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Abstract  

In a previous paper the authors proved the decidability of bisimulation equival- 
ence over two subclasses of recurslve processes involving a parallel composition 
operator, namely the so-caUed norrned and live processes. In this paper, we ex- 
tend this result to the whole class. The decidability proof permits us further to 
present a complete axiomatisation for this class of basic parallel processes. This 
result can be viewed as a proper extension of Miiner's complete axiomatisation 
of bisimulation equivalence on regular processes. 

1 Introduction 

Finite-state systems have been extensively studied, both within standard formal lan- 
guage theory and within the theory of process calculi. Certainly all standard behavi- 
oural equivalences, in particular those within the linear time-branching time spectrum 
of [8], are decidable over finite-state systems, and complete aadomatisations have been 
developed for various of these equivalences between them (see, eg, [22, 18, 16]). Fur- 
thermore, there have been many automated tools designed for the analysis of such 
systems (see, eg, [17]). 

Recently, questions regarding the decidability of process equivalences on various 
classes of infinite-state systems have been studied. Certainly when we move to context- 
free processes, language equivalence becomes undecidable. However, of greater interest 
in process theory are questions regarding stronger notions of equivalence which take 
into account for instance the notions of deadlock, livelock, or causality. In [14, 10] it is 
demonstrated that all of the standard behavioural equivalences besides bisimflarity are 
undecidable over context-free processes. However in [7] it is shown that bisimilarity 
is in fact decidable over this class of infinite-state processes. Previous to this, there 
were several proofs of this result for the subclass of normed processes, those processes 
which may terminate in a finite number of steps at any point during their execution 
([1, 3, 13, 9]). 
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The class of context-free processes is provided by a standard process calculus which 
admits of a general sequencing operator, along with atomic actions and choice. However 
O f greater importance in process theory is the inclusion of some form of parallel com- 
binator. Very little work it seems has been spent on exploring the decidability (or 
otherwise) of equivalences defined over process calculi which include parallel combin- 
ators within recursive definitions. Certainly with very little else you can express the 
full power of Turing machines along with their undecidable problems [i9]. 

In [6] we explored a calculus which inc ludesa  simple parallel combinator. We 
showed that in the case of normed processes, and also for live processes (processes which 
can never perform an infinite number of identical actions in succession uninterrupted), 
we can prove decidability of bisimulation equivalence. In order to obtain our results, 
we required cancellation laws for normed and live processes. Such a law is not valid 
over the whole calculus, so the proof technique presented there is not valid in general. 

In this paper, we demonstrate a refinement of the argument presented in [6] which 
settles the decidability of bisimulation equivalence over the whole calculus. As with 
[6], the technique which we use to provide the decidability result is based on the use of 
tableau systems. From the rules we present for generating our tableaux we can extract 
a sound and complete equational theory for our calculus. As our class of processes 
clearly contains the regular processes this result can be viewed as a proper extension 
to Milner's equational theory of bisimulation equivalence on regular processes [18]. 

2 Preliminaries 

We presuppose a countably infinite set of atomic actions A = {a, b, c , . . .}  as well as a 
countably infinite set of process variables Vat = {X, Y, Z , . . .} .  The class of recursive 
BPP (Basic Parallel Processes) expressions is defined by the following abstract syntax 
equation. 

E ::= 0 (inaction) 
] X (process variable, X E Var) 
I aE (action prefix, a E A) 
I E + E (choice) 
t EHE (merge) 

We shall omit trailing 0s from expressions, thus writing the term a0 simply as a. Also 
we shall write E = to represent the term E l l . . .  lIE consisting of n copies of E combined 
in parallel. 

A BPP process is defined by a finite family of recursive process equations 

= { x ,  "~ E, j 

where the X i are distinct and the E i are BPP expressions at most containing the 
variables Vat(A) = { X l , . . .  , X~}. We further assume that every variable occurrence 
in the E~s are guarded, that is, appear within the scope of an action prefix. The variable 
Xx is singled out as the leading variable and X 1 = Ex is called the leading equatior~ 

Any finite family A of BPP equations determines a labelled transition system. The 
transition relations are given as the least relations satisfying the following rules. 
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a . o / .  

b ~ ' ~  b ~ ' J ' ~  b ~ ' ~  b 

Figure 1: The transition graph for {X a___cf a(X]lb)}. 

