless channel modeling and support of all communication layers
of the current sensor nodes.

However, as we showed in a previous work [24], a proper calibration of all the
models is required to obtain sufficiently accurate results. The wireless channel model
is based on a log normal shadowing [25] that is widely used for wireless communi-
cation modeling. Two parameters of the model has to be set up according to modeled
environment. The values of the parameters can be either based on measurements of
wireless signal propagation in the target area or based on recommended values for
target environment type [25]. For experiments in this chapter, we use recommended
values for an outdoor environment (path loss exponent equals to 2 and standard devi-
ation of the attenuation equals to 2). All simulated sensor nodes transmit packets with
power equals to −25dBm (transmission level 3 of TelosB [26] sensor nodes). See
[24] for more information about our calibration approach or [25] for the theoretical
background.

4.2 Evolutionary Algorithms

We found evolutionary algorithms to be a very efficient metaheuristic solving opti-
mization of the IDS forWSNs. As we showed in [12], optimal or near-optimal results
can be found in a feasible time. For a problem solved in this chapter, we are not able to
compute exhaustive search even with the computational grid we have at our disposal.
Thus, we compare the results found by evolution with much more time demanding
sampling.

In our early work [18], we used single-objective evolutionary algorithms, where
a fitness function blending all three objectives with user-specified weights had to be
defined. The main disadvantage was the amount of required experience in weight
definition. If the network operator wanted to change the weights, the optimization
process had to run again. Thus, based on [12], we recommend to use multi-objective
evolutionary algorithms (MOEAs) that eliminate the mentioned problem.

Using MOEAs, the network operator can choose any IDS setting from the Pareto
front1 [27] approximation and change the selection to another optimized one any time
according to current requirements. Based on results from [12], where we evaluated
48 different MOEA’s configurations for two widely used algorithms—NSGA-II [28]
andSPEA2 [29],we configure the evolution as follows in this chapter: The population
consists of 200 individuals, 200 generations are computed, probability of multi-point
crossover is 0.5 for all experiments. Mutation probability of each parameter is 0.01
or 0.25 for results marked as “Evo #1” and “Evo #2”, respectively. If mutation is

1Pareto front is a set of non-dominated solutions with respect to all objectives. Thus, a network
operator can easily choose between a solution A with a better IDS accuracy but higher resource
consumption or solution B with a worse IDS accuracy but lower resource consumption. Solution
C, that is dominated by A and B in all objectives is dominated and, thus, is not a member of the
Pareto front.

110 M. Stehlik et al.

performed, the value is shifted randomly within the interval of 10% of the overall
parameter range. NSGA-II is used in all experiments.

Performance Metrics Since we are not able to compare the Pareto front approxi-
mations found either by sampling or by evolution with the true Pareto front, we use
two metrics to mutually compare the different optimization strategies. These metrics
are also used to compare the IDS performances across different attacker strategies.

1. Hyper-volume indicator [27, 30]—Hyper-volume indicator is given by the cal-
culation of a volume of the objective space that is dominated by evaluated Pareto
front approximation. A reference point R that is dominated by each solution in
the Pareto front approximation has to be established—as an upper bound of each
of the objectives. The reference point serves as an upper bound of the dominated
objective space for the volume calculation. Minimal values of the coordinates of
the point R are maximal values of each of the objectives across the population of
the evaluated Pareto front approximation.
In all our experiments where the hyper-volume indicator is calculated, we nor-
malize the objective functionmemory dividing its output by its upper bound (288
for the selective forwarding attack and 400 for the delay attack). The results of the
normalized memory function range from 0 to 1. The value of the reference point
is established to: R = [1, 1, 1] for all calculations of the hyper-volume indicator
in this work to enable mutual comparisons.
The value of the hyper-volume indicator ranges between 0 (potential unrealistic
worst single solution of the IDS setting in the Pareto front approximation consum-
ing all possible memory in spite of evincing the values of false positives and false
negatives equal to 1) and 1 (potential unrealistic ideal single solution of the IDS
setting in the Pareto front approximation consuming no memory and evincing the
values of false positives and false negatives equal to 0).
We use the software presented in [31] to calculate the hypervolume-indicator.

2. Coveragemetric [32]—Coveragemetric enablesmutual comparisonof twodiffer-
ent Pareto front approximations. It is used to calculate the percentage of solutions
found in the Pareto front approximation A that are not dominated by any solution
found in the Pareto front approximation B, and vice versa.
The value of the coverage metric when calculating percentage of solutions in A
dominated by solutions in B ranges from 0% when none of the solutions in A is
dominated by any solution in B to 100% when each solution in A is dominated
by at least one solution in B. Note that if a mutual comparison is required, we
also have to calculate the percentage of solutions in B dominated by solutions in
A resulting in two numbers all together as the coverage metric output.

3. Number of simulations—Since the evaluation of each individual by simulator is
time demanding (approx. 5–8min), we also provide a number of simulation runs
needed within the whole optimization process.

4. Number of non-dominated solutions—This metric denotes the number of non-
dominated solutions in the resulting Pareto front approximation.

Attack Detection Using Evolutionary Computation 111

5 Attacker Strategies

The aim of this section is to elaborate on the strategies an attacker can take to
efficiently selectively forward or drop the packets. We also discuss the impact of
each of the strategy on the IDS performance. Furthermore, we provide a set of
recommendations with respect to corresponding attacker strategies for a network
operator before setting up the IDS optimization process.

We divide the concepts of attacker strategies into the three following categories:

1. Attacker behavior—content-based selection, ratio of dropped and all received
packets by a malicious node, malicious voting.

2. Deployment of malicious nodes—strategy of malicious sensor nodes deployment
in a WSN.

3. Number of deployed malicious nodes—ratio of malicious and all sensor nodes in
a WSN.

Note that if only the selective forwarding attack is discussed in the following text,
the attacker strategy for the delay attack would be equivalent. The only difference
would be that selected packets on malicious nodes are delayed instead of being
dropped.

5.1 Attacker Behavior

A malicious sensor node can take various strategies w.r.t. the decision whether a
packet should be forwarded or not. In the ultimate case, all the packets can be dropped
by a malicious node ai ∈ A, effectively changing the selective forwarding attack to
a blackhole attack [3]. However, the blackhole attack can be easily detected either
by our distributed IDS running on the neighboring sensor nodes (dropping ratio
higher than any value of the detection threshold p4 is detected). Furthermore, the
base station not receiving any packets from such sensor node ai and also from all the
descendants of the ai can easily detect the attack.

