
Bis imulat ion Equivalence is Decidable for
Basic Parallel Processes

Scren Chr i s tensen Yoram Hirshfeld*

Faron Moller t

Laboratory for Foundations of Computer Science

University of Edinburgh

Abstract

In a previous paper the authors proved the decidability of bisimulation equival-
ence over two subclasses of recurslve processes involving a parallel composition
operator, namely the so-caUed norrned and live processes. In this paper, we ex-
tend this result to the whole class. The decidability proof permits us further to
present a complete axiomatisation for this class of basic parallel processes. This
result can be viewed as a proper extension of Miiner's complete axiomatisation
of bisimulation equivalence on regular processes.

1 Introduction

Finite-state systems have been extensively studied, both within standard formal lan-
guage theory and within the theory of process calculi. Certainly all standard behavi-
oural equivalences, in particular those within the linear time-branching time spectrum
of [8], are decidable over finite-state systems, and complete aadomatisations have been
developed for various of these equivalences between them (see, eg, [22, 18, 16]). Fur-
thermore, there have been many automated tools designed for the analysis of such
systems (see, eg, [17]).

Recently, questions regarding the decidability of process equivalences on various
classes of infinite-state systems have been studied. Certainly when we move to context-
free processes, language equivalence becomes undecidable. However, of greater interest
in process theory are questions regarding stronger notions of equivalence which take
into account for instance the notions of deadlock, livelock, or causality. In [14, 10] it is
demonstrated that all of the standard behavioural equivalences besides bisimflarity are
undecidable over context-free processes. However in [7] it is shown that bisimilarity
is in fact decidable over this class of infinite-state processes. Previous to this, there
were several proofs of this result for the subclass of normed processes, those processes
which may terminate in a finite number of steps at any point during their execution
([1, 3, 13, 9]).

*On leave from The School of Mathematics and Computer Science, Tel Aviv University.
tSupported by ESPRIT BRA 7166: CONCUR2.

144

The class of context-free processes is provided by a standard process calculus which
admits of a general sequencing operator, along with atomic actions and choice. However
O f greater importance in process theory is the inclusion of some form of parallel com-
binator. Very little work it seems has been spent on exploring the decidability (or
otherwise) of equivalences defined over process calculi which include parallel combin-
ators within recursive definitions. Certainly with very little else you can express the
full power of Turing machines along with their undecidable problems [i9].

In [6] we explored a calculus which inc ludesa simple parallel combinator. We
showed that in the case of normed processes, and also for live processes (processes which
can never perform an infinite number of identical actions in succession uninterrupted),
we can prove decidability of bisimulation equivalence. In order to obtain our results,
we required cancellation laws for normed and live processes. Such a law is not valid
over the whole calculus, so the proof technique presented there is not valid in general.

In this paper, we demonstrate a refinement of the argument presented in [6] which
settles the decidability of bisimulation equivalence over the whole calculus. As with
[6], the technique which we use to provide the decidability result is based on the use of
tableau systems. From the rules we present for generating our tableaux we can extract
a sound and complete equational theory for our calculus. As our class of processes
clearly contains the regular processes this result can be viewed as a proper extension
to Milner's equational theory of bisimulation equivalence on regular processes [18].

2 Preliminaries

We presuppose a countably infinite set of atomic actions A = {a, b, c , . . .} as well as a
countably infinite set of process variables Vat = {X, Y, Z , . . .} . The class of recursive
BPP (Basic Parallel Processes) expressions is defined by the following abstract syntax
equation.

E ::= 0 (inaction)
] X (process variable, X E Var)
I aE (action prefix, a E A)
I E + E (choice)
t EHE (merge)

We shall omit trailing 0s from expressions, thus writing the term a0 simply as a. Also
we shall write E = to represent the term E l l . . . lIE consisting of n copies of E combined
in parallel.

A BPP process is defined by a finite family of recursive process equations

= { x , "~ E, j

where the X i are distinct and the E i are BPP expressions at most containing the
variables Vat(A) = { X l , . . . , X~}. We further assume that every variable occurrence
in the E~s are guarded, that is, appear within the scope of an action prefix. The variable
Xx is singled out as the leading variable and X 1 = Ex is called the leading equatior~

Any finite family A of BPP equations determines a labelled transition system. The
transition relations are given as the least relations satisfying the following rules.

145

a . o / .

b ~ ' ~ b ~ ' J ' ~ b ~ ' ~ b

Figure 1: The transition graph for {X a___cf a(X]lb)}.