E - - ~  E' E ~ E' _ 
aE --~ E E + F _2_. E' BilE --~ E'HF 

E --~ E I ~ E F - ~  F I F --% F I 
X --~ E' ( Z  E A) Z + F - ~  F' EHF ~ EIlF' 

Strictly speaking, transitions are defined on BPP expressions relative to some family A 
of process equations. However, we shall usually leave the reader to infer the intended 
family. 

R e m a r k  2.1 It is easy to verify that BPP processes generate finite branching trans- 
ition graphs, that is, graphs for which the se~ {F : E --~ F} is finite for each E and 
each a. This would not be true if we allowed unguarded expressions. For example, the 
process X d_e_f a + al[X generates an infinite-branching transition graph. 

R e m a r k  2.2 For the purpose of this presentation, we only consider pure merge for our 
parallel combinator. However, it is easily seen that the results of this paper hold (with 
the obvious slight modifications) if we allow handshake communication in the style of 
CCS. Hence the calculus we are considering is (guarded) CCS without restriction and 
relabelIing. 

In order to simplify our later analysis, we wish to identify several process expres- 
sions. A typical case is that we want ]1 to be commutative and associative. We therefore 
define the following structural congruence over process expressions. 

Def ini t ion 2.3 Let - be the smallest congruence relation over process expressions 
such that the laws of associativity, commutativity and O-absorption hold for choice and 
merge. 

When inferring transitions we may ignore harmless 0-components sitting in parallel. 
Thus not to be annoyed by such innocent matters we shall always assume that trans- 
itions have been inferred modulo the structural congruence -=. We note that we can 
safely do so since the semantic equivalence of bisimflarity (which we introduce shortly) 
satisfies the basic laws underlying the structural congruence =. 

Example  2.4 Let A be the family { X  ~ a(XIIb)}. By the transition rules above 
(modulo - )  X generates the infinite-state transition graph of Figure 1. 

The equivalence between BPP expressions (states) which we are interested in consid- 
ering here is bisimilarity [19], defined as follows. 
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D e f i n i t i o n  2.5 A binary relation 7r over BPP expressions (states) is a bisimulation 
i f  whenever E ~ F  then for each a E A, 

�9 if  E - -~  E ~ then F -2-* F'  for some F' with E'TCF~; 

�9 if  F - -~  F I then E _.L. E'  for some E ~ with E'TCF'. 

Processes E and F are bisimilar, written E ,,~ F ,  i.f they are related by some bisimula- 
tion. 

By Vat(A) | we denote the set of finite multisets over Vat(A) -- { X i , . . .  , X ,}  and let 
Greek letters a, fl . . . .  range over elements of Vat(A) | Each such a denotes a BPP 
process by forming the product of the elements of a, i.e. by combining the elements 
of a in parallel using the merge operator. We recognise the empty product as 0, and 
we ignore the ordering of variables in products, hence identifying processes denoted by 
elements of Vat(A) | up to associativity and commutativity of merge. 

De f in i t i on  2.6 A finite family A = {Xi  ~ El [ 1 < i < n} of guarded BPP equations 
is defined to be in standard form iff  every expression E i is of the form 

alo/1 q- . . .  -[- a r e a  m 

where for each j we have a i E Var(A) | Again, we recognise the empty sum as O, and 
ignore the ordering of expressions in sums, hence defining the notion of standard form 
modulo associativity and commutativity of choice. 

In [19] it is shown that any finite family A of guarded BPP equations has a unique 
solution up to bisimilarity. Moreover, in [5] we have the following result showing that 
any such system can be effectively presented in standard form. 

L e m m a  2.7 Given any finite family of guarded BPP equations A we can effectively 
construct another finite family of BPP equations A' in standard form in which A ,,, A I, 
i.e. the leading variables of A and A J are bisimilar. 

