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Preface to the English edition
by V.I. Arnold

Abel’s Theorem, claiming that there exists no finite combinations of rad-
icals and rational functions solving the generic algebraic equation of de-
gree 5 (or higher than 5), is one of the first and the most important
impossibility results in mathematics.

I had given to Moscow High School children in 1963–1964 a (half
year long) course of lectures, containing the topological proof of the Abel
theorem.

Starting from the definition of complex numbers and from geometry,
the students were led to Riemannian surfaces in a sequence of elementary
problems. Next came the basic topological notions, such as the funda-
mental group, coverings, ramified coverings, their monodromies, braids,
etc..

These geometrical and topological studies implied such elementary
general notions as the transformations groups and group homomorphisms,
kernels, exact sequences, and relativistic ideas. The normal subgroups
appeared as those subgroups which are relativistically invariant, that is,
do not depend on the choice of the coordinate frame, represented in this
case as a numbering or labelling of the group elements.

The regular polyhedra symmetry groups, seen from this point of view,
had led the pupils to the five Kepler’s cubes, inscribed into the dodeca-
hedron. The 12 edges of each of these cubes are the diagonals of the 12
faces of the dodecahedron.

Kepler had invented these cubes in his Harmonia Mundi to describe
the distances of the planets from the Sun. I had used them to obtain the
natural isomorphism between the dodecahedron rotations group and the
group of the 60 even permutations of 5 elements (being the Kepler cubes).
This elementary theory of regular polyhedra provides the non-solubility
proof of the 5 elements permutation group: it can not be constructed

ix
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from the commutative groups by a finite sequence of the extensions with
commutative kernels.

The situation is quite different for the permutation groups of less
than five elements, which are soluble (and responsible for the solvability
of the equations of degree smaller than 5). This solubility depends on the
inscription of two tetrahedra inside the cube (similar to the inscription
of the 5 Kepler cubes inside the dodecahedron and mentioned also by
Kepler).

The absence of the non-trivial relativistically invariant symmetry sub-
groups of the group of rotations of the dodecahedron is an easy result of
elementary geometry. Combining these High School geometry arguments
with the preceding topological study of the monodromies of the ramified
coverings, one immediately obtains the Abel Theorem topological proof,
the monodromy group of any finite combination of the radicals being sol-
uble, since the radical monodromy is a cyclical commutative group, whilst
the monodromy of the algebraic function defined by the quintic equa-
tion is the non-soluble group of the 120 permutations of
the 5 roots.

This theory provides more than the Abel Theorem. It shows that
the insolvability argument is topological. Namely, no function having
the same topological branching type as is representable as a finite
combination of the rational functions and of the radicals.

I hope that my topological proof of this generalized Abel Theorem
opens the way to many topological insolvability results. For instance,
one should prove the impossibility of representing the generic abelian
integrals of genus higher than zero as functions topologically equivalent
to the elementary functions.

I attributed to Abel the statements that neither the generic elliptic
integrals nor the generic elliptic functions (which are inverse functions of
these integrals) are topologically equivalent to any elementary function.

I thought that Abel was already aware of these topological results
and that their absence in the published papers was, rather, owed to the
underestimation of his great works by the Paris Academy of Sciences
(where his manuscript had been either lost or hidden by Cauchy).

My 1964 lectures had been published in 1976 by one of the pupils of
High School audience, V.B. Alekseev. He has somewhere algebraized my
geometrical lectures.

Some of the topological ideas of my course had been developed by A.G.
Khovanskii, who had thus proved some new results on the insolvability
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of the differential equations. Unfortunately, the topological insolvability
proofs are still missing in his theory (as well as in the Poincaré theory of
the absence of the holomorphic first integral and in many other insolv-
ability problems of differential equations theory).

I hope that the description of these ideas in the present translation
of Alekseev’s book will help the English reading audience to participate
in the development of this new topological insolvability theory, started
with the topological proof of the Abel Theorem and involving, say, the
topologically non elementary nature of the abelian integrals as well as the
topological non-equivalence to the integrals combinations of the compli-
cated differential equations solutions.

The combinatory study of the Kepler cubes, used in the Abel the-
orem’s proof, is also the starting point of the development of the theory
of finite groups. For instance, the five Kepler cubes depend on the 5
Hamilton subgroups of the projective version of the group of
matrices of order 2 whose elements are residues modulo 5.

A Hamilton subgroup consists of 8 elements and is isomorphic to the
group of the quaternionics units.

The peculiar geometry of the finite groups includes their squaring
monads, which are the oriented graphs whose vertices are the group ele-
ments and whose edges connect every element directly to its square.

The monads theory leads to the unexpected Riemannian
surfaces (including the monads as subgraphs), relating Kepler’s cubes to
the peculiarities of the geometry of elliptic curves.

The extension of the Hamilton subgroups and of Kepler’s
cubes leads to the extended four colour problem (for the genus one toroidal
surface of an elliptic curve), the 14 Hamilton subgroups providing the
proof of the 7 colours necessity for the regular colouring of maps of a
toroidal surface).

I hope that these recent theories will be developed further by the
readers of this book.

V. Arnold
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Preface

In high school algebraic equations in one unknown of first and second
degree are studied in detail. One learns that for solving these equations
there exist general formulae expressing their roots in terms of the co-
efficients by means of arithmetic operations and of radicals. But very
few students know whether similar formulae do exist for solving algebraic
equations of higher order. In fact, such formulae also exist for equations
of the third and fourth degree. We shall illustrate the methods for sol-
ving these equations in the introduction. Nevertheless, if one considers
the generic equation in one unknown of degree higher than four one finds
that it is not solvable by radicals: there exist no formulae expressing the
roots of these equations in terms of their coefficients by means of arith-
metic operations and of radicals. This is exactly the statement of the
Abel theorem.

One of the aims of this book is to make known this theorem. Here we
will not consider in detail the results obtained a bit later by the French
mathematician Évariste Galois. He considered some special algebraic
equation, i.e., having particular numbers as coefficients, and for these
equations found the conditions under which the roots are representable
in terms of the coefficients by means of algebraic equations and radicals1.

From the general Galois results one can, in particular, also deduce the
Abel theorem. But in this book we proceed in the opposite direction:
this will allow the reader to learn two very important branches of modern
mathematics: group theory and the theory of functions of one complex
variable. The reader will be told what is a group (in mathematics), a
field, and which properties they possess. He will also learn what the
complex numbers are and why they are defined in such a manner and not

1To those who wish to learn the Galois results we recommend the books: Postnikov
M.M., Boron L.F., Galois E., Fundamentals of Galois Theory, (Nordhoff: Groningen),
(1962); Van der Waerden B.L., Artin E., Noether E., Algebra, (Ungar: New York,
N.Y.) (1970).
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otherwise. He will learn what a Riemann surface is and of what the ‘basic
theorem of the complex numbers algebra’ consists.

The author will accompany the reader along this path, but he will
also give him the possibility of testing his own forces. For this purpose
he will propose to the reader a large number of problems. The problems
are posed directly within the text, so representing an essential part of
it. The problems are labelled by increasing numbers in bold figures.
Whenever the problem might be too difficult for the reader, the chapter
‘Hint, Solutions, and Answers’ will help him.

The book contains many notions which may be new to the reader.
To help him in orienting himself amongst these new notions we put at
the end of the book an alphabetic index of notions, indicating the pages
where their definitions are to be found.

The proof of the Abel theorem presented in this book was presented
by professor Vladimir Igorevich Arnold during his lectures to the students
of the la 11th course of the physics-mathematics school of the State Uni-
versity of Moscow in the years 1963–64. The author of this book, who
at that time was one of the pupils of that class, during the years 1970–
71 organized for the pupils of that school a special seminar dedicated to
the proof of the Abel theorem. This book consists of the material col-
lected during these activities. The author is very grateful to V.I. Arnold
for having made a series of important remarks during the editing of the
manuscript.

V.B. Alekseev



Introduction

We begin this book by examining the problem of solving algebraic equa-
tions in one variable from the first to the fourth degree. Methods for
solving equations of first and second degree were already known by the
ancient mathematicians, whereas the methods of solution of algebraic
equations of third and fourth degree were invented only in the XVI cen-
tury.

An equation of the type:

in which 2, is called the generic algebraic equation of degree in
one variable.

For we obtain the linear equation

This equation has the unique solution

for any value of the coefficients.
For we obtain the quadratic equation

(in place of we write as learnt in school). Dividing both
members of this equation by and putting and we obtain
the reduced equation

2 For the time being the coefficients may be considered to be arbitrary
real numbers.

1
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After some transformations we obtain

In high school one considers only the case Indeed, if
then one says that Eq. (1) cannot be satisfied and that Eq.

(2) has no real roots. In order to avoid these exclusions, in what follows
we shall not restrict ourselves to algebraic equations over the field of the
real numbers, but we will consider them over the wider field of complex
numbers.

We shall examine complex numbers in greater detail (together with
their definition) in Chapter 2. In the meantime it is sufficient for the
reader to know, or to accept as true, the following propositions about the
complex numbers:

the set of complex numbers is an extension of the set of real num-
bers, i.e., the real numbers are contained in the complex numbers,
just as, for example, the integer numbers are contained in the real
numbers;

the complex numbers may be added, subtracted, multiplied, di-
vided, raised to a natural power; moreover, all these operations
possess all the basic properties of the corresponding operations on
the real numbers;

if is a complex number different from zero, and is a natural
number, then there exist exactly roots of degree of i.e.,
complex numbers such that For we have
If and are square roots of the number then

1.

2.

3.

In the following we shall be interested not only in complex roots of
equations as well as in the real ones, but also we will consider arbitrary
complex numbers as coefficients of these equations. Hence, the arguments
previously expounded about linear and quadratic equations remain true
by virtue of what results from property 2 of complex numbers.

Let us continue to study the quadratic equation. In the field of com-
plex numbers for any value of and Eq. (2) is equivalent to
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where by is indicated whichever of the defined values of the
square root. In so doing:

Going back to the coefficients we obtain

For what follows we need to recall two properties related to the equa-
tions of second degree.

Viète’s Theorem3: The complex numbers and are the roots of
the equation if and only if and
Indeed, if and are roots of the equation then
Eq. (3) is satisfied, from which and
Conversely, if and then, substituting and

in the equation by their expressions in terms of
and we obtain

and therefore and are roots of the equation

The quadratic trinomial is a perfect square, i.e.,

for some complex number if and only if the roots of the equation
coincide (they must be both equal to This happens

if and only if (see formula (4)). The expression
is called the discriminant of the quadratic trinomial.

We consider now the reduced cubic equation

The generic equation of third degree is reduced to Eq. (5) by dividing
by After the substitution  (where will be chosen later) we
obtain

3 François Viète (1540-1603) was a French mathematician.

1.

2.
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Removing the brackets and collecting the terms of the same degree in
we obtain the equation

The coefficient of in this equation is equal to Therefore if we
put after substituting we transform the equation
into:

where and are some polynomials in and
Let be a root of Eq. (6). Representing it in the form

(where and are temporarily unknown) we obtain

and

We check whether it is possible to impose that and satisfy

In this case we obtain two equations for and

By Viète’s theorem, for any such and (which may be complex)
indeed exist, and they are the roots of the equation

If we take such (still unknown) and then Eq. (7) is transformed into

Raising either terms of the equation to the third power, and
comparing the obtained equation with Eq. (8), we have
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By Viète’s theorem and are the roots of the equation

In this way

where again indicates one defined value of the square
root. Hence the roots of Eq. (6) are expressed by the formula

in which for each of the three values of the first cubic root4 one must
take the corresponding value of the second, in such a way that condition

be satisfied.
The obtained formula is named Cardano’s formula5. Substituting in

this formula and by their expressions in terms of and subtracting
we obtain the formula for Eq. (5). After the transformations

we obtain the formula for the roots of the
generic equation of third degree.

Now we examine the reduced equation of fourth degree

(the generic equation is reduced to the previous one by dividing by
By making the change of variable similarly to the change
made in the case of the equation of third degree, we transform Eq. (9)
into

where and are some polynomials in
We shall solve Eq. (10) by a method called Ferrari’s method6. We

transform the left term of Eq. (10) in the following way:

4See the aforementioned Property 3 of complex numbers.
5 G. Cardano (1501-1576) was an Italian mathematician.
6 L. Ferrari (1522–1565) was an Italian mathematician, a pupil of Cardano.
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and

where is an arbitrary number. We try now to determine such that
the polynomial of second degree in

within square brackets becomes a perfect square. As was noticed above,
in order for it to be a perfect square it is necessary and sufficient that the
discriminant of this polynomial vanish, i.e.,

Eliminating the brackets, to find   we obtain an equation of third degree
which we are able to solve. If in place of we put one of the roots
of Eq. (12) then the expression in the square brackets of (11) will be a
perfect square. In this case the left member of Eq. (11) is a difference of
squares and therefore it can be written as the product of two polynomials
of second degree in After that it remains to solve the two equations of
second degree obtained.

Hence the equation of fourth degree can always be solved. Moreover,
as in the case of the third order, it is possible to obtain a formula ex-
pressing the roots of the generic equation of fourth order in terms of
the coefficients of the equation by means of the operations of addition,
subtraction, multiplication, division, raising to a natural power, and ex-
tracting a root of natural degree.

For a long time mathematicians tried to find a method of solution by
radicals of the generic equation of fifth order. But in 1824 the Norwe-
gian mathematician Niels Henrik Abel (1802–1829) proved the following
theorem.

Abel’s Theorem. The generic algebraic equation of degree higher than
four is not solvable by radicals, i.e., formulæ do not exist for expressing
roots of a generic equation of degree higher than four in terms of its co-
efficients by means of operations of addition, subtraction, multiplication,
division, raising to a natural power, and extraction of a root of natural
degree.
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We will be able to prove this theorem at the end of this book. But
for this we need some mathematical notions, such as those of group,
so-luble group, function of a complex variable, Riemann surface, etc..
The reader will become familiar with all these and other mathematical
instruments after reading what follows in the forthcoming pages of this
book. We start by examining the notion of group, a very important notion
in mathematics.
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Chapter 1

Groups

1.1 Examples

In arithmetic we have already met operations which put two given num-
bers in correspondence with a third. Thus, the addition puts the pair
(3,5) in correspondence with the number 8 and the pair (2,2) with the
number 4. Also the operation of subtraction if considered inside the set
of all integer numbers, puts every pair of integers in correspondence with
an integer: in this case, however, the order of numbers in the pair is im-
portant. Indeed, subtraction puts the pair (5,3) in correspondence with
the number 2, whereas the pair (3,5) with the number –2. The pairs (5,3)
and (3,5) thus have to be considered as different.

When the order of elements is specified a pair is said to be ordered.

DEFINITION. Let M be a set of elements of arbitrary nature. If every
ordered pair of elements of M is put into correspondence with an element
of M we say that in M a binary operation is defined.

For example, the addition in the set of natural numbers and the sub-
traction in the set of integer numbers are binary operations. The subtrac-
tion is not a binary operation in the set of natural numbers because, for
example, it cannot put the pair (3,5) in correspondence with any natural
number.

1. Consider the following operations: a) addition; b) subtraction; c)
multiplication; in the following sets: 1) of all even natural numbers; 2)
of all odd natural numbers; 3) of all negative integer numbers. In which
cases does one obtain a binary operation1?

1Part of the problems proposed in the sequel has a practical character and is aimed

9



10 Chapter 1

Let us still consider some examples of binary operations. We shall
often return to these examples in future.

FIGURE 1

EXAMPLE 1. Let A, B, and C be the vertices of an equilateral triangle
(Figure 1). We rotate the triangle by an angle of 120° around its centre
O in the direction shown by the arrow. Then vertex A goes over vertex
B, B over C, and C over A. In this way the final triangle coincides
with the initial triangle (if we neglect the labels of the vertices). We say
that the rotation by 120° around the point O is a transformation which
sends the triangle into itself. We denote this transformation by We
can write it in the form where the first row contains all
vertices of the triangle, and the second row indicates where each vertex is
sent. A rotation by 240° in the same direction around the point O is also a
transformation sending the triangle into itself. Denote this transformation
by There still exists one transformation sending the
triangle into itself, and which is different from and it is the rotation
by 0°. We denote it by thus . It is easy to see that there
are only three different rotations of the plane2 transforming an equilateral
triangle ABC into itself, namely and

Let and be two arbitrary transformations of the triangle. Then
we denote by (or simply the transformation obtained by
carrying out first the transformation and later the transformation

is called the product or composition of the transformations and
It is possible to make the multiplication table (Table 1) where every

row, as well as every column, corresponds to some rotation transforming

at a better comprehension of notions by means of examples. The other problems are
theoretical, and their results will be used later on. Therefore if the reader is unable
to solve some problems, he must read their solutions in the Section Hints, Solutions,
and Answers.

2 We mean rotation of the plane around one axis perpendicular to the plane.
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the triangle ABC into itself. We put the transformation corresponding to
in the intersection of the row corresponding to the transformation

with the column corresponding to the transformation So, for example,
in the selected cell of Table 1 we have to put the transformation which
is obtained by first rotating the triangle by 240° and later by 120° more.
Hence is a rotation by 360°, i.e., it coincides with We obtain the
same result by the following reasoning: transformation sends vertex A
onto vertex C, and later sends C onto A. In this way the transformation

sends A onto A. In exactly the same way we obtain that B is sent
onto B, and C onto C. Hence i.e.,

2. Complete Table 1.
Any transformation of some geometrical figure into itself which main-

tains the distances between all its points is called a symmetry of the given
figure. So the rotations of the equilateral triangle, considered in Example
1, are symmetries of it.

EXAMPLE 2. Besides rotations, the equilateral triangle still possesses
3 symmetries, namely, the reflections with respect to the axes and

(Figure 2). We denote these transformations by and so that
Here it is possible to imagine

the composition of two transformations in two different ways. Consider,

FIGURE 2
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for example, the composition We can imagine that the axis is
sent by the transformation into a new position (i.e., in the original
position of the axis and after this, consider the transformation as
the reflection with respect to the new position of the axis (i.e., with
respect to the original axis On the other hand, it is also possible
to consider that the axes are not rigidly fixed to the figure, and that
they do not move with it; therefore in the example which we examine,
after the transformation the transformation is done as the reflection
with respect to the original axis We will consider the compositions of
two transformations in exactly this way. With this choice the reasoning
about the vertices of the figure, analogously to the arguments presented
immediately before Problem 2, is correct. It is convenient to utilize such
arguments to calculate the multiplication table.

3. Write the multiplication table for all symmetries of the equilateral
triangle.

EXAMPLE 3. Let  and denote the rotations of a square by 0°,
180°, 90° and 270° in the direction shown by the arrow (Figure 3).

FIGURE 3 FIGURE 4

4. Write the multiplication table for the rotations of the square.
EXAMPLE 4. Let  and denote the reflections of the square with

respect to the axes shown in Figure 4.

5. Write the multiplication table for all symmetries of the square.

EXAMPLE 5. Let ABCD be a rhombus, which is not a square.

6. Find all symmetries of the rhombus and write their multiplication
table.

EXAMPLE 6. Let ABCD be a rectangle, which is not a square.
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7. Find all symmetries of the rectangle and write their multiplication
table.

1.2 Groups of transformations

Let X and Y be two sets of elements of arbitrary nature, and suppose that
every element of X is put into correspondence with a defined element

of Y. Thus one says that there exists a mapping of the set X into
the set The element is called the image of the element

and the pre-image of element One writes:

DEFINITION. The mapping is called surjective (or, equiv-
alently, a mapping of set X onto set Y) if for every element of Y there
exists an element of X such that i.e., every of Y has a
pre-image in X.

8. Let the mapping put every capital city in the world in correspon-
dence with the first letter of its name in English (for example,
= L). Is a mapping of the set of capitals onto the entire English alpha-
bet?

DEFINITION. The mapping is called a one to one (or
bijective) mapping of the set X into the set Y if for every in Y there
exists a pre-image in X and this pre-image is unique.

9. Consider the following mappings of the set of all integer numbers
into the set of the non-negative integer numbers:

Which amongst these mappings are surjective, which are bijective?
Let M be an arbitrary set. For brevity we shall call any bijective

mapping of M into itself a transformation of set M.
Two transformations and will be considered equal if

for every element A of M. Instead of term ‘transformation’ the
term permutation is often used. We shall use this term only when the
transformation is defined on a finite set. A permutation can thus be
written in the form
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where the first row contains all the elements of the given set, and the
second row indicates all the corresponding images under the permutation.

Since the transformation is one to one, for every transformation there
exists the inverse transformation which is defined in the following
way: if then So in Example 1
Therefore i.e.,

10. Find the inverse transformations of all symmetries of the equi-
lateral triangle (see Examples 1 and 2).

11. Consider the transformation of all real numbers given by
Find the inverse transformation.

The multiplication of the transformations and is defined as
(the transformation is done first, afterwards).

If and axe transformations of the set M then is also a transfor-
mation of set M.

DEFINITION. Suppose that a set G of transformations possesses the
following properties: 1) if two transformations and belong to G, then
their product also belongs to G; 2) if a transformation belongs to
G then its inverse transformation belongs to G. In this case we call
such a set of transformations a group of transformations.

It is not difficult to verify that the sets of transformations considered
in Examples 1–6 are, in fact, groups of transformations.

12. Prove that any group of transformations contains the identical
transformation such that for every element A of the set M.

13. Prove that for any transformation

14. Prove that for any three transformations and the fol-
lowing equality holds3:

1.3 Groups

To solve Problems 6 and 7 we wrote the multiplication tables for the sym-
metries of the rhombus and of the rectangle. It has turned out that in our

3This equality is true not only for transformations but also for any three mappings
and such that
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notations (see the solutions) these tables coincide. For many purposes it is
natural to consider such groups of transformations as coinciding. There-
fore we shall consider abstract objects rather than sets of real elements (in
our case of transformations). Furthermore, we shall consider those binary
operations on arbitrary sets which possess the basic properties of the bi-
nary operation in a group of transformations. Thus any binary operation
will be called a multiplication; if to the pair there corresponds the
element we call the product of and and we write In some
special cases the binary operation will be called differently, for example,
composition, addition, etc..

DEFINITION. A set G of elements of an arbitrary nature, on which
one can define a binary operation such that the following conditions are
satisfied, is called a group:

1) associativity : for any elements and of G;
2) in G there is an element such that for every element

of G; such element is called the unit (or neutral element) of group G;
3) for every element of G there is in G an element such that

such an element is called the inverse of element

From the results of Problems 12–14 we see that any group of trans-
formations is a group (in some sense the converse statement is also true
(see 55)). In this way we have already seen a lot of examples of groups.
All these groups contain a finite number of elements: such groups are
called finite groups. The number of elements of a finite group is called
the order of the group. Groups containing an infinite number of elements
are called infinite groups.

Let us give some examples of infinite groups.

EXAMPLE 7. Consider the set of all integer numbers. In this set
we shall take as binary operation the usual addition. We thus obtain
a group. Indeed, the role of the unit element is played by 0, because

for every integer Moreover, for every there exists
the inverse element (which is called in this case the opposite element),
because The associativity follows from the
rules of arithmetic. The obtained group is called the group of integers
under addition.

15. Consider the following sets: 1) all the real numbers; 2) all the
real numbers without zero. Say whether the sets 1 and 2 form a group
under multiplication.
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16. Say whether all real positive numbers form a group under multi-
plication.

17. Say whether all natural numbers form a group: a) under addition;
b) under multiplication.

18. Prove that in every group there exists one unique unit element.

19. Prove that for every element of a group there exists one unique
inverse element

20. Prove that: 1) 2)

If and are elements of a group then by the definition of binary
operation the expression gives some defined element of the group.
Hence also expressions like give some defined
elements of the group. Any two of the obtained elements can be multiplied
again, obtaining again an element of the group, and so on. Therefore, in
order to set up uniquely at every step which operation will be performed
at the next step we shall put into brackets the two expressions which
have to be multiplied (we may not enclose in brackets the expressions
containing only one letter). We call all expressions that we can write in
this way well arranged expressions. For example is a well
arranged expression, whereas is not well arranged, because it
is not clear in which order one has to carry out the operations. When we
consider the product of the real numbers we
do not put any bracket, because the result does not depend on the order
in which the operations are carried out — i.e., for every arrangement of
the brackets giving a well arranged expression the result corresponding
to this product is the same. It turns out that this property is satisfied by
any group, as follows from the result of the next question.

21. Suppose that a binary operation possesses the associativity
property, i.e., for any elements Prove that
every well arranged expression in which the elements from left to right
are gives the same element as the multiplication

In this way if the elements are elements of a group then all
the well arranged expressions containing elements in this
order and distinguished only by the disposition of brackets give the same
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element, which we will denote by (eliminating all
brackets).

The multiplication of real numbers possesses yet another important
property: the product does not change if the factors
are permuted arbitrarily. However, not all groups possess this property.

DEFINITION. Two elements and of a group are called commuting
if (One says also that and commute.) If in a group any two
elements commute, the group is said to be commutative or abelian.

There exist non-commutative groups. Such a group is, for example,
the group of symmetries of the triangle (see Example 2, where

i.e.,

22. Say whether the following groups are commutative (see 2, 4–7
): 1) the group of rotations of the triangle; 2) the group of rotations of
the square; 3) the group of symmetries of the square; 4) the group of
symmetries of a rhombus; 5) the group of symmetries of a rectangle.

23. Prove that in any group:
1) 2)

REMARK. The jacket is put on after the shirt, but is taken off before
it.