E - - ~ E' E ~ E' _
aE --~ E E + F _2_. E' BilE --~ E'HF

E --~ E I ~ E F - ~ F I F --% F I
X --~ E' (Z E A) Z + F - ~ F' EHF ~ EIlF'

Strictly speaking, transitions are defined on BPP expressions relative to some family A
of process equations. However, we shall usually leave the reader to infer the intended
family.

R e m a r k 2.1 It is easy to verify that BPP processes generate finite branching trans-
ition graphs, that is, graphs for which the se~ {F : E --~ F} is finite for each E and
each a. This would not be true if we allowed unguarded expressions. For example, the
process X d_e_f a + al[X generates an infinite-branching transition graph.

R e m a r k 2.2 For the purpose of this presentation, we only consider pure merge for our
parallel combinator. However, it is easily seen that the results of this paper hold (with
the obvious slight modifications) if we allow handshake communication in the style of
CCS. Hence the calculus we are considering is (guarded) CCS without restriction and
relabelIing.

In order to simplify our later analysis, we wish to identify several process expres-
sions. A typical case is that we want]1 to be commutative and associative. We therefore
define the following structural congruence over process expressions.

Def ini t ion 2.3 Let - be the smallest congruence relation over process expressions
such that the laws of associativity, commutativity and O-absorption hold for choice and
merge.

When inferring transitions we may ignore harmless 0-components sitting in parallel.
Thus not to be annoyed by such innocent matters we shall always assume that trans-
itions have been inferred modulo the structural congruence -=. We note that we can
safely do so since the semantic equivalence of bisimflarity (which we introduce shortly)
satisfies the basic laws underlying the structural congruence =.

Example 2.4 Let A be the family { X ~ a(XIIb)}. By the transition rules above
(modulo -) X generates the infinite-state transition graph of Figure 1.

The equivalence between BPP expressions (states) which we are interested in consid-
ering here is bisimilarity [19], defined as follows.

146

D e f i n i t i o n 2.5 A binary relation 7r over BPP expressions (states) is a bisimulation
i f whenever E ~ F then for each a E A,

�9 if E - -~ E ~ then F -2-* F' for some F' with E'TCF~;

�9 if F - -~ F I then E _.L. E' for some E ~ with E'TCF'.

Processes E and F are bisimilar, written E ,,~ F , i.f they are related by some bisimula-
tion.

By Vat(A) | we denote the set of finite multisets over Vat(A) -- { X i , . . . , X ,} and let
Greek letters a, fl range over elements of Vat(A) | Each such a denotes a BPP
process by forming the product of the elements of a, i.e. by combining the elements
of a in parallel using the merge operator. We recognise the empty product as 0, and
we ignore the ordering of variables in products, hence identifying processes denoted by
elements of Vat(A) | up to associativity and commutativity of merge.

De f in i t i on 2.6 A finite family A = {Xi ~ El [1 < i < n} of guarded BPP equations
is defined to be in standard form iff every expression E i is of the form

alo/1 q- . . . -[- a r e a m

where for each j we have a i E Var(A) | Again, we recognise the empty sum as O, and
ignore the ordering of expressions in sums, hence defining the notion of standard form
modulo associativity and commutativity of choice.

In [19] it is shown that any finite family A of guarded BPP equations has a unique
solution up to bisimilarity. Moreover, in [5] we have the following result showing that
any such system can be effectively presented in standard form.

L e m m a 2.7 Given any finite family of guarded BPP equations A we can effectively
construct another finite family of BPP equations A' in standard form in which A ,,, A I,
i.e. the leading variables of A and A J are bisimilar.

For our proof of decidability of bisimulation equivalence we shall rely on the following
ordering on Vat(A) |

D e f i n i t i o n 2.8 By E we denote the well-founded ordering on Vat(A) | given as fol-
lows:

X~'ll... II~" E x['ll... IIX~
iff there exists j such that kj < lj and for all i < j we have k i = 1 i.

It is straightforward to show that E is well-founded. We shall furthermore rely on the
fact that E is total in the sense that for any a, fl E Var(A) | with a ~ fl it follows that
a E fl or fl E a. Also we shall rely on the fact that]~ E a implies]~]['r E a[[*/for any
7 E Vat(A) | These properties are easily seen to hold for E.