For our proof of decidability of bisimulation equivalence we shall rely on the following 
ordering on Vat(A) | 

D e f i n i t i o n  2.8 By E we denote the well-founded ordering on Vat(A) | given as fol- 
lows: 

X~'ll... II~" E x['ll... IIX~ 
iff there exists j such that kj < lj and for all i < j we have k i = 1 i. 

It is straightforward to show that  E is well-founded. We shall furthermore rely on the 
fact that E is total in the sense that  for any a, fl E Var(A) | with a ~ fl it follows that 
a E fl or fl E a. Also we shall rely on the fact that  ]~ E a implies ]~]['r E a[[*/for any 
7 E Vat(A) | These properties are easily seen to hold for E. 
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3 D e c i d a b i l i t y  

In this section we fix a finite family A = {Xi ~ t  E/ I 1 < i < n} of guarded BPP 
equations in s tandard form. We are interested in deciding for any a and fl of Vat(A) | 
whether s ,-,/3 is the case or not. The procedure for checking s ,~/3 is based on the 
tableau decision method as for instance utilised by Hiittel and Stirling in [13]. The 
tableau system is a goal directed proof system. The rules of the tableau system are 
built around equations E = F where E and F are BPP expressions. Each rule has the 
form 

E = F  

E l = E l  . . .  E.=F. 
possibly with side conditions. The premise of the rule represents the goal to be achieved 
(that E ,-, F)  whereas the consequents represent (sufficient) subgoals to be established. 

A tableau for c~ = 3 is a maximal proof tree whose root is labelled a = fl and 
where the labelling of immediate successors of a node are determined according to the 
rules of the tableau system presented in Table 1. For the presentation of rule REC 
we introduce the notation unf(s)  to mean the unfolding of s defined as follows: given 
Y/ - -  R4 - -  ~ i = l  aijsij for 1 < i < m, 

~rt ~i 

unf(Y:tll' " flY,,,) = Z ~ a,j(Ydl - IIY~-llls,jilY~+dl" " IIY, r,). 
i=l 3"=1 

We shall identify BPP expressions in our tableaux up to the structural congruence 
=,  i.e. up to associativity, commutativity and 0-absorption of choice and merge. In 
particular, we always assume that the labels of nodes have been pruned of 0 components 
sitting in parallel or in sum; rule REC might introduce such innocent components. 

We adopt some terminology for tableaux. Tableaux are denoted by T (and also 
by T ( a  = 3) to indicate the label of the root). Paths are denoted by 7r and nodes are 
denoted by n (with roots also denoted by r) possibly with subscripts. If a node n has 
label E = F we write n : E = F.  

In building tableaux the rules are only applied to nodes that are not terminal. A 
terminal node can either be successful or unsuccessful. A successful terminal node is 
one labelled s = s ,  while art unsuccessful terminal node is one labelled either a s  = bfl 
such that  a ~ b or as  = 0 or 0 = b/L A tableau is successful if and only if all terminal 
nodes are successful; otherwise it is unsuccessful. 

Tableaux are built from basic steps. A basic step for a = 3 consists of an application 
of REC to s = /3  followed (possibly) by an application of SUM followed by an application 
of PREFIX to each of its consequents. See Figure 2 for the schema of a basic step. A 

REC 

SUM 

PREFIX 

~ = ~  

E a i o t i = E b i ~ i  

anal = b l f l l  a . a .  = b . ~ .  

a~ = 3~ a .  = 3. 
PREFIX 

Figure 2: A basic step. 
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REC 
unf(c~) -- unf(,6) 

SUM 

~vt 

b 

where f :  {1,. . .  ,n} --~ {i . . . . .  m} 
9: { l , . . . ,m}  ~ {1,. . . ,n} 

PREFIX 
ac~ = a~ 

c~=(3 

SuBL 
~lFf  = if the dominated node is labelled 

c~ = ~ or ~ = c~ with c~ D fl 

SUBR 
if the dominated node is labelled 
c~=~  or ~ = a with c~ ~ fl 

Table 1: Rules of the tableau system. 

basic step represents  a set of single transit ion steps in the  operat ional  semantics: for 
each consequent  al  = fll we have a - ~  al and ~ - - ~  fl~. 