We discuss different approaches of the selection of the packets to be dropped that
an attacker can use to decrease the probability of being detected. Furthermore, we
discuss impacts of malicious voting.

DroppingRatioRandomdroppingwith a given ratio is probably themost simpleway
of selective forwarding attack. The attacker specifies the percentage s1 of dropped
packets by a malicious node ai ∈ A as the only parameter for the random dropping.
Consequently, the packets that should be forwarded by ai are dropped with the
probability s1.

Recommendation for the IDS We recommend usage of the collaborative version of
the IDS optimized for a target WSN as discussed in Sect. 3. A network operator

112 M. Stehlik et al.

decides carefully on the minimum percentage s1 of the packets dropped by the sen-
sor nodes that is considered unacceptable. Such a dropping rate is to be set up for all
the simulated malicious sensor nodes. The optimization process adapts all the IDS
parameters, particularly the parameter p4 (detection threshold), taking into account
also packet losses caused by interference, congestion and other aspects of the unre-
liable wireless communication. When such an optimized IDS is used in a real WSN
and any malicious (or malfunctioning) sensor node drops packets with even a higher
frequency, then such sensor node is detected even more reliably. In the other case, if
the dropping ratio of a monitored node is lower, the selective forwarding attack may
not be detected because such a behavior is considered acceptable.

Dropping in Bulk Another behavior of a malicious node ai ∈ A can be dropping
the packets in a bulk. It means that all or some percentage s1 of the packets can be
dropped by ai , but only within specific time intervals with a minimum length of s2
seconds for each of them. This strategy can be used to suppress transmitted packets
during some specific sensitive period (e.g., dropping packetswhile a physical attacker
is approaching the area of a WSN that detects people movement and protects some
environment against unauthorized access).

Recommendation for the IDS We recommend to set up the parameter p5 (time win-
dow) of the IDS to the length of s2

2 at maximum for theminimum length of the interval
s2 seconds that is considered unacceptable. This countermeasure ensures that all the
IDSs in the neighborhood of the malicious sensor node ai have a chance to detect
dropping (if it is higher than p4—detection threshold) within a single timewindow—
not decreased by a non-attacking phase of the malicious node ai . If such an upper
bound for the parameter p5 is set up during the optimization, the other IDS parame-
ters are optimized accordingly—particularly the parameter p3 (minimum received
packets) depends on the length of the time window. Note that both recommendations
for the dropping ratio and the dropping in bulk complement each other.

Content Based Dropping A malicious node ai ∈ A can drop the packets based
on their contents distinguishing important and non-important packets. To give an
example of such a situation, the important packets can inform the base station about
the presence of an intruder while the non-important packets can be periodically
sent “still-alive” packets informing the base station that the sensor nodes are in an
operation mode.

Recommendation for the IDSWe recommend to extend the IDS by a separate buffer
and table for such important packets—a monitoring node will separately monitor
important and non important packets. This would mean additional requirements
on the amount of memory consumed by the IDS (approx. doubled). However, the
optimization process is analogous for both types of the packets. The definition of

Attack Detection Using Evolutionary Computation 113

the malicious behavior in the context of the dropping ratio and the dropping in bulk
discussed above is left to the network operator for both types of the packets.

Source Based Dropping A malicious node ai ∈ A can drop the packets based on
their source addresses in order to drop packets from, e.g., some specific location.

Recommendation for the IDS In some cases, we believe that such a selective dropping
based on the source address can be detected without any changes of the IDS func-
tionality. However, the network operator should consider the impact of the selective
forwarding based on the source address on the overall percentage of dropped packets
by the monitored sensor node. Maintaining separated IDS buffers and tables for each
source address can increase the sensitivity of the IDS on such source based dropping
at the cost of increased memory consumption.

Delay IntervalWhen a delay attack is executed, a malicious node ai ∈ A can delay
the packets (by any strategy discussed above) for a fixed timeout d1 seconds or
randomly within interval 〈d2, d3〉 seconds.
Recommendation for the IDS A network operator should decide carefully on the
minimum timeout d1 of packets delayed by the sensor nodes that is considered
unacceptable. Such a delay timeout is to be set up for all the simulated malicious
sensor nodes. The optimization process adapts all the IDS parameters, particularly
the parameter p4 (detection threshold) and the parameter p8 (delay timeout), taking
into account also packet losses caused by interference, congestion and other aspects
of unreliable wireless communication. When such an optimized IDS is used in a
real WSN and any malicious (or malfunctioning) sensor node delays packets with
even a higher frequency or a longer timeout, then such sensor node is detected even
more reliably. In the other case, if the dropping ratio of a monitored node is lower
or the delay timeout is shorter, the delay attack may not be detected because such a
behavior is considered acceptable.

Malicious Voting A malicious node(s) can falsely vote for benignity in order to
defend another malicious node.

Recommendation for the IDSConsidering such attack on the IDS, a network operator
should adjust p7 (voting threshold). For example, if it is assumed that up to 20% of
neighbors can be malicious, the voting threshold should be lower than 0.8 because
up to 20% neighbors vote falsely for benignity. The precise value of the voting
threshold is subject of the optimization and consequently preferences—there is a
trade-off between false positives and false negatives.

5.2 Deployment of Malicious Nodes

An attacker can deploy malicious sensor nodes into a WSN in specific “patterns”
[33, 34]. However, in most papers, the deployment strategy of the sensor nodes into a
WSN is left unresolved [5, 17] or the placement of malicious sensor nodes is selected
randomly [4, 6, 7].

114 M. Stehlik et al.

Fig. 4 Topology of the
evaluated WSN for the
random attacker strategy.
The sensor nodes are
represented by circles while
the base station is
represented by the red
diamond. The black circles
represent malicious sensor
nodes for the scenario with
2% malicious sensor nodes
and together with the gray
circles for the scenario with
10% malicious sensor nodes
(color figure online)

Influence of several realistic malicious nodes deployment strategies on the IDS
performance is discussed in this subsection. It might be impossible for the network
operator to predict the attacker deployment strategy. Thus, the impact of all discussed
attacker strategies on the IDS parametrization is evaluated in Sect. 7 to give a clue
how themalicious sensor nodes can be deployed in the simulations to obtain as robust
IDS parameters as possible.