147

3 D e c i d a b i l i t y

In this section we fix a finite family A = {Xi ~ t E/ I 1 < i < n} of guarded BPP
equations in s tandard form. We are interested in deciding for any a and fl of Vat(A) |
whether s ,-,/3 is the case or not. The procedure for checking s ,~/3 is based on the
tableau decision method as for instance utilised by Hiittel and Stirling in [13]. The
tableau system is a goal directed proof system. The rules of the tableau system are
built around equations E = F where E and F are BPP expressions. Each rule has the
form

E = F

E l = E l . . . E.=F.
possibly with side conditions. The premise of the rule represents the goal to be achieved
(that E ,-, F) whereas the consequents represent (sufficient) subgoals to be established.

A tableau for c~ = 3 is a maximal proof tree whose root is labelled a = fl and
where the labelling of immediate successors of a node are determined according to the
rules of the tableau system presented in Table 1. For the presentation of rule REC
we introduce the notation unf(s) to mean the unfolding of s defined as follows: given
Y/ - - R4 - - ~ i = l aijsij for 1 < i < m,

~rt ~i

unf(Y:tll' " flY,,,) = Z ~ a,j(Ydl - IIY~-llls,jilY~+dl" " IIY, r,).
i=l 3"=1

We shall identify BPP expressions in our tableaux up to the structural congruence
=, i.e. up to associativity, commutativity and 0-absorption of choice and merge. In
particular, we always assume that the labels of nodes have been pruned of 0 components
sitting in parallel or in sum; rule REC might introduce such innocent components.

We adopt some terminology for tableaux. Tableaux are denoted by T (and also
by T (a = 3) to indicate the label of the root). Paths are denoted by 7r and nodes are
denoted by n (with roots also denoted by r) possibly with subscripts. If a node n has
label E = F we write n : E = F.

In building tableaux the rules are only applied to nodes that are not terminal. A
terminal node can either be successful or unsuccessful. A successful terminal node is
one labelled s = s , while art unsuccessful terminal node is one labelled either a s = bfl
such that a ~ b or as = 0 or 0 = b/L A tableau is successful if and only if all terminal
nodes are successful; otherwise it is unsuccessful.

Tableaux are built from basic steps. A basic step for a = 3 consists of an application
of REC to s = /3 followed (possibly) by an application of SUM followed by an application
of PREFIX to each of its consequents. See Figure 2 for the schema of a basic step. A

REC

SUM

PREFIX

~ = ~

E a i o t i = E b i ~ i

anal = b l f l l a . a . = b . ~ .

a~ = 3~ a . = 3.
PREFIX

Figure 2: A basic step.

148

REC
unf(c~) -- unf(,6)

SUM

~vt

b

where f : {1,. . . ,n} --~ {i m}
9: { l , . . . ,m} ~ {1,. . . ,n}

PREFIX
ac~ = a~

c~=(3

SuBL
~lFf = if the dominated node is labelled

c~ = ~ or ~ = c~ with c~ D fl

SUBR
if the dominated node is labelled
c~=~ or ~ = a with c~ ~ fl

Table 1: Rules of the tableau system.

basic step represents a set of single transit ion steps in the operat ional semantics: for
each consequent al = fll we have a - ~ al and ~ - - ~ fl~.

Nodes of the form n : a = fi are called basic nodes. W h e n building tab leaux
basic nodes might dominate other basic nodes; we say a basic node n : ~llh' = 6 or
n : 6 = a]] 7 domina tes any node n ~ : a = ~ or n ' : fl = a which appears above n in
the tab leau in which a -1 j3 and to which rule REC is applied. Whenever a basic node
dominates a previous one, we apply one of the SUB rules to reduce the te rms before
applying the REC rule. Notice t ha t the side condition for the SUB rules is a condition
on tab leaux and not on the part icular rule.

E x a m p l e 3.1 Let { X 1 d=da(XllIX4),X2 ~ f a X 3 , X 3 d-~--fa(X~]IX4) + bX2 , X a ~(b} be a
family of B P P processes in standard form. In Figure 3 we give a successful tableau for
X 1 = X 2. Notice that these processes are neither normed nor live, so the techniques
described in [6] are inapplicable.

L e m m a 3.2 Every tableau for a = ~ is finite. Furthermore, there is only a finite
number of tableaux for a = ,8.