Nodes of the  form n : a = fi are called basic nodes. W h e n  building tab leaux 
basic nodes might  dominate other basic nodes; we say a basic node n : ~llh' = 6 or 
n : 6 = a]] 7 domina tes  any node n ~ : a = ~ or n '  : fl = a which appears  above n in 
the  tab leau  in which a -1 j3 and  to which rule REC is applied. Whenever  a basic node 
dominates  a previous one, we apply one of the SUB rules to  reduce the  te rms before 
applying the  REC rule. Notice t ha t  the  side condition for the  SUB rules is a condition 
on tab leaux  and  not  on the  part icular  rule. 

E x a m p l e  3.1 Let { X  1 d=da(XllIX4),X2 ~ f a X 3 , X  3 d-~--fa(X~]IX4) + bX2 , X  a ~( b} be a 
family of B P P  processes in standard form. In Figure 3 we give a successful tableau for 
X 1 = X 2. Notice that these processes are neither normed nor live, so the techniques 
described in [6] are inapplicable. 

L e m m a  3.2  Every tableau for a = ~ is finite. Furthermore, there is only a finite 
number of tableaux for a = ,8. 

P r o o f :  Let T ( a  -- fl) be a tableau with root labelled a = ft. I t  can only be  infinite if 
there  exists an  infinite pa th  as every node has finite branching  degree. Hence suppose ~r 
is such an  infinite pa th  s tar t ing at  the  root r : a = ~. The pa th  ~r can only be infinite 
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REC 

SUM 

PREFIX 

X 1 = X 2 
REC 

a(Xl IIZ~) = aX~ 
PREFIX 

x~ IIX, = x ,  
SUBL 

X2[iX4 = X3 

.(X, tlX,)+ bx~ = . (X ,  llX,) + bX~ 

a(XaIIX4) = a(Xa [IX,) bX2 = bX2 

x~l lx ,  - XallX~ x~ - x2 
PREFIX 

Figure 3: A successful tableau for X 1 = X 2. 

if it contains infinitely many basic nodes to which the tableau rule REC is applied. 
This is due to the well-foundedness of the ordering r" on Vat (A)  | which is decreased 
through applications of the SUB rules. Thus from the path r we can form an infinite 
sequence S of nodes {r~ : a~ = fi~}~=l by collecting (in order of appearance) the basic 
nodes along ~r to which the rule P~Ec is applied. Hence n 1 : a 1 = ~1 represents the 
root, n 2 : a2 = ~2 represents the second node along n at which REC is applied, and so 
on .  

An expression a can be viewed as a vector fi of/N~: the value of the i *h coordinate 
of ~, denoted ~(i), indicates the number of occurrences of variable Xi in a. Thus we 
can represent the sequence S by an infinite sequence of vectors {ui)i~l where fii 6 / N  2~ 
for all i. The first n coordinates represent a i and the last coordinates represent ~i. 

Consider the infinite sequence {fii(1)}~l consisting of all the first coordinates of 
vectors of the sequence S. If this sequence has an upper bound we extract from S 
an infinite sequence S1 of vectors {%1}i~=1 with the property that  the first coordinate 
of vl remains constant throughout $1. If the sequence {fii(1)}i~ 1 does not have an 
upper bound we extract from S an infinite sequence $1 of vectors {%i}i~l with the 
property that the first coordinate of ~i is nondecreasing, i.e. ~i(1) < %j(1) whenever 
i _< j .  Continuing in this fashion we arrive at an infinite sequence $2~ of vectors {~'}i~1 
with the property that  all coordinate sequences are nondecreasing. But then every node 
in this sequence is dominated by every node after it, so the rule P~Ec cannot be applied 
to any of these nodes, as a SUB rule is applicable. 

For the proof of the second part, we note that if there were an infinite number of 
tableaux, then since there are only a finite number of tableaux of a given finite size, 
there must be an infinite sequence of partial tableaux, each of which being derived from 
the previous by the application of some rule to the node most recently introduced. But 
then this sequence provides a tableau with an infinite path through it, which by the 
first part cannot be. [] 

We now proceed to show the soundness and completeness of the tableau system. 