Random Attacker Strategy The random attacker strategy is the most widely con-
sidered strategy by IDSs for WSNs [4, 6, 7]. In this approach, the malicious sensor
nodes are inserted into the WSN on random positions. However, we assume this
attacker strategy being far from the behavior of a real attacker in most cases. An
attacker can have access to or may be interested in only a specific part of the envi-
ronment. However, this attacker strategy can be utilized for IDS optimization. If a
sufficient number of sensor nodes is considered, the random deployment can cover
different places (close or far from the base station, with sparsely or densely deployed
sensor nodes, etc.) at the same time.

We parameterize this attacker strategy by a percentage of nodes controlled by an
attacker by s3. In Fig. 4, we give an illustration of the random attacker strategy that
we evaluate in Sect. 7.

Center Drop Attacker Strategy The goal of an attacker within this strategy is to
compromise sensor nodes surrounding the base station. Alternatively, an attacker can
choose an arbitrary target place in the WSN and compromise its surrounding sensor
nodes.

Attack Detection Using Evolutionary Computation 115

Fig. 5 Topology of the
evaluated WSN for the center
drop attacker strategy. The
sensor nodes are represented
by circles while the base
station is represented by the
red diamond. The black
circles represent malicious
sensor nodes for the scenario
with 2% malicious sensor
nodes and together with the
gray circles for the scenario
with 10% malicious sensor
nodes (color figure online)

In this chapter, we evaluate a situation where the sensor nodes surrounding the
base station are malicious. We parameterize this attacker strategy by s4—percentage
of themalicious sensor nodes in theWSNordered by a distance from the base station.
In Fig. 5, we give an illustration of the random topology that we evaluate in Sect. 7.

Direct Center Attacker Strategy In the direct centre attacker strategy, we consider
an attacker passing through the WSN along a line segment, reaching the base sta-
tion and leaving the WSN on the opposite direction. We assume an attacker can
compromise the sensor nodes located nearby his or her trajectory.

The percentage sensor nodes ordered by distance to the trajectory is parameterized
by s5. Our test case and an example of an attacker passing through the WSN from
left side to the right side through the base station is depicted in Fig. 6.

5.3 Number of Deployed Malicious Nodes

The number of malicious sensor nodes in the WSN can vary—based on the options
of an attacker—for each deployment strategy. In fact, parameters s3–s5 reflect the
percentage of deployed malicious sensor nodes for each of the deployment strategy.
We analyze the influence of the changed percentage of present malicious sensor
nodes from the situation during the optimization in Sect. 7.

116 M. Stehlik et al.

Fig. 6 Topology of the
evaluated WSN for the direct
center attacker strategy. The
sensor nodes are represented
by circles while the base
station is represented by the
red diamond. The black
circles represent malicious
sensor nodes for the scenario
with 2% malicious sensor
nodes and together with the
gray circles for the scenario
with 10% malicious sensor
nodes

5.4 Robustness Evaluation of Optimized Solutions
on Different Attacker Strategies

One of the contributions of this chapter is an optimization of the IDS parameters
for different attacker strategies. The problem is that the concrete malicious node
deployment cannot be reliably predicted in advance. In order to discuss the robustness
of the found optimized solutions, we evaluate the performance of optimized IDS for
a given attacker strategy against other attacker strategies in Sect. 7. We use two
approaches of the evaluation of the impact of changes in the attacker strategy on the
IDS performance, the description of which follows.

We use the following notation to explain the evaluations we performed to compare
IDSs optimized for various attacker strategies:

Notation 7 The set AS = {as1, . . . , asnas } is a set of all nas attacker strategies
evaluated in this chapter.

Notation 8 The set PF = {p f1, . . . , p fnas } is a set of all Pareto front approxima-
tions. Each Pareto front approximation p fi ∈ PF where 1 ≤ i ≤ nas was optimized
for an attacker strategy asi .

Single Pareto Front Approximation Evaluation onMultiple Attacker Strategies
For each Pareto front approximation p fi ∈ PF optimized for an attacker strategy
asi , we compute the performance of each IDS setting from p fi for all other attacker
strategies as j ∈ AS \ {asi }. This way, we evaluate the changes of the IDSs perfor-
mances optimized for a specific attacker strategy in a situationwhere another attacker
strategy operates.

Attack Detection Using Evolutionary Computation 117

Multiple Pareto Front Approximations Evaluation on Single Attacker Strategy
For each attacker strategyasi ∈ AS, we compare the performances of the IDS settings
in all Pareto front approximations p f j ∈ PF \ {p fi } with the performances of the
IDS settings in Pareto front approximation p fi . This way, we evaluate how the IDSs
performs in a situation where another strategy operates comparing to the IDSs that
were optimized for that situation.

6 Experiment Settings

In this section, we describe experiment settings and optimization scenarios that we
use for evaluation of our IDSs. We also present the ranges of IDS parameters.

6.1 Application

The simulated WSN that we evaluate in this work is inspired by the police unit
scenario in [19]. Each sensor node sends “still alive” packets every second. These
packets can be either dropped or delayed bymalicious sensor nodes. Themain goal of
our optimization framework is to optimize the IDS for a given scenario (application,
topology, environment, etc.) and to be robust for various attacker strategies in that
environment. We do not aim to provide general IDS setting for any WSN.

One hour of the WSN operation time is simulated in all evaluations.

6.2 Topology and Routing

We build on the topology and routing same as in [12], so that we are able to com-
pare the collaborative and non-collaborative IDS results. The network consists of
250 uniformly distributed sensor nodes deployed in an area of 200m × 200m. The
average area for one node is 160m2 and the distance between two nearest neighbors
is 12.65m on average. During the simulation, a node b j ∈ C ∪ A has 41 neighbors
(nodes from which b j heard at least one packet during the simulation) on average.

The routing tree is static with longest branches of 8 hops. The topology and the
routing tree are depicted in Figs. 4, 5 and 6.