If a certain identity holds in a group G and being two
expressions giving the same element of G) then one obtains a new identity
by multiplying the two members of the initial identity by an arbitrary
element of the group G. However, since in a group the product may
depend on the order of its factors, one can multiply the two members of
the identity by either on the left (obtaining or on the right
(obtaining

24. Let be two arbitrary elements of a group G. Prove that each
one of the equations and has one and only one solution in
G.

The uniqueness of the solution in Problem 24 can be also enunciated
in this way: if or then

25. Let us suppose that for every element of a group G.
Prove that G is commutative.

Let be an arbitrary element of a group G. We will denote by the
product where is the number of factors, all equal to

26. Prove that where is an integer.
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In this way and for every integer indicate the same
element, which we will denote by Moreover, for every element

27. Prove that for any integers and

28. Prove that for any integers and

1.4 Cyclic groups

The simplest groups are the cyclic groups. They are, however, very im-
portant.

DEFINITION.  Let    be an element of a group G. The smallest integer
such that the element is called the order of the element If

such an integer does not exist one says that is an element of infinite
order.

29. Find the order of all elements of the groups of symmetries of the
equilateral triangle, of the square and of the rhombus (see 3,5,6).

30. Let the order of an element be equal to Prove that: 1) ele-
ments are all distinct; 2) for every integer the element

coincides with one of the elements listed above.

DEFINITION. If an element  has order and in a group G there are
no other elements but the group G is called the cyclic
group of order generated by the element and the element is called
a generator of the group.

EXAMPLE 8. Consider a regular (polygon with sides) and all
rotations of the plane that transform the into itself.

31. Prove that these rotations form a cyclic group of order

32. Find all generators in the group of rotations of the equilateral
triangle and in the group of rotations of the square (see Examples 1 and
3 in §1.1).

33. Let the order of an element be equal to Prove that
if and only if where is any integer.

34. Suppose that the order of an element is equal to a prime number
and that is an arbitrary integer. Prove that either or has

order
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35. Suppose that is the maximal common divisor of the integers
and and that has order Prove that the element has order

36. Find all generators of the group of rotations of the regular do-
decagon.

37. Let be an element of infinite order. Prove that the elements
are all distinct.

DEFINITION. If is an element of infinite order and group G has no
other elements but then G is called an infinite
cyclic group and its generator.

38. Prove that the group of the integers is a cyclic group under
addition (see Example 7, §1.3). Find all generators.

EXAMPLE 9. Let be an integer different from zero. Consider all
the possible remainders of the division of integers by i.e., the numbers

Let us introduce in this set of remainders the following
binary operation. After adding two remainders as usually, we keep the
remainder of the division by of the obtained sum. This operation is
called the addition modulo So we have, summing modulo 4, 1 + 2 = 3,
but 3 + 3 = 2.

39. Write the multiplication table for the addition modulo: a) 2; b)
3; c) 4.

40. Prove that the set of remainders with the addition modulo form
a group, and that this group is a cyclic group of order

Consider again an arbitrary cyclic group of order

41. Prove that where and
if and only if modulo one has

From the result of the preceding problem it follows that to the mul-
tiplication of the elements in an arbitrary cyclic group there corresponds
the addition of the remainders modulo Similarly to the multiplication
of two elements in an infinite cyclic group there corresponds the addition
of integers (see 7). We come in this way to an important notion in the
theory of groups: the notion of isomorphism.

1.5 Isomorphisms

DEFINITION. Let two groups and be given with a bijective mapping
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from into (see §1.2) with the following property: if
and in group then in group

In other words, to the multiplication in there corresponds under
the multiplication in The mapping is thus called an isomorphism
between groups and and the groups and are said to be
isomorphic. The condition for a bijective mapping to be an isomorphism
can also be expressed by the following condition: for
all elements and of group here the product is taken in the group

and the product in the group

42. Which amongst the following groups are isomorphic: 1) the group
of rotations of the square; 2) the group of symmetries of the rhombus;
3) the group of symmetries of the rectangle; 4) the group of remainders
under addition modulo 4?

43. Let be an isomorphism. Prove that the inverse
mapping is an isomorphism.

44. Let and be two isomorphisms. Prove
that the compound mapping is an isomorphism.

From the two last problems it follows that two groups which are iso-
morphic to a third group are isomorphic to each other.

45. Prove that every cyclic group of order is isomorphic to the
group of the remainders of the division by under addition modulo

46. Prove that every infinite cyclic group is isomorphic to the group
of integers under addition.

47. Let be an isomorphism. Prove that where
and are the unit elements in groups G and F.

48. Let be an isomorphism. Prove that
for every element of group G.

49. Let be an isomorphism and let Prove that
and have the same order.

If we are interested in the group operation and not in the nature of
the elements of the groups (which, in fact, does not play any role), then
we can identify all groups which are isomorphic. So, for example, we shall
say that there exists, up to isomorphism, only one cyclic group of order
(see 45), which we denote by and only one infinite cyclic group (see
46), which we indicate by
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If a group is isomorphic to a group then we write

50. Find (up to isomorphism) all groups containing: a) 2 elements;
b) 3 elements.

51. Give an example of two non-isomorphic groups with the same
number of elements.

52. Prove that the group of all real numbers under addition is iso-
morphic to the group of the real positive numbers under multiplication.

53. Let be an arbitrary element of a group G. Consider the mapping
of a group G into itself defined in the following way: for

every of G. Prove that is a permutation of the set of the elements
of group G (i.e., a bijective mapping of the set of the elements of G into
itself).

54. For every element of a group G let be the permutation
defined in Problem 53. Prove that the set of all permutations forms a
group under the usual law of composition of mappings.

55. Prove that group G is isomorphic to the group of permutations
defined in the preceding problem.

1.6 Subgroups

In the set of the elements of a group G consider a subset H. It may occur
that H is itself a group under the same binary operation defined in G.

In this case H is called a subgroup of the group G. For example, the
group of rotations of the regular is a subgroup of the group of all
symmetries of the

If is an element of a group G, then the set of all elements of type
is a subgroup of G (this subgroup is cyclic, as we have seen in §1.4).

56. Let H be a subgroup of a group G. Prove that: a) the unit
elements in G and in H coincide; b) if is an element of subgroup H,
then the inverse elements of in G and in H coincide.

57. Prove that in order for H to be a subgroup of a group G (under
the same binary operation) the following conditions are necessary and
sufficient: 1) if and belong to H then the element (product in
group G) belongs to H; 2) (the unit element of group G) belongs to H;
3) if belongs to H then also (taken in group G) belongs to H.
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Remark. Condition 2 follows from conditions 1 and 3.

58. Find all subgroups of the following groups: 1) of symmetries of
the equilateral triangle, 2) of symmetries of the square.

59. Find all subgroups of the following cyclic groups: a) b)
c)

60. Prove that all subgroups of have the form
where divides and is a generator of the group

61. Prove that all subgroups of an infinite cyclic group are of the
type where is a generator and is an
arbitrary non zero integer number.

62. Prove that an infinite cyclic group has an infinite number of
subgroups.

63. Prove that the intersection of an arbitrary number of subgroups4

of a group G is itself a subgroup of group G.

EXAMPLE 10. Consider a regular tetrahedron, with vertices marked
with the letters A,B,C, and D. If we look at the triangle ABC from
point the D, then the rotation defined by the cyclic order of points A, B, C
may be a clockwise or counterclockwise rotation (see Figure 5). We shall
distinguish these two different orientations of the tetrahedron.

FIGURE 5

64. Is the orientation of the tetrahedron preserved by the following

permutations: (rotation by 120° around the alti-

4The intersection of many sets is the set of all elements belonging at the same time
to all the sets.
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tude); (rotation by 180° around the axis through

the middle points of the edges AD and BC); (re-

flection with respect to the plane containing edge AD and the middle

point of edge BC); (cyclic permutation of the

vertices)?
All symmetries of the regular tetrahedron obviously form a group,

which is called the group of symmetries of the tetrahedron.

65. How many elements does the group of symmetries of tetrahedron
contain?

66. In the group of symmetries of the tetrahedron find the subgroups
isomorphic to: a) the group of symmetries of the equilateral triangle; b)
the cyclic group

67. Prove that all symmetries of the tetrahedron preserving its orien-
tation form a subgroup. How many elements does it contain?

The group of symmetries of the tetrahedron preserving its orientation
is called the group of rotations of the tetrahedron.

68. Find in the group of rotations of the tetrahedron the subgroups
isomorphic to: a) b)

1.7 Direct product

Starting from two groups one may define a third group.
DEFINITION. The direct product G × H of groups G and H is the set of

all the ordered pairs where is any element of G and any element
of H, with the following binary operation:
where the product is taken in the group G, and in the group
H.

69. Prove that G × H is a group.

70. Suppose that a group G has elements, and that a group H has
elements. How many elements does the group G × H contain?

71. Prove that the groups G × H and H × G are isomorphic.
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72. Find the subgroups of G × H isomorphic to the groups G and H.

73. Let G and H be two commutative groups. Prove that the group
G × H is also commutative.

74. Let be a subgroup of a group G and a subgroup of a group
H. Prove that is a subgroup of the group G × H.

75. Let G and H be two arbitrary groups. Is it true that every
subgroup of the group G × H can be represented in the form
where is a subgroup of the group G and a subgroup of the group
H?

76. Prove that the group of symmetries of the rhombus is isomorphic
to the group

77. Is it true that: 1) 2)

78. Prove that if and only if the numbers and
are relatively prime.

1.8 Cosets. Lagrange’s theorem

For every subgroup H of a group G there exists a partition of the set
of the elements of G into subsets. For each element of G consider the
set of all elements of the form where runs over all elements of a
subgroup H. The set so obtained, denoted by         is called the left coset
of H (or left lateral class of H) in G, generated by the element

79. Find all left cosets of the following subgroups of the group of
symmetries of the equilateral triangle: a) the subgroup of rotations of the
triangle; b) the group generated by the reflection with respect to a single
axis (see Examples 1 and 2, §1.1).

80. Prove that given a subgroup H of a group G each element of G
belongs to one left coset of H in G.

81. Suppose that an element belongs to the left coset of H generated
by an element Prove that the left cosets of H generated by elements

and coincide.

82. Suppose that the left cosets of H, generated by elements and
have a common element. Prove that these left cosets coincide.
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Hence left cosets generated by two arbitrary elements either are dis-
joint or coincide. In this way we have obtained a partition of all elements
of a group G into disjoint classes. Such a partition is called the left par-
tition of the group G by the subgroup H.

The number of elements of a subgroup is called the order of the sub-
group. Let be the order of a subgroup H. If and are two different
elements of H then Every left coset thus contains elements.
Hence if is the order of group G and is the number of the left cosets of
the partition of G by H, then and we have proved the following
theorem.

THEOREM 1. (Lagrange’s theorem5) The order of a subgroup H of a
group G divides the order of the group G.

83. Prove that the order of an arbitrary element (see definition in
§1.4) divides the order of the group.

84. Prove that a group whose order is a prime number is cyclic and
that every element of it different from the unit is its generator.

85. Suppose that a group G contains exactly 31 elements. How many
subgroups does it contain?

86. Let be a prime number. Prove that all groups having the same
order are isomorphic to each other.

87. Suppose that divides Obtain a group of order containing
a subgroup isomorphic to a given group G of order

88. Suppose that divides Is it possible that a group of order
does not contain any subgroup of order

One can obtain as well the right cosets and the right partition of
a group G by a subgroup H. If the order of a subgroup H is equal to

then each right coset contains elements and the number of cosets
is equal to the integer where is the order of the group. Hence the
number of right cosets coincides with the number of the left cosets.

89. Find the left and the right partitions of the group of symmetries
of the equilateral triangle by the following subgroups: a) the subgroup
of rotations b) the subgroup generated by the reflection
with respect to one axis.

5Joseph Louis Lagrange (1736–1813), French mathematician.
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90. Find the left and right partitions of the group of symmetries of the
square by the following subgroups: a) the subgroup generated by
the central symmetry; b) the subgroup generated by the reflection
with respect to one diagonal.

91. Find the partition of the group of all integers (under addition)6

by the subgroup of the numbers divisible by 3.

92. Find all groups (up to isomorphism) of order: a) 4; b) 6; c) 8.

1.9 Internal automorphisms

Let us start with an example. Consider the group of symmetries of the
equilateral triangle. If the letters A, B, and C denote the vertices of the
triangle, then each element of the group defines a permutation of the
three letters. For example, the reflection of the triangle with respect to
the altitude drawn from the vertex A to the base BC will be written in the

form To multiply two elements of the group of symmetries

of the triangle it suffices to carry out the corresponding permutations one
after the other. In this way we obtain an isomorphism between the group
of symmetries of the triangle and the group of permutations of letters
A, B, and C.

FIGURE 6

Now we observe that this isomorphism is not uniquely defined: it
depends on which vertex is named A, which B, and which C. The change
of notations of the three vertices of the triangle may be also considered

6 Here we do not mention the type of the partition (left or right) because in com-
mutative groups the two partitions obviously coincide.
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as a permutation of the three letters A, B and C. For example

corresponds to the following change of notations:

By the new notations of vertices each element of the group of sym-
metries of the triangle obtains a new notation in terms of permutation of
letters A, B, C. For example, the reflection of the triangle with respect
to its vertical altitude (Figure 6) is written in the following way:

93. Consider an element of the group of symmetries of the triangle,
to which, for some notation of vertices, there corresponds a permutation

What permutation will correspond to the same element of the group of
symmetries of the triangle after the change of notation of the vertices?

We observe now that by the change of notation, an element
of a group of transformations is sent to not only in the example
considered of the group of symmetries of the triangle, but also in the
more general case. So the study of the changes of notations leads to the
following definition.

DEFINITION. Let G be a group and one of its elements. Define
the mapping of the group G into itself by the formula
(where is any element of the group). This mapping is called the internal
automorphism of group G generated by the element

94. Prove that an internal automorphism of a group is an isomorphism
of the group into itself.

95. Which is the image of the reflection of the triangle with respect
to its altitude under all possible internal automorphisms of the group of
symmetries of the triangle?

96. Which is the image of the rotation by 120° of the triangle under
all possible internal automorphisms of the group of symmetries of the
triangle?
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97. Which are the pairs of elements of the group of symmetries of
the tetrahedron that can be sent one on the other by an internal auto-
morphism? Which elements can not? The same question for the group
of rotations of the tetrahedron.

98. Prove that in any group the orders of elements and are
equal.

Note that the image of a subgroup under any internal automorphism
of the whole group (as well as under any isomorphism) is, in general,
different (for example, the reflection with respect to one altitude of the
triangle is sent to the reflection with respect to another altitude). How-
ever, some subgroups, ‘super-symmetric’, are invariants under all internal
automorphisms (for example, the subgroup of rotations of the triangle in
the group of symmetries of the triangle). We will study these subgroups
in the next section.

1.10 Normal subgroups

DEFINITION. A subgroup of a group is called a normal subgroup if it is
mapped onto itself by all internal automorphisms of the group. In other
words, a subgroup N of a group G is called a normal subgroup of G if
for every element of N and for every element of G the element
belongs to N.

Hence in the group of symmetries of a triangle ABC the subgroup of
rotations is normal, whereas the group generated by the reflection with
respect to the altitude drawn from A to the base BC (containing two
elements) is not normal.

99. Prove that in a commutative group every subgroup is normal.

100. Is it true that the subgroup of the group of symmetries of the
square, consisting of elements where  is the central symmetry (see
Example 3,4 §1.1), is normal?

THEOREM 2. A subgroup N of a group G is normal if and only if the
left and the right partitions of group G by the subgroup N coincide7.

101. Prove Theorem 2.
7In this case the partition obtained is called the partition by the normal subgroup.
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102. Let be the order of a group G, the order of a subgroup H
and Prove that H is a normal subgroup of the group G.

103. Prove that the intersection (see footnote to Problem 63) of an
arbitrary number of normal subgroups of a group G is a normal subgroup
of the group G.

DEFINITION.  The set of elements of a group G which commute with
all elements of the group is called the centre of group G.

104. Prove that the centre of a group G is a subgroup and, moreover,
a normal subgroup of the group G.

105. Let and be two normal subgroups of two groups and
respectively. Prove that is a normal subgroup of the group

The following example shows that a normal subgroup of a subgroup
of a group G can be a non-normal subgroup of the group G.

EXAMPLE 11. Consider the subgroup of the group of symmetries
of the square, generated by the reflections with respect to the diagonals
and to the centre (see Examples 3,4 §1.1, the subgroup This
subgroup contains one half of the elements of the group of symmetries of
the square, and it is therefore a normal subgroup (see 102). The subgroup

generated by the reflection with respect to one of the diagonals,
contains one half of the elements of the subgroup and it is
therefore a normal subgroup of this subgroup. But the subgroup is
not a normal subgroup of the group of symmetries of the square, because

is sent by an internal automorphism to the reflection with respect to
the other diagonal:

1.11 Quotient groups

Let us start with an example. Consider the partition of the group of
symmetries of the square by the normal subgroup generated by the
central symmetry (see Example 3,4 §1.1). It is easy to see that the
partition of our group into four cosets has the form shown in Table 2.
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Denote each coset by a letter, for example E, A, B, and C. If one mul-
tiplies an arbitrary element of coset A by an arbitrary element of coset
B, then the result belongs to one and only one coset C, independently of
the particular elements chosen in cosets A and B. From the solution of
the next problem it follows that this result is not casual.

106. Let there be given the partition of group G by the normal
subgroup N. Suppose that the elements and belong to one coset
and that the elements and belong to another coset. Prove that the
elements and belong to the same coset.

In this way, multiplying in a given order two elements representant
of two different cosets, one obtains an element of a coset which does not
depend on the chosen representant elements. As a consequence, given
a partition of a group by a normal subgroup, we can define a binary
operation in the following way: whenever we write

(A·B is also denoted by AB). The result of Problem 106
shows that this operation is uniquely defined and does not depend on the
elements and which generate the cosets A and B. So in the above
example we have A · B = C.

In problems 107–109 the subgroups have to be considered as normal.

107. Let be three cosets. Prove that

108. Let E be a normal subgroup. Prove that ET = TE = T for
every coset T.

109. Prove that for every coset T there exists a coset such that

From problems 107–109 it follows that the set of all cosets with the
binary operation just defined forms a group. This group is called the
quotient group of the group G by the normal subgroup N and is denoted
by G/N.

It is evident that and It is evident as well
that the order of the quotient group is equal to the integer where

is the order of the group and the order of the normal subgroup. For
example, the quotient group of the group of symmetries of the square by
the subgroup generated by the central symmetry contains 4 elements.

110. Calculate whether the quotient group of the group of symme-
tries of the square by the subgroup generated by the central symmetry
is isomorphic to the group of rotations of the square or to the group of
symmetries of the rhombus.
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111. Find all normal subgroups and the corresponding quotient groups
of the following groups8: a) the group of symmetries of the triangle; b)

c) the group of symmetries of the square; d) the group of quater-
nions (see solution of Problem 92).

112. Describe all normal subgroups and the corresponding quotient
groups of the following groups: a) b)

113. Find all normal subgroups and the corresponding quotient groups
of the group of rotations of the tetrahedron.

114. Consider the subgroup in the direct product
Prove that it is a normal subgroup and that the corresponding quotient
group is

1.12 Commutant

Recall that two elements and of a group G are said to be commuting if
The degree of non-commutativity of two elements of a group can

be measured by the product which is equal to the unit element
if and only if and commute.

DEFINITION. The element is called the commutator of the
elements and The set of all possible products of a finite number of
commutators of a group G is called the commutant of the group G and it
is denoted by K(G).

115. Prove that the commutant is a subgroup.

116. Prove that the commutant is a normal subgroup.

117. Prove that the commutant coincides with the unit element
if and only if the group is commutative.

118. Find the commutant in the following groups: a) of symmetries
of the triangle; b) of symmetries of the square; c) the group of quaternions
(see solution of Problem 92).

119. Prove that the commutant in the group of symmetries of the
regular is isomorphic to the group if is odd and to the group

if is even.

8In the sequel finding the quotient group will mean showing a group, among those
already considered, to be isomorphic to the group requested.
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120. Find the commutant in the group of symmetries of the tetrahe-
dron.

121. Prove that if a normal subgroup of the group of rotations or of
the group of symmetries of the tetrahedron contains just a sole rotation
around one axis through a vertex, then it contains all rotations of the
tetrahedron.

122. Find the commutant in the group of symmetries of the tetrahe-
dron.

Consider two groups: the group of rotations of the cube and the group
of rotations of the regular octahedron.

FIGURE 7

123. How many elements are contained in these groups? Calculate
the elements of the group of rotations of the cube.

124. Prove that the groups of rotations of the cube and of the octa-
hedron are isomorphic.

125. In how many different ways is it possible to colour the surface
of a cube with 6 colours (a different colour for each face) if one considers
two coloured cubes as different if they do not coincide even after some
rotation? The same question for a box of matches.

126. Which group amongst those you know is isomorphic to the group
of rotations of a box of matches?

To calculate the commutant of the group of rotations of the cube we
inscribe in the cube a tetrahedron (see Figure 8).

Joining the remaining vertices B, D, and one obtains a second
tetrahedron. Any rotation of the cube either sends each tetrahedron onto
itself or exchanges the tetrahedra with each other.
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FIGURE 8

127. Prove that all rotations of the cube sending each tetrahedron
onto itself form: a) a subgroup; b) a normal subgroup of the group of
rotations of the cube.

128. Prove that the commutant of the group of rotations of the cube
is isomorphic to the group of rotations of the tetrahedron.

We now prove three properties of the commutant which will be of use
later on.

129. Prove that the quotient group of an arbitrary group G by its
commutant is commutative.

130. Let N be a normal subgroup of a group G and let the quotient
group G/N be commutative. Prove that N contains the commutant of
the group G.

131. Let N be a normal subgroup of a group G and K (N ) the com-
mutant of a subgroup N. Prove that K(N) is a normal subgroup of G
(compare with Example 11, §1.10).

1.13 Homomorphisms

Let G and F be two groups. A mapping such that
for all elements and of the group G (here the product

is taken in G and in F) is called a homomorphism of G into
F. Homomorphisms are distinguishable from isomorphisms because the
homomorphisms are not necessarily bijective.



34 Chapter 1

EXAMPLE 12. Let G be the group of rotations of the cube, and
the group of permutations of the two tetrahedra, inscribed inside the cube
(see §1.12). To each rotation of the cube there corresponds a well defined
permutation of tetrahedra. When we carry out two rotations of the cube
one after the other, the permutation of the tetrahedra so obtained is the
product of the permutations of the tetrahedra corresponding to these
rotations. Therefore the mapping of the group of rotations of the cube
into the group of permutations of two tetrahedra is a homomorphism.

132. Let be a surjective homomorphism of a group G
onto a group F. Prove that if the group G is commutative then F is
commutative. Is the converse proposition true?

133. Prove that a homomorphism of a group G into a group F sends
the unit of the group G onto the unit of the group F.

134. Prove that where is a homomor-
phism. Note that the inverse element appearing in the left member of the
equation is taken in the group G, whereas in the right member it is taken
in the group F.

135. Let and be two homomorphisms. Prove
that is a homomorphism.

Important examples of homomorphisms are obtained by means of the
construction of the ‘natural homomorphism’. Let N be a normal subgroup
of a group G. Consider the mapping of the group G into the quotient
group G/N which sends each element of the group G to a coset T of N
containing the element

136. Prove that is a surjective homomorphism of G
onto G/N.

DEFINITION. The surjective mapping is called the natural homo-
morphism of a group G into the quotient group G/N.

We have proved that to every normal subgroup there corresponds a
homomorphism. We shall now prove that, inversely, every homomor-
phism surjective of a group G onto a group F can be seen as a natural
homomorphism of G onto the quotient group G/N by a suitable normal
subgroup N.

DEFINITION. Let be a homomorphism. The set of elements
such that is called the kernel of the homomorphism and is

denoted by ker
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137. Prove that ker is a subgroup of group G.

138. Prove that ker is a normal subgroup of group G.
Consider the partition of G by the kernel ker

139. Prove that and belong to the same coset if and only if

THEOREM 3. Let be a surjective homomorphism of a
group G onto a group F. The mapping sending each
coset to the image by of a certain element of the coset (and thus of an
arbitrary element (see 139)), is an isomorphism.

The proof of this theorem is contained in the solutions of the following
problems.

140. Prove that is surjective.

141. Prove that is bijective.

142. Prove that is an isomorphism.
We will consider some applications of this theorem.

EXAMPLE 13. Problem 110 asked whether the quotient group of the
group of symmetries of the square by the normal subgroup generated by
the central symmetry is isomorphic either to the group of rotations of the
square or to the group of symmetries of the rhombus. To each element of
the group of symmetries of the square there corresponds some permuta-
tion of the axes of symmetry (Figure 9). This permutation can
just exchange between each other the diagonals and as well as the
axes and

FIGURE 9 FIGURE 10

We thus obtain a mapping of the group of symmetries of the square
into a group of permutations of four elements and This map-
ping is a homomorphism surjective onto the group of those permutations
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which send to and to (verify). This group
consists of four permutations and is isomorphic to the group of symme-
tries of the rhombus (Figure 10).

The kernel of the homomorphism so obtained contains all symmetries
of the square sending each axis of symmetry onto itself. It is not difficult
to verify that these transformations are just and the central symmetry

Therefore by Theorem 3 the subgroup is a normal subgroup of
the group of symmetries of the square, and the corresponding quotient
group is isomorphic to the group of symmetries of the rhombus.

The following problems may be solved in a similar way.