T h e o r e m  3.3 ( C o m p l e t e n e s s )  I f  a ,,~ fl then there exis ts  a successful  tableau wi th  
root labelled a = ft.  

Proof :  Suppose a ~ ft. If we can construct a tableau T ( a  = ~)  for ~ = fl with the 
property that  any node n : E = F o fT(~  = fl) satisfies E ~ F,  then by Lemma 3.2 that 
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construction must terminate and each terminal will be successful. Thus the tableau 
itself will be successful. 

We can construct such a T(~  = ~) if we verify that  each rule of the tableau system 
is forward sound in the sense that  if the antecedent as well as all nodes above relate 
bisimilar processes then it is possible to find a set of consequents relating bisimilar 
processes. It is easily verified that  the rules are indeed forward sound in this sense. 
Notice in particular that  the rule REC reflects the expansion law for merge [19] and 
that  forward soundness of the SUB rules follows "from the fact that  bisimilarity is a 
congruence wrt merge. D 

The proof of soundness of the tableau system relies on an alternative characterisation 
of bisimulation, viz. as a sequence of approximations. 

co D e f i n i t i o n  3.4 The sequence of bisimulation approximations { ~}~=o is defined in- 
ductively as follows. 

�9 E "~o F for all processes E and F;  

�9 E "%+1 F ill for each a E A, 

- if E _2., E I then F - -~  F I for some F' with E'  ,,~ F';  

- i f  F - -~  F I then E ~ E I for some E I with E I ,,% F t. 

It is a standard result (see for instance [19]) that  for finite branching transition graphs, 
bisimulation is given as the limit of the above approximations: 

n = 0  

As noted in Remark 2.1, BPP processes are finite branching~ 

T h e o r e m  3.5 ( S o u n d n e s s )  I f  there is a successful tableau for c~ = fl then c~ ,,,/3. 

P r o o f :  Suppose T ( a  = fl) is a tableau for a = fl, and that  a ~/3.  We shall construct 
a maximal path ~r = {n~ : El = Fi} through this tableau starting at the root a = ~ in 
which E i ~ F i for each i. Hence the terminal node of this path cannot be successful, 
so there can be no successful tableau for a = ft. 

While constructing ~r, we shall at the same time construct the sequence of integers 
{ml : El ~m, Fi and Ei " i  F~ for all j < m~}. We shall also prove along the way that  
this sequence is nonincreasing, and strictly decreasing through applications of the rule 
PREFIX. 

Given n i : Ei = F i and mi, we get ni+1 : Ei+l = Fi+t and mi+ 1 according to the 
following cases: 

�9 If REC is applied to n/, then the consequent is n~+l and mi+l = ml. 

�9 If SUM is applied to n/, then there must be some consequent n/+ 1 : E~+ 1 = F~+ 1 
with El+ t ~ ,~  F~+ 1 and E~+ 1 ~ j  Fi+ 1 for all j < m~, so m~+ 1 = m i. 

�9 If PREFIX is applied to n/, then the consequent is n/+ 1 and mi+ 1 = m~ - 1. 
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* If SuBL is applied to ni : Ei = Fi then E i = Fi must be of the form atl 7 -- 6 with 
dominated node nj : a =/~ (a "7 ~). Since between nj and ni there must have 
been an intervening application of the rule PREFIX, we must have that m i < mj. 
We take the node r~+l : ~3117 = 6, and show that we have some valid m~+l <_ mi, 
that is, that ~3tl 7 ~,~, 6. But this follows from a ,,,,~, fl and all 7 ~ ,  6. The 
arguments for the other possible applications of the SUB rules are identical. 

That the above conditions hold of the resulting path is now clear. D 

We are now in a position to infer the decidability of bisimulation equivalence on BPP 
processes. In order to decide the validity of a = fl we simply start listing tableaux for 
c~ =/~ and stop and answer "yes" if a successful tableau has been found. If we list all 
of the finite number of finite tableaux (systematically, so that we recognise when they 
have all been listed) and fail to discover a successful one, then we answer "no". By 
soundness and completeness of the tableau system, we know that this procedure will 
always give the right answer. Thus the decidability result is established. 

Theo rem 3.6 Bisimulation equivalence is decidable on BPP processes. 