6.3 IDS Parameters and Sampling

In Table1, we summarize all eight parameters of the IDS presented in Sects. 3.4–
3.6, their maximum and minimum values. Steps and sampling values are used for
a time demanding sampling that we computed to compare the results found by the
evolution.

118 M. Stehlik et al.

Table 1 The list of IDS parameters

Name Description Range Step Sampling

p1 Maximum
monitored nodes

〈1, 30〉 1/3 3, 9, 27

p2 Buffer size 〈1, 3〉/〈1, 10〉 1 1, 2, 3/3, 6, 9

p3 Minimum
received packets

〈1, 30〉 1/5 1, 15, 30

p4 Detection
threshold

〈0.05, 0.95〉/〈0.1, 0.9〉 0.05/0.1 0.25, 0.5, 0.75

p5 Time window 〈10, 300〉 10/30 10, 150, 300

p6 Minimum
received votes

〈1, 10〉 1/2 1, 5, 10

p7 Voting threshold 〈0.1, 1〉 0.1 0.25, 0.5, 0.75

p8 Delay timeout 〈1, 5〉 1 1, 3, 5

If multiple values are presented and divided by “/”, the first values were used for the detection of
the selective forwarding attack and the second values then for the delay attack detection

Sampling In order to show that evolution can find good enough results in reasonable
time, we compared the results found by MOEAs with a true Pareto front found
using exhaustive search on multiple computers in [12]. However, we are not able to
compute all possible settings for this more complex IDS with additional parameters
even if we can run about 200 simulations in parallel in our computational cluster.
The exhaustive search would require 148,770,000 simulation runs for the scenario
with the selective forwarding attack and 2,479,500,000 for the scenario with the
delay attack if all possible settings would be evaluated. One simulation takes approx.
5–8min.

We decided to sample the search space in the following way. For each parame-
ter pi , where i ∈ {1, . . . , 7} for the selective forwarding attack and i ∈ {1, . . . , 8}
for the delay attack, we choose three carefully considered “sampling” values pre-
sented in Table1. The selection is based on experience and results obtained during
early experiments. Then, we iterate over all parameters p1, . . . , p7 for the selective
forwarding attack, respective p1, . . . , p8 for the delay attack. For each of the para-
meters, we evaluate all settings within their ranges using steps provided in Table1.
For each value of each parameter pi , we evaluate all “sampling” settings of all other
parameters. Using this approach, we reduce the number of simulations to 84,564 for
the selective forwarding attack and to 122,472 for the delay attack.

Having the set of solutions obtained from the aforementioned sampling,we extract
only those solutions that are not strictly dominated by any other solutions within this
set. We call this extracted set the Sampling Pareto front approximation. This set
is compared to Pareto front approximations found by evolutions. Note that finding
the Sampling Pareto front approximation is much more computationally demanding
than finding Pareto front approximations using evolution as discussed in Sect. 7. We

Attack Detection Using Evolutionary Computation 119

computed the sampling for an attacker strategy with randomly deployed 5 (2%)
malicious sensor nodes for both selective forwarding and delay attacks.

6.4 Evaluated Attacker Strategies

In all experiments, the malicious sensor nodes drop randomly 50% of packets that
should be forwarded for the selective forwarding attack. For evaluation of the delay
attack, the malicious sensor nodes delay all packets within interval of 〈0, 5〉 s.
Deployment ofMalicious NodesWe optimize the IDS for six different deployments
of malicious sensor nodes for the selective forwarding attack. For each deployment
strategy (random, center drop and direct centre), we evaluate two cases: with 5
malicious sensor nodes (2%) andwith 25malicious sensor nodes (10%). All attacker
strategies are illustrated in Figs. 4, 5 and 6.

For the delay attack, we evaluate only the case with 5 (2%) randomly deployed
malicious sensor nodes due to computational time restrictions. However, the charac-
teristics that are related to overhearing the communication and to the collaborative
decision are equivalent to the selective forwarding attack that we evaluated thor-
oughly.

No “leaf” sensor node (a node that has no descendant) is malicious within the
experiments. These sensor nodes can neither perform efficiently the selective for-
warding or the delay attack (no packets are forwarded by them), nor can be detected
by any IDS node (no packets addressed to them can be overheard).

7 Experiment Results

In this section, all experiment results are presented and discussed. First, we show the
increased accuracy of the collaborative IDS in comparisonwith the non-collaborative
IDS, in the case of detecting the selective forwarding attack. Then we compare
evolution performance for selective forwarding and delay attacks with much more
time demanding sampling. Finally, we provide a mutual comparison of IDS settings
optimized for various attacker strategies.

7.1 Selective Forwarding Attack

First, we briefly compare the Pareto front approximation found by sampling for the
collaborative IDSwith a true Pareto front found for the non-collaborative IDS in [12].
Both detection techniques are evaluated in the same WSN and attacker strategy—
randomdeployment of 2%malicious sensor nodes. In Fig. 7, we showdifferent views

120 M. Stehlik et al.

300

Memory
200

(a) Memory / FN / FP view

10000
0.5

FN

0

0.1

0.2

0.3

0.4

1

F
P

F
P

0

0.1

0.2

0.3

0.4

FN

0 0.2 0.4 0.6 0.8 1

(b) FN / FP view

Non-collaborative IDS
Collaborative IDS

F
P

0

0.1

0.2

0.3

0.4

Memory

0 50 100 150 200 250 300

(c) Memory / FP view

Memory

0 50 100 150 200 250 300

F
N

0

0.2

0.4

0.6

0.8

1
(d) Memory / FN view

Fig. 7 Sampling Pareto front approximation for the collaborative selective forwarding attack detec-
tion compared to the true Pareto front for the non-collaborative selective forwarding attack detection.
All the solutions found by sampling for the collaborative detection dominate the solutions found
by exhaustive search for the non-collaborative detection

of the optimized solutions for both detection techniques in the three-dimensional
objective space.