143. Prove that the rotations of the tetrahedron by 180° around the
axes through the middle points of opposite edges form, together with the
identity, a normal subgroup of the group of symmetries of the tetrahedron.
Find the corresponding quotient group.

144. Prove that the rotations of the cube by 180° around the axes
through the centres of opposite faces form, together with the identity, a
normal subgroup of the group of rotations of the cube. Find the corre-
sponding quotient group.

145. Let there be given on the plane a regular with centre O.
Let R be the group of rotations of the plane around the point O. Consider
the subgroup of the rotations of the plane sending the regular
to itself. Prove that this subgroup is a normal subgroup of R and that

is isomorphic to R.

146. Let and be two normal subgroups of groups and
respectively. Prove that is a normal subgroup of and
that

147. Is it possible that two normal subgroups of two non-isomorphic
groups are isomorphic to each other, and that the corresponding quotient
groups are isomorphic?

148. Is it possible that two normal subgroups of the same group are
isomorphic and that the corresponding quotient groups are not isomor-
phic?

149. Is it possible that two normal subgroups of the same group are
not isomorphic and that the corresponding quotient groups are isomor-
phic?
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We now observe what happens to subgroups, to normal subgroups,
and to commutants under the action of a homomorphism. Let
be a homomorphism. Chose in G a subset M. The set of the elements of
F having at least a pre-image in M is called the image of the set M by the
homomorphism (denoted by Conversely, let P be a subset of F;
the set of all elements of G having an image in P is called the pre-image
of P (denoted by Note that the symbol has no meaning
outside P: a homomorphism, in general, has no inverse mapping. Note
also that if then is contained in M, but it does not
necessarily coincide with M (see Figure 11).

FIGURE 11

150. Prove that the image of a subgroup H of a group G under a
homomorphism is a subgroup of the group F.

151. Let H be a subgroup of F and a homomorphism.
Prove that is a subgroup of G.

152. Let N be a normal subgroup of a group F and a
homomorphism. Prove that is a normal subgroup of the group
G.

153. Let be a homomorphism, and the commutants
of G and F. Prove that is contained in and that is contained
in

154. Let N be a normal subgroup of a group G and a
homomorphism surjective of group G onto a group F. Prove that
is a normal subgroup of F.
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155. Let and be the commutants of groups G and F and
a surjective homomorphism of G onto F. Prove that

Is it true that

1.14 Soluble groups

There exist an important class of groups which is similar to the com-
mutative groups: that of soluble groups. This appellation comes from
the possibility of solving algebraic equations by radicals depends on the
solubility of some groups, as we will see in the next chapter.

Let G be a group and K(G) its commutant. The commutant K(G)
is itself a group, and one can consider its commutant K(K(G)) as well.
In the group obtained one can again consider the commutant, etc.. One
obtains the group in short So

DEFINITION. A group G is said to be soluble if the sequence of groups
G, K(G), ends, for a finite with the unit group, i.e.,
for some one has

For example, all commutative groups are soluble, because if G is com-
mutative, then at the first step one already has A group G
is also soluble whenever its commutant is commutative, because in this
case

156. Say whether the following groups are soluble or not: a) the cyclic
group b) the group of symmetries of the equilateral triangle; c) the
group of symmetries of the square; d) the group of quaternions (see 92);
e) the group of rotations of the tetrahedron; f) the group of symmetries
of the tetrahedron; g) the group of rotations of the cube.

All groups considered in Problem 156 are soluble. It is thus natural
to ask whether there exist in general non-soluble groups. We will prove
that the group of rotations of the regular dodecahedron (Figure 12) is not
soluble.

157. How many elements are contained in the group of rotations of
the dodecahedron?

All rotations of the dodecahedron can be divided into four classes:
1) the identity transformation; 2) rotations around the axes through the
centres of opposite faces; 3) rotations around the axes through opposite
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FIGURE 12

vertices; 4) rotations around the axes through the middle points of oppo-
site edges.

158. How many elements are contained in each class (without count-
ing the identity transformation in classes 2–4)?.

159. Let N be an arbitrary normal subgroup of the group of rotations
of the dodecahedron and suppose that N contains at least one element
of one among classes 1–4. Prove that N contains the entire class of this
element.

As a consequence each one of classes 1–4 either belongs entirely to N
or has no elements in common with N.

160. Prove that in the group of rotations of the dodecahedron there
are no other normal subgroups except and the whole group.

161. Suppose that a group G is not commutative and that it has no
normal subgroups other than and G. Prove that G is not soluble.

From problems 160 and 161 it follows that the group of rotations of
the dodecahedron is not soluble.

We shall consider some more problems whose results will be of use
later on.

162. Prove that every subgroup of a soluble group is soluble.

163. Let a homomorphism surjective of a group G onto a
group F and suppose that group G is soluble. Prove that the group F is
also soluble.
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164. Give an example in which the group F is soluble whereas the
group G is not (see the preceding problem).

165. Let G be a soluble group and N a normal subgroup of G. Prove
that the quotient group G/N is soluble.

166. Prove that if the groups N and G/N are soluble then the group
G is soluble.

167. Let G and F be two soluble groups. Prove that the group G × F
is soluble.

168. Let G be a soluble group. Prove that there exists a sequence
of groups such that: 1) 2) each group

is a normal subgroup of the group and all quotient groups
are commutative; 3) the group is commutative.

169. Suppose that for a group G there exists a sequence of groups
with the properties described in the preceding problem. Prove that the
group G is soluble.

The results of Problems 168 and 169 show that for a group G the ex-
istence of a sequence of groups with the properties described in Problem
168 is equivalent to the condition of solubility and can as well be consid-
ered as a definition of solubility. One may obtain yet another definition
of solubility using the results of the next two problems.

170. Let G be a soluble group. Prove that there exists a sequence
of groups such that: 1) 2) every group

contains a commutative normal subgroup such that the
quotient group 3) the group is commutative.

171. Suppose that for a group G there exists a sequence of groups
with the properties described in Problem 170. Prove that the group G is
soluble.

1.15 Permutations

We consider now, more attentively, the permutations (i.e., the transfor-
mations) of the set of integers these permutations are called
permutations of degree We observe that any permutation in an ar-
bitrary set of elements can be considered as a permutation of de-
gree it suffices to enumerate the elements of the set by the integers
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Every permutation of degree can be written in the form

where is the image of the element under the

permutation. Recall that a permutation is a bijective mapping; as a con-
sequence the elements of the second row are all distinct.

172. Which is the number of all permutations of degree

DEFINITION. The group of all permutations of degree with the usual
operation of multiplication (i.e., composition) of permutations9 is called
the symmetric group of degree and is denoted by

173. Prove that for group is not commutative.

A permutation can interchange some elements and fix the others.
It may also happen that the permuted elements change their position
cyclicly. For example, the permutation

fixes the elements 2, 5 and 7, and permutes the other elements cyclicly:
Permutations of this kind are called cyclic

permutations, or simply cycles. For cyclic permutations we will even use
another notation. For example, the expression (1436) will denote the
permutation sending and fixing the other
elements of the set we deal with. So if our permutation has degree 7 then
it coincides with the permutation we had above considered.

Permutations are not all cyclic. For example, the permutation

is not cyclic, but can be represented as product of two cycles:

The cycles obtained permute different elements. Cycles of such a kind
are said to be independent. It is easy to see that the product of two

9By our definition of product of transformations (§1.2) the multiplications of per-
mutations are carried out from right to left. Sometimes one considers the multipli-
cations from left to right. The groups obtained with the two multiplication rules are
isomorphic.
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independent cycles does not depend on the order of the factors. If we
identify those products of independent cycles that are distinguished only
by the order of their factors, then the following proposition holds.

174. Every permutation can be uniquely represented (up to differ-
ent orderings of factors) by a product of independent cycles. Prove this
proposition.

A cycle of type permuting only two elements, is called a trans-
position.

175. Prove that every cycle can be represented as a product of trans-
positions (not necessarily independent).

The transpositions (1, 2), (2, 3), ( … ) , are called elementary
transpositions.

176. Prove that every transposition can be represented as product of
elementary transpositions.

From the results of Problems 174–176 it follows that every permuta-
tion of degree can be represented as a product of elementary transpo-
sitions. In other words, the following theorem holds.

THEOREM 4. If a subgroup of group contains all elementary trans-
positions, then it coincides with the whole group

Suppose that the numbers are written on a row in an arbi-
trary order. We say that the pair is an inversion in this row if
but appears before in this row. The number of inversions in a row
characterizes the disorder with respect to the usual order

177. Find the number of inversions in the row 3, 2, 5, 4, 1.
In the sequel we shall no longer be interested in the number of inver-

sions, but in its parity.

178. Prove that the parity of the number of inversions in a row
changes if one exchanges any two numbers.

DEFINITION. The permutation is called even or

odd according to the parity of the number of inversions in the lower row.

For example, the identical permutation is even because

the number of inversions in the lower row is zero.

179. Determine the parity of the permutation
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180. Prove that by multiplying an even permutation by an arbitrary
transposition one obtains an odd permutation, and, conversely, by mul-
tiplying an odd permutation with an arbitrary transposition one obtains
an even permutation.

181. Prove that an even permutation can be decomposed only into
a product of an even number of transpositions, and an odd permutation
only into an odd number of transpositions.

182. Determine the parity of an arbitrary cycle of length: a) 3; b) 4;
c) m.

183. Prove that the result of the multiplication of two permutations
of the same parity is an even permutation, whereas the result of the multi-
plication of two permutations of opposite parities is an odd permutation.

184. Let be an arbitrary permutation. Prove that and have
the same parity.

From the results of Problems 183 and 184 it follows that the set of
all the even permutations form a subgroup of group

DEFINITION.  The group of all even permutations of degree is called
the alternating group of degree and it is denoted by

185. Prove that for is not commutative.

186. Prove that the alternating group is a normal subgroup of the
symmetric group and find the partition of by

187. Calculate the number of elements of the group

188. Prove that the groups and are soluble.

We now prove that the alternating group is not soluble. One of
the possible proofs uses the following construction. We inscribe in the
dodecahedron five regular tetrahedra, numbered by the numbers 1, 2, 3,
4 and 5 in such a way that to every rotation of the dodecahedron there
corresponds an even permutation of the tetrahedra, and that to different
rotations there correspond different permutations. So we have defined an
isomorphism between the group of rotations of the dodecahedron and the
group of the even permutations of degree 5. The non-solubility of the
group will thus follow from the non-solubility of the group of rotations
of the dodecahedron.
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189. Inscribe in the dodecahedron five tetrahedra as explained above10.
Another proof of the non-solubility of the group consists in re-

peating the argument of the proof of the non-solubility of the group of
rotations of the dodecahedron. To do this one must solve the next prob-
lem.

190. Prove that every even permutation of degree 5, different from
the identity, can be decomposed into independent cycles in just one of
the following ways: a) b) c)

191. Let N be a normal subgroup of group Prove that if N
contains at least one permutation which splits into independent cycles
in one of the ways indicated in Problem 190, then N contains all the
permutations splitting into independent cycles in this way.

192. Prove that the group does not contain normal subgroups
except the identity and the whole group.

From the results of Problems 192, 161 and from the group being
not commutative, it follows that the group is not soluble.

193. Prove that the symmetric group for contains a sub-
group isomorphic to

From the results of Problems 193 and 162 we obtain the following
theorem.

THEOREM 5. For the symmetric group is not soluble.

The proof of this theorem, as well as the other results of this chapter,
will be needed in the next chapter to demonstrate the non-solvability by
radicals of algebraic equations of degree higher than four11.

10To inscribe the 5 tetrahedra inside the dodecahedron one can start from the 5
Kepler cubes. For their description and their relation with the tetrahedra see the
footnote of the solution of Problem 189. (Translator’s note)

11 The following books are indicated to students who desire to study the theory
of groups more deeply: Kargapolov M.I., Merzlyakov Y.I., (1972), Fundamentals of
the Theory of Groups, Graduate Texts in Mathematics, (Springer-Verlag: New York);
Vinberg. E.B., (2003), A Course in Algebra, Graduate Studies in Mathematics, v. 56,
(AMS).
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The complex numbers

When studying mathematics in school, the set of numbers considered was
progressively extended. The reason for this was based on these extensions
allowing us to operate on numbers with more freedom. So on passing from
the natural numbers to the integers it became possible to subtract any two
numbers; on passing to the rational numbers it became possible to divide
any two numbers, etc.. But the most important result of such extensions
consists in the properties of the extended system often allowing us to
discover some new properties of the initial system. For example, many
difficult problems of number theory, concerning only integers, were solved
using the real numbers as well as the complex numbers.

Historically, the complex numbers appeared just as a way of solv-
ing certain problems in the real numbers. So, for example, the Italian
mathematician Cardano (1501–1576) devised a correct procedure for de-
termining the roots of the equation of third degree using, in intermediate
steps of calculations, the ‘non-existing’ roots of negative numbers.

Afterwards the complex numbers played an increasingly important
role in mathematics and applications. They were introduced for the first
time in the theory of algebraic equations, because the domain of com-
plex numbers turned out a more convenient setting for the study of such
equations.

For example, every algebraic equation of degree with real or
complex coefficients has at least one complex root (see below the ‘funda-
mental theorem of algebra’ §2.8) whereas not all algebraic equations with
real coefficients have at least one real root.

Since an interpretation of complex numbers was found in terms of
vectors in the plane, geometrical notions such as that of continuity and

45
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geometrical transform became applicable to the study of complex num-
bers. The relation between complex numbers and vectors also allows us to
rewrite several problems of mechanics in terms of complex numbers and
their equations — in particular, in hydrodynamics and aerodynamics, the
theory of electricity, thermodynamics, etc..

2.1 Fields and polynomials

Real numbers can be added, multiplied, and the inverse operations are
also allowed: the subtraction and the division (the latter, however, not
by zero). In any addition of several numbers the terms can be permuted
in any way, and they can be collected arbitrarily within brackets without
changing the result. The same holds for the factors of any product. All
these properties, as well as the relation between the addition and the
multiplication, can be summarized as it follows:

The real numbers possess the three following properties:
1) They form a commutative group (see §1.3) under addition (the unit

element of this group is denoted by 0 and is called the zero).
2) If one excludes 0 then the real numbers form a commutative group

under multiplication.
3) The addition and the multiplication are related by distributivity:

for any numbers

The existence of these three properties is very important because they
allow us to simplify the arithmetic of algebraic expressions, to solve equa-
tions, etc.. The set of real numbers is not the only set to possess these
three properties. In order to single out all these sets the following notion
is introduced.

DEFINITION. A set in which two binary operations (addition and
multiplication) possessing the above properties are defined is called a
field.

194. Verify whether the following subsets of the real numbers set
with the usual operations of addition and multiplication are a field: a)
all the natural numbers; b) all the integer numbers; c) all the rational
numbers; d) all the numbers of the type where and are
two arbitrary rational numbers.
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195. Prove that in every field the identity holds for
any element

196. Prove that in every field: 1) 2)
for any elements and

197. Let be two elements of an arbitrary field and Prove
that either or

EXAMPLE 14. Suppose that in the set besides
the operation of addition modulo (see example 9, §1.4), there is also
given the multiplication modulo which associates to two numbers the
remainder of the division by of their usual product.

198. Construct the tables of multiplication modulo 2, 3 and 4.

199. Prove that the remainders modulo with the operations of
addition and multiplication modulo form a field if and only if is a
prime number.

DEFINITION. By the difference of the elements and in an
arbitrary field one denotes the element which solves the equation
(or One calls the quotient of the division of the element
by for (denoted by the element which solves the equation

(or
From the result of Problem 24 and from addition and multiplication

in a field being commutative, it follows that the elements and
(for are uniquely defined in all fields.

Since a field is a group under addition as well as if one excludes the
zero, under multiplication, the equation is equivalent to the
equation and the equation for is equivalent
to the equation Hence and

The reader may easily prove that the operations of addition, subtrac-
tion, multiplication, and division in an arbitrary field possess all the basic
properties which these operations possess in the field of real numbers. In
particular, in any field the two members of an equation can be multiplied
or divided by the same non-zero number; every term can be transported
from one member to the other reversing its sign, etc.. Consider, for in-
stance, the property which relates subtraction and multiplication.

200. Prove that in any field for any three elements
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If K is a field then it is possible, as for the field of the real numbers,
to consider the polynomials with coefficients in the field K, or, in other
words, the polynomials over K.

DEFINITION. An expression like ( being a natural number)

where are elements of the field K, and is called a
polynomial of degree in one variable over K.

If is an element of the field K the expression is itself considered
as a polynomial over K, and if it represents a polynomial of degree
zero, whereas if the degree of this polynomial is considered to be
undefined.

The elements are called the coefficients of the polynomial
(2.1) and the leading coefficient.

Two polynomials in one variable are considered to be equal if and
only if the coefficients of the terms of the same degree in both polynomials
coincide. Let

If in the second member of this equation one replaces with an element
of the field K and one carries out the calculations indicated, i.e., the

operations of addition and multiplication in the field K, one obtains as
a result some element of the field K. One thus writes If

where 0 is the zero element of field K, one says that is a root
of the equation one also says that is a root of the polynomial

The polynomials on any field can be added, subtracted, and multi-
plied.

The sum of two polynomials and is a polynomial in
which the coefficient of is equal to the sum (in the
field K) of the coefficients of in the polynomials and In
the same way one defines the difference of two polynomials. It is evident
that the degree of the sum or of the difference of two polynomials is not
higher than the maximum of the degree of the given polynomials.

To calculate the product of the polynomials and one must
multiply every monomial of the polynomial by every mono-
mial of the polynomial according to the rule
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where is the product in K, and is the usual sum of integer num-
bers. Afterwards one must sum all the obtained expressions, collecting
the monomial where the variable has the same degree, and replacing
the sum by the expression
If

thus1

Since and (cf., 197) the degree of the product
is equal to i.e., the degree of the product of two polynomials
(non-zero) is equal to the sum of the degrees of the given polynomials.

Taking into account that the operations of addition and multiplication
of the elements of the field K possess the commutative, associative, and
distributive properties, it is not difficult to verify that the introduced
operations of addition and multiplication of polynomials also possess all
these properties.

If

and is any element of the field K, one obtains

The polynomials on an arbitrary field K can be divided by one another
with a remainder. Dividing the polynomial by the polynomial
with a remainder means finding the polynomials (quotient) and
(remainder) such that

l The coefficient of in the product is equal to
hence here we must impose for and for
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moreover either the degree of the polynomial must be lower than
the degree of the polynomial or one must have

Let and be any two polynomials over the field K and
We show that it is possible to divide the polynomial by

the polynomial with a remainder.
Let

If we put and and we obtain the quotient
and the remainder required. If then consider the polynomial

The polynomial contains no monomial in because either its
degree is not higher than or If

and then consider the polynomial

etc.. Since the degree of the polynomial obtained is strictly lower than
the degree of the preceding polynomial, this procedure must end, i.e., at
some step we obtain

where either the degree of is lower of the degree of or
We thus have
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Consequently the expression within brackets is the quotient of the divi-
sion of the polynomial by the polynomial and is the
remainder. The procedure of the division of two polynomials described
here is called the Euclidean algorithm.

201. Let

for which the degrees of and are lower than the degree of
(may be or Prove that

2.2 The field of complex numbers

From the solution of Problem 194 it follows that there exist fields smaller
than the field of the real numbers; for example, the field of the rational
numbers. We now construct a field which is bigger than the field of the
real numbers: the field of the complex numbers.

Consider all the possible pairs of real numbers, i.e., the pairs of type
where and are two arbitrary real numbers. We will say that

if and only if and In the set of all these pairs
we define two binary operations, the addition and the multiplication, in
the following way:

(here within brackets in the second members of the equations the opera-
tions are the usual operations on real numbers). For example, we obtain

DEFINITION. The set of all pairs of real numbers with the operations
of addition and of multiplication defined by (2.2) and (2.3) is called the
set of complex numbers.



From this definition it is clear that in the complex numbers there is
nothing of the ‘supernatural’: the complex numbers are nothing but pairs
of real numbers. However, a question may arise: is it correct to call such
objects numbers? We will answer this question at the end of this section.
Another question, which perhaps the reader may put, is the reason way
the operations of addition and multiplication of complex numbers are
defined exactly in this manner and, in particular, way the operation of
multiplication is so strange. We will answer this question in §2.3.

First, we clarify the remarkable properties of the set of complex num-
bers which we had defined.

202. Prove that the complex numbers form a commutative group
under addition. Which complex number is the unit element (zero) of this
group?

In the sequel it will be convenient to denote the complex numbers by
a single letter, for example by (or

203. Prove that the operation of multiplication of complex numbers
is commutative and associative, i.e., that and

It is easy to verify that
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for every complex number The complex number (1, 0) is therefore
the unit element in the set of complex numbers under multiplication.

204. Let be an arbitrary complex number and suppose that
Prove that there exists a complex number such that

The results of Problems 203 and 204 show that complex numbers
form a commutative group under multiplication.

205. Prove that the operations of addition and multiplication of com-
plex numbers possess the distributive property, i.e., that

for any complex numbers

From the results of Problems 202–205 it follows that the complex
numbers with the operations of addition and multiplication defined by
(2.2) and (2.3) form a field. This field is the field of complex numbers.
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For complex numbers of type where is any real number, for-
mulae (2.2) and (2.3) give

Consequently if one associates to every complex number of type
the real number then to the operations on numbers of type there
correspond the usual operations on real numbers. Therefore we simply
identify the complex number with the real number and we say
that the field of complex numbers contains the field of real numbers2.

The complex number (0, 1) is not real (under our definition) and we
will denote it by Since the field of complex numbers contains
all real numbers and the number it also contains all numbers of the
form and where and are any two real numbers and the
operations of addition and multiplication are extended to operations on
complex numbers.

206. Let be a complex number. Prove that

From the result of Problem 206 we obviously obtain that
if and only if and

As a consequence every complex number can be represented in a
unique way in the form where and are two real numbers.
If then, following tradition, is called the real part of the com-
plex number, the imaginary part, and the coefficient of the imaginary
part.

The representation of a complex number in the form is
called the algebraic representation of

For the complex numbers in algebraic representation formulae (2.2)
and (2.3) read:

207. Solve the equation (i.e., find the formula for the difference)

2In an analogous way, for example, one identifies the rational with the integer
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208. Solve the equation (i.e., find the formula for the quotient)

It is easy to verify that

i.e., Hence in the field of complex numbers, square roots of
negative numbers are well defined.

209. Calculate a) b) c)

210. Find all complex numbers such that: a) b)
c) d) is a real number).

DEFINITION. The complex number is called the conjugate of
and it is denoted by It is easy to verify that

211. Let and be two arbitrary complex numbers. Prove that: a)
b) c) d)

where is a complex number and all the are real. Prove that

The passage to the complex numbers is a successive step in the series:
natural numbers – integer numbers – rational numbers – real numbers –
complex numbers. The reader may feel that up to the real numbers one
deals with numbers, whereas the complex numbers are objects of another
nature. Of course, one may use whatever terminology one wishes, but the
complex numbers must, in fact, be considered as numbers.

The first objection against this is that complex numbers are not num-
bers, but pairs of numbers. Recall, however, that in a similar way one
introduces rational numbers. A rational number is a class of equivalent
fractions, and a fraction is a pair of integer numbers of the form
(where in this way the operations on rational numbers are sim-
ply operations on pairs of integer numbers. Another objection should be
that a number is an object which allows us to measure something. If we

212. Let
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think that numbers are entities by which one can measure everything,
then one must exclude from the set of these entities, for example, the
negative numbers because there are no segments of length –3 cm, and a
train cannot go for –4 hours. If, on the contrary, one thinks that numbers
are objects by which it is possible (or convenient) to measure at least one
quantity, then complex numbers are similar to the other numbers: with
them one describes very well, for example, the potential and the resistance
of alternating currents in electric circuits, which are extensively utilized
in electrotechnology. Complex numbers are are successfully employed in
hydro- and aerodynamics as well.

So the passage from real to complex numbers is as natural as, for
example, the passage from integer to rational numbers.

2.3 Uniqueness of the field of complex
numbers

Consider now the question of whether complex numbers could be defined
otherwise.

In other words, the question that we answer in this section is the
following: we want to obtain a field, which is an extension of the field
of the real numbers: does there exist more than one field which is an
extension of the field of the real numbers?

DEFINITION. We call an isomorphic mapping (or simply an isomor-
phism) of one field onto another one a bijective mapping   which is an
isomorphism with respect both to the addition, and to the multiplication,
i.e., such that and Two fields
between which one can define an isomorphism, are said to be isomorphic.

If in a field one considers exclusively the operations of addition and
multiplication, then isomorphic fields all have identical properties. As a
consequence, as in the case of groups, isomorphic fields cannot be distin-
guished.

As we have seen in the preceding section, in the field of the complex
numbers there is only one element such that The following
problem shows that on adding this element to the field of real numbers
one necessarily obtains the field of complex numbers.

213. Let M be a field containing the field of real numbers and a
certain element such that Prove that M contains a field
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isomorphic to the field of complex numbers.

We will say that a field is the minimal field with the required properties
if it possesses these properties and it does not contain other fields with
the same properties.

The result of Problem 213 can then be formulated in this way: the
minimal field which contains the field of the real numbers, and an element

such that is the field of complex numbers. This result proves in
a certain sense the uniqueness of the field of complex numbers. However,
another, much stronger, result holds. Indeed, suppose one renounces to
the requirement that the field M contains an element such that
and poses the problem of finding all fields that are minimal extensions
of the field of real numbers. It turns out that there are only two such
extensions (up to isomorphism): one of them is the field of the complex
numbers. Prove this statement.