P r o o f : Let T (a -- fl) be a tableau with root labelled a = ft. I t can only be infinite if
there exists an infinite pa th as every node has finite branching degree. Hence suppose ~r
is such an infinite pa th s tar t ing at the root r : a = ~. The pa th ~r can only be infinite

149

REC

SUM

PREFIX

X 1 = X 2
REC

a(Xl IIZ~) = aX~
PREFIX

x~ IIX, = x ,
SUBL

X2[iX4 = X3

.(X, tlX,)+ bx~ = . (X , llX,) + bX~

a(XaIIX4) = a(Xa [IX,) bX2 = bX2

x~l lx , - XallX~ x~ - x2
PREFIX

Figure 3: A successful tableau for X 1 = X 2.

if it contains infinitely many basic nodes to which the tableau rule REC is applied.
This is due to the well-foundedness of the ordering r" on Vat (A) | which is decreased
through applications of the SUB rules. Thus from the path r we can form an infinite
sequence S of nodes {r~ : a~ = fi~}~=l by collecting (in order of appearance) the basic
nodes along ~r to which the rule P~Ec is applied. Hence n 1 : a 1 = ~1 represents the
root, n 2 : a2 = ~2 represents the second node along n at which REC is applied, and so
on .

An expression a can be viewed as a vector fi of/N~: the value of the i *h coordinate
of ~, denoted ~(i), indicates the number of occurrences of variable Xi in a. Thus we
can represent the sequence S by an infinite sequence of vectors {ui)i~l where fii 6 / N 2~
for all i. The first n coordinates represent a i and the last coordinates represent ~i.

Consider the infinite sequence {fii(1)}~l consisting of all the first coordinates of
vectors of the sequence S. If this sequence has an upper bound we extract from S
an infinite sequence S1 of vectors {%1}i~=1 with the property that the first coordinate
of vl remains constant throughout $1. If the sequence {fii(1)}i~ 1 does not have an
upper bound we extract from S an infinite sequence $1 of vectors {%i}i~l with the
property that the first coordinate of ~i is nondecreasing, i.e. ~i(1) < %j(1) whenever
i _< j . Continuing in this fashion we arrive at an infinite sequence $2~ of vectors {~'}i~1
with the property that all coordinate sequences are nondecreasing. But then every node
in this sequence is dominated by every node after it, so the rule P~Ec cannot be applied
to any of these nodes, as a SUB rule is applicable.

For the proof of the second part, we note that if there were an infinite number of
tableaux, then since there are only a finite number of tableaux of a given finite size,
there must be an infinite sequence of partial tableaux, each of which being derived from
the previous by the application of some rule to the node most recently introduced. But
then this sequence provides a tableau with an infinite path through it, which by the
first part cannot be. []

We now proceed to show the soundness and completeness of the tableau system.

T h e o r e m 3.3 (C o m p l e t e n e s s) I f a ,,~ fl then there exis ts a successful tableau wi th
root labelled a = ft.

Proof : Suppose a ~ ft. If we can construct a tableau T (a = ~) for ~ = fl with the
property that any node n : E = F o fT(~ = fl) satisfies E ~ F, then by Lemma 3.2 that

150

construction must terminate and each terminal will be successful. Thus the tableau
itself will be successful.

We can construct such a T(~ = ~) if we verify that each rule of the tableau system
is forward sound in the sense that if the antecedent as well as all nodes above relate
bisimilar processes then it is possible to find a set of consequents relating bisimilar
processes. It is easily verified that the rules are indeed forward sound in this sense.
Notice in particular that the rule REC reflects the expansion law for merge [19] and
that forward soundness of the SUB rules follows "from the fact that bisimilarity is a
congruence wrt merge. D

The proof of soundness of the tableau system relies on an alternative characterisation
of bisimulation, viz. as a sequence of approximations.

co D e f i n i t i o n 3.4 The sequence of bisimulation approximations { ~}~=o is defined in-
ductively as follows.

�9 E "~o F for all processes E and F;

�9 E "%+1 F ill for each a E A,

- if E _2., E I then F - -~ F I for some F' with E' ,,~ F';

- i f F - -~ F I then E ~ E I for some E I with E I ,,% F t.

It is a standard result (see for instance [19]) that for finite branching transition graphs,
bisimulation is given as the limit of the above approximations:

n = 0

As noted in Remark 2.1, BPP processes are finite branching~

T h e o r e m 3.5 (S o u n d n e s s) I f there is a successful tableau for c~ = fl then c~ ,,,/3.