In Fig. 7a, we show that all sampled non-dominated solutions found for collabo-
rative IDS dominate the Pareto optimal solutions found for non-collaborative IDS.
Measuring the dominated volume of the objective space by the hyper-volume indi-
cator, we obtain 0.525 for the non-collaborative IDS and 0.5742 for the collaborative
IDS. In Fig. 7b, we show that the collaboration among the IDS nodes can significantly
decrease the number of false positives—a consensus has to be made to label a node
as attacker. A decrease of false negatives is caused by dividing the monitoring time
into smaller windows, where, in each of them, a potential dropping can be detected.
In Fig. 7c, d, we can see that higher memory consumption caused particularly by a
higher number of monitored neighbors decreases false negatives on one hand (more
neighbors being monitored means also higher number of truly recognized malicious
nodes), but increases false positives on the other hand (if a neighbor is not monitored,
it can neither be labeled as malicious one truly, nor falsely).

As we shown, the collaborative approach provides better IDS results even though
we are not able to evaluate the whole search space. However, the collaborative IDS

2As shown below, evolution can improve the results farther.

Attack Detection Using Evolutionary Computation 121

requires a communication overhead. Nevertheless, we would like to emphasize that
the overhead is not significant—at least for our simulated application. Each sensor
node ck ∈ C initiates the voting scheme at most once for each monitored neighbor
bl ∈ A ∪ C during the whole WSN operation time. Each neighbor ci ∈ C of the ck
has to answer to the voting request if the bl is also monitored by the ci . Sensor
nodes monitor 30 neighbors at most and are monitored by at most 30 neighbors on
average. That means that ck initiates 30 voting request at most in case all monitored
neighbors are suspicious. The average sensor node ck has to answer on 30 voting
requests (but only in the unrealistic worst case—only if it also monitors the sensor
node in the request) on average for each of 41 neighbors (see Sect. 6.2 for more
details). The overall overhead would be 1260 packets sent by each IDS node in such
very unrealistic worst case. Note that the sensor nodes in a distance of one hop from
the base station forward approx. 2500 packets during only one hour of the operation
time of the WSN.

Evolution can speedup the process of finding solutions that are similar or even
dominate the solutions found by the sampling. We present results of two multiob-
jective evolution runs (marked as “Evo #1” and “Evo #2”). The evolution settings
are described in Sect. 4.2. The solutions found by the evolution compared to those
found by sampling are depicted in Fig. 8.

In Table2, we present results of all four metrics for each of the optimization
process. We can see that both evolution runs outperforms the sampling according to

300

Memory
200

(a) Memory / FN / FP view

10000
0.5

FN

0

0.1

0.4

0.2

0.3

1

F
P

F
P

0

0.1

0.2

0.3

0.4

FN
0 0.2 0.4 0.6 0.8 1

(b) FN / FP view

F
P

0

0.1

0.2

0.3

0.4

Memory
0 50 100 150 200 250 300

(c) Memory / FP view

Memory
0 50 100 150 200 250 300

F
N

0

0.2

0.4

0.6

0.8

1
(d) Memory / FN view

Sampling Pareto
front approximation
Evo #1
Evo #2

Fig. 8 Results for detection of the selective forwarding attack found by evolution compared to the
results of the Sampling Pareto front approximation

122 M. Stehlik et al.

Table 2 Performance metrics of the optimization of the selective forwarding attack

Hyper-
volume

Coverage Simulations Solutions

Evo #1 Evo #2 Sampling

Evo #1 0.577 – 65% 100% 13,502 144

(94/144) (144/144)

Evo #2 0.583 82% – 98% 23,558 153

(126/153) (150/153)

Sampling 0.574 22% 19% – 84,564 201

(45/201) (39/201)

Hyper-volume indicator—result of the hyper-volume indicator for each optimization process. Cov-
erage metric—for each Pareto front approximation in a row, the values specify the number of found
solutions that are not dominated by any solution within the result set of Pareto front approxima-
tion specified in the column. Number of simulations—number of simulation runs within the whole
optimization process. Number of non-dominated solutions—number of resulting non-dominated
solutions

the hyper-volume indicator. Measuring the performance by mutual coverage of the
solutions, we can see that solutions found by the evolution runs dominate nearly all
solutions found by the sampling. However, we were able to find several solutions that
have a lower number of false negatives using the sampling than any solution found
by the evolution (see Fig. 8b). The process of optimization by the evolution was less
timedemanding as declare the numbers of required simulations.More non-dominated
solutions were found by the sampling. We recommend to use a larger population size
to obtain higher number of non-dominated solutions, if needed. However, since the
solutions are well spread through the objective space (see Fig. 8), we do not consider
the lower number of found non-dominated solutions as an important disadvantage.

IDS Parameters Discussion We discuss the IDS parameters of the solutions found
by “Evo #2” as its Pareto front approximation evinces best performance.

In the resulting set of solutions, we can find nearly all possible settings of the p1
(max monitored nodes) equally distributed. The values absolutely correlate with the
objective function 3—memory consumption, since all solutions found use a buffer
size (p2) equaled to 1.No other parameter influences thememory consumption. Thus,
the impact of the maximum number of monitored neighbors on the IDS performance
can be directly observed in Fig. 8 (the axis “Memory”). W.r.t. the buffer size—we
can find several solutions having the buffer size equaled to 2 in all attacker strategies
except for the random one (see Sect. 7.3 for other evaluated strategies). Some of
the malicious sensor nodes requires bigger buffer size due to being close to the BS
encountering higher traffic.

The values of the min received packets (p3) varies between 1 and 11 (5.07 on
average). The values of the detection threshold (p4) varies between 0.45 and 0.55
(0.504 on average), the time window (p5) between 43 and 294 s (210 s on average),
the minimum received votes (p6) between 1 and 7 (2.79 on average) and the voting
threshold between 0.28 and 0.99 (0.86 on average).

Attack Detection Using Evolutionary Computation 123

7.2 Delay Attack

In this section, we present non-dominated results for the detection of the delay attack
found both by the sampling and evolution. In Fig. 9, we compare the performance of
the IDS settings found by both the evolution and the sampling in the objective space.
The number of non-dominated solutions found by sampling is reduced comparing to
the selective forwarding attack. It may be caused by the fact that we are not able to
compute such “dense” sampling—the search space ismuch larger (see Table1). Since
the basic principle of the delay attack detection is similar to the selective forwarding,
we can observe similar patterns of the Pareto front approximations. Main difference
is higher memory consumption needed to obtain comparable false negatives. This is
caused by a need of storing the packets in the IDS buffer for longer time.