Suppose the field M contains all the real numbers, i.e., that M con-
tains all the real numbers and that the operations on them coincide with
the usual operations on the real numbers. Suppose, moreover, that M
contains an element different from all the real numbers. Thus for all
sets of real numbers there exists in M an element equal
to

We call the degree of expression (2.6).
There are two possible cases:
a) a certain expression of the form (2.6) is equal to 0 for
b) there are no expressions of the form (2.6) equal to 0 for
Suppose first that we are in the case (a).

DEFINITION. The polynomial with coefficients in a certain field K is
said to be reducible over K if it can be represented as a product of two
polynomials of lower degree with coefficients in K. In the opposite case
it is said to be irreducible3 over K.

For example, the polynomials and are reducible
over the field of real numbers, because and

whereas the polynomials
and are irreducible over the field of real numbers. It is

evident that polynomials of the first degree over any field are irreducible.
3 Irreducible polynomials over a field K are the analogue of prime numbers in the

set of integer numbers.
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214. Let us choose, amongst all expressions of type (2.6), the expres-
sion of minimal degree that is vanishing in M: the correspond-
ing equation is

Prove that the polynomial

is not reducible over the field of real numbers.

In the sequel we will prove (cf., 272) that every polynomial with
real coefficients of degree higher than 2 is reducible over the field of real
numbers. Hence in Problem 214 cannot be higher than 2. But since

(otherwise we should have and should be equal to the
real number we obtain that

Consequently in the case (a) there exist two real numbers and in
M which satisfy

and for which the polynomial is irreducible over the field of
real numbers.

215. Prove that in the case (a) the field M contains an element
such that

From the results of Problems 215 and 213 it follows that in the case
(a) the field M contains a field isomorphic to the field of complex
numbers. Therefore if the field M is a minimal extension of the field of
real numbers then the field M must coincide with As a consequence,
in the case (a) any minimal field which represents a minimal extension
of the field of real numbers coincides (i.e., it is isomorphic) with the field
of complex numbers. So in the case (a) there is only one field (up to
isomorphism) which is a minimal extension of the field of real numbers,
namely the field of complex numbers.

216. Find all fields that are minimal extensions of the field of real
numbers in the case (b).
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2.4 Geometrical descriptions of the
complex numbers

Consider on the plane a system of orthogonal coordinates and let
us associate to every complex number the point of the plane with
coordinates We obtain a bijective correspondence between all com-
plex numbers and all points of the plane. This is the first geometrical
representation of the complex numbers.

217. Which complex numbers correspond to the points shown in
Figure 13?

FIGURE 13 FIGURE 14

218. Let the complex numbers be represented by the points of the
plane. What is the geometrical meaning of the mapping if for every
complex number a) b) c) is the
conjugate of

Let and be two points of the plane (Figure 14).
The segment AB directed from A to B is called the vector The
coordinates of the vector are by definition calculated in the following
way:

Two vectors are considered equal if they are parallel and have the
same direction and the same length.
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219. Prove that two vectors are equal if and only if their coordinates
are equal.

The set of equal vectors is considered to be a unique vector, char-
acterized by its coordinates, which is called a free vector. Putting into
correspondence every complex number with the free vector having
coordinates we obtain the second geometrical representation of the
complex numbers.

220. Let and be the free vectors corresponding to the complex
numbers and Prove that if and only if
where the vectors are added according to the parallelogram rule.

221. Prove the following relation between the two geometrical rep-
resentations of the complex numbers: if are the complex

numbers corresponding to the points A, B and to vector then

By definition, two equal vectors have equal lengths. This length is
additionally assumed to be the length of the free vector corresponding to
a given set of equal vectors.

DEFINITION. One calls the modulus of the complex number (denoted
by the length of the corresponding free vector4.

222. Let Prove that

where is the conjugate of

223. Prove the inequalities:

a)

b)

where are arbitrary complex numbers. In which case does the equal-
ity hold?

224. Prove by means of the complex numbers that in any parallelo-
gram the sum of the squares of the lengths of the diagonals is equal to
the sum of the squares of the lengths of all the sides.

4For real numbers (as a particular case of complex numbers) the notion of modulus
introduced here coincides with the notion of absolute value. Indeed, to the real number

there corresponds the vector with coordinates parallel to the and
its length is equal to the absolute value of the number
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2.5 The trigonometric form of the complex
numbers

Recall that the angle between the rays OA and OB is defined as the angle
by which one has to turn counterclockwise the ray OA around O in order
to take it over to the ray OB (if the rotation is clockwise, the angle has
the sign ‘minus’). So the angle is not defined uniquely, but up to rotations
by where is any integer.

DEFINITION. Let point O be the origin of the coordinates, and sup-
pose that the vector OA with coordinates corresponds to the com-
plex number One calls the argument of the complex number

(denoted by the angle between the positive direction of the axis
and the ray OA (Figure 15) (if then is not defined).

FIGURE 15

Since for a given number the angle is not uniquely defined,
by the expression we mean a multi-valued function taking infinite
values, between which the differences are equal to multiples of

The expression will mean that one of the values of the
argument is equal to

Let and The vector with coordinates
corresponds to the complex number and its length is therefore
equal to Let Thus by the definition of the trigonometric
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functions (see Figure 15),

and therefore

where and thus we have obtained the trigonometric
representation of the complex number

For example, if then (cf., 222)
and We can assume that thus

225. Represent in trigonometric form the following complex numbers:
a) b) c) d) –5, e)

226. Let and Prove
that

Thus as a result of the multiplication the moduli of the complex numbers
are multiplied and their arguments are added; as result of the division
the moduli are divided and the arguments are subtracted.

227. Prove the De Moivre formula5:

for every integer

228. Calculate

229. Let be a given complex number and a
natural number. Find all complex numbers satisfying the equation

DEFINITION. The expression root of denotes a multi-
valued function, which puts into correspondence with every complex num-
ber all the roots of equation (2.7). For one has

A. de Moivre (1667–1754), French mathematician who lived in England.5
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230. Find all the values of the roots:
a) b) c) d)

It will be convenient in the sequel to adopt the following notation

231. Prove that all the values of are 1,

REMARK. Since the set of elements 1, is a cyclic
group under multiplication.

232. Let be one of the values of Find all the values of

We shall use the representation of complex numbers by the points of
the plane, i.e., the complex number will correspond to the point
of the plane having the coordinates So instead of the point corre-
sponding to the complex number we shall say simply point

233. Let the complex numbers be represented by the points of the
plane. Which is the geometrical meaning of the following expressions: a)

b)  c) d)

234. Find the position on the plane of the points satisfying the
following conditions (where are some given complex numbers
and R is a given real number): a) b) c)
d) e) f) g) h)

235. How are all the values of distributed on the plane, being
a given complex number?

2.6 Continuity

In the sequel an important role will be played by the notion of continuity
and, in particular, by that of continuous curve. If the reader does not
know the precise definition of such entities he understands intuitively,
however, what is a continuous curve, as well as a continuous function of
one real variable (at the intuitive level one may say that it is a function
whose graph is a continuous curve). But if the function of one real variable
is sufficiently complicated (for example,
then saying whether it is continuous or not, using only the intuitive idea
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of continuity, is rather difficult. Hence we give the rigourous definition
of continuity and by means of it we will prove some basic properties of
continuous functions. We give the definition of continuity for functions
of one real variable as well as for functions of one complex variable.

The graph of a function of one real argument can be discontinuous at
some points, and at some points it can have some breaks. It is therefore
natural to consider first the notion of continuity of a function at a given
point rather than the general definition of continuity.

If we try to define more precisely our intuitive idea of continuity of a
function at a given a point we obtain that continuity means the
following: under small changes of the argument near the point the value
of the function changes a little with respect to value Moreover, it
is possible to obtain a variation of the function’s value about as
small as we want by choosing a sufficiently small interval of the variation
of the argument around One can formulate this more rigourously in
the following way.

DEFINITION. Let  be a function of one real or complex variable
One says that the function is continuous at if for every arbitrary
real number one can choose a real number (which depends on

and on such that for all numbers satisfying the condition
the inequality6 holds.

EXAMPLE 15. Prove that the function with complex argument
is continuous at any point Suppose a point and a real number

be given. We have to choose a real number such that for
all numbers which satisfy the condition the inequality

is satisfied. It is not difficult to see that
one can choose (independently of the point Indeed, from the
condition it follows that:

i.e., As a consequence the function is continuous
at any point In particular, it is continuous for all real values of the
argument Therefore if one restricts the function to the real values of
the argument, one obtains that the function of the real variable
is continuous for all real values

6 The geometrical meaning of the inequalities and is
given in Problems 233 and 234.



236. Let be a complex number (or, as a particular case, real). Prove
that the complex (or real) function is continuous for all values
of the argument.

237. Prove that the function of a complex argument and
the function of a real argument are continuous for all values of
their argument.

238. Prove that the function of a complex argument is
continuous for the all values of

DEFINITION.   Let and be two functions of a complex (or
real) argument. One calls the sum of the functions and the
function of a complex (or real) argument which satisfies at every
point the equation If the value or the
value is not defined then the value is also not defined. In the
same way one defines the difference, the product, and the quotient of two
functions.

239. Let be a function of a complex or real argument and let
be continuous at Prove that at the functions: a)
b) c) are continuous.

From the result of Problem 239(b) we obtain, in particular, that if
a function is continuous at a point and is an integer, then the
function is also continuous at the point

240. Let and be two functions of complex or real argu-
ment, continuous at and suppose that Prove that at the
functions: a) b) are continuous.

DEFINITION.  Let and be two functions of a complex or
real argument. One calls the composition of the functions and
the function which satisfies at every point the equation

If the value is not defined, or the function is not
defined at the point then the value is also not defined.

241. Let          and be two functions of complex or real argument.
Let and let functions and be continuous at the
points and respectively. Prove that the function is
continuous at the point

From the results of Problems 239–241 it follows, in particular, that
any expression obtained from any functions of one complex (or real) ar-
gument, continuous for all values of the argument, by means of the op-
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erations of addition, subtraction, multiplication, division, elevation to an
integer power, and composition, represents a continuous function at all
points at which the denominator does not vanish.

For example, from the results of Problems 236 and 237, we obtain
that the functions and more generally

are continuous functions of for all complex
numbers

242. Prove that the functions of a real argument                         and
are continuous for all values of

243. Consider for all real values the function where
is a non-zero integer and a non-negative value is chosen for Prove

that this function is continuous for every
During the study of continuity one encounters some statements which

intuitively seem evident; however, their exact proofs involve serious tech-
nical difficulties and request a definition of the real numbers more strict
than that learnt at school, as well as the study of the foundations of set
theory and of topology.

An example of such statements can be represented by the following
proposition. If a function of a real argument is continuous in some
interval and in this interval takes only integer values, then it takes only
one value in the whole interval. Indeed, it seems intuitively evident that,
as far as the point moves in the interval, the value of the function
must change continuously and cannot ‘jump’ from one integer value to
another one. Proving this proposition in an exact way is, however, rather
difficult.

In the present exposition we rely on the ‘intuitive evidence’ of some
propositions related to continuity without giving demonstrations of them.
In particular, we adopt, without proof, some propositions which we have
formulated in the form of examples.
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2.7 Continuous curves

Suppose that the parameter takes real values in the interval
and that each of these values is in correspondence with some complex
number

.
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The plane on which the values of are represented will be called simply
the plane’. If the functions and are continuous for
then as varies from 0 to 1, the point describes a continuous curve
in the plane. We provide this curve with an orientation, assuming that

and are the initial and the final points respectively.
The function is called the parametric equation of this curve.

EXAMPLE 16. Let Thus and
for every i.e., the point lies on the parabola

for every As varies from 0 to 1, also varies from 0 to 1 and the
point runs along the parabola from the point to the
point (Figure 16).

FIGURE 16

244. Trace on the plane the curves given by the following parametric
equations: a) b) c) d) e)

f) g)
h)

i)

245. Write a parametric equation for the segment joining the points
and

REMARK. In the following problems the parametric equations have
some indices. These numbers have to be viewed only as labels, but all
curves lie in the same plane.

246. By means of which geometrical transformations of the curve
with equation can we obtain the curve with equation if:

i)
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a)
b)
c)
d)

being a given complex number);
where is a positive real number;
where
where is an arbitrary complex number?

247. Let be the parametric equation of curve C. What is the
curve described by the equation if

248. Let and be the parametric equations of curves
and and suppose that What is the curve described by
equation if

249. Let (Figure 17). Find all values of
as a function of

250. Let How should we choose one of the
values of  for every in such a way that the values of vary
continuously as varies from 0 to 1, with the condition that  is
equal to: a) 0; b) c) d) being a given integer)?

FIGURE 17

THEOREM 6. Assume that a continuous curve C with a parametric
equation does not cross the origin of coordinates and that at the initial
point of the curve C the argument is Thus it is possible to choose one
of the values of the argument for all points of the curve C so that along
the entire curve the argument of changes continuously, starting from

In other words, one can choose for every one of the values of
arg in order that the function be continuous for and

(See note7).

7In the book: Chinn W.G., Steenrod N.E, (1966), First Concepts of Topology,
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251. Let and be two functions describing the continuous
variation of along the curve C. Prove that
where is a given integer which does not depend on

252. Prove that if one chooses a value then the function
which describes the continuous variation of along the curve

C, is uniquely defined.

253. Let be a function describing the continuous variation of
Prove that the function is uniquely defined

by the function and does not depend on the choice of

From the statement of Problem 253 it follows, in particular for
that for a continuous curve C not passing through the point the
quantity is uniquely defined by the continuity condition of

DEFINITION. The difference is called the variation of the
argument along the curve C.

254. Find the variation of the argument along the curves with the
following parametric equations: a) b)

c) d)

255. What is the variation of the argument along the curves shown
in Figure 18?

FIGURE 18

(Mathematical Association of America: Washington), (§§20–23), the angle character-
ized by the given curve is precisely defined. Using this angle one easily obtains the
statement of Theorem 6: it suffices to put where is the angle
characterized by the curve segment from to
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REMARK. If a curve C is closed, i.e., then the quantity
is equal to where is an integer number.

DEFINITION. If for a continuous closed curve C not passing through
a point the variation of the argument is equal to then we say
that the curve C turns times around the point

256. How many times do the following curves turn around the point
a) (Figure 19); b)

(Figure 20); c) the curve in Figure 21; d) the curve in Figure
22?

FIGURE 19 FIGURE 20

FIGURE 21 FIGURE 22

257. Prove that the number of turns of a closed continuous curve
around the point does not depend on the choice of the initial point,
and depends only on the orientation of the curve.

258. Suppose that a curve C with equation turns times around
the point How many times does the curve with the equation
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turn around the point if:  a) b) c)
where d) where is the conjugate

of

DEFINITION. Suppose that a continuous curve C with the equation
does not pass through the point We thus say that the

curve C turns times around the point if the curve with equation
turns times around the point (Figure 23).

FIGURE 23

Consequently to define the number of turns of a curve around the
point we have to look at the rotation of the vector i.e.,
the vector joining points and (cf., 221).

259. How many times do the curves described in Problem 256 turn
around the point

260. Let and be the equations of two curves and
not passing through the point Let the variations of the argument
along these curves be equal, respectively, to and What is the
variation of the argument along the curve C with the equation if: a)

b)



Consider two planes of complex numbers: the plane and the plane,
and a function which puts into correspondence with every
value a value uniquely defined. If on the plane there is a continuous
curve C having equation then by the function every point
of this curve is sent to a point of the plane. Hence if the function
is continuous we also obtain on the plane a continuous curve, having
equation We shall denote this curve by

261. What is the curve if                          and the curve C is
a) a quarter of a circle:
b) a semi-circle:
c) a circle:

262. Let the variation of the argument along a curve C be equal to
What is the variation of the argument along the curve if: a)

b) c) where is a non-zero arbitrary
integer?

263. Suppose that the curve C turns times around the point
How many times does the curve turn around the point if

264. Suppose that a curve C turns around the points
respectively times. How many times does

the curve turn around the point if: a) b)
c) d)

Consider the equation

where all the are arbitrary complex numbers, and
Our first aim is to show that this equation has at least one complex root.
If then the equation possesses the root In the sequel,
therefore, we will assume that

Let us denote by A the maximum amongst the numbers
Since A > 0. Choose two real numbers and with

such conditions: let be sufficiently small to satisfy the inequalities:
and let be sufficiently large to satisfy the

inequalities: and
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2.8 Images of curves: the basic theorem
of the algebra of complex numbers
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265. Let Prove that

266. Let Prove that

Let us denote by the curve with equation
(i.e., the circle with radius equal to R, oriented counterclock-

wise). Since the curve is closed the curve
is closed as well Let be the

number of turns of the curve around the point (if
does not pass through the point

267. Calculate and
Let us now increase the radius R from to The curve

will consequently be deformed from to If for a value R*

the curve does not pass through the point by a sufficiently
small variation of R near R*  the curve will turn out to be deformed
by too small an amount for the number of its turns around the point
to change: the function is indeed continuous at the value R*. If the
curves avoid the point for all values of R between and

then is a continuous function for all Since the
function takes only integer values it can be continuous only if for
all values of it takes a unique value. But, solving Problem
267, we have obtained that and Therefore the
claim that none of the curves passes through the point for
all is untrue. We thus have for a certain In
this way we have proved the following theorem8.

THEOREM 7. (The fundamental theorem of the algebra of complex
numbers9). The equation

8 Our reasoning contains some non-rigourous passages: it must be considered, in
general, as an idea of the proof. This reasoning can, however, be made exact (though
in a non-simple way). See, for example, Chinn W.G., Steenrod N.E, (1966), First
Concepts of Topology, (Mathematical Association of America: Washington).

9This theorem was proved in 1799 by the German mathematician C.F. Gauss (1777–
1855).
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where all the are arbitrary complex numbers, and has
at least one complex root.

268.  Prove Bézout’s theorem10: If is a root of the equation
then the polynomial is divisible

by the binomial without remainder.

269. Prove that the polynomial where
can be represented in the form:

REMARK.  Suppose that the polynomial decomposes into factors:

The left member of the equation is equal to 0 if and only if at least one of
the factors inside brackets is equal to 0 (cf., 195, 197). Hence the roots
of equation are the numbers and them alone.

270. Let be a root of the equation

where the are real numbers. Prove that the number the conjugate
of is also a root of that equation.

271. Suppose that the equation with real coefficients

has a complex root being not a real number. Prove that the polynomial

is divisible by a polynomial of second degree with real coefficients.

272. Prove that every polynomial with real coefficients can be written
in the form of a product of polynomials of first and second degree with
real coefficients.

REMARK. From the result of Problem 272 it follows that the sole
irreducible polynomials (cf., §2.3) over the field of real numbers are the

10É. Bézout (1730–1783), French mathematician.
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polynomials of first degree and those of second degree with no real roots.
We had used this property in §2.3 of this chapter. Over the field of com-
plex numbers, according to the result of Problem 269, only polynomials
of first degree are irreducible.

DEFINITION.  Let be a root of the equation

One says that is a root of order if the polynomial
is divisible by and not by

273. Which is the order of the roots and in the equation

DEFINITION.  One calls the derivative of the polynomial

the polynomial

The derivative is usually denoted by the (prime).

2.9 The Riemann surface of the function

We had considered single-valued functions for which there corresponds
a unique value of the function to every value of the independent vari-
able. In what follows we will deal mainly with multi-valued functions,
for which there correspond distinct values of the function to a value of
the independent variable11. We will explain the reason for our interest

11 Whenever the context is sufficiently clear the term multi-valued will be omitted.

275. Let integer). Prove that

276. Prove that if the equation has a root of order
then the equation has a root of order and that if the
equation has a root of first order then

274. Let and be two polynomials. Prove that: a)
where is an arbitrary

complex constant; c)



in such functions. In fact, the final aim of our study is the proof of the
Abel theorem, according to which a function, expressing the roots of the
general equation of fifth degree, cannot be represented by radicals. But
this function is multi-valued, because an equation of fifth degree has, in
general, for given coefficients, five roots. Also the functions which are
represented by radicals are multi-valued.

The principal idea of the demonstration of the Abel theorem is the
following. We put into correspondence with a multi-valued function of a
complex variable a certain group, the so called monodromy group.

The monodromy group of the function expressing the roots of the
general equation of fifth degree in terms of a parameter cannot coincide
with any monodromy group of functions representable by radicals, and
therefore this function cannot be represented by radicals.

In order to introduce the notion of the monodromy group we con-
sider first another notion very important in the theory of functions of one
complex variable — the notion of the Riemann12 surface of a function.
We begin by the construction of the Riemann surface for the simplest
example of a multi-valued function, the function

We already know that the function takes the single value
for and two values for all values (cf., 229). Moreover,

if is one of the values of then the other value of is

277. Find all values of: a) b) c) d) (here
is the positive value of the root).
Let us cut the plane along the negative side of the real axis from 0

to and for every not belonging to the cut let us choose the value
which lies on the right half plane. In this way we obtain a

continuous single-valued function over the whole plane, except the cut.
This function, which we denote by defines a continuous and single-
valued mapping of the plane, except the cut, on the right half plane
(Figure 24).

REMARK. If we choose arg in such a way that then
for the function we obtain (cf., 229). Therefore
under the mapping the plane shrinks like a fan whose radii are
shortened as its opening angle is halved.

If we now choose, for every not lying on the cut, the value of
which lies on the left half plane we obtain another function, still single-

12B. Riemann (1826–1866), German mathematician.
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FIGURE 24

valued and continuous over the whole plane except the cut. This func-
tion, which we denote by defines a continuous single-valued mapping
of the plane except the cut, on the left half plane (Figure 25). Here

FIGURE 25

Functions and so defined are called the continuous single-
valued branches of the function (for the given cut).

Consider now two copies of the plane, which we shall call sheets,
and cut every sheet along the negative side of the real axis from 0 to
(Figure 26).

Let us take the function on the first sheet and the function
on the second sheet. Thus we can see the functions and as a
unique single-valued function, defined no longer on the plane but on a
more complex surface consisting of two distinct sheets.

So if a point moves continuously on the first (or on the second) sheet,
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FIGURE 26

not crossing the cut, the single-valued function that we have defined varies
continuously. But if the point moving, for example, on the first sheet,
traverses the cut, then the continuity is lost. This follows from the close
points A and B on the plane being sent by the mapping respectively
to points and far from each other (cf., Figure 24).

On the other hand, it is easy to see in Figures 24 and 25 that the
image of the point A under the mapping (the point is close
to the image of the point D under the mapping (the point

Consequently if, traversing the cut, the point moves from the upper
side of one sheet to the lower side of the other sheet, the single-valued
function we have defined varies continuously. To guarantee that the point

moves as requested, we consider the upper side of the cut on the first
sheet joined to the lower side of the cut on the second sheet, and the lower
side of the cut on the first sheet joined to the upper side of the cut on the
second sheet (Figure 27). Furthermore, when joining the sheets we shall
add between them the real negative axis from the point 0 to During
the first joining, for the points which lie on this half axis we choose the
values of lying on the positive side of the imaginary axis, and
during the second joining we choose the values of which lie on
the negative side of the imaginary axis.

By means of the joining explained above we had transformed the 2-
valued function into another function which is single-valued and
continuous, no longer on the plane but on a new surface. This surface
is called the Riemann surface of the function

Attempts to do the joining without intersections (and without reversal
of the plane) are made in vain. We assume that Figure 27 represents an
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FIGURE 27

image of the Riemann surface of the function using the further
convention that the self-intersection along the negative side of the real
axis is only apparent. In order to understand this, consider the following
example. In Figure 7 (§1.12) we see the image of a cube. Whereas in
this image some edges intersect, we know that such intersections are only
apparent, and this knowledge allows us to avoid mistaken interpretations.

The Riemann surface of a multi-valued function can be con-
structed in a way analogous to that used for the Riemann surface of the
function To do this we have first to separate the continuous
single-valued branches of the function excluding the points which
belong to the cuts. Afterwards we have to join the branches obtained,
choosing the values on the cuts in such a way as to obtain a continu-
ous single-valued function on the whole surface. The surface obtained is
called the Riemann surface of the multi-valued function13

It remains, therefore, to explain how to separate the continuous single-
valued branches of a function and how to join them. To understand
this, look again more attentively at the Riemann surface of the multi-
valued function

Let be a multi-valued function, and fix one of the values
of the function at a certain point Let be a continuous
single-valued branch of the function defined on some region of the
plane (for example, on the whole plane, except some cuts), and such that

Suppose, moreover, that there exists a continuous curve
C, connecting to a point lying entirely in the region of the plane
considered. Thus while the point moves continuously along the curve

13This type of construction is not always possible for every multi-valued function,
but for all functions we shall consider in the sequel, the construction of their Riemann
surfaces will, in fact, be possible.
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C from to the function varies continuously from to

One can also use this property conversely, i.e., for the definition of the
function

Indeed, suppose at a certain point one of the values of the
function be chosen. Let C be a continuous curve beginning at
and ending at a certain point Moving along the curve C we choose for
every point lying on C one of the values of the function in such a
way that these values vary continuously while we move along the curve C
starting from the value So when we arrive at the point the value

is completely defined. We say that is the value of
defined by continuity along the curve C under the condition
If the values of the function chosen for all points of the curve C, are
represented on the plane then we obtain a continuous curve beginning
at the point and ending at the point This curve is one of the
continuous images of the curve C under the mapping

278. For the function let us choose
Define by continuity along the following curves: a) the
upper semi-circle of radius 1 with centre at the origin of the coordinates;
b) the lower semi-circle (Figure 28).