4 An Equational Theory 

We now describe a sound and complete equational theory for BPP processes. We 
restrict attention to processes in standard form. Let A be a finite family of such 
processes. The theory shall be parameterised by A and consists of axioms and inference 
rules that enable one to derive the root of successful tableaux. 

The theory is in spirit similar to that offered in [13, 12, 6] and is built around 
sequents of the form F F-~ E -- F where F is a finite set of assumptions of the form 
a = r ,  and E and F are BPP expressions. The semantical interpretation of a sequent 
F ~-A E = F, denoted F ~ a  E = F, is as follows: if c~ ,,- ~ for all (a =/~) E F, then 
E ,,, F. As A will remain fixed throughout, we shall omit its subscripted appearance, 
thus writing ~- for ~-~ and ~ for ~A. Also we shall omit empty assumption sets, thus 
writing ~- E = F and ~ E = F for 0 ~- E = F and 0 ~ E = F respectively. Notice that 
the relationship ~ E = F reduces to E ,,~ F. 

The axioms and inference rules are presented in Table 2. We have standard infer- 
ence rules for equivalence (l:tl-P~3) and congruence (R4-R6). We also have standard 
axioms for choice (R7-R10) together with standard axioms for merge (Rl l -R13) ;  
notably we have associativity and commutativity for merge. Finally, we have two rules 
characteristic for this axiomatisation: R14 is an assumption introduction rule under- 
pinning the rSle of the assumption list F; and R15 is an assumption elimination rule, 
and represents a form of fixed point induction. The special form of R15 has been dic- 
tated by the rule REC of the tableau system presented in Table 1. Notice that we do 
not have an explicit expansion law, as it is incorporated in the assumption elimination 
rule R15. 

Def in i t ion  4.1 A proof o f f  ~" E = F,  which we shall denote by that sequent, consists 
of a proof tree with root labelled F ~- E = F ,  instances of the axioms R1 and RT-R14 
as leaves and where the father of a set of nodes is determined by an application of one 
of the inference rules R2-R6 or R15. 



152 

Equivalence 

R1 F I - E = E  

R3 
FbE=F PFF=G 

P I - E = G  

Congruence 

F b E = F  
R4 

F P aE = aF 

1%5 
r ~ - E ~ = F ~  r e E2 =F~ 

r I- E~ + E2 = F~ + F~ 

r ~ - E ~ = F ~  r ~ E2 = F~ 

F ~- E~ilE= = F~IIF= 
R6 

Amoms 

R7 F I - E + ( F + G )  = ( E + F ) + G  

R9 FPE+E=E 

r EH(FIIG) = (EIIF)IIG 

1%13 r ~- EI[o = E 

Assumption Introduction 

R14 F , a = ~ b a = f l  

Assumption Elimination 

K15 
F, a = ~ P unf(a) = unf(D) 

R2 
FFF=E 

FFE=F 

R8 FFE+F=F+E 

1%10 FFE+O=E 

i%12 F k E[[F = FIlE 

Table 2: Axiomatisation. 
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R14 

R4 

R15 

(level l) 

(level k + 1) 

(level k) 

F", a = fl F unf(a) = unf(fl) (level j + 1) 

F" ~- a = 8 (level j )  

F ~- E = F (level 1) 

Figure 4: The path constructed in Lemma 4.2. 

( S o u n d n e s s )  I f  F F- E = F then F ~ E = F .  In T h e o r e m  4.2 particular, 

F E = F then E ~ F .  

Proof :  Suppose that  a ,-, 8 for all (a = fl) E P, but that E ~ F.  We shall show that 
no proof exists for F F E = F.  

Suppose then that  T is such a proof for F F- E = F.  We can show that there must 
be a maximal path 7r = {F~ ~- E~ = Fi} starting from F ~- E = F and leading upwards 
through T such that  El ~ F~ for all i. This is clear by inspection of the axioms and 
inference rules. We can furthermore choose ~r so that the sequence {m~ : E~ ~ F i 
and El "~,~-I Fi} is nonincreasing, and strictly decreasing through applications of R4. 