In Table3, we can see that the evolution provides better results than the sampling
w.r.t all the metrics—similarly to the selective forwarding attack.

IDS Parameters Discussion Such as for the selective forwarding attack, results
found by “Evo #2” are discussed for the delay attack.

The number of max monitored nodes (p1) varies between 1 and 24 (15.9 on
average). The buffer size (p2) varies between 1 and 9 (2.3 on average) and only the
solutionswith p1 higher than18 requiresmore than3 slots in the buffer. Theparameter
min received packets p3 evinces values between 1 and 8 (2.2 on average). The values
of the detection threshold (p4) varies between 0.07 and 0.64 (0.38 on average).

400

Memory

(a) Memory / FN / FP view

200
00

0.5

FN

0

0.1

0.2

0.3

1

F
P

F
P

0

0.05

0.1

0.15

0.2

0.25

FN
0 0.2 0.4 0.6 0.8 1

(b) FN / FP view

Sampling Pareto
front approximation
Evo #1
Evo #2

F
P

0

0.05

0.1

0.15

0.2

0.25

Memory

0 100 200 300 400

(c) Memory / FP view

Memory

0 100 200 300 400

F
N

0

0.2

0.4

0.6

0.8

1
(d) Memory / FN view

Fig. 9 Results for detection of the delay attack found by evolution compared to the results of the
Sampling Pareto front approximation

124 M. Stehlik et al.

Table 3 Performance metrics of the optimization of the delay attack

Hyper-
volume

Coverage Simulations Solutions

Evo #1 Evo #2 Sampling

Evo #1 0.604 – 61% 97% 13,539 118

(72/118) (115/118)

Evo #2 0.625 79% – 99% 23,953 141

(112/141) (139/141)

Sampling 0.582 22% 14% – 122,472 139

(30/139) (19/139)

Hyper-volume indicator—result of the hyper-volume indicator for each optimization process. Cov-
erage metric—for each Pareto front approximation in a row, the values specify the number of found
solutions that are not dominated by any solution within the result set of Pareto front approxima-
tion specified in the column. Number of simulations—number of simulation runs within the whole
optimization process. Number of non-dominated solutions—number of resulting non-dominated
solutions

Note that the behavior of the malicious nodes is different to the selective forwarding
attack—the malicious nodes delay randomly all packets within the interval 〈0, 5〉.
The values of time window (p5) varies between 55 and 295s (131s on average),
the minimum received votes (p6) varies between 1 and 2 (1.23 on average) and the
voting threshold varies between 0.17 and 0.99 (0.77 on average). The delay timeout
(p8) was set to 1 s in each solution—packets forwarded by benign node are usually
transmitted within this timeout in our test case.

7.3 Robustness Evaluation

Various attacker strategies discussed in Sect. 5 are evaluated in this section. Their
settings was presented in Sect. 6.4. We label each of the evaluated case “Random
2%/10%”, “Centre 2%/10%” and “Line 2%/10%” for the random, the center drop
and the direct centre attacker strategy, respectively. The numbers denote the per-
centage of malicious nodes in the network. All Pareto front approximations were
computed using NSGA-II set up according to “Evo #2”. We compare all the results
using hyper-volume indicator.

Single Pareto Front Approximation Evaluation onMultiple Attacker Strategies
Table4 summarizes all performances of the IDS settings in Pareto front approxima-
tion p fi optimized for an attacker strategy asi specified in a row in another attacker
strategy as j specified in a column j .

We can see that any IDS settings in the case with 2% randomly deployed mali-
cious sensor nodes evince the best hyper-volume indicator comparing to the other
attacker strategies, while the case with 2% malicious sensor nodes surrounding the
BS evinces the worst hyper-volume indicator. We found out that while the memory

Attack Detection Using Evolutionary Computation 125

Table 4 Hyper-volume indicator results for various deployment strategies

R 2% R 10% C 2% C 10% L 2% L 10% Average
diff

Random 2% 0.583 0.520 0.453 0.487 0.534 0.462 0.0277

Random
10%

0.567 0.555 0.465 0.510 0.540 0.504 0.0107

Centre 2% 0.562 0.539 0.485 0.507 0.539 0.495 0.0130

Centre 10% 0.565 0.539 0.473 0.515 0.533 0.499 0.0135

Line 2% 0.565 0.494 0.461 0.473 0.554 0.406 0.0420

Line 10% 0.567 0.545 0.466 0.510 0.537 0.513 0.0112

Average 0.568 0.532 0.467 0.500 0.540 0.480

For each strategy A in a row, the values specify the hyper-volume indicator of the IDS settings
optimized for A in another deployment strategy B specified in a column. Looking to the table from
the other perspective, for each strategy A in a column, the values specify the hyper-volume indicator
of the IDS settings optimized for a strategy B specified in a row but evaluated in the strategy A.
The values in bold states for the best results for each of the strategy—IDS settings optimized and
evaluated in the same deployment strategy. The last column specifies the average difference of an
IDS optimized for an attacker strategy in a row to the best result achieved for each of the strategy
in the column

consumption is constant and the number of false positives do not change signifi-
cantly, more significant changes in the number of false negatives can be observed.
This is caused by the placement of malicious nodes—it is more difficult to detect a
malicious sensor node surrounded by other malicious sensor nodes or a malicious
node close to the edge of the WSN receiving packets from only one descendant.3

See Fig. 10 for an example of IDS optimized for Random 2% in the attacker
strategy Random 10% (a–c) and vice versa (d–f). While the memory consumption
is constant and the number of false positives do not change significantly, we can see
more significant changes in the number of false negatives due to higher number of
“close-to-edge” sensor nodes.

Multiple Pareto Front Approximations Evaluation On Single Attacker Strategy
In Table4, we can see for any attacker strategy as j in a column j how each hyper-
volume indicator of the IDS settings p fi optimized for each strategy asi in a row
i differs to the hyper-volume indicator of the IDS settings p f j evaluated (and also
optimized) in the as j . In the last column of the Table4, we present the average
difference to the best value for each Pareto front approximation p fi across all attacker
strategies. The lower the average difference, the more robust is the Pareto front
approximation in another attacker strategies.