P r o o f : Suppose T (a = fl) is a tableau for a = fl, and that a ~/3. We shall construct
a maximal path ~r = {n~ : El = Fi} through this tableau starting at the root a = ~ in
which E i ~ F i for each i. Hence the terminal node of this path cannot be successful,
so there can be no successful tableau for a = ft.

While constructing ~r, we shall at the same time construct the sequence of integers
{ml : El ~m, Fi and Ei " i F~ for all j < m~}. We shall also prove along the way that
this sequence is nonincreasing, and strictly decreasing through applications of the rule
PREFIX.

Given n i : Ei = F i and mi, we get ni+1 : Ei+l = Fi+t and mi+ 1 according to the
following cases:

�9 If REC is applied to n/, then the consequent is n~+l and mi+l = ml.

�9 If SUM is applied to n/, then there must be some consequent n/+ 1 : E~+ 1 = F~+ 1
with El+ t ~ ,~ F~+ 1 and E~+ 1 ~ j Fi+ 1 for all j < m~, so m~+ 1 = m i.

�9 If PREFIX is applied to n/, then the consequent is n/+ 1 and mi+ 1 = m~ - 1.

151

* If SuBL is applied to ni : Ei = Fi then E i = Fi must be of the form atl 7 -- 6 with
dominated node nj : a =/~ (a "7 ~). Since between nj and ni there must have
been an intervening application of the rule PREFIX, we must have that m i < mj.
We take the node r~+l : ~3117 = 6, and show that we have some valid m~+l <_ mi,
that is, that ~3tl 7 ~,~, 6. But this follows from a ,,,,~, fl and all 7 ~ , 6. The
arguments for the other possible applications of the SUB rules are identical.

That the above conditions hold of the resulting path is now clear. D

We are now in a position to infer the decidability of bisimulation equivalence on BPP
processes. In order to decide the validity of a = fl we simply start listing tableaux for
c~ =/~ and stop and answer "yes" if a successful tableau has been found. If we list all
of the finite number of finite tableaux (systematically, so that we recognise when they
have all been listed) and fail to discover a successful one, then we answer "no". By
soundness and completeness of the tableau system, we know that this procedure will
always give the right answer. Thus the decidability result is established.

Theo rem 3.6 Bisimulation equivalence is decidable on BPP processes.

4 An Equational Theory

We now describe a sound and complete equational theory for BPP processes. We
restrict attention to processes in standard form. Let A be a finite family of such
processes. The theory shall be parameterised by A and consists of axioms and inference
rules that enable one to derive the root of successful tableaux.

The theory is in spirit similar to that offered in [13, 12, 6] and is built around
sequents of the form F F-~ E -- F where F is a finite set of assumptions of the form
a = r , and E and F are BPP expressions. The semantical interpretation of a sequent
F ~-A E = F, denoted F ~ a E = F, is as follows: if c~ ,,- ~ for all (a =/~) E F, then
E ,,, F. As A will remain fixed throughout, we shall omit its subscripted appearance,
thus writing ~- for ~-~ and ~ for ~A. Also we shall omit empty assumption sets, thus
writing ~- E = F and ~ E = F for 0 ~- E = F and 0 ~ E = F respectively. Notice that
the relationship ~ E = F reduces to E ,,~ F.

The axioms and inference rules are presented in Table 2. We have standard infer-
ence rules for equivalence (l:tl-P~3) and congruence (R4-R6). We also have standard
axioms for choice (R7-R10) together with standard axioms for merge (Rl l -R13) ;
notably we have associativity and commutativity for merge. Finally, we have two rules
characteristic for this axiomatisation: R14 is an assumption introduction rule under-
pinning the rSle of the assumption list F; and R15 is an assumption elimination rule,
and represents a form of fixed point induction. The special form of R15 has been dic-
tated by the rule REC of the tableau system presented in Table 1. Notice that we do
not have an explicit expansion law, as it is incorporated in the assumption elimination
rule R15.

Def in i t ion 4.1 A proof o f f ~" E = F, which we shall denote by that sequent, consists
of a proof tree with root labelled F ~- E = F , instances of the axioms R1 and RT-R14
as leaves and where the father of a set of nodes is determined by an application of one
of the inference rules R2-R6 or R15.