FIGURE 28 FIGURE 29

In fact, using for a function the definition by continuity along a certain
curve we may encounter some difficulties. Consider the following example.

279. Find all continuous images of a curve C with parametric
equation (Figure 29) under the mapping beginning:
a) at the point b) at the point
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From the solution of Problem 279 we obtain that also by fixing the
image of the initial point of the curve C the continuous image of the
curve C under the mapping may be defined non-uniquely. The
uniqueness is lost when the curve C passes through the point In
fact, for the function the uniqueness is lost only in this case,
because only in this case do the two images of the point melt into
one point.

To avoid the non-uniqueness in the definition of the images of curves
under the mapping we may exclude the point and forbid
any curve to pass through this point. This restriction, however, does not
always allows the continuous single-valued branches of the function
to be separated.

Indeed, if we fix at a point one of the values and we
try to define at a certain point by continuity along two distinct
curves joining and we may obtain different values of (for
example, see 278). Observe now how we can avoid the non-uniqueness of
the obtained value.

280. Suppose the variation of the argument of along a curve C be
equal to Find the variation of the argument of along an arbitrary
continuous image of the curve C under the mapping

281.  Let                    and choose Define the value of
by continuity along: a) the segment joining points and

b) the curve with the parametric equation
c) the curve with the parametric equation

282. Let and choose at the initial point of a curve C,
Define by continuity along the curve C the value of

at the end point if the curve C has the equation: a)
b) c)

283. Let C be a closed curve on the plane (i.e., Prove
that the value of the function at the end point of the curve C, defined
by continuity, coincides with the value at the initial point if and only if
the curve C wraps around the point an even number of times.

In the sequel it will be convenient to use the following notation:

DEFINITION. Let C be a continuous curve with a parametric equation
We shall denote by the curve geometrically identical to C but

oriented in the opposite direction; its equation is (cf., 247)
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DEFINITION. Suppose that the initial point of a curve coincides
with the final point of a curve We will denote by the curve
obtained by joining the end point of to the initial point of (cf.,
248).

284. Let and be two curves, joining the points and and
let one of the values of be chosen. Prove that the values of

defined by continuity along the curves and are equal if and
only if curve (Figure 30) turns around the point an even
number of times.

FIGURE 30 FIGURE 31

From the statement of the last problem it follows that, in particular,
if the curve turns zero times around the point then the
values of the function at the final points of the curves and will
coincide if the values at the initial point coincide.

So to separate the single-valued continuous branches of the function
it suffices to take the curves and in such a way that the curve

does not turn around the point For this it suffices to make
a cut from the point to infinity avoiding intersecting the curve. We
operated exactly in this way drawing the cut from the point to
along the negative side of the real axis.

If, after having made the cut, one fixes at a certain point one of
the values, and if the value at every point is defined by
continuity along an arbitrary curve C joining and and not passing
through the cut, then at every point of the plane (except those on the
cut) a certain single-valued continuous branch of the function is
defined. If at the point one fixes the other value then
one defines the other branch of the function

285. Prove that for every point outside the cut.
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286. Fix the value at a certain point and define the
values of function at the other points of the plane (except the cut) by
continuity along the curves starting from and not intersecting the cut.
Prove that the continuous single-valued branches so obtained coincide
with the function (defined by the value at point

It follows from the result of Problem 286 that, choosing as initial
point different points of the plane, one obtains the same splitting of the
Riemann surface into single-valued continuous branches. Therefore this
splitting depends only on the way in which we have made the cut.

287. Suppose that points and do not lie on the cut and that the
curve C, joining them, traverses the cut once (Figure 31). Choose a value

and by continuity along C define the value Prove
that values and correspond to different branches of

In this way, traversing the cut, one moves from one branch to the
other, i.e., the branches join each other exactly as we have put them
together joining the sheets (Figure 29). One obtains in this way the
Riemann surface of the function

We say that a certain property is satisfied by any turn around a point
if it is satisfied by a simple turn counterclockwise along all circles

centred on and with sufficiently small radii14.

288. Prove that by a turn around a point one remains on the same
sheet of the Riemann surface of the function if and one moves
onto the other sheet if

The following notion is very important in the sequel.

DEFINITION. Points, around which one may turn and move from one
sheet to another (i.e., changing the value of the function) are called the
branch points of the given multi-valued function.

The Riemann surface of the function can be represented by a
scheme (Figure 32).

This scheme shows that the Riemann surface of the function
has two sheets, that the point is a branch point, and that by turning
around the point one moves from one of the sheets to the other.
Moreover, the arrow between the two sheets in correspondence with the
point indicates the passage from one sheet to the other not only
by a turn around the point but also by crossing a point of the

14More precisely, this means that there exists a real number such that the
property mentioned is satisfied by any turn along any circle with centre and radius
smaller than
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FIGURE 32

cut, joining the point to infinity. We have seen that this relation
between branch points and cuts coming from these points is not arbitrary.

In the sequel instead of the Riemann surfaces of multi-valued functions
we will represent their schemes.

2.10 The Riemann surfaces of more
complicated functions

Consider the multi-valued function

289. Let the variation of the argument along the curve be equal
to and let be the continuous image of the curve under the
mapping Find the variation of the argument along the curve

290. Find the branch points of the function

291. Let us make a cut from the point to along the negative
side of the real axis and assume, moreover, the single-valued continuous
branches of function to be given by the conditions:

Find: a) b) c) d) e)

292. Draw the Riemann surface (and its scheme) of the function

293. Let C be a continuous curve with parametric equation and
let be one of the values of Prove that there exists at least one
continuous image of the curve C under the mapping starting
at the point
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294. Suppose the variation of the argument along a curve be
equal to and be the continuous image of the curve under the
mapping Find the variation of the argument along the curve

295. Find the branch points of the function
In §2.5 we have used the notation

and we have considered some properties of this complex number.

296. Suppose that a curve does not pass through the point
and that is one of the continuous images of the curve under
the mapping Find all the continuous images of the curve
under the mapping

Suppose that two curves and join a point to a different point
Exactly as in the case of function (cf., 284), one proves that if

the curve does not turn around the point then the function
is uniquely defined by continuity along the curves and In this

way if, as for the function we make a cut from the point to
infinity the image of the function turns out to be decomposed
into single-valued continuous branches.

297. Make a cut from the point to infinity, not passing through
the point and define the single-valued continuous branches of the
function by the conditions: where takes the integer
values from 0 to How are the branches expressed in terms of

298. Draw the scheme of the Riemann surface of the function

299. Find the branch points and draw the scheme of the Riemann
surface for the function

300. Find the branch points and draw the scheme of the Riemann
surface of the function

When a multi-valued function has several branch points, in order to
separate the single-valued continuous branches we make the cuts from
every branch point to infinity along lines which do not intersect each
other.

In this way the scheme of the Riemann surface of a given function
may depend essentially on the choice of the cuts from the branch points
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to infinity (some examples of such cases are given later in Problems 327
and 328). Whenever we are in this situation, and only in this case, we
will indicate how to make the cuts.

The schemes of the Riemann surfaces drawn by the reader solving the
above proposed problems may differ from the schemes given in Solutions,
owing to different possibilities in numbering the sheets. Yet different
schemes must coincide under a suitable relabelling.

301. Let be a continuous single-valued function and C be a
continuous curve on the plane, starting at the point Let be one
of the values of Prove that there exists at least one continuous
image of the curve C under the mapping starting at the point

From the result of Problem 301 it follows that it is possible to define
the function by continuity along an arbitrary curve not passing
through the points at which the uniqueness of the continuous images is
lost.

302. Let be a continuous single-valued function and one
of the single-valued continuous branches (according to the corresponding
cuts) of the function Find all the continuous single-valued
branches (according to the same cuts) of the function

303. Find all the branch points and draw the schemes of the Riemann
surface for the functions: a) b)

304. Draw the schemes of the Riemann surfaces of the following
functions: a) b) c)

305. Separate the single-valued continuous branches and draw the
scheme of the Riemann surface of the function

REMARK. From the result of Problem 305 we obtain that the point
is not a branch point of the function However, the images

of the curves passing through the point are not uniquely defined.
For example, the continuous images of the broken line AOB (Figure 33)
under the mapping are the broken lines COD, COF, EOD,
and EOF (Figure 33). Passing through the point one may either
remain on the same sheet (the lines COD and EOF) or move onto the
other one (the lines COF and EOD). The Riemann surface of function

is shown in Figure 34.
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FIGURE 33

FIGURE 34

DEFINITION. Points where the uniqueness of the continuous images
of the curves is lost but that are not branch points are called the non-
uniqueness points of the given function.

When building the Riemann surfaces one should draw no cuts from
the points of non-uniqueness to infinity: in drawing any curve these points
must always be avoided.

306. Draw the schemes of the Riemann surfaces of the following func-
tions: a) b) c) d)

e)
Later we shall also consider functions which are not defined at some

points. These points may, however, be branch points.

307. Draw the scheme of the Riemann surfaces of function

308. Draw the schemes of the Riemann surfaces of the following
functions: a) b) c)

Solving the problems of this section we have always found that, after
having made the cuts from all the branch points to infinity the function
considered turned out to be decomposed into continuous single-valued
branches which join to each other in a way defined by the cuts. This
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property is possessed by a quite wide class of functions. In particular, it
is possessed by all functions we have considered, for instance, by all func-
tions representable by radicals (§2.11) and by algebraic functions (§2.14)
(these two classes are special cases of a wider class of functions, called
analytic, which possess this property as well).

The proof of this statement lies outside the purposes of this book. We
have therefore to accept this proposition without proof, knowing that the
proof does exist15. The reader can thus pass directly to §2.11.

However, a sense of dissatisfaction may arise in the reader about some-
thing. Although we cannot destroy it completely, we prove that the prop-
erty formulated above follows from another property, the so called mon-
odromy property, which turns out to be more evident.

We know that after having decomposed the function into con-
tinuous single-valued branches (in a certain region of the plane), the
function is defined by continuity in the same way along two arbi-
trary curves and lying in this region and joining two arbitrary
points and The monodromy property is related to this condition.

Suppose a multi-valued function be such that if one fixes one of
its values at an arbitrary point then the value of the function can
be defined by continuity (possibly in a unique way) along an arbitrary
curve beginning at the point (and not passing through the points at
which is not defined). We say that the function possesses the
monodromy property if it satisfies the following condition.

MONODROMY PROPERTY. Suppose that two continuous curves
and on the plane join two points and passing neither through
the branch points nor through the points of non-uniqueness of the func-
tion Furthermore, suppose that the curve can be transformed,
varying continuously, into the curve in such a way that none of the
curves during the deformation passes through the branch points, and
that the ends of these curves are fixed (see Figure 35; and are branch
points). Thus the value is uniquely defined by continuity along the
curves and (when a value is chosen).

309. Suppose a function possess the monodromy property. On
the plane make the cuts, not intersecting each other, from the branch
points of to infinity. Prove that in this way the function is
decomposed into continuous single-valued branches.

15Cf., for example, Springer G., (1957), Introduction to Riemann Surfaces, (Addison-
Wesley: Reading, Mass).
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FIGURE 35

310. Suppose that in the conditions of the preceding problem the cuts
do not pass through the non-uniqueness points of the function and
that has a finite number of branch points. Prove that on traversing
the cut (in a defined direction) one moves from a given branch of the
function to another, a well defined one, independently of the actual
point at which the cut is crossed.

REMARK 1. During a turn around a branch point one traverses once
the cut joining this point to infinity. Consequently by virtue of the result
of Problem 310 the passages between two different branches traversing
the cut at an arbitrary point coincide with the passages obtained by a
turn (with the corresponding orientation) around the branch point from
which the cut has been drawn, and they thus coincide with the passages
indicated by the arrows in correspondence with this point in the scheme
of the Riemann surface.

REMARK 2. From the results of Problems 309 and 310 it follows that
if a multi-valued function possesses the monodromy property then
one can build its Riemann surface. In order to understand the structure
of this surface it thus suffices to find the branch points of the function

and to define the passages between the branches corresponding to
the turns around these points.

All functions which we shall consider in the sequel possess the mono-
dromy property. We do not prove exactly this claim, because for this it
would be needed to possess the precise notion of the analytic function. We
give, however, the idea of the proof of the statement that a function
possesses the monodromy property if it is ‘sufficiently good’. What this
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means will be clarified during the exposition of the proof’s arguments.
Suppose the conditions required by the monodromy property be sat-

isfied. Let and be the continuous images of the curves and
under the mapping with as the initial point. We have
to prove that the curves and end at the same point.

Suppose first that all the curves obtained deforming into pass
neither through the branch points, nor through the non-uniqueness points
of the function. Let C be one of these curves. Thus there exists a unique
image of the curve C under the mapping beginning at the point

If the function is ‘sufficiently good’16 then during the
continuous deformation of the curve C from to the curve is
continuously deformed from to The end point of the curve is
continuously displaced as well. But the curve C ends at the point thus
the final point of the curve must coincide with one of the images of

If the function takes at every (in particular at only a finite
number of values (and we consider only functions of this type), then the
final point of the curve cannot jump from an image of the point to
another, because this should destroy the continuity of the deformation.
Hence the final points of the curves and, in particular, of and of
do coincide.

Consider now what happens when the curve C passes through a non-
uniqueness point (when it is not a branch point) of the function
Consider only the particular case in which the curve varies only in a
neighbourhood of one non-uniqueness point, say (Figure 36). If at the
point one has chosen a value then one defines by continuity
the value of at the point A. Afterwards the values of at the
point E are uniquely defined by continuity along the curves ADE and
ABE, because otherwise, making a turn along the curve EDABE, the
value of the function should change and the point should be a
branch point of the function Afterwards, as we had uniquely defined
the value of at the point E along the two curves, we also define by
continuity along the curve the value of at the point

So, the ‘obscure’ point in our exposition remains the claim that all
functions which we shall consider are ‘sufficiently good’.

The reader either accepts this proposition or will apply himself to the

16The monodromy property is usually proved for arbitrary analytic functions, cf.,
for example, G. Springer, (1957), Introduction to Riemann Surfaces, (Addison-Wesley:
Reading, Mass.).
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FIGURE 36

study of analytic functions17.

2.11 Functions representable by radicals

DEFINITION. Let and be two multi-valued functions. By
we will denote the multi-valued function whose values at a point

are obtained by adding each value to each value of Similarly
one defines the functions and

By where is an arbitrary non-zero integer, we will denote
a function whose values at the point are obtained raising to power
each value

By where is a non-zero integer, we will denote the function
whose values at a point are obtained extracting all roots of order of
each value

311. Find all values of: a) b) c)
d) e)

DEFINITION. We will say that a function is representable by
radicals if it can be written in terms of the function and of
constant functions being any complex number) by means of
the operations of addition, subtraction, multiplication, division, raising
to an integer power and extraction of a root of integer order.

17See, for example: Shabat B.V., (1992) Introduction to Complex Analysis, Pt. 2,
(AMS: Providence, R.I.).
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For example, the function is repre-
sentable by radicals. We have already seen other functions that are rep-
resentable by radicals.

312. Let be a function representable by radicals and let C be a
continuous curve on the plane, beginning at a point and not passing
through the points at which is not defined. Prove that if is one
of the values then there exists at least one continuous image of
the curve C under the mapping beginning at the point
(We suppose that the parametric equation where is a given
complex number, describes a curve degenerated to a point.)

From the result of Problem 312 one obtains that an arbitrary function
representable by radicals can be defined by continuity along an arbitrary
continuous curve C, not passing through the points at which is not
defined. Moreover, if the curve C passes neither through the branch points
nor those of non-uniqueness of the function then the function
is uniquely defined by continuity along the curve C.

We had already remarked in the preceding section that functions rep-
resentable by radicals are ‘sufficiently good’18, i.e., they possess the mon-
odromy property. Hence for every function representable by radicals one
can build the Riemann surface19 (cf., 309 and 310). Let us analyze the
structure of such Riemann surfaces.

In this section we shall consider only functions representable by rad-
icals.

313. Let Eliminate from the plane all points
of non-uniqueness of the function and make the cuts not intersect
each other, starting from all branch points of and of and going
to infinity. Let and be the continuous
single-valued branches of the functions and defined on the plane
with the cuts. Find the continuous single-valued branches of the function

If, turning once around the point one moves from the branch
to the branch and from the branch to the branch then
evidently one moves from the branch to the
branch This result indicates to us the formal
method for drawing the scheme of the Riemann surface of the function

18All functions representable by radicals are analytic.
19Every function representable by radicals has a finite number of branch points.
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when we already have the schemes (with the same cuts)
of the Riemann surfaces of the functions and In correspondence
with every pair of branches and we take a sheet on which we
consider defined the branch If in the schemes of the
Riemann surfaces of the functions and at the point arrows
indicate, respectively, the passage from the branch to the branch

and the passage from the branch to the branch then
in the scheme of the Riemann surface of the function we indicate by
an arrow over the point the passage from the branch to the
branch

314. Draw the schemes of the Riemann surfaces of the following func-
tions: a) b) c) d)

The formal method described above for building the scheme of the
Riemann surface of the function does not always give
the correct result, because it may happen that some of the branches
coincide.

For simplicity we shall suppose that the cuts do not pass through the
non-uniqueness points of the function In this case, traversing a
cut, by virtue of the uniqueness, we shall move from one set of sheets,
corresponding to the same branch of the function to a new set of
sheets, all corresponding to a different branch. As a consequence, if we
join the sheets corresponding to the same branches of the function
i.e., if we substitute every set of sheets with a single sheet, then the
passages between the sheets so obtained are uniquely defined by any turn
round an arbitrary branch point

315. Find all values of if: a) b)
c)

316. Draw the schemes of the Riemann surfaces using the formal
method and the correct schemes for the following functions:
a) b) c)

We obtain finally that to draw the scheme of the Riemann surface of
the function starting from the schemes of the Riemann
surfaces of the functions and (with the same cuts), it suffices to
build the scheme using the formal method described above and afterwards
identify the sheets corresponding to equal values.

It is easy to see that one can apply this procedure to build the schemes
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of the Riemann surface for the functions

317. Draw the schemes of the Riemann surfaces of the functions:
a) b) c)
d)

318. Let be the single-valued continuous bran-
ches of the function Find all single-valued continuous branches,
having the same cuts, of the function where is a non-
zero integer.

From the result of the last problem it follows that the scheme of the
Riemann surface of the function coincides with the scheme
of the Riemann surface of the function if all branches
are distinct. But this in not always true. If one obtains some equal
branches, then traversing the cuts one moves, by virtue of the uniqueness,
from equal branches to equal branches.

We thus obtain that to draw the scheme of the Riemann surface of
the function it suffices to consider, in the scheme of the
Riemann surface of the function the branches in-
stead of the branches If this produces equal branches it suffices to
identify the corresponding sheets.

319. Build the schemes of the Riemann surfaces of the following
functions: a) b) c)

Let us now analyse how the Riemann surface of the function
is related to the scheme of the Riemann surface of the function

320. Which points can be branch points of the function
On the plane make the cuts between the branch points of the

function and infinity in such a way that these cuts do not pass
through the points at which some value of vanishes, and sepa-
rate the single-valued continuous branches of the function Let

be these branches. Make the cuts between the
points at which one of the values of is equal to 0 and infinity. Let
be one of the single-valued continuous branches of the function
with these cuts.

321. Prove that the function coincides with one of the func-
tions everywhere, except on the cuts.

It follows from the result of the preceding problem that every branch
of the function corresponds to some branch of the function
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322. Let be a single-valued continuous branch of the function
corresponding to the branch of the function Find all

single-valued continuous branches of the function corresponding
to the branch

From the result of the last problem we obtain that to every branch
of the function there corresponds a ‘bunch’ consisting of

branches of the function Enumerate the branches of this ‘bunch’
by in such a way that for every the equation

be satisfied.
Let be a branch point of the function and suppose that turn-

ing once around the point one moves from the branch to the
branch Thus evidently for the function we obtains that on
turning around the point one moves from all branches of the bunch
which corresponds to the branch to all branches of the bunch which
corresponds to the branch

323. Let C be a curve on the plane with a parametric equation
and let be the parametric equation of the continuous image of the
curve C on the plane under the mapping Prove that the
curve with the equation is also a continuous image of
the curve C under the mapping

324. Suppose that a curve C on the plane avoids the branch points
and the non-uniqueness points of the function Prove that if on
moving along the curve C one moves from the branch to the branch

then one moves from the branch to the branch
where the sums and are calculated modulo (cf., 40).

In this way, to define where one arrives, starting from a branch of
a given bunch, on turning around a given branch point of the function

it suffices to define where one arrives from one of the branches
of that bunch; for the other branches the passages turn out to be auto-
matically defined by virtue of the result of Problem 324.

325. Draw the scheme of the Riemann surface of the function

326. Draw the schemes of the Riemann surfaces of the following
functions: a) b)

327. Draw the scheme of the Riemann surface of the function
with different cuts, respectively shown: a) in Figure 37; b)
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in Figure 38. In both cases say whether the points at which
lie on the same sheet or on different sheets.

FIGURE 37 FIGURE 38

328. Draw the scheme of the Riemann surface of the function
with the cuts shown: a) in Figure 39; b) in Figure 40.

FIGURE 39 FIGURE 40

We formulate once more the results of this section which will be useful
in the sequel.

THEOREM 8. To build the schemes of the Riemann surfaces of the
functions

starting from the schemes of the Riemann surfaces of
the functions and with the same cuts, it suffices to do the
following:

a) put into correspondence with every pair of branches, and
a sheet on which the branch equal respectively to

is defined;
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b) if by turning around the point one moves from the branch
to the branch and from the branch to the branch then
for the function by the same turn one moves from the branch
to the branch

c) identify the sheets on which the branches coincide.

THEOREM 9. To build the scheme of the Riemann surface of the
function starting from the scheme of the Riemann surface
of function defined by the same cuts, it suffices to do the following:

a) in the scheme of the Riemann surface of the function consider,
instead of the branches the branches

b) identify the sheets on which the branches coincide.

THEOREM 10. To build the scheme of the Riemann surface of the
function starting from the scheme of the Riemann sur-
face of the function defined by the same cuts, it suffices to do the
following:

a) replace every sheet of the scheme of the Riemann surface of the
function by a ‘pack’ of sheets;

b) turning around an arbitrary branch point of the function one
moves from all sheets of one pack to all sheets of a different pack.

c) these passages from one pack of sheets to another correspond to the
passages between the sheets of the Riemann surface of the function

d) if the branches in the bunches are enumerated in such a way that
then by moving from one bunch to another the sheets

of the corresponding packs are not mixed, but they permute cyclically (cf.,
324.)

2.12 Monodromy groups of multi-valued
functions

We now associate with every scheme of the Riemann surface a group of
permutations.

329. Suppose that a curve C on the plane avoids the branch points
and the non-uniqueness points of the function Prove that moving
along the curve C, starting from distinct sheets of the scheme of the
Riemann surface of function one arrives at distinct sheets.

So by virtue of the result of Problem 249, to each turn (counterclock-
wise) around any branch point of the function there corresponds a
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permutation of the sheets of the scheme of the Riemann surface of the
function

330. Consider the schemes of the Riemann surfaces of the functions
of Problem 314, drawn as in the solution of this problem (see the chapter
‘Hint, Solutions and Answers’) and consider in these schemes the sheets
enumerated from bottom to top by the numbers 1,2,3,... . For every
function write the permutations of the sheets corresponding to one turn
around every branch point.

331. Let be some elements of a group G. Consider all
elements of G which can be obtained from by means of the
iterated operations consisting of multiplying and of taking of the inverse
of an element. Prove that the set of the elements obtained is a subgroup
of the group G.

DEFINITION. The group obtained in Problem 331 is called the sub-
group generated by the elements

DEFINITION. Let be the permutations of the sheets of the
scheme of a Riemann surface corresponding to the turns (counterclock-
wise) around all the branch points. We call the subgroup generated by
the elements the permutation group of the sheets of the given
scheme of the Riemann surface, for brevity the permutation group of the
given scheme.

REMARK 1. If the number of sheets in a scheme is finite (and we con-
sider only schemes of such a type) then to define the permutation group of
this scheme it suffices to use the operation of composition, without using
any permutation’s inversion. Indeed, in this case every permutations of
the sheets has a finite order and therefore

REMARK 2. The permutation group of the scheme we have considered
is defined, as usual, up to isomorphism. The numbering of the sheets will
be not important, because for different numberings one obtains different,
but isomorphic, subgroups of

332. Which of the groups you already know are isomorphic to the
permutation groups of the schemes of the following functions: a) b)

c) d) (cf., 304); e) (cf., 306)?
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333. To which of the groups you already know are the permutation
groups of the schemes of the functions considered in Problems: 1) 314;
2) 317; 3) 319 isomorphic?

334. For the two schemes of the function built
in the solution of Problem 328, describe the permutation groups.

Suppose that the point is neither a branch point nor a non-unique-
ness point of the multi-valued function and that are
all values of the function at the point Consider a continuous
curve C starting and ending at the point and not passing through any
branch point and any non-uniqueness point of the function Take a
value and define by continuity along the curve C a new value

Starting from distinct values we obtain different values
(otherwise along the curve C the uniqueness would be lost). Hence

to the curve C there corresponds a certain permutation of the values
Thus if to the curve C there corresponds the permutation

to the curve there corresponds the permutation and if to the
curves and (both with ending points at there correspond the
permutations and then to the curve there corresponds the
permutation (recall that the permutations in a product are kept
from right to left).