We can see that Pareto front approximation of IDS settings optimized for attacker
strategy “Random 10%” performs the best across all other strategies followed by

3Such traffic can be overheard by less (if any) number of neighbors comparing to a sensor node
placed closer to the BS receiving packets from several directions.

126 M. Stehlik et al.

F
P

0

0.05

0.1

0.15

0.2

0.25

0.3

FN
0 0.2 0.4 0.6 0.8 1

(a) 2% -> 10%: FN / FP view

2% malicious nodes
(optimized for 2%)
10% malicious nodes
(optimized for 2%)

F
P

0

0.05

0.1

0.15

0.2

0.25

0.3

Memory
0 50 100 150 200 250

(b) 2% -> 10%: Memory / FP view

Memory
0 50 100 150 200 250

F
N

0

0.2

0.4

0.6

0.8

1
(c) 2% -> 10%: Memory / FP view

F
P

0

0.05

0.1

0.15

0.2

0.25

0.3

FN
0 0.2 0.4 0.6 0.8 1

(d) 10% -> 2%: FN / FP view
10% malicous nodes
(optimized for 10%)
2% malicous nodes
(optimized for 10%)

F
P

0

0.05

0.1

0.15

0.2

0.25

0.3

Memory
0 50 100 150 200 250

(e) 10% -> 2%: Memory / FP view

Memory
0 50 100 150 200 250

F
N

0

0.2

0.4

0.6

0.8

1

(f) 10% -> 2%: Memory / FP view

Fig. 10 Influence of changed percentages of malicious sensor nodes on performance of each
optimized IDS setting in the random attacker strategy. Green crosses represent IDS performance
in an environment for which the IDS was optimized (2% for Figures (a–c) and 10% for Figures
(d–f)). Red circles represent IDS performance in an environment with increased [Figures (a–c) and
decreased (Figures (d–f)] percentage of malicious sensor nodes. Lines connect equal IDS settings

“Line 10%”. On the other hand, the solutions found for the attacker strategy “Line
2%” performs the worst on average in the other strategies.

8 Conclusion

We proposed and implemented a complex optimization framework consisting of an
optimization engine and a simulator. The simulations can be executed on multiple
computers in a distributed manner. This optimization framework is aimed at but not
limited to optimization of intrusion detection systems to detect different types of
active attacks on a WSN. In the simulator, the target WSN can be specified in details
including the environment, topology, physical properties of the sensor nodes, routing
and application.

In this work, we demonstrated usability of the optimization framework on the
selective forwarding attack and the delay attack detection. We have shown that effi-
cient Pareto front approximation can be found using multi-objective evolutionary
algorithm in a reasonable time. Four different metrics were used to evaluate the
optimization processes. The diversity of the non-dominated solutions can provide a
network operator with an option to choose any solution according to requirements
that can be changed during the WSN operation time.

Attack Detection Using Evolutionary Computation 127

We discussed thoroughly attacker strategies of the selective forwarding and the
delay attack as well as usability of our detection techniques for each variation of any
attacker strategy. The IDS was optimized to six different deployments of malicious
sensor nodes and the resulting non-dominated IDS solutions were evaluated for
robustness on each of the deployment.

The optimization framework can be used directly for, e.g., IDS that we imple-
mented within our security middleware for WSNs—“WSNProtectLayer” [19].

Acknowledgements We would like to thank Ludek Smolik, Lukas Sekanina and colleagues from
CRoCS for the discussions and suggestions. This work was supported by the Czech research Project
VG20102014031, programme BV II/2—VS. Access to computing and storage facilities owned
by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided
under the programme “Projects of Large Research, Development, and Innovations Infrastructures”
(CESNET LM2015042), is greatly appreciated.

References

1. da Silva, A.P.R., Martins, M.H.T., Rocha, B.P.S., Loureiro, A.A.F., Ruiz, L.B., Wong, H.C.:
Decentralized intrusion detection in wireless sensor networks. In: Proceedings of the 1st ACM
International Workshop on Quality of Service & Security in Wireless and Mobile Networks,
pp. 16–23 (2005)

2. Stehlik, M., Matyas, V., Stetsko, A.: Towards better selective forwarding and delay attacks
in wireless sensor networks. In: Proceedings of the 13th IEEE International Conference on
Networking, Sensing, and Control (2016)

3. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermea-
sures. AdHoc Netw. J. 1(2), 293–315 (2003)

4. Krontiris, I., Dimitriou, T., Freiling, F.C.: Towards intrusion detection in wireless sensor net-
works. In Proceedings of the 13th European Wireless Conference (2007)

5. Tiwari,M., Arya,K.V., Choudhari, R., Choudhary,K.S.: Designing intrusion detection to detect
black hole and selective forwarding attack in WSN based on local information. Proceedings of
the 2009 Fourth International Conference on Computer Sciences and Convergence Information
Technology. ICCIT ’09, pp. 824–828. IEEE Computer Society, Washington, DC (2009)

6. Hai, T.H., Huh, E.: Detecting selective forwarding attacks in wireless sensor networks using
two-hops neighbor knowledge. In: Seventh IEEE International Symposium on Network Com-
puting and Applications, pp. 325–331 (2008)

7. Liu, F., Cheng, X., Chen, D.: Insider attacker detection in wireless sensor networks. In: INFO-
COM 2007. 26th IEEE International Conference on Computer Communications, pp. 1937–
1945. IEEE (2007)

8. Khanna,R., Liu,H., Chen,H.H.: Self-organization of sensor networks using genetic algorithms.
In: IEEE International Conference on Communications, 2006. ICC’06, vol. 8, pp. 3377–3382
(2006)

9. Khanna, R., Liu, H., Chen, H.H.: Dynamic optimization of secure mobile sensor networks: a
genetic algorithm. In: IEEE International Conference on Communications, 2007. ICC’07, pp.
3413–3418, (2007)

10. Khanna, R., Liu, H., Chen, H.H.: Reduced complexity intrusion detection in sensor networks
using genetic algorithm. In: IEEE International Conference onCommunications, 2009. ICC’09,
pp. 1–5 (2009)

11. Heady, R., Lugar, G., Servilla,M.,Maccabe, A.: The Architecture of a Network Level Intrusion
Detection System. Technical report, University of New Mexico, Albuquerque, NM (1990)