152

Equivalence

R1 F I - E = E

R3
FbE=F PFF=G

P I - E = G

Congruence

F b E = F
R4

F P aE = aF

1%5
r ~ - E ~ = F ~ r e E2 =F~

r I- E~ + E2 = F~ + F~

r ~ - E ~ = F ~ r ~ E2 = F~

F ~- E~ilE= = F~IIF=
R6

Amoms

R7 F I - E + (F + G) = (E + F) + G

R9 FPE+E=E

r EH(FIIG) = (EIIF)IIG

1%13 r ~- EI[o = E

Assumption Introduction

R14 F , a = ~ b a = f l

Assumption Elimination

K15
F, a = ~ P unf(a) = unf(D)

R2
FFF=E

FFE=F

R8 FFE+F=F+E

1%10 FFE+O=E

i%12 F k E[[F = FIlE

Table 2: Axiomatisation.

153

R14

R4

R15

(level l)

(level k + 1)

(level k)

F", a = fl F unf(a) = unf(fl) (level j + 1)

F" ~- a = 8 (level j)

F ~- E = F (level 1)

Figure 4: The path constructed in Lemma 4.2.

(S o u n d n e s s) I f F F- E = F then F ~ E = F . In T h e o r e m 4.2 particular,

F E = F then E ~ F .

Proof : Suppose that a ,-, 8 for all (a = fl) E P, but that E ~ F. We shall show that
no proof exists for F F E = F.

Suppose then that T is such a proof for F F- E = F. We can show that there must
be a maximal path 7r = {F~ ~- E~ = Fi} starting from F ~- E = F and leading upwards
through T such that El ~ F~ for all i. This is clear by inspection of the axioms and
inference rules. We can furthermore choose ~r so that the sequence {m~ : E~ ~ F i
and El "~,~-I Fi} is nonincreasing, and strictly decreasing through applications of R4.

The axiom which terminates ~r, say Ftt- E~ = F b must be a~ instance of R14, say
of the form F I, ~ = 8 F a = 8~ as otherwise we would have El ~ FI.

Since we cannot have (a = 8) E F, we must have somewhere in ~r an application
of R15 to eliminate a = 8 from the assumption list. Also, some application of R4
must occur between the axiom and the application of R15, in order for there to be the
required guarded expressions on the right of the turnstile at the application of R15.
This fact follows from the property that in any sequent F ~- E = F of any proof tree,
either both E and F are guarded or both E and F are unguarded. Hence the path r
is as indicated in Figure 4.

Now we know that ml < mi; however, this then implies that a 7~,~ 8 and a ",~z fl,
which gives us our required contradiction. []

For the completeness proof, we introduce the following notation.

D e f i n i t i o n 4.3 For any node n of a tableau, Recnodes(n) denotes the set of labels of
the nodes above n to which the rule REC is applied. In particular, Recnodes(r) = 0
where r is the root o f the tableau.

We are now ready to prove our completeness theorem.

T h e o r e m 4.4 (C o m p l e t e n e s s) I r a ,~ /3 then F- a = 8 .

154

Proof : If a .-~ 8, then there exists a finite successful tableau with root labelled
a = 8- Let T (a = 8) be such a tableau. We shall prove that for any node n : E = F
of T(a --/3) we have Recnodes(n) b- E = F. In particular, for the root r : a = fl, this
reduces to k- a = 8, so we shall have our result.

We prove Recnodes(n) ~- E = F by induction on the depth of the subtableau rooted
at n. As the tableau is built modulo the structural congruence = we shall assume that
the axioms R7,R8 and R10-R13 are used whenever required to accomplish the proof.

Firstly, if n : E = F is a terminal node then E and F must be identical terms, so
Recnodes(n) F E = F follows from R1.

Hence assume that n : E = F is not a terminal node. We proceed according to the
tableau rule applied to n.

PREFIX: Then E = F is of the form a7 = a6. By the induction hypothesis we have
Recnodes(nt) ~" 7 =/~ where n ~ is the son of n. By inference rule R4 we there-
fore conclude that Recnodes(n') b a 7 = a~. As Recnodes(n ~) -- Recnodes(n) the
result follows.

SUM: Then E = F is of the form ~ aia i = ~ bjSj. By the induction hypothesis we
have for all sons Ilk: a,~a,~ = bjkSA of n that Recnodes(n~) b- a,~a,~ -- b/kflj ~. As
Recnodes(nk) = Recnodes(n) for all k we get Recnodes(n) k ai~alh -- bj~Sj~. By
using rules Rb, RT, R8 and R9 we have Recnodes(n) F- E = F as required.