In this way if we consider all possible curves starting and ending at
then the corresponding permutations will form a group, the group of

permutations of the values

335. Let be the permutation group of the values and the
permutation group of some scheme of the function Prove that the
groups and are isomorphic.

Notice that in the definition of the permutation group of the values
one does not use any scheme of the Riemann surface of the function
From the result of Problem 335 it then follows that the permutation

group of the values for an arbitrary point and the permutation
group of an arbitrary scheme of the Riemann surface of the function
are isomorphic. Consequently the permutation group of the values
for all points and the permutation group of all the schemes of the
Riemann surfaces of the function are isomorphic, i.e., they represent
one unique group. This group is called the monodromy group of the multi-
valued function



In this section we prove one of the main theorems of this book.

THEOREM 11. If the multi-valued function is representable by
radicals its monodromy group is soluble (cf., §1.14).

The proof of Theorem 11 consists in the solutions of the following
problems.

336.   Let or or
or and suppose that we have built the

scheme of the Riemann surface of the function from the schemes of
the Riemann surfaces of the functions and by the formal method
(cf., Theorem 8 (a), §2.11). Prove that if F and G are the permutation
groups of the initial schemes, then the permutation group of the scheme
built is isomorphic to a subgroup of the direct product G × F (cf., Chapter
1, 1.7).

337. Let be the permutation group of the scheme built by the
formal method under the hypotheses of the preceding problem, and let

be the group of permutations of the real scheme of the Riemann surface
of the function Prove that there exists a surjective homomorphism
(cf., §1.7) of the group onto the group

338. Suppose the monodromy groups of the functions and
be soluble. Prove that the monodromy groups of the functions

are
soluble as well.

339. Suppose the monodromy group of the function be soluble.
Prove that the monodromy group of the function is also
soluble.

340. Let H be the permutation group of a scheme of the function
and F the permutation group of a scheme of the function

made with the same cuts. Define a surjective homomorphism of the
group H onto the group F.

341. Prove that the kernel of the homomorphism (cf., §1.13) defined
by the solution of the preceding problem is commutative.
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2.13 Monodromy groups of functions
representable by radicals



342. Suppose the monodromy group F of the function be soluble.
Prove that the monodromy group H of the function is also
soluble.

The functions and are continuous single-valued
functions on the entire plane. Their Riemann surfaces thus consist of a
single sheet and therefore the corresponding monodromy groups consist of
a single element and are therefore soluble. As a consequence, taking into
account the definition of the functions representable by radicals (§2.11)
and the results of Problems 338, 339, 342, one obtains the proposition
of Theorem 11.

REMARK 1. This remark is for that reader who knows the theory
of analytic functions. Theorem 11 holds for a wider class of functions.
For example, to define a function one can be allowed to use, be-
sides of constant functions, the identity function, the functions expressed
by arithmetic operations and radicals, also all analytic single-valued func-
tions (for example, etc.), the multi-valued function ln and some
others. In this case the monodromy group of the function will be
soluble, though it is not necessarily finite.

2.14 The Abel theorem

Consider the equation

We consider as a parameter and for every complex value of we
look for all complex roots of this equation. By virtue of the result
of Problem 269 the given equation for every has 5 roots (taking into
account the multiplicities).

343. Which values of can be multiple roots (of order higher than
1, cf., §2.8) of the equation

For which values of are these roots multiples?

It follows from the solution of the preceding problem that for
and equation (2.8) has four distinct roots, and for the other
values of it has 5 distinct roots. Let us study the function

100 Chapter 2
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First we prove that for small variations of the parameter the roots
of equation (2.8) vary only slightly. This property is more precisely ex-
pressed by the following problem.

344. Let be an arbitrary complex number and be one of the
roots of equation (2.8) for Consider a disc of radius arbitrarily
small with its centre at Prove that there exists a real number
such that if then in the disc considered there exists at least
one root of equation (2.8) for also.

Suppose the function express the roots of equation (2.8) in terms
of the parameter and be one of the values It follows from
the result of Problem 344 that if changes continuously along a curve,
starting at the point then one can choose one of the values in such
a way that the point too, moves continuously along a curve starting
from the point In other words, the function can be defined by
continuity along an arbitrary curve C. Therefore if the curve C avoids
the branch points and the non-uniqueness points of the function
the function is uniquely defined by continuity along the curve C.

345. Prove that points different from and can be
neither branch points nor non-uniqueness points of a function expressing
the roots of equation (2.8) in terms of the parameter

Let be the function expressing the roots of equation (2.8) in terms
of the parameter The function being an algebraic function20, is
‘sufficiently good’ (cf., §2.10), i.e., it possesses the monodromy property.
One can therefore build for the function the Riemann surface (cf.,
309 and 310). This Riemann surface evidently has 5 sheets.

By virtue of the result of Problem 345 the only possible branch points
of the function are the points and but it is not
yet clear whether this is really the case.

346. Suppose it is known that the point (or or
is a branch point of the function expressing the roots

of equation (2.8) in terms of the parameter How do the sheets of the

20 The multi-valued function is said to be algebraic if it expresses in terms of
the parameter all the roots of some equation

in which all the are polynomials in All algebraic functions are analytic.
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Riemann surface of the function at the point (more precisely,
along the cuts joining the point to infinity; cf., Remark 2, §2.10) join?

347. Let be a function expressing the roots of equation (2.8) in
terms of the parameter Moreover, let and be two arbitrary points
different from and and and be two arbitrary
images of these points under the mapping Prove that it is possible
to draw a continuous curve joining the points and not passing
through the points and and such that its continuous
image, starting from the point ends at the point

348. Prove that all four points and are branch
points of the function How can we represent the scheme of the
Riemann surface of the function Draw all different possible schemes
(we consider different two schemes if they cannot be obtained one from
another by a permutation of the sheets and of the branch points).

349. Find the monodromy group of the function expressing the
roots of the equation

in terms of the parameter

350. Prove that the function expressing the roots of the equa-
tion

in terms of the parameter is not representable by radicals.

351. Prove that the algebraic general equation of fifth degree

(where are complex parameters, is not solvable
by radicals, i.e., that there are no formulae expressing the roots of this
equation in terms of the coefficients by means of the operations of addi-
tion, subtraction, multiplication, division, elevation to an integer power
and extraction of a root of integer order.

352. Considerer the equation
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and prove that for the general algebraic equation of degree is not
solvable by radicals.

The results of Problems 351 and 352 contain the proof of the theorem
which is the subject of the present book. We have indeed proved the

ABEL’S THEOREM.  For              the general algebraic equation of degree

is not solvable by radicals.

REMARK 1. In the introduction we deduced the Cardano formulae for
the solution of the general algebraic equation of third degree. The roots
of the equation are not given by all values expressed by these formulae,
but only by those which satisfy some supplementary conditions. One may
therefore pose the question of whether it is possible, also for the general
equation of degree to build by radicals a formula such that the
roots of the equation are only a part of the values that are expressed by
this formula. This is not possible even for equation (2.8).

Indeed, if the values of the function expressing the roots of
equation (2.8) in terms of the parameter are only a part of the values
of a function represented by radicals, then the Riemann surface
of the function is a separate part of the Riemann surface of the
function If G is the monodromy group of the function then
to every permutation of the group G there corresponds a permutation of
the five sheets of the function This mapping is a homomorphism of
the group G into the group Since the group is not soluble then the
group G is also not soluble (cf., 163). On the other hand, the group G
must be soluble, being the monodromy group of a function representable
by radicals. We have thus obtained a contradiction.

REMARK 2. From Remark 1 in §2.13 it follows that the Abel theorem
also holds if one is allowed to use, besides radicals, some other functions,
for example all analytic functions (such as etc.), the function

and some others.

REMARK 3. Consider equation (2.8) only in the domain of real num-
bers. Suppose that the function expresses the real roots of the equa-
tion

ln
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in terms of the real parameter Is the function representable by
radicals? The answer is ‘no’. To the reader who knows the theory of an-
alytic functions we say that this follows from the theorem of the analytic
continuation. Indeed, the function expressing the roots of equation
(2.8) in terms of parameter is analytic. If the function were rep-
resentable by radicals, then the corresponding formula, considered in the
domain of complex numbers, should give, by virtue of the theorem of the
analytic continuation, the function i.e., the function would be
representable by radicals.

Hence the Abel theorem remains true also if one considers only the
real roots of the general equation of degree for all possible real
values of the coefficients. Moreover, by virtue of Remark 2 the theorem
holds also if one is allowed to use, besides radicals, some other functions,
for example all functions with an analytic single-valued continuation

etc.), the function ln    and some others.

REMARK 4. The class of algebraic functions (cf., note 20) is suffi-
ciently rich and interesting. In particular, one can prove that all func-
tions representable by radicals are algebraic. We have proved that every
function representable by radicals possesses a soluble monodromy group
(Theorem 11). It turns out that if the analysis is restricted to algebraic
functions then the converse also holds: if the monodromy group of an al-
gebraic function is soluble then this function is representable by radicals.
An algebraic function is thus representable by radicals if and only if its
monodromy group is soluble.
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Hints, Solutions, and Answers

3.1 Problems of Chapter 1

1. Answer. In the cases 1 a); 1 c); 2 c); 3 a).

2. See Table 3.

3. See Table 4.

4. See Table 5.
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5. See Table 6.

6. See table 7, where and are rotations of the rhombus about its
centre by 0° and 180° respectively, and reflections of the rhombus with
respect to its diagonals.

7. See table 7, where and are rotations of the rectangle about its
centre by 0° and 180° respectively, and are reflections of the rectangle
with respect to the straight lines passing through the middle points of its
opposite sides.

8. No, because there are no capitals in the world whose names begin
with letter X.

9. Answer. a) is not a mapping onto because, for example, an
integer such that does not exist, i.e., the number 5 has no
pre-image; b) is a mapping onto, but not one to one because every
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positive integer under the mapping has two pre-images, for
example, the pre-images of 5 are 5 and –5; c) is a bijective mapping,
because the numbers 0,1,2,. . . are mapped to the numbers 0 ,2 ,4 , . . . ,
while the numbers –1, –2, –3,.. . are mapped to the numbers 1,3,5,....

10.

11.

12.

Answer.

Answer.

Suppose that the given group of transformations contain the
transformation Thus by definition it contains also the transformation

and the transformation

13. By the definition of the transformation and of multiplication we
obtain and for every
element A. Hence and

14.

15. 1) No. Here the only possible unit element is 1, and element
i.e., an element such that does not exist. 2) Yes.

16. Yes.

17. a) No. Amongst the natural numbers there are no elements such
that for every natural (If one considers the natural
numbers with zero, then no elements except 0 will posses the opposite).
b) No. The only possible unit element is 1, but thus no elements except
1 will possess the inverse.

18. Let and be two unit elements. Thus and
for every element Therefore and Hence

19. Let element have two inverse elements, and Thus
and Therefore

20. 1) 2)

21. We prove this by induction. For the statement of the prob-
lem is true, because in this case we can construct only two expressions,

and and, by hypothesis, Let the
statement of the problem be true for all such that We prove
that it is true for also. Let an arbitrary well arranged expression A
be given, containing factors Within A there is a multi-
plication operation which is the last one to be carried out. Therefore the
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product A can be written in the form where and are
two well arranged expressions, containing and factors, respectively.
Hence and Since and by the induction
hypothesis the expression gives the same element as the expression

and gives the same element as the
expression Hence the expression A
gives the same element as the product

Let

Thus A expresses the element But by virtue of associativity
The product is a well arranged expression,

because it contains factors. Hence by hypothesis

Therefore the expression A gives the element

as we had to prove.

22. Answer. 1) Yes, 2) yes, 3) no, 4) yes, 5) yes.

23. 1)                                                                  and
2) It is proved by

induction on if  for it is already proved, then is
equal by virtue of point 1) to

24. Let for an element Thus, multiplying on the left both
members of the equality by we obtain and In
this way the only possible solution of the equation is the element

This element is indeed a solution, because
Exactly in the same way one proves that the equation has the
unique solution

25. Since for every element then for all elements and we
will have Multiplying the two members of this equality by
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on the left and by on the right, one obtains Since
and one obtains i.e., Since and are
two arbitrary elements of the group G, this group is commutative.

26. We need to prove that We
have

Exactly in the same way one proves
that (For a more rigourous proof use the induction
method).

27. We will consider some cases: a) if then

b) if then

c) i f then
d) if

then
the case is treated in the same

way as the cases (c) and (d). The cases or are easily verified.

28. We will consider some cases: a) if then

b) if then

then
The cases or

are easily verified.

29. Answer. In the group of symmetries of the triangle (see 3) and
are of order 3, and of order 2; for the square (see 5) and are of

order 4, of order 2; for the rhombus (see solution 6) all elements
(except ) have order 2.

30. 1) Let where and If we multiply on
the right the two members of the equality by we obtain
and (see 27) Since we obtain a contradiction
of the hypothesis that the element has order

if



110 Problems of Chapter 1

2) any integer can be written in the form where
and is some integer. Thus (see 27)

where

31. Hint. The generator is a rotation of order

32. Answer. In the group of rotations of the triangle the generators
are: rotation by 120° and rotation by 240°; in the group of rotations
of the square they are: rotation by 90° and rotation by 270°.

33. Let where Thus (see solution 30-2))
But if and only if (see 30-1)) Therefore if

and only if

34. Hence (see 33) the order of the
element must divide the number Since  is prime the statement
follows.

35. Since the numbers and are non-zero integers,
If is an integer such that

then (see 33) is divisible by and is divisible by Since the
numbers and are relatively prime is divisible by Hence
the smallest non-zero integer such that is

36. Let be a rotation counterclockwise by an angle equal to
The elements of the group considered are thus The ele-
ment in order to be a generator, must have its order equal to 12, and
therefore the numbers and 12 (see 35) must be relatively prime. Hence

will be a generator whenever Answer. The generators
are the rotations by angles

37. Let and Thus and
contradicting the hypothesis that is an element of infinite order.

38. Hint. If one considers the group under addition, then by one
indicates the sum and by one indicates
The generators are 1 and –1.

(see 28) =
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39. a) See Table 8; b) see Table 9; c) Tee table 10.

40. We prove that all properties of a group are satisfied: 1) for three
arbitrary remainders we have modulo

because in both terms of the equality we have the remainder of the
division by of the number 2) the unit element is 0 because

for every remainder 3) if then the inverse
element (the opposite element) of is because modulo one has

the inverse element of element 0 is 0
itself. This group is cyclic with generator 1, because the smallest integer

such that modulo is equal to

41. Since one has and
Hence (see 33) is divisible by i.e., and

are equal modulo

42. Answer. They are isomorphic: the groups (1) and (4) (consider
the mapping and the groups
(2) and (3) (consider the mapping

(see solutions 6 and 7)).

43. Since is a bijective mapping, exists and is bijective. Let
and be two arbitrary elements of the group In the group there
are two (unique) elements and such that and Since

is an isomorphism, (the products are taken in the
corresponding groups). Therefore Since
and are two arbitrary elements of the group is an isomorphism.

44. Since the mappings and are bijective,
is also bijective. Let and be two arbitrary elements

of the group Thus
and hence is an

isomorphism (the products are taken in the corresponding groups).
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45. Hint. Use the result of Problem 41. The isomorphism is

46. Hint. Use the result of Problem 27. The isomorphism is

47. Let Thus
Multiplying the two

members of this equality by in the group F one obtains
and

48.
It follows that

49. Let be a non-zero integer. Thus

Let and be the orders

of the elements and Thus and (see 47)
Therefore On the other hand, so

Hence

50. Answer. a) The sole group is b) The sole group is Solution.
a) Let and be the elements of the group and the unit element. Thus

and only the product remains unknown.
If then (see 24) one obtains the contradiction
It follows that and that there exists only one group, containing 2
elements. It is the cyclic group

b) Let be the elements of the group and the unit element. We
need to know to which elements the products correspond.
If one obtains the contradiction if one obtains the
contradiction It follows that Consequently If

one has the contradiction If one has the
contradiction It follows that Thus and there exists
only one group containing 3 elements. Since this
group with elements is the cyclic group

51. Answer. For example, the group of rotations of the square is not
isomorphic to the group of symmetries of the rhombus, because in the
former there is an element of order 4, whereas in the latter there is not
(see 49).

52. Consider the map If takes all the real values, takes
exactly once all the real positive values. Hence is a bijective mapping

(see 47)
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of the real numbers into the real positive numbers. For any two positive
numbers and we have and it
follows that is an isomorphism of the group of the real numbers under
addition in the group of the positive real numbers under multiplication.

53. Let be an arbitrary element of group G.  Thus
Hence is a surjective mapping of the group G onto the

group G. If then and hence is a bijective
mapping of the group G into itself.

54. for every element
therefore Since

for every element therefore Hence we
have a group of transformations (see §1.2).

55. Consider a mapping such that Since
and if The mapping is therefore
bijective. Moreover,
It follows that is an isomorphism.

56. a) Let and be the unit elements respectively in the group G
and in the subgroup H. In the subgroup H one has the identity

By the definition of subgroup this identity also holds in the group
G. Moreover, in the group G we also have the identity from
which we obtain that in G and (see 24)

b) Let be any element of the subgroup H, and let and be
its inverse elements respectively in the group G and in the subgroup H.
In the subgroup H we thus have By the
definition of subgroup this identity also holds in the group G. Moreover,
in the group G we have from which we obtain that in G

and

57. The necessity follows from the result of Problem 56 and from the
definition of subgroup.

Sufficiency. From property 1 the binary operation of the group G
is also the binary operation of H. The element which belongs to
H by property 2, is the unit element in H because
for every element of the group G and, in particular, for all elements
of H. If is an arbitrary element of H then the element which
belongs to H by property 3, is the inverse element of in H because

The associativity is obviously satisfied: H is
thus a subgroup of the group G.

(see solution 54)
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58. Answer. (For notations see Examples 1–4). 1) The subgroup of
rotations three subgroups generated by the three reflections with
respect to the altitudes: two trivial subgroups:
and the whole group; 2) the subgroup of rotations the subgroup
of generated by the central symmetry four subgroups generated
by the four reflections with respect to the symmetry axes:

the two subgroups: and and the two
trivial subgroups: and the whole group.

59. Answer. Suppose that the elements of the given groups are
Their subgroups are thus: a)

b) c)
(see 60).

60. Let the subgroup H be different from and let be the
element with minimum positive among all the elements of the subgroup
H. Thus H also contains all the elements of the form for every
integer Let be an arbitrary element of the subgroup H. Divide
by with remainder where Thus H contains
element If we obtain a contradiction of the
hypothesis that is the minimum. It follows that and that is
divisible by Since the element belongs to H, divides Hence
subgroup H has the requested properties.

61. The solution is the same of that of Problem 60.

62. If an element of the group has infinite order, then the cyclic
infinite subgroup generated by it contains an infinite number of subgroups
(see 61), which are also subgroups of the initial group. If the orders of
all elements are finite we consider the cyclic subgroups generated by the
following elements: at first an arbitrary element then an element
which does not belong to the subgroup generated by then an element

which does not belong to the subgroups generated neither by nor
by etc.. This procedure does not end because each of the subgroups
so obtained contains a finite number of elements.

63. Let be the subgroups of a group G and H their
intersection. Thus (see 57): 1) if and belong to H, then both and

belong to all Hence also belongs to all and thus it belongs
to H; 2) belongs to all subgroups therefore also to H; 3) if is an
arbitrary element of H, then belongs to all thus also belongs
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to all and therefore also to H. In virtue of the result of Problem 57
H is a subgroup of the group G.

64.  Answer. a) Yes; b) yes; c) no; d) no.

65. The vertex A can be sent onto an arbitrary vertex, B onto any one
of the remaining vertices, C onto any one of the remaining two vertices.
Answer. 4 · 3 · 2 = 24.

66. Answer. a) All symmetries fixing vertex D;

b)

67. Let us formulate the definition of orientation in a more symmetric
way. We have defined the orientation by means of the vertex D, but if
the position of the triangle ABC with respect to the vertex D is given,
then the position of any triangle with respect to the fourth vertex is also
uniquely defined. Hence a transformation preserving the orientation of
the tetrahedron preserves the position of every triangle with respect to
the fourth vertex, whereas a transformation changing the orientation of
the tetrahedron changes the position of every triangle with respect to
the fourth vertex. It is clear that the product of two transformations
preserving the orientation of the tetrahedron, as well as the product of
two transformations which do not preserve it, preserves the orientation.
Conversely, if a transformation preserves the orientation and another per-
mutation changes it, their product changes the orientation. The identity
obviously preserves the orientation and, since for every transfor-
mation if preserves the orientation also preserves the orientation.
It follows that (see 57) all symmetries of the tetrahedron preserving the
orientation form a subgroup in the group of all symmetries of the tetrahe-
dron. Since the vertex D can be sent onto an arbitrary vertex, and then
the triangle ABC can take one of three positions, this group contains
4 · 3 = 12 elements.

68.  Answer. a) The subgroup of rotations about an axis through the
middle points of two opposite edges; b) the subgroup of rotations about
the axis through D perpendicular to the plane of triangle ABC.

69. Using the associativity in G and in H we shall prove the associa-
tivity in G × H. We have
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Moreover and
The pair is therefore the unit element

in G × H. Moreover, and
Hence is the in-

verse element of in G × H. We have proved that G × H possesses
all the properties of a group.

70. Answer.

71. Hint. Verify that the transformation such that
is an isomorphism between the groups G × H and H × G.

72. Answer. All elements of the type form a subgroup in
G × H isomorphic to the group G. All elements of the type form
a subgroup in G × H isomorphic to the group H.

73. We have

74. 1) If and belong to G × H then and
belong to G, and and belong to H. Hence G × H contains
the element

2) Since and are subgroups respectively of G and of H, then
belongs to and belongs to Hence contains the element

the unit element of the group G × H.
3) If the element belongs to then belongs to and

belongs to Since and are subgroups belongs to and
belongs to Hence contains the inverse element of

in the group G × H.
By virtue of the result of Problem 57 is a subgroup of the

group G × H.

75. No. Consider the following example. Let and
be two cyclic groups of order two. Thus
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is a subgroup of the group G × H, which cannot be represented in the
form requested by the problem.

76. Let A, B, C, D be the vertices of the given rhombus. Let
be the group of permutations of the elements A and C, and
the group of permutations of the elements B and D. Thus the

mapping such that (for the notations see solution 6)

is, as one can easily verify, an isomorphism of the group of symmetries of
the rhombus in the group

77. 1) Let and be the two given groups. We look
for the order of the element

Since the group contains only 6 elements we have

2) Let be an arbitrary element of the group Thus
Hence does not contain any element

of order 8 and thus is not isomorphic to the group

78. Let be a generator in the generator in and the order of
the element in the group Since

it follows that But since
it follows that (see 33) is divisible by and by If and are
relatively prime we obtain that and is the generator of the
group Hence

If, on the contrary, and are not relatively prime, then their lowest
common multiple, is less than Let and If
and are any two elements of the groups and then and

Hence Since we obtain
that the group contains no elements of order and therefore
is not isomorphic to the group

79.  Answer. (see §1.1, Examples 1 and 2): a)           b)

80. Since and belongs to H the element belongs to the
coset

81. By hypothesis where is an element of the subgroup
H. Hence Let be an arbitrary element of the subgroup
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H. The elements and thus belong to H. Hence the element
belongs to and the element

belongs to Since every element of belongs to and
vice versa, it follows that

82. Suppose that the element belongs to and to Thus (see
81) and Therefore

83. Hint. The order of an element is equal to the order of the cyclic
subgroup that it generates. Afterwards apply the Lagrange theorem.

84. Hint. If the order of a group is prime then the order of every
element different from is equal to (see 83).

85. Apply the Lagrange theorem. Answer. Two: and the whole
group.

86. Hint. Use the results of Problems 84 and 45.

87. Let G be the given group of order and Answer.
(see 72).

88. Answer. It is possible. For example, in the group of rotations of
the tetrahedron, containing 12 elements (see 67), there are no subgroups
containing 6 elements. Proof. The group of rotations of the tetrahedron
contains 12 elements (see 67): the identity 8 rotations (by 120° and
240°) about the altitudes perpendicular to the 4 triangular faces, and 3
rotations (by 180°) about the axes through the middle points of opposite
edges. Suppose that the group of rotations of the tetrahedron contains a
subgroup of 6 elements. This subgroup must obviously contain at least
one rotation about one altitude, for example, that from the vertex A.
If is a rotation by 120° (or by 240°) then is a rotation by 240° (by
120°). Therefore our subgroup must contain both rotations about the
altitude drawn from vertex A. Since one has only 3 rotations (including
the identity), fixing vertex A our subgroup must contain another rotation

sending the vertex A to a different vertex, for example to B. Thus
this subgroup also contains the element This rotation sends the
vertex B to B and one has, moreover, (otherwise
Consequently our subgroup must contain at least one, and therefore both,
rotations about the altitude drawn from the vertex B. These rotations
send the vertex A to C and to D. We obtain again that our subgroup
must contain all rotations about the altitudes from C and from D. In
this way we have, with 9 elements. This is in contradiction with the
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hypothesis. The group of rotations of the tetrahedron therefore does not
contain any subgroup of order 6.

89. Answer. a) The left and right partitions coincide:

b) left partition:                     right partition:

90. Answer. a) The two partitions coincide:

b) left partition:                                right partition:

91. Answer. The two partitions coincide and contain three cosets: 1)
all numbers of type all numbers of type

all numbers of type

92. Answer. a) Two groups: and
b) two groups: and the group of symmetries of the equilateral

triangle;
c) five groups: the group of symmetries of

the square, the group of quaternions with elements and
the following table of multiplication (Table 11).