The axiom which terminates ~r, say Ftt-  E~ = F b must be a~ instance of R14, say 
of the form F I, ~ = 8 F a = 8~ as otherwise we would have El ~ FI. 

Since we cannot have (a = 8) E F, we must have somewhere in ~r an application 
of R15 to eliminate a = 8 from the assumption list. Also, some application of R4 
must occur between the axiom and the application of R15, in order for there to be the 
required guarded expressions on the right of the turnstile at the application of R15. 
This fact follows from the property that in any sequent F ~- E = F of any proof tree, 
either both E and F are guarded or both E and F are unguarded. Hence the path r 
is as indicated in Figure 4. 

Now we know that  ml < mi;  however, this then implies that a 7~,~ 8 and a ",~z fl, 
which gives us our required contradiction. [] 

For the completeness proof, we introduce the following notation. 

D e f i n i t i o n  4.3 For any node n of  a tableau, Recnodes(n) denotes the set of  labels of  
the nodes above n to which the rule REC is applied. In particular, Recnodes(r) = 0 
where r is the root o f  the tableau. 

We are now ready to prove our completeness theorem. 

T h e o r e m  4.4 ( C o m p l e t e n e s s )  I r a  ,~ /3 then F- a = 8 .  
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Proof :  If a .-~ 8, then there exists a finite successful tableau with root labelled 
a = 8- Let T ( a  = 8) be such a tableau. We shall prove that  for any node n : E = F 
of T(a --/3) we have Recnodes(n) b- E = F. In particular, for the root r : a = fl, this 
reduces to k- a = 8, so we shall have our result. 

We prove Recnodes(n) ~- E = F by induction on the depth of the subtableau rooted 
at n. As the tableau is built modulo the structural congruence = we shall assume that 
the axioms R7,R8 and R10-R13 are used whenever required to accomplish the proof. 

Firstly, if n : E = F is a terminal node then E and F must be identical terms, so 
Recnodes(n) F E = F follows from R1. 

Hence assume that  n : E = F is not a terminal node. We proceed according to the 
tableau rule applied to n. 

PREFIX: Then E = F is of the form a7 = a6. By the induction hypothesis we have 
Recnodes(nt) ~" 7 =/~ where n ~ is the son of n. By inference rule R4 we there- 
fore conclude that Recnodes(n') b a 7 = a~. As Recnodes(n ~) -- Recnodes(n) the 
result follows. 

SUM: Then E = F is of the form ~ aia i = ~ bjSj. By the induction hypothesis we 
have for all sons Ilk: a,~a,~ = bjkSA of n that Recnodes(n~) b- a,~a,~ -- b/kflj ~. As 
Recnodes(nk) = Recnodes(n) for all k we get Recnodes(n) k ai~alh -- bj~Sj~. By 
using rules Rb, RT, R8 and R9 we have Recnodes(n) F- E = F as required. 

KEC: Then E --- F is of the form a = 8 and the son n ~ o f n  is labelled unf(a) = unf(8). 
By induction we have Recnodes(n ~) F unf(a) -- unf(8). As Recnodes(n ~) is equal 
to l:tecnodes(n) together with a = 8, by l:tl5 we have Recnodes(n) b E = F as 
required. 

SuBL: Say E = F is of the form all ~ = ~ with the corresponding dominated node n t 
labelled a = 8 (a ~ 8) and the son n" of n labelled 8[[7 = ~. By the induction 
hypothesis we have gecnodes(n") ~- 8117 = ~- As Recnodes(n ' )  is equal to 
Recnodes(n) it follows that Recnodes(n) F- 8][7 = ~. Also, since (a = 8) e 
l~ecnodes(n) we have from E l 4 ,  R6, R1 and K3 that  Recnodes(n) b- a[[ 7 = 6 
as required. The arguments for the other possible applications of the Sus  rules 
are identical. 

This completes the proof. [3 

E x a m p l e  4.5 Let {X 1 ~ a(X 1 [[X4) , X2 ~-f aXa, )(3 ~ a(X3 [[X4) + bX2, )(4 a=~ b} be a 
family of BPP processes in full standard form. (This is the family of processes from 
Example 3.1.) In Figure 5 we give a proof for X 1 = X 2. In the proof we use the 
following abbreviations: F1 = {X~ = )(2} and F2 = F1 U {X2][X 4 = X3}. 