KEC: Then E --- F is of the form a = 8 and the son n ~ o f n is labelled unf(a) = unf(8).
By induction we have Recnodes(n ~) F unf(a) -- unf(8). As Recnodes(n ~) is equal
to l:tecnodes(n) together with a = 8, by l:tl5 we have Recnodes(n) b E = F as
required.

SuBL: Say E = F is of the form all ~ = ~ with the corresponding dominated node n t
labelled a = 8 (a ~ 8) and the son n" of n labelled 8[[7 = ~. By the induction
hypothesis we have gecnodes(n") ~- 8117 = ~- As Recnodes(n ') is equal to
Recnodes(n) it follows that Recnodes(n) F- 8][7 = ~. Also, since (a = 8) e
l~ecnodes(n) we have from E l 4 , R6, R1 and K3 that Recnodes(n) b- a[[7 = 6
as required. The arguments for the other possible applications of the Sus rules
are identical.

This completes the proof. [3

E x a m p l e 4.5 Let {X 1 ~ a(X 1 [[X4) , X2 ~-f aXa,)(3 ~ a(X3 [[X4) + bX2,)(4 a=~ b} be a
family of BPP processes in full standard form. (This is the family of processes from
Example 3.1.) In Figure 5 we give a proof for X 1 = X 2. In the proof we use the
following abbreviations: F1 = {X~ =)(2} and F2 = F1 U {X2][X 4 = X3}.

Since BPP contains the regular processes, i.e. processes for which the transit ion graphs
are finite, our theory can be seen as a proper extension of Milner's equational theory
for bisimulation equivalence on regular processes. However, as our theory is sequent
based it is very different from Milner's elegant theory which is build around a few laws
for recursion given by an explicit fixed point operator/~ (see [18]). It is not known how
to extend Milner's theory for regular processes to the class BPP.

Whether one prefers a theory in the style of Milner's or a sequent based theory
is perhaps a matter of taste. One might argue in favour of Milner's theory due to

155

R4
R14 R1

R6 Fl i- Xl = X2 F1F" X4 = X4

r , ~ X~llX, = X~tlX,

R1 R1

r~ ~ x311x~ = X3llX, r~ ~ x~ = x~

r2 ~ a(X311X~) = ~(X3llX,) r~ ~ bX~ = bX~

r~ ~ ~(x311x,) + bx~ = ~(X~llX.) + bx~

rl e X~llX, = x3

R4

R5

R15

R3
r~ ~- x~llx4 = x~

R4
r l e a(x, IIX,) = aX~

R15
t- X~ = X2

Figure 5: A proof of X I = X 2.

its elegant and natural laws for recursion. On the other hand, the advantage of the
sequent based equational theory is that it offers a very natural and direct method of
presenting proofs (via the corresponding tableau system). Using Milner's equational
theory, it is less straightforward how proofs are built up. Finally, in favour of the
sequent based equational theory is the fact that it has proven applicable to a wider
range of process classes such as normed context-free processes (see [13]) and also BPP
as we have demonstrated here.

5 R e l a t e d W o r k

The work reported here is similar in spirit to the work in [7; 13] on context-free pro-
cesses. However, it is worth noting that the classes of processes which we study are in-
comparable to the class of context-free processes. For example, in [5] it is demonstrated

that the context-free process defined by X ~ a(Xb + b) which generates nonempty
strings of the form a"b ~ cannot be expressed in our calculus BPP; and the BPP pro-
cess defined by

x d=~ a(bllellX + belt) + b(allcllX + all6 + 4atlbllX + alia)

which generates all nonempty strings over the alphabet {a, b, c} which contain equal
numbers of a's, b's and c's cannot be expressed as a context-free process. It would be
interesting to combine the two calculi into one which admits both general sequencing
and parallelism.

We have only considered decidability on BPP of bisimflarity. However, many more
equivalences have been suggested in the area of process algebra. In [4] it is shown that
distributed bisimilarity as defined by Castellani (see [2]) is decidable on BPP. But of
more interest are the equivalences within the linear time-branchingtime spectrum of
[8]. It would be nice to have a picture as complete as that for BPA where bisimilarity
is decidable while all the other equivalences are undecidable. A very recent result by
Hirshfeld demonstrates that language equivalence is undecidable on BPP [11]. Using
this result it might be possible to show (some of) the other equivalences within the
linear time-branching time spectrum to be undecidable (this is the case for BPA where
the well-known undecidability of language equivalence is reduced to a number of the
other equivalences [10]).