Solution. a) Let be the elements of the initial group. The
elements can thus be of order 2 or 4 (see 83). Let us consider some
cases.

1) Amongst there is an element of order 4. Hence the given
group is the cyclic group
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2) The orders of elements and are equal to 2, i.e.,
We are now looking for the element corresponding to product

It is possible neither that (otherwise and nor
that (otherwise nor that (otherwise There
remains therefore only Similarly one obtains
and The multiplication table is complete and we obtain (see
6) the group of symmetries of the rhombus, isomorphic to (see
76).

b) The elements of the group can be of order 1, 2, 3 or 6 (see 83). We
will consider some cases.

1) Suppose that there exists an element of order 6. The given group
is thus the cyclic group

2) Suppose that all elements are of order 2. Thus the group is com-
mutative (see 25), and if and are elements of the initial group the
elements form a subgroup of it. This is not possible (see La-
grange’s theorem) and this case must be excluded.

3) All elements are of order 2 or 3, and there exists an element of
order 3. Let be the element of order 3 and c an element which is not
a power of Thus is a left cosets of the subgroup
and the six elements are thus all distinct (see 82).
We will prove that in this set of 6 elements there exists only one way to
define a multiplication table. At first we prove that In fact, it
is not possible that (otherwise If (or ),
then we should have (or but we have
supposed that all elements have order 2 or 3. Thus Since is
an arbitrary element which does not belong to the subgroup
we also have that and In this way the product
of all pairs of the 6 elements of the group has been defined. Indeed,

Consequently there is only one possibility
of constructing a multiplication table in order to obtain a group. Hence
there exists only one group of 6 elements, with orders equal to 1, 2, and
3. We know this group: it is the group of symmetries of the equilateral
triangle.

c) the elements of the group can have order 1, 2, 4, or 8 (see 83).
Consider some cases.

1) Suppose that there exists an element of order 8. The given group
is thus the cyclic group

2) Suppose that all the elements different from the unit have order 2.
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The given group is thus commutative (see 25). In this case let and be
two distinct elements of order 2 of the initial group. Thus form
a subgroup. If the element does not belong to this subgroup then the
elements form a right coset of the subgroup and
the 8 elements are thus all distinct. The products
of these elements are well defined, because the group is commutative and

(for example, Therefore if all
elements have order 2 then there is only one possible group. This group
is, in fact,

3) Suppose the element have order 4 and that amongst the elements,
different from the powers of there is an element of order 2, i.e.,
In this case and are the two left cosets of the
subgroup and the 8 elements that they contain are thus all
distinct. We look for which of these elements may be equal to product

It is possible neither that (otherwise nor
(otherwise ). If then and (since
Thus one obtains the contradiction
This means that either or

Let us consider the two cases:
The table of multiplication is in this case uniquely de-

fined. Indeed,
We can therefore have only one group: this group, in fact,

does exist: it is the group If and are the unit and the
generator of and the unit and the generator of then it suffices
to write for all the properties listed above being
satisfied.

Also in this case the table of multiplication is uniquely
defined. Indeed,

In this case we therefore
have only one group. In fact, this group does exist: it is the group of
symmetries of the square. It suffices to put = rotation by 90°, =
reflection with respect to a diagonal, for all the properties listed above
being satisfied.

4) Suppose that there exists an element of order 4 and that all
elements different from are of order 4 as well. Let be an
arbitrary element different from Thus the elements

are all distinct. We look for which of these elements is
equal to product It is possible neither that (otherwise
nor (because the order of is 4). If (or ) one has the
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contradiction Hence Since is an arbitrary element
different from also From the
equality it follows that and
The table of multiplication is now uniquely defined. Indeed,

Hence in this case we can have only one group. We
can verify that our multiplication table in fact defines a group. This group
is called the group of quaternions. It is better to denote its elements by
the following notations: instead of we have, in
that order, Thus the multiplication by 1 and
–1 and the operations with signs are the same as in ordinary algebra.
Moreover, one has

The multiplication table for the group of quaternions is
shown in Table 11.

93. Consider the vertex named A by the new notation. Its old no-
tation was thus By the action of the given transformation this
vertex is sent onto a vertex named, in the old notation, and, in
the new notation, Similarly in the new notations the vertex
B is sent onto and the vertex C onto Hence to this
transformation there corresponds in the new notation the permutation

94. if and only if Hence every element has,
under the mapping one and only one image. It follows that

is a bijective mapping of the group into itself. Moreover,
Thus

is an isomorphism.

95. Answer. The reflections with respect to all altitudes.

96. Answer. The rotations by 120° and 240°.

97. Answer. Let us subdivide all the elements of the group of sym-
metries of the tetrahedron in the following classes: 1) 2) all rotations
different from about the altitudes; 3) all rotations by 180° about the
axes through the middle points of opposite edges; 4) all reflections with
respect to the planes through any vertex and the middle point of the op-
posite edge; 5) all transformations generated by a cyclic permutation of

the vertices (for example,                               ). Thus two elements can be

transformed one into another by an internal automorphism of the group
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of symmetries of the tetrahedron if and only if they belong to the same
class.

In the group of rotations of the tetrahedron classes 4 and 5 are absent,
whereas class 2 splits into two subclasses: 2a) all the clockwise rotations
by 120° about the altitudes (looking on the base of the tetrahedron from
the vertex from which the altitude is drawn); 2b) all rotations by 240°.

Solution. Let the elements of the group of symmetries of the tetra-
hedron be divided into classes as explained above. Such classes are cha-
racterized by the following properties: all elements of class 2 have order
3 and preserve the orientation of the tetrahedron; all elements of class
3 have order 2 and preserve the orientation; all elements of class 4 have
order 2 and change the orientation; all elements of the class 5 have order
4 and change the orientation. Since an internal automorphism is an iso-
morphism (see 94) two elements of different order cannot be transformed
one into the other (see 49). Moreover, and either both change
the orientation or both preserve it (it suffices to consider two cases: when

changes and when preserves the orientation). Consequently two ele-
ments of distinct classes cannot be transformed one into the other by an
internal automorphism.

Let and be two rotations by 180° about two axes through the
middle points of two opposite edges and let be a rotation sending the
first axis onto the other. Thus the rotation sends the second
axis into itself without reversing it. Moreover, (otherwise

Hence coincides with Therefore any two
elements of class 3 can be transformed one into the other by an internal
automorphism in the group of rotations (and therefore in the group of
symmetries) of the tetrahedron.

Let and be two reflections of the tetrahedron with respect to
two planes of symmetry and let be a rotation sending the first plane
onto the second one. Thus as before we have

If and then and
Hence It follows that if can be trans-

formed either into or into then and can be transformed one
into the other. Therefore it suffices to show that any element of a given
class can be sent into all the other elements of the same class.

Let be an element of the class 5 and let

be the rotations such that
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Hence (verify) the elements form, together with
the element the entire class 5.

Let be the rotation of the tetrahedron by

120° about the altitude drawn from vertex A. We will prove that in
the group of symmetries of the tetrahedron this rotation can be sent by
internal automorphisms to all the other rotations about the altitudes.
Because of symmetry it suffices to prove that can be transformed into

the second rotation about the same altitude: as

well as into an arbitrary rotation about a different altitude, for example

Let be the symmetry and

let be the rotation =

Thus and
However, if we take as only one rotation of the tetrahedron, then

it is easy to verify that a counterclockwise rotation by 120° about one
altitude (looking on the base of the tetrahedron from the vertex from
which this altitude is drawn) cannot be transformed into the rotation by
240° about the same altitude. Indeed, the rotations by 120° about the
altitudes can be transformed only into rotations of 120° about altitudes,
and the rotations by 240° can be transformed only into rotations by 240°.

98. Since is an isomorphism (see 94),
and have the same order (see 49).

99. Hint. In this case for every element of the subgroup N and
every element of the group G the element belongs
to N.

100. Answer. Yes. Verify that for every element of the group of
symmetries of the square and

101. Suppose that the left and the right partitions coincide. Let
be an arbitrary element of N and an arbitrary element of the group G.
Since the classes and have the element in common, they must
coincide. Hence the element which belongs to also belongs to
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i.e., there exists an element in N such that Hence the
element belongs to N and therefore N is a normal subgroup of the
group G.

Let now N be a normal subgroup of the group G. We will prove that
for every element of the group G. Let be an arbitrary

element of Thus where is an element of N. Thus
and it follows that (and therefore the entire belongs to

Now let be an arbitrary element of Thus
where is an element of N. Hence and (and therefore the
entire belongs to So and coincide.

102. Hint. In this case both the left and the right partitions contain
two classes: one is the given subgroup, the other contains all the remaining
elements. See also Theorem 2 (§1.10).

103. Let be the given normal subgroups of the group
G and N their intersection. If is an arbitrary element of N then
belongs to all the Hence if is an arbitrary element of the group G
then belongs to all the and therefore to N. This means that
N is a normal subgroup of G.

104. Let be an arbitrary element of the group G. Since
belongs to the centre. If belongs to the centre then Multiplying
both members of this equality by on the left one obtains
Thus also belongs to the centre. If and belong to the centre then

and Therefore and thus
also belongs to the centre. By virtue of the result of Problem 57 the

centre is a subgroup.
Let be any element of the centre and an arbitrary element of the

group G. Thus the element too, belongs to the
centre. The centre is therefore a normal subgroup.

105. Let be two arbitrary elements of and and
be two arbitrary elements of and respectively. Thus the element

belongs to whereas the element belongs to Con-
sequently the element

belongs to It follows that is a normal
subgroup of

106. Since belongs to the class also (by hypothesis) belongs
to the class This means that there exists in N an element such
that Similarly we obtain that there exists in N an element
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such that Since N is a normal subgroup
Hence there exists in N an element such that Therefore

Since the element belongs to N
and belong to the same coset

107. Let and be the elements arbitrarily chosen in and
respectively. By the definition of multiplication of cosets‚

and are the cosets containing the elements and re-
spectively. Since

108. Hint. Take as a representant of class E.

109. Hint. Let be an arbitrary element of class T. Take as the class
the coset containing the element

110. It is easy to verify (see table 2‚ §1.11) that
Hence this quotient group is isomorphic to the group of symmetries of
the rhombus.

111. We will show only the normal subgroups different from and
the whole group:

a) see 58 (1)‚ 95‚ 96‚ 102. Answer. The normal subgroup is the
group of rotations of the triangle; the corresponding quotient group is
isomorphic to

b) see 99‚ 74‚ 75. Let be the given group. An-
swer. The normal subgroups are:

The corresponding quotients groups are isomorphic
to

c) for the notations see examples 3‚ 4 (§1.1). If a normal subgroup
of the group of symmetries of the square contains the element or the
element then it contains every subgroup of the group of rotations of
the square. We obtain in this case the normal subgroup (see
102)‚ and the quotient group

We have and Thus if one of the elements
belongs to the normal subgroup the other one also does. Since in
this case the element also belongs to the normal subgroup. We obtain
the normal subgroup (see 102)‚ and the quotient group

Since and we obtain‚ as before‚ the
normal group and the quotient group

If‚ on the contrary‚ the normal subgroup does not contain the elements
then it coincides with the normal subgroup and the

corresponding quotient group is isomorphic to (see 100‚ 110).
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Answer. The normal subgroups are:
The quotient group in the cases 1–3 is isomorphic

to in the case 4 to
d) Let be the given group. If is an ar-

bitrary element‚ different from 1 and –1‚ then  Hence every
normal subgroup different from {1} contains the element –1. We ob-
tain the first normal subgroup‚ which consists of elements {1‚ –1}. The
partition by this subgroup is shown in table 12.

Since one has and there-
fore the quotient group is isomorphic in this case to Since the
element –1 belongs to every (non-trivial) subgroup both elements and

either belong or do not belong to a normal subgroup. This also holds
for and as well as for and Since a (non-trivial) normal sub-
group in the group of quaternions can contain only 2 or 4 elements (see
Lagrange’s theorem)‚ we obtain again only 3 normal subgroups (see 102):

The quotient groups in these
cases are isomorphic to

Answer. The normal subgroups are:
The quotient group in the case 1 is

isomorphic to and in the cases 2–4 is isomorphic to

112. a) See 99‚ 60. Let The partition of the group
by the subgroup is represented

in Table 13 ( takes all values from 0 to ). Element  belongs to class
and the minimal positive integer such that belongs to class E

is equal to Hence the order of the element in the quotient group is
equal to and therefore the quotient group is isomorphic to

b) See 99‚ 61. Table 13 shows the partition of the group
by the subgroup
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As in the case (a) one obtains that the quotient group
is isomorphic to

113. See 97. A set of rotations is a normal subgroup of the group of
rotations of the tetrahedron if and only if it consists of some one of the
classes given in the solution of Problem 97 (for the group of rotations)
and it is a subgroup. If a normal subgroup contains one rotation (by 120°
or by 240°) about one altitude of the tetrahedron‚ then it also contains the
other rotation about the same altitude and hence it contains all rotations

about all altitudes of the tetrahedron. If and

are two rotations about the altitudes from the

points A and B‚ respectively‚ then is a rotation

by 180° about the axis through the middle points of the edges AD and
BC. Hence in this case the normal subgroup contains all rotations by 180°
about the axes through the middle points of opposite edges‚ and therefore
it coincides with the entire group of rotations of the tetrahedron.

In this way in the group of rotations of the tetrahedron there is only
one normal subgroup (non-trivial): it consists in the identity and in the
three rotations by 180° about the axes through the middle points of the
opposite edges. The quotient group by this normal subgroup contains 3
elements‚ and is thus isomorphic to (see 50).

114. Let be an arbitrary element of and an ar-
bitrary element of Thus the element
(see solution 69) belongs to

Hence is a normal subgroup of
Let be an arbitrary element of the group We look

for which of the cosets of the normal subgroup contains this
element. If we multiply the element by all elements of the normal
subgroup (for example‚ on the right) we obtain all elements of
the type where runs over all the elements of the group We
denote this coset by In this way the cosets of the normal subgroup

are the cosets of type where runs over all the elements
of the group Since and belong to classes

and respectively‚ and we have that then
The bijective mapping of the group in the quotient

group such that for every in is an isomorphism‚ because
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In this way the quotient group of the
group by the normal subgroup is isomorphic to

115. See 57. The commutant obviously possesses the property 1
stated in Problem 57. 2) therefore belongs to the com-
mutant. 3) If is the commutator then
(see 23) i.e., is a commutator. By the definition of
the commutant, each one of its elements  can be written in the form

where all the are commutators. Thus
Since all the are commutators

belongs to the commutant.

116. If is an arbitrary element of the group and is the commutator
then is a commutator. indeed:

If  is an arbitrary element of the commutant, then
where all the are commutators. Thus

is a
product of commutators and therefore it belongs to the commutant. Since

is an arbitrary element of the group we obtain that the commutant is
a normal subgroup of the group.

117. Hint. Show that if and only if

118. a) Since the group of symmetries of the triangle is not commuta-
tive its commutant is different from If is any transformation of the
triangle then both and either reverse or do not reverse the triangle.
Hence the product contains either 0, or 2, or 4 factors revers-
ing the triangle, and therefore the element never reverses the
triangle, i.e., it is a rotation. The commutant thus contains only rota-
tions. Since the commutant is different from and it is a subgroup, it
follows that (see 58) the commutant in the group of symmetries of the
triangle coincides with the subgroup of all rotations.

b) As in the case (a) we obtain that the commutant is different from
and it contains only the rotations of the square. If is any transfor-

mation of the square, then both and either exchange the diagonals,
or fix them. It follows that the element fixes the diagonals.
Moreover, each commutator, being a rotation of the square, coincides ei-
ther with or with the central symmetry Thus the commutant can
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contain only the elements and being different from it thus coincides
with the subgroup of central symmetries

c) The elements 1 and –1 commute with all the others elements of the
group of quaternions. Hence if one of the elements coincides with
1 or –1‚ then If is an arbitrary element different from
1 and –1‚ then i.e.‚ Therefore
if are any two elements different from of 1 and –1‚

But the square of every element in the group of
the quaternions is equal to 1 or to –1. Hence the commutant can contain
only the elements 1 and –1; because the group is not commutative‚ it
must be different from 1. It follows that the commutant is {1‚ –1}.

119. By the same arguments used to solve Problems 118 (a)‚(b) we
obtain that the commutant in the group of symmetries of the regular

contains only the rotations.

FIGURE 41 FIGURE 42

Let be odd and let be the reflection of the with respect
to axis (Figure 41)‚ the counterclockwise rotation of the by
the angle (sending A onto B). Thus is the rotation
of the sending (verify) B on C‚ i.e.‚ the counterclockwise rotation
by Since the commutant is a subgroup we obtain that for odd
it contains the rotations by all the angles which are a multiple of
Since the commutant contains only rotations of the regular for
odd it coincides with the subgroup of all rotations of the regular
isomorphic to (see 31).

Now let Inscribe in the regular a joining the
even vertices. Joining the odd vertices‚ we obtain a second regular
If is an arbitrary vertex of the both transformations and
either exchange or fix the two Therefore the element
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sends every into itself. Consequently for the commutant
can contain only rotations by angles which are a multiple of Let
be the rotation of the regular by the reflection with respect
to the axis (Figure 42).

Thus is the rotation sending (verify) the vertex C onto B‚
i.e.‚ the counterclockwise rotation by Hence the commu-
tant contains all rotations by angles which are a multiple of and
only them. It is the subgroup of rotations of the plane sending every
regular into itself. This group is isomorphic to

120. Let be the axes through the middle points (K‚L‚M‚
respectively) of the opposite edges of the tetrahedron. Join the points
K‚ L‚ M so obtaining the regular triangle KLM. For an arbitrary rota-
tion of the tetrahedron‚ either each one or none of the three axes is
fixed (verify). If we put the permutation of the axes in correspon-
dence with the permutation of the vertices K‚ M‚ L of the triangle KLM‚
we obtain that to every rotation of the tetrahedron there corresponds a
transformation of the triangle KLM‚ which is in fact a rotation of the
triangle. Hence to every commutator in the group of rotations of the
tetrahedron there corresponds a commutator in the group of rotations of
the triangle KLM. Since the group of rotations of the triangle is com-
mutative‚ every commutator in it is equal to Thus every commutator
in the group of rotations of the tetrahedron must fix every one of the
three axes Therefore the commutant in the group of rotations of
the tetrahedron can contain only the identity and the rotations by 180°
about the axes through the middle points of the opposite edges. Since the
group of rotations of the tetrahedron is not commutative‚ its commutant
is different from the commutant being a normal subgroup‚ by 113 it
coincides with the subgroup containing the identity and all the rotations
by 180° about the axes through the middle points of the opposite edges
of the tetrahedron.

121. See solution 113.

122. Both symmetries of the tetrahedron and either change or
fix the orientation of the tetrahedron (see solution 67). Thus every com-
mutator preserves the orientation of the tetrahedron. Con-
sequently the commutant in the group of symmetries of the tetrahedron

contains only the rotations of the tetrahedron. If
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and are two symmetries of the tetrahedron‚ then

is a rotation about the axis through the

vertex A. Since the commutant is a normal subgroup (see 116 and 121)
the commutant in the group of symmetries of the tetrahedron coincides
with the subgroup of rotations.

123. Answer. 24. For the cube: 1) the identity; 2) the rotations
(they are 9) by 90°‚ 180°‚ and 270° about the axes through the centres
of opposite faces; 3) the rotations (6 in total) by 180° about the axes
through the middle pints of opposite edges; 4) the rotations (8 in total)
by 120° and 240° about of the axes through opposite vertices.

124. If we join the centres of the adjacent faces of the cube we obtain
an octahedron. Thus to every rotation of the cube there corresponds a
rotation of the octahedron and vice versa. Moreover‚ to every composi-
tion of two rotations of the cube there corresponds a composition of two
rotations of the octahedron and we obtain an isomorphism of the group
of rotations of the cube in the group of rotations of the octahedron.

125. If we fix the position of the cube and we consider as different two
colourings for which at least one face takes a different colour‚ then there
are in all 6 · 5 · 4 · 3 · 2 = 720 colourings: indeed‚ by the first colour one
can colour any one of the 6 faces‚ by the second‚ any one of the remaining
5‚ and so on. Since for every colouring one obtains 24 distinct colourings
by means of rotations of the cube (see 123)‚ we have in all 720/24 = 30
ways of colouring the cube.

There exist only 4 rotations transforming a box of matches into itself:
the identity and the three rotations by 180° about the axes through the
centres of opposite faces. Hence we have 720/4 = 180 ways of colouring
a box of matches with 6 colours.

126. Answer. The group of symmetries of the rhombus and the group

127. Hint. a) See 57. b) Use the result that both and either
exchange the tetrahedra or fix them.

128. The rotations and of the cube either both exchange the
tetrahedra and (see Figure 8) or fix them. Thus each
commutator transforms every tetrahedron into itself. Hence to every el-
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ement of the commutant of the group of rotations of the cube there cor-
responds a rotation of the tetrahedron

Let be a rotation of the cube by 90° about the axis through the
centres of the faces ABCD and and such that the vertex B
is sent onto A. Let be the rotation of the cube by 120° about the axis
through the vertices and and such that the vertex A is sent onto

Thus the rotation sends the vertex A onto itself (verify) and
the vertex onto D‚ i.e.‚ it is a non-trivial rotation of the cube about
the axis through the vertices A and This rotation is also a rotation
of the tetrahedron about the axis through the vertex A. Now it
is easy to show (see 121) that the commutant in the group of rotations
of the cube contains all the rotations fixing the tetrahedron. But since it
contains only these rotations‚ the commutant in the group of rotations of
the cube is isomorphic to the group of rotations of the tetrahedron.

129. Let A and B be two arbitrary cosets and their representant.
Since the element belongs to the commutant‚
and therefore AB = BA.

130. Let be two arbitrary elements of the group and let A and B
be the cosets to which they belong. Since AB = BA then
E. The commutator therefore belongs to a normal subgroup
N. In this way all the commutators belong to N and hence N is the
commutant.

131. Let be two arbitrary elements of N and an arbi-
trary element of the group G. Since N is a normal subgroup the el-
ements and belong to N. Thus

is a commutator in the normal subgroup N‚ i.e.‚ it belongs
to K(N). Hence K(N) is a normal subgroup of the group G.

132. Let and be two arbitrary elements of the group F. Since
is a surjective homomorphism of the group G onto the group F there exist
two elements and of the group G such that and
Thus one has
This means that the group F is commutative.

The converse proposition is not true: see Example 12 in §1.13.

133. Let Thus
Therefore and
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134. (see 133) Hence

135. Let and be two arbitrary elements of the group G. Thus

136. If and then (by the
definition of cosets)

137. See 57. 1) If and belong to ker then
and Therefore also belongs to ker
2) so belongs to ker 3) If then

Hence if belongs to ker
also belongs to it.

138. Let  be an arbitrary element of the kernel ker and an
arbitrary element of the group G. Thus and

Hence the element
also belongs to ker and therefore ker is a normal subgroup of

the group G.

139. Suppose that the two elements and belong to the same
coset ker Thus there exist in ker two elements and such that

and Thus
Vice versa let In this case we

have (see 134) Hence
where is an element of the kernel ker It follows that

and both elements and belong to the coset ker

140. Let be an arbitrary element of F. Since is a surjective
mapping, there exists an element of the group G such that
Let A be the coset containing Thus by definition

141. Let and let be two elements, representant of
the classes A and B. Thus It follows (see
139) that A = B.

142. Let A and B be two arbitrary cosets and and their repre-
sentant elements. Thus element belongs to the coset AB. Applying
the definition of the mapping we obtain
is a homomorphism) The mapping being
bijective (see 141), is an isomorphism.

(see 133)
(see 134)

(see 134)
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143. Let be the three axes through the middle points of op-
posite edges of the tetrahedron. By every symmetry of the tetrahedron
these axes are permuted in some way‚ i.e.‚ we obtain a mapping of the
group of symmetries of the tetrahedron in the group of permutations of
the three axes This mapping is a mapping onto the entire group of
these permutations‚ because (verify) every permutation can be obtained
by a suitable symmetry of the tetrahedron. It is easy to see that for
any two symmetries and the permutation of the axes corre-
sponding to the symmetry is the composition of the permutations
corresponding to symmetries and i.e.‚ It
follows that is an isomorphism.

We put every symmetry of the equilateral triangle KLM in correspon-
dence with every permutation of the axes in a natural way. We
obtain an isomorphism of the group of the permutations of the axes

into the group of symmetries of the triangle KLM.
The mapping is a surjective homomorphism (see 135) of the

group of symmetries of the tetrahedron onto the group of symmetries
of the triangle KLM. The kernel of this homomorphism contains all
symmetries of the tetrahedron that send each of the axes into itself.
Such symmetries are the identity and the rotations by 180° about the axes

From the result of Problem 138 and Theorem 3 we obtain that
these symmetries form a normal subgroup in the group of symmetries of
the tetrahedron and that the corresponding quotient group is isomorphic
to the group of symmetries of the triangle.

144. Let be the axes through the centres of opposite faces of
the cube. As in the solution of Problem 143 we define an isomorphism
of the group of rotations of the cube in the group of symmetries of the
equilateral triangle KLM. The kernel of this homomorphism contains all
rotations of the cube that send each of the axes into itself. Such
rotations are only the identical transformation and the rotations by 180°
about the axes From the result of Problem 138 and Theorem 3 we
obtain that these four rotations form a normal subgroup in the group of
rotations of the cube and the corresponding quotient group is isomorphic
to the group of symmetries of the triangle.