Since BPP contains the regular processes, i.e. processes for which the transit ion graphs 
are finite, our theory can be seen as a proper extension of Milner's equational theory 
for bisimulation equivalence on regular processes. However, as our theory is sequent 
based it is very different from Milner's elegant theory which is build around a few laws 
for recursion given by an explicit fixed point operator/~ (see [18]). It is not known how 
to extend Milner's theory for regular processes to the class BPP. 

Whether one prefers a theory in the style of Milner's or a sequent based theory 
is perhaps a matter  of taste. One might argue in favour of Milner's theory due to 
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R4 
R14 R1 

R6 Fl i- Xl  = X2 F1F" X4 = X4 

r ,  ~ X~llX, = X~tlX, 

R1 R1 

r~ ~ x311x~ = X3llX, r~ ~ x~ = x~ 

r2 ~ a(X311X~) = ~(X3llX,) r~ ~ bX~ = bX~ 

r~ ~ ~(x311x,) + bx~ = ~(X~llX.) + bx~ 

rl  e X~llX, = x3 

R4 

R5 

R15 

R3 
r~ ~- x~llx4 = x~ 

R4 
r l  e a(x,  IIX,) = aX~ 

R15 
t- X~ = X2 

Figure 5: A proof of X I = X 2. 

its elegant and natural laws for recursion. On the other hand, the advantage of the 
sequent based equational theory is that it offers a very natural and direct method of 
presenting proofs (via the corresponding tableau system). Using Milner's equational 
theory, it is less straightforward how proofs are built up. Finally, in favour of the 
sequent based equational theory is the fact that it has proven applicable to a wider 
range of process classes such as normed context-free processes (see [13]) and also BPP 
as we have demonstrated here. 

5 R e l a t e d  W o r k  

The work reported here is similar in spirit to the work in [7; 13] on context-free pro- 
cesses. However, it is worth noting that the classes of processes which we study are in- 
comparable to the class of context-free processes. For example, in [5] it is demonstrated 

that the context-free process defined by X ~ a(Xb + b) which generates nonempty 
strings of the form a"b ~ cannot be expressed in our calculus BPP; and the BPP pro- 
cess defined by 

x d=~ a(bllellX + belt) + b(allcllX + all6 + 4atlbllX + alia) 

which generates all nonempty strings over the alphabet {a, b, c} which contain equal 
numbers of a's, b's and c's cannot be expressed as a context-free process. It would be 
interesting to combine the two calculi into one which admits both general sequencing 
and parallelism. 

We have only considered decidability on BPP of bisimflarity. However, many more 
equivalences have been suggested in the area of process algebra. In [4] it is shown that 
distributed bisimilarity as defined by Castellani (see [2]) is decidable on BPP. But of 
more interest are the equivalences within the linear time-branchingtime spectrum of 
[8]. It would be nice to have a picture as complete as that for BPA where bisimilarity 
is decidable while all the other equivalences are undecidable. A very recent result by 
Hirshfeld demonstrates that language equivalence is undecidable on BPP [11]. Using 
this result it might be possible to show (some of) the other equivalences within the 
linear time-branching time spectrum to be undecidable (this is the case for BPA where 
the well-known undecidability of language equivalence is reduced to a number of the 
other equivalences [10]). 
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Another natural question regards whether we can extend the expressive power of 
BPP while maintaining a decidable theory for bisimilarity. Certainly, by replacing 
the merge operator with CCS's parallel combinator (thus allowing for synchronisation 
on complementary ports) we still have decidability of bisimilarity; the arguments are 
more or less as Presented here and the details appear in [5]. However, by relying on 
Jan~ar's recent result on the undecidability of bisimilarity on labelled Petri nets [15] 
we can show that adding a notion of forced binary synchronisation on top of BPP will 
prevent bisimilarity from being decidable. So it still remains to find natural extensions 
to BPP (besides including sequential composition) for which we should start searching 
for decidable theories of bisimilarity (or otherwise). 
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