156

Another natural question regards whether we can extend the expressive power of
BPP while maintaining a decidable theory for bisimilarity. Certainly, by replacing
the merge operator with CCS's parallel combinator (thus allowing for synchronisation
on complementary ports) we still have decidability of bisimilarity; the arguments are
more or less as Presented here and the details appear in [5]. However, by relying on
Jan~ar's recent result on the undecidability of bisimilarity on labelled Petri nets [15]
we can show that adding a notion of forced binary synchronisation on top of BPP will
prevent bisimilarity from being decidable. So it still remains to find natural extensions
to BPP (besides including sequential composition) for which we should start searching
for decidable theories of bisimilarity (or otherwise).

References

[1] J.C.M. Baeten, J.A. Bergstra and J.W. Klop. Decidability of bisimulation equival-
ence for processes generating context-free languages. In Proceedings of PARLE 87,
J.W. de Bakker, A.J. Nijman, P.C. Treleaven (eds), Lecture Notes in Computer
Science 259, pp93-114. Springer-Verlag, 1987.

[2] I. Castellani. Bisimulations for Concurrency. PhD thesis CST-51-88. University
of Edinburgh, 1988.

[3] D. Caucal. Graphes canoniques des graphes aig~briques. Informatique Thgorique
et Applications (RAIRO) 24(4), pp339-352, 1990.

[4] S. Christensen. Distributed bisimilarity is decidable for a class of infinite-state
systems. In Proceedings of CONCUR 92, W.R. Cleaveland (ed), Lecture Notes in
Computer Science 630, pp148-161. Springer-Verlag, 1992.

[5] S. Christensen. Forthcoming PhD thesis. University of Edinburgh, 1993.

[6] S. Christensen, Y. Hirschfeld and F. Moller. Decomposability, decidability and
axiomatisability for bisimulation equivalence on basic parallel processes. In Pro-
ceedings of LICS93. IEEE Computer Society Press, 1993.

[7] S. Christensen, H. Hiittel and C. Stifling. Bisimulation equivalence is decidable
for all context-free processes. In Proceedings of CONCUR 92, W.R. Cleaveland
(ed), Lecture Notes in Computer Science 630, pp138-147. Springer-Verlag, 1992.

[8] R.J. van Glabbeek. The linear time-branching time spectrum. In Proceedings of
CONCUR 90, J. Baeten, J.W. Klop (eds), Lecture Notes in Computer Science
458, pp278-297. Springer-Verlag, 1990.

[9] J.F..Groote. A short proof of the decidability of bisimulation for normed BPA
processes. Information Processing Letters 42, pp167-171, 1991.

[10] J.F. Groote and H. Hiittel. Undecidable equivalences for basic process algebra.
Research report ECS-LFCS-91-169. University of Edinburgh, August 1991.

[11] Y. Hirshfeld. Finitely generated processes, Petri nets and the equivalence problem.
Unpublished notes, University of Edinburgh, May 1993.

157

[12] H. Hiittel. Decidability, Behavioural Equivalences and Infinite Transition Graphs.
PhD thesis CST-86-91. University of Edinburgh, December 1991.

[13] H. Hiittel and C. Stifling. Actions speak louder than words: proving bisimilarity
for context-free processes. In Proceedings of LICS 91, pp376-386. IEEE Computer
Society Press, 1991.

[14] D.T. Huynh and L. Tian. On deciding readiness and failures equivalences for pro-
cesses. Research report UTDCS-31-90. University of Texas at Dallas, September
1990.

[15] P. Jan~ar. Decidability questions for bisimilarity of Petri nets and some related
problems. Research report ECS-LFCS-93-261. University of Edinburgh, April
1993.

[16] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. In Proceedings of LICS 9t, pp214-225. IEEE Computer Society Press,
1991.

[17] Madelaine, E., Verification tools from the CONCUR project. Bulletin of the
European Association of Theoretical Computer Science 47, pp110-126, June 1992.

[18] R. Milner. A complete inference system for a class of regular behaviours. Journal
o] Computer and System Sciences 28, pp439-466, 1984.

[19] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[20] R. Milner and F. Moller. Unique decomposition of processes. Bulletin o/ the
European Association for Theoretical Computer Science 41, pp226-232, 1990.

[21] F. Moller. Axioms for Concurrency. PhD thesis CST-59-89. University of Edin-
burgh, 1989.

[22] A. Salomaa, Two complete axiom systems for the algebra of regular events. Journal
o/ the Association of Computing Machinery 13, pp158-169, 1966.