145. Denote by the counterclockwise rotation of the plane around
the point O by an angle The mapping is a homomorphism
of the group R into itself‚ because

135
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and for every rotation there exists a rotation such that
The kernel of the homomorphism contains all rotations such that

i.e.‚ They are the rotations of the plane that send
the regular onto itself and only them. From the result of Problem
138 and Theorem 3 we obtain the proposition that we had to prove.

146. Let and be the natural homomorphisms of the groups
and onto the quotient groups and respectively.

Let be the surjective mapping of the group onto the group
such that This mapping

is an homomorphism; indeed:

The kernel of the homomorphism contains all pairs such that
where and are the unit elements in the

quotient groups and respectively. Since
the kernel of the homomorphism is the subgroup

From the result of Problem 138 and from Theorem 3 we obtain the
statement which we had to prove.

147. Yes‚ it is possible. For example‚ the group
and the group contain the normal subgroups and

respectively‚ which are isomorphic to group The corresponding
quotient groups‚ too‚ are isomorphic.

148. Yes‚ it is possible.  For example‚ the group The
group contains two isomorphic normal subgroups:

and and the corresponding quotient groups
are respectively and

(see 146).

149. Yes‚ it is possible. An example of an infinite group of this type
is given in Problem 145‚ where and‚ evidently‚

An example of a finite group is given by the group which
contains two normal subgroups of the type and whose
corresponding quotient groups are isomorphic to (see 146).
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150. See 57. Suppose that and belong to This means
that in H there exist two elements and such that and

Thus the element belongs to H and (since
is a homomorphism) It follows that also

belongs to
2) Since belongs to H and (see 133) belongs to the

image of the subgroup H.
3) Suppose that the element belongs to This means that in

H there exists an element such that Thus belongs to
H and  Hence also belongs to

151. See 57. 1) Suppose that and belong to This
means that the elements and belong to H. Thus

also belongs to H and Hence
belongs to

2) Since (see 133) and belongs to H‚ then belongs
to

3) Suppose that belongs to This means that the element
belongs to H. Thus the element also belongs to H and

Hence belongs to

152. Let  be an arbitrary element of This means that the
element belongs to N. If is an arbitrary element of the group
G and then Thus the
element belongs to N‚ because N is
a normal subgroup of the group F. The element therefore belongs
to and is thus a normal subgroup of the group G.

153. If and are two arbitrary elements of the group G and
then (see 134)

It follows that
i.e.‚ the image of every commutator of the group G is a commutator
in F. Every element of the commutant can be written in the form

where each is a commutator. The element
is a product of commutators in the group

F‚ and therefore it belongs to the commutant It follows also that
is contained in

154. Let  be an arbitrary element of This means that in
N there exists an element such that Let be an arbitrary
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element of the group F. Since is a surjective homomorphism there exists
in the group G an element such that Thus (see
134) and Since N is a normal subgroup of the group
G the element belongs to and is thus a normal subgroup
of the group F.

155. Let be an arbitrary commutator in F. Since
is a surjective homomorphism there exist in the group G two elements

and such that and Thus (see 134)
and Since the

element belongs to the commutator belongs
to But since is a subgroup of F (see 150) and contains
all commutators‚ contains the entire commutant On the other
hand‚ is contained in (see 153). Hence

The equality does not hold in general. For example‚
the mapping of the group into the group consisting of
a sole element‚ such that and is a surjective homo-
morphism. One has and

156. Answer‚ a) Yes: the group is commutative; b) yes (see 118);
c) yes (see 118); d) yes (see 118); e) yes (see 120); f) yes (see 122 and
(e)); g) yes (see 118 and (e)).

157. A given face can be sent onto any one of the 12 faces in 5 distinct
ways.

Answer. 60.

158. Answer. 1) 1; 2) 24; 3) 20; 4) 15.

159. Let and be two axes of the same type‚ (i.e.‚ two axes either
through the centres of opposite faces‚ or through opposite vertices‚ or
through the centres of opposite edges). There exists a rotation of the
dodecahedron which sends the axis to the axis If  is any (non-
trivial) rotation about then the rotation sends (verify) the axis

to itself‚ without reversing it. The element is not the identity‚
otherwise should be the identical rotation about the axis
Hence if a normal subgroup in the group of rotations contains one rotation
about one axis then it contains at least one rotation about every one of
the axes of the same type. A subgroup of rotations of the dodecahedron
about one axis have an order (according to the type of axis) equal to 5‚
3‚ or 2. Since 5‚ 3‚ and 2 are prime numbers‚ any element (different from

is a generator of this subgroup (see 34)‚ i.e.‚ it generates the entire
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subgroup. Hence if a normal subgroup of the group of rotations of the
dodecahedron contains one rotation about some axis then it contains all
the rotations about all the axes of that type.

160. From the result of Problem 159 it follows that a normal sub-
group in the group of the rotations of the dodecahedron must consist in
some one of the classes 1–4‚ necessarily including class 1. The order of
the normal subgroup must be a divisor of the order of the group of the
rotations of the dodecahedron (i.e.‚ 60) (see Lagrange’s theorem‚ §1.8). It
is easy to verify (see 158) that this is possible only if the normal subgroup
contains only class 1 or contains all the classes.

161. Since the group G is not commutative‚ the commutant
Since K(G) is a normal subgroup of G (see 116) it follows from the

hypothesis of the problem that K(G) = G. Therefore in the sequence
G‚K(G)‚ … all groups coincide with G and this
sequence cannot end with the unit group. Hence the group G is not
soluble.

162. Let the group G be soluble. Thus there exists an integer such
that the subgroup is the unit group. If H

is a subgroup of the group G then K(H) is contained in K(G)‚ K(K(H))
is contained in K(K(G))‚ etc.. Since the subgroup is contained
in and the subgroup is the unit‚ is also the unit
subgroup. It follows that the subgroup H is soluble.

163. Denote by K(G) the commutant in the group G and by
the subgroup Since is a surjective homomorphism

of the group G onto F‚ (see 155)‚
and in general Since the group G is soluble‚ for a
certain the subgroup will be the unit group. But

and thus will be also the unit group. Hence the group F
is soluble.

164. Answer. For example‚ where G is the group of the
rotations of the tetrahedron.

165. Hint. Consider the natural homomorphism of the group G into
the quotient group G/N (§1.13). Use later the result of Problem 163.
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166. Let K(G) be the commutant in the group G and

Consider the natural homomorphism (see §1.13) of the group G into the
quotient group G/N. Thus (see 155)

and in general Since by hypothesis the
group G/N is soluble‚ for a certain the subgroup is the unit
group‚ i.e.‚ Since the
subgroup is contained in the normal subgroup N. The group N
being soluble‚ for a certain the subgroup is the unit group. Since

is contained in N the subgroup is contained in
and it is thus the unit group. It follows that the group G is soluble.

167. From Problem 146 we obtain
Since the groups and are isomorphic to the groups G
and F‚ respectively‚ and they are therefore soluble‚ the group G × F (see
166) is also soluble.

168. Since the group G is soluble‚ in the sequence of commutants
.. . we will have‚ for a certain Consider

the sequence of groups G‚ K(G)‚ This sequence of
groups is the sequence we seek‚ because every group (after the first one) is
the commutant of the preceding group‚ and is therefore a normal subgroup
(see 116) of it. Moreover‚ all the quotient groups as well
as G/K(G)‚ are commutative (see 129); the group too‚ is
commutative.

169. Since by hypothesis the quotient group is commutative‚
the commutant is contained in (see 130). It follows that the
subgroup is contained in and in general the subgroup

is contained in for every and
The subgroup is contained in the subgroup which is
contained in etc.‚ up to It follows that the subgroup

is contained in But because the group
is by hypothesis commutative. Hence i.e.‚ the group

G is soluble.
We can obtain the result of Problem 169 also by induction‚ going from
to later to etc. and using the result of Problem 166.

170. By hypothesis the group G is soluble. This means that for a cer-
tain the subgroup is the unit group and therefore the subgroup
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is commutative. Since is a normal subgroup of the
group G (see 131)‚ we may consider the quotient group
We prove that the subgroup is commutative. Consider the
natural homomorphism (see §1.13) with kernel
Since is surjective (see 155) Thus

etc.. Consequently we have (because
is the kernel of the homomorphism Since

the subgroup (see 117) is commu-
tative. Denote by the quotient group As before‚
we can prove that the subgroup is commutative. Put

etc.. The group is commutative
(see 129). The sequence of groups  with normal sub-
groups is the requested sequence.

171. Let be a sequence of groups with the properties
mentioned in Problem 170. We will prove that all the groups of the se-
quence‚ in particular are soluble. We shall use the induction from to
0. The group is soluble‚ because by hypothesis it is commutative and
therefore Suppose that we have already proved that the
group is also soluble. We will prove that the group too‚ is soluble.
The group contains by hypothesis a normal‚ commutative‚ and thus
soluble‚ subgroup from which the quotient group is
soluble by the induction hypothesis. Hence the group is also soluble
by virtue of the result of Problem 166. In conclusion we can state that all
the groups in the sequence are soluble‚ and‚ in particular‚

is soluble.

172. Any permutation of order can be written in the form

where the are all distinct and take values from 1 to In particular‚
may take any one of the the values. Later can take any one of the

remaining values‚ and so on. It follows that the number of distinct
permutations of degree is equal to

173. If and

then and
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i.e.‚ (Recall that in the product the permutation is carried
out first‚ and later.)

174. Suppose that the element is sent to etc.. Let
be the first returning element. If we suppose that where

then we obtain that two distinct elements‚ and
are sent by the permutation to the same element‚ which is a contradiction.
It follows that and one obtains a cycle. Starting with an arbitrary
element‚ not belonging to this cycle‚ one constructs the second cycle‚ etc..
It is easy to see that every permutation is the product of independent
cycles.

Suppose now a given permutation be the product of independent cy-
cles. If one of the cycles sends the element to and the elements
and do not appear in other cycles‚ then all products of cycles send

to Hence the element which follows in the cycle containing
is uniquely defined by the given permutation. Therefore all cycles

are uniquely defined. Note that if the cycles are not independent the
decomposition into cycles may not be unique. For example‚

175. Hint. Verify this equality

176. Hint. Let Verify the equality

177. The pairs corresponding to inversions are (3‚2)‚ (3‚1)‚ (2‚1)‚
(5‚4)‚ (5‚1)‚ (4‚1). Answer. 6.

178. If the numbers and are interchanged and are
the numbers between and the property of being or not being an
inversion changes into the opposite for the pairs of the following numbers:

where i.e.‚ for pairs. Since the
number is odd the parity of the number of inversions does change.

179. Answer. The permutation is even (6 inversions).

to
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180. Since

the lower row of the product is obtained from the lower row of the initial
permutation interchanging numbers and By virtue of the result of
Problem 178 the permutation obtained and the initial permutation have
different parities.

181. Every permutation splits into a product of transpositions (see
174, 175). Suppose a permutation be decomposed into a product of
transpositions: We can write

being the identity permutation. Since the permutation is even and is
multiplied times by a transposition, one obtains (see 180) that if is
even is an even permutation, and if is odd is an odd permutation.

182. See the hint to Solution 175. Answer. a) even; b) odd; c) even
for odd, odd for even.

183. Hint. Decompose the given permutations into products of trans-
positions (see 181). Count the number of transpositions in these pro-
ducts.

184. If the permutations should have different parities, then (see 183)
the permutation should be odd, which is not true.

185. For example,

186. If is an even permutation then is also even, indepen-
dently of the parity of the permutation Hence is a normal subgroup
of the group Let be an odd permutation. We prove that the coset

contains all the odd permutations. Let be an odd permutation.
Thus is even. It follows that the permutation belongs to
the coset Therefore the group is decomposed, by the subgroup

into two cosets: that of all the even permutations and that of all the
odd permutations.
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187. Answer. Since the group is decomposed by the subgroup
into two cosets (having the same number of elements)‚ the number of the
elements of the group is equal to (see 172)

1The inscription of the five Kepler cubes inside the dodecahedron helps us to find
the five tetrahedra.

188. The group contains 2 elements and is therefore isomorphic
to the commutative group The groups and are isomorphic to
the group of symmetries of the triangle and to the group of symmetries
of the tetrahedron‚ respectively. Both these groups are soluble (see 156).

189. Enumerate the vertices of the dodecahedron as shown in Figure
43. The tetrahedra are‚ for example‚ those with the vertices chosen in
the following way1: (1‚ 8‚ 14‚ 16)‚ (2‚ 9‚ 15‚ 17)‚ (3‚ 10‚ 11‚ 18)‚ (4‚ 6‚ 12‚
19)‚ (5‚ 7‚ 13‚ 20).

The edges of the cubes are the diagonals of the dodecahedron faces. Every pair of
opposite vertices of the dodecahedron is a pair of two opposite vertices of two Kepler
cubes. Each cube has thus only one pair of vertices in common with any one of
the others. (Two Kepler cubes — black and white — having two opposite vertices
in common are shown in the figure). In each cube one can inscribe two tetrahedra
(see Problems 126 and 127). Since each tetrahedron is defined by four vertices of
the cube‚ and any two Kepler cubes have only 2 vertices in common‚ all tetrahedra
inscribed in the Kepler cubes are distinct. So there are in all 10 tetrahedra‚ two for
every vertex of the dodecahedron. Any two of such tetrahedra either have no vertices
in common‚ or they have only one vertex in common. Indeed‚ if two vertices belonged
to two tetrahedra‚ the edge of such tetrahedra joining them should be the diagonal of
a face of two different cubes‚ but we know that any two cubes have in common only
opposite vertices. There are two possible choices of 5 tetrahedra‚ without common
vertices‚ inside the dodecahedron: indeed‚ when we choose one of them‚ we have to
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FIGURE 43

190. The permutations of degree 5 may be represented as product of
independent cycles only in the following ways: a) b)
c) d) e) f) Applying the re-
sults of Problems 182 and 183 we obtain that in the cases (a)‚ (b)‚ and
(c) the permutations are even‚ whereas in the cases (d)‚ (e) and (f) the
permutations are odd.

191. Suppose that the normal subgroup N in the group con-
tains a permutation of the type (a) (see 190). Without loss of gen-
erality we may suppose that We prove that any
permutation of the type (a) belongs to N. If in the row

there is an even number of inversions then the permuta-

tion is even. Hence by the definition of a

normal subgroup N contains the permutation If
in the row there is an odd number of inversions then in
the row there is an even number of inversions (because
the order of elements is reversed in three pairs). In this case the per-

mutation is even. Hence N contains the

reject the four tetrahedra having a vertex in common with the chosen tetrahedron.
The remaining tetrahedra are five. Amongst them four tetrahedra have disjoint sets
of vertices‚ whereas the remaining tetrahedron has one vertex in common with each of
the four disjoint tetrahedra. The choice of the first tetrahedron thus forces the choice
of the others‚ so there are in all only two choices. (Translator’s note)
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permutation and together with it the permutation

Suppose now that the normal subgroup N contains a permutation
of the type (b) (see 190) and that is an arbitrary

permutation. Choose the elements and different from in
the set Either in the row or in the row

there will be an even number of inversions. Consequently

one of the permutations or

is even. Denoting this permutation by we obtain that in all the cases
N contains the permutation

If the normal subgroup contains a permutation of the type (c) (see
190)‚ for example‚ the permutation then it also contains
all permutations of the type (c). Indeed‚ in this case one of

the permutations or is even.

Let this permutation be denoted by Thus N contains the permutation

192. We will count the number of permutations of each one of types
(a)‚ (b) and (c) (see 190).

a) There exist 5 · 4 · 3 · 2 · 1 = 120 sequences of 5 numbers 1‚ 2‚ 3‚ 4‚ 5.
Since every permutation of the type (a) can be written in five equivalent
ways (depending upon the choice of the first element) the number of
permutations of the type (a) is 120/5 = 24.

b) By the same reasoning as in the case (a) one obtains that the
number of permutations of the type (b) is equal to 5 · 4 · 3/3 = 20.

c) A permutation of the type (c) can be written in 8 different ways
(one can choose in 4 ways and afterwards in two ways). Hence the
number of permutations of type  is equal to 5 · 4 · 3 · 2/8 = 15.

Every normal subgroup N contains the unit element. Moreover‚ from
the result of Problem 191 it follows that a normal subgroup of the group

either contains all the permutations of a given type (see 190) or it
contains none of them. The order of a normal subgroup must divide the
order of the group (60). But adding to the number 1 the numbers
24‚ 20‚ and 15 one obtains a divisor of 60 only in two cases: when one
adds nothing and when one adds all the three numbers. The first case
corresponds to the unit subgroup‚ the second one to the whole group

193. Such a subgroup is‚ for example‚ the subgroup containing all
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permutations of type

with an even number of inversions in the row
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3.2 Problems of Chapter 2

194. a) Answer. No‚ because the integer numbers do not form a
group under addition (cf.‚ 17).

b) Answer. No‚ because the integers numbers without zero do not
form a group under multiplication (all numbers‚ except 1 and –1‚ have
no inverse).

c) Answer. Yes. Use the result of Problem 57.
Solution. Since the real numbers form a commutative group under

addition‚ and without zero also a commutative group under multiplica-
tion‚ it suffices to verify that the set of rational numbers form a subgroup
of the group of real numbers under addition‚ and without zero also under
multiplication. One obtains this easily using the result of Problem 57.
Indeed: 1) if and are rational then and are rational as
well; 2) 0 and 1 are rational; 3) if is a rational number‚ then and

(for are also rational. The distributivity is obviously satisfied.
Consequently rational numbers form a field.

d) Answer. Yes. Use the result of Problem 57.
Solution. If where and are rational numbers

and then it is not possible that because is not
a rational number. This means that if and being
rational numbers‚ then All numbers of the form
for different pairs are different‚ because if
then and Let us now prove
that all numbers of the form where and are rational‚ form
a field. To do this‚ we prove that the numbers of the form form
a subgroup under addition in the set of the real numbers‚ and also under
multiplication without zero. Using the result of Problem 57 we obtain:
1) if and then
and and 1 belong to the set
considered‚ because and if
then and (for

Since the distributivity is satisfied by all real numbers the considered set
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is a field.

195. We have Since a field is a group
under addition, one can add to both members of the equations. One
obtains Since the multiplication in the field is commutative one
also has

196. 1) It follows
that In the same way one proves that

(cf., the point

197. If and then there exists an element the
inverse of the element Thus But

Hence

198. Answer. See Table 14

199. Let be a non-prime number‚ i.e.‚ where and
Thus modulo we have but and Since

this is not possible in a field (cf.‚ 197)‚ for non-prime the remainders
with the operations modulo do not form a field.

Observe now the following property. Let and be two integers
and and the remainders of their division by i.e.‚
and Thus and

We obtain that the numbers and
as well as and divided by give the same remainder. In other
words‚ we obtain the same result either if we first take the remainders of
the division of and by and afterwards their sum (or their product)
modulo or if we first take the sum (or the product) of the integers and

as usual‚ and later on we take the remainder of the division by of this
sum (or of this product). In this way‚ to calculate a certain expression
with the operations modulo one may take the remainders of the division
by not after each operation‚ but‚ after having made the calculations as
usual with integers‚ take only at the end the remainder of the division
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by of the number obtained. Let us use this property. Under addition
modulo the remainders form a commutative group (see 40). Since for all
integers the numbers and are equal‚ and consequently
the remainders of their division by are also equal‚ the equality

also holds modulo i.e.‚ distributivity is satisfied. In
the same way one verifies the associativity and the commutativity of
the multiplication modulo and The unit
element for the multiplication is 1. It remains to prove that for prime
every remainder different from 0 has an inverse‚ i.e.‚ that there exists a
remainder such that modulo

Let Consider the numbers (under
the usual multiplication). The difference between two of these numbers

is not divisible by because is prime and
and As a consequence all these numbers divided by

give distinct remainders‚ and thus all the remainders possible. This
means that one of these numbers divided by gives as remainder 1‚ i.e.‚
for a certain remainder one has modulo Hence for prime
all the properties of fields are satisfied.

200. Since it follows that

201. Subtract from

the equality

One obtains

so

If the degree of the polynomial in the left member of the
equality (3.1) is not lower than the degree of the polynomial But
the degree of the polynomial in the right member is strictly lower than
the degree of the polynomial From this contradiction it follows



necessarily that and consequently
i.e., and

202. This group is the direct product of the group of the real numbers
(under addition) by itself (cf., 69 and 73). The unit element (zero) is the
pair (0,0).

203. Let Thus
and But and

Hence Moreover we have

and
i.e.,

204. Let and let the required complex number
be Thus To have

the two following equations must be satisfied:

This system of equations has exactly one solution:

for which because Hence

205. Let Thus
and

from which it results that

206. We have

207. Answer.

208.
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(since



209. Answer. a) b) c)

210. Hint. The equation where is
a real number, is equivalent to the system of equations

Answer. a) b) c) d)

211. Let Thus
a)

b) By virtue of (a)
It follows that
c)

d) (because of (c)) Hence

212. From the result of Problem 211 we obtains

because all the are real numbers)

213. Since the field M contains all the real numbers and the element
then it contains all possible elements of the form where are

arbitrary real numbers. Let denote the set of all elements of the field
M, represented in the form Thus by virtue of the commutative,
associative, and distributive properties of addition and multiplication in
M we obtain for the elements of
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Let C be the field of complex numbers. Consider the mapping of
the field C into the field M such that

Comparing formulae (3.2) and (3.3) with formulae (2.4) and (2.5) of §2.2
we obtain that is a homomorphism of C into M with respect to the
addition and with respect to the multiplication. Since is
a subgroup (cf., 150) of M with respect to the addition and with respect
to the multiplication. As the operations of addition and multiplication
possess the properties of commutativity, associativity, and distributivity
in M, this obviously also holds in Hence is a field.

If then Moreover, if then
is a real number, but this cannot be true because the

square of any number is never equal to –1.  Consequently and
thus also Hence and Consequently the elements
of the form are different for different pairs It follows that
the mapping defined above is a bijective mapping of the field C onto
the field Moreover, since is a homomorphism, is an isomorphism
of the field C in the field i.e., the field is isomorphic to the field
of complex numbers.

214. Let the polynomial considered be reducible, i.e.:

where all the and are real numbers and
Put in place of in the first member of this equation. Since

M is a field one can eliminate the brackets, carrying out the product as
usual. We obtain in this way the initial polynomial, in which is replaced
by i.e.:

By hypothesis
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and thus (cf., 197) at least one of the two polynomials above within
brackets is equal to zero. By dividing this polynomial by its leading
coefficient or we obtain a vanishing expression of the type of (2.6),
having a degree lower than We thus obtain a contradiction of being
the lowest degree for which an expression of the type of (2.6) vanishes.
Therefore the claim that the polynomial considered is reducible is not
true.

215. As we had proved, in the case (a) the element of the field M
satisfies the equation:

where and are some real numbers, and is not reducible
over the field of real numbers. We have

If then for some real number Thus

i.e., the polynomial should be reducible over the field of the
real numbers. It follows that i.e., for a certain
non-zero real real number Since in the field M in M
we have

Consequently

Hence the element

belonging to M, is the element sought.

216. Answer. The sole field satisfying the required properties is (up to
isomorphism) the field whose elements are fractions, having polynomials

154 Problems of Chapter 2
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in as numerators and denominators, with the usual operations on these
fractions.

217. Answer. A: B: C:

218. Answer. a) The symmetry with respect to the origin of the
coordinates (or, equivalently, the rotation by 180° around the origin of
the coordinates). b) the dilation of the plane by 2 (fixing the origin of
the coordinates). c) the reflection with respect to the axis.

219. Hint. Use the property of the triangles and
being equal (Figure 44).

FIGURE 44

220. By hypothesis
Consequently the equation is equivalent to the two equations:

On the other hand, if then (cf., Figure 45)
and similarly

Thus the equation is equivalent to the equations (3.4).
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FIGURE 46

221. By definition and

222. Equation comes from Pythagoras’ theorem (Figure
46). Equations are easily verified.

223. See Figure 47. Hint. The inequalities stated by the problem
follow from the property that in a triangle the length of any side is smaller
than the sum and longer than the difference of the lengths of the two other
sides.

224. See Figure 48.

FIGURE 47 FIGURE 48

225. Answer. a)

FIGURE 45

b)



c) d) e) where

226. We have:
= (by the trigonometric formulae of the sum)

= The second equation in the problem
is equivalent to the equation

which follows directly from the first equality.

227. Hint. Use the result of Problem 226.

228. So,

It
follows that

Answer.

229. If then also (cf., 197). If then also
In this case let Thus by de Moivre’s formula (cf.,
227)

It follows that and where is any integer.
Therefore

If where is an integer number, then the quantities
and differ by and the values of expressed by

formula (3.5) coincide. Formula (3.5) thus gives distinct values of
obtained by giving to the parameter the values

230. Hint. Put the expressions under the square root into trigono-
metric form, afterwards use formula (3.5) of the solution of Problem 229.
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Answer. a) b) (here is the real posi-
tive root); c) where d)

where (here is
the real positive root).

231. Hint. See formula (3.5) of the solution of Problem 229;
(cf., 227).

232. Hint. If and then
Answer. (cf., 231).

233. By virtue of the result of 221 where O is the origin of
the coordinates. Answer. a) the distance of the point from the origin
of the coordinates; b) the angle between the positive side of the axis
and the ray c) the