128 M. Stehlik et al.

12. Stehlik, M., Saleh, A., Stetsko, A., Matyas, V.: Multi-objective optimization of intrusion detec-
tion systems for wireless sensor networks. In: Li, P., et al. (eds.) Advances in Artificial Life,
ECAL 2013, Proceedings of the Twelfth European Conference on the Synthesis and Simulation
of Living Systems, pp. 569–576. MIT Press, Cambridge, MA (2013)

13. Banerjee, S., Grosan, C., Abraham, A.: IDEAS: intrusion detection based on emotional ants
for sensors. In: Proceedings of 5th International Conference on Intelligent Systems Design and
Applications, 2005. ISDA ’05, pp. 344–349. IEEE (2005)

14. Banerjee, S., Grosan, C., Abraham, A., Mahanti, P.K.: Intrusion detection on sensor networks
using emotional ants. Int. J. Appl. Sci. Comput. 12(3), 152–173 (2005)

15. Mukherjee, P., Sen, S.:Using learned data patterns to detectmalicious nodes in sensor networks.
In: Proceedings of the 9th International Conference onDistributedComputing andNetworking.
ICDCN’08, pp. 339–344. Springer, Berlin (2008)

16. Roosta, T., Shieh, S., Sastry, S.: Taxonomy of security attacks in sensor networks and counter-
measures. In: The First IEEE International Conference on System Integration and Reliability
Improvements, vol. 25, p. 94 (2006)

17. Loo, C.E., Ng, M.Y., Leckie, C., Palaniswami, M.: Intrusion detection for routing attacks in
sensor networks. Int. J. Distrib. Sens. Netw. 2(4), 313–332 (2006)

18. Stetsko, A., Smolka, T., Matyas, V., Stehlik, M.: Improving intrusion detection systems for
wireless sensor networks. In: Boureanu, I., et al. (eds.) Applied Cryptography and Network
Security. Lecture Notes in Computer Science, vol. 8479, pp. 343–360. Springer, Berlin (2014)

19. Matyas, V., Svenda, P., Stetsko, A., Klinec, D., Jurnecka, F., Stehlik,M.: Securing Cyber Physi-
cal Systems, chapter 5:WSNProtectLayer SecurityMiddleware forWireless Sensor Networks.
CRC Press, Boca Raton, FL (2015). ISBN 978-1-4987-0098-6

20. Roman, R., Lopez, J., Gritzalis, S.: Situation awareness mechanisms for wireless sensor net-
works. IEEE Commun. Mag. 46(4), 102–107 (2008)

21. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Proceedings
of IEEE/ACM Workshop on Grid Computing, pp. 4–10 (2001)

22. Köpke, A., Swigulski, M., Wessel, K., Willkomm, D., Klein Haneveld, P.T., Parker, T.E.V.,
Visser, O.W., Lichte, H.S., Valentin, S.: Simulating Wireless and Mobile Networks in
OMNeT++ the MiXiM Vision. In: Proceedings of the 1st International Conference on Sim-
ulation Tools and Techniques for Communications, Networks and Systems & Workshops,
Simutools ’08, pp., 71–78, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Brussels (2008)

23. OMNeT++. OMNeT++ Network Simulation Framework—Homepage. http://www.omnetpp.
org/. Accessed 22 Oct 2015

24. Stetsko, A., Stehlik, M., Matyas, V.: Calibrating and comparing simulators for wireless sensor
networks. In Proceedings of the 8th IEEE International Conference on Mobile Adhoc and
Sensor Systems, pp. 733–738. Los Alamitos (2011)

25. Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR,
Englewood Cliffs, NJ (2001)

26. Crossbow. TelosB Datasheet. http://www.willow.co.uk/TelosB_Datasheet.pdf. Accessed 26
Oct 2015

27. Talbi, E.G.: Metaheuristics—From Design to Implementation. Wiley, New York (2009)
28. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algo-

rithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
29. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary

Algorithm. Technical report, Eidgenössische Technische Hochschule Zürich (ETH) (2001)
30. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimalµ-

distributions and the choice of the reference point. In: Proceedings of the Tenth ACM SIGEVO
Workshop on Foundations of Genetic Algorithms. FOGA ’09, pp. 87–102. ACM. New York,
NY (2009)

31. Fonseca, C.M., Paquete, L., Lopez-Ibanez, M.:. An improved dimension-sweep algorithm for
the hypervolume indicator. In: IEEECongress on Evolutionary Computation, 2006. CEC 2006,
pp. 1157–1163 (2006)

http://www.omnetpp.org/
http://www.omnetpp.org/
http://www.willow.co.uk/TelosB_Datasheet.pdf

Attack Detection Using Evolutionary Computation 129

32. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

33. Jurnecka, F., Stehlik, M., Matyas, V.:. On node capturing attacker strategies. In: Security Proto-
cols XXII—22nd International Workshop Cambridge. Revised Selected Papers, pp. 300–315.
Springer LNCS (2014)

34. Yu, B., Xiao, B.: Detecting selective forwarding attacks in wireless sensor networks. In 20th
International Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. IEEE (2006)

	Attack Detection Using Evolutionary Computation
	1 Introduction
	2 Related Work
	2.1 Selective Forwarding and Delay Attacks
	2.2 Computational Intelligence-Based Solutions

	3 Intrusion Detection
	3.1 Selective Forwarding Attack
	3.2 Delay Attack
	3.3 Detection Techniques
	3.4 Non-collaborative Detection of Selective Forwarding Attack
	3.5 Collaborative Detection of Selective Forwarding Attack
	3.6 Collaborative Detection of Delay Attack

	4 Computational Intelligence-Based Optimization
	4.1 Simulator
	4.2 Evolutionary Algorithms

	5 Attacker Strategies
	5.1 Attacker Behavior
	5.2 Deployment of Malicious Nodes
	5.3 Number of Deployed Malicious Nodes
	5.4 Robustness Evaluation of Optimized Solutions on Different Attacker Strategies

	6 Experiment Settings
	6.1 Application
	6.2 Topology and Routing
	6.3 IDS Parameters and Sampling
	6.4 Evaluated Attacker Strategies

	7 Experiment Results
	7.1 Selective Forwarding Attack
	7.2 Delay Attack
	7.3 Robustness Evaluation

	8 Conclusion
	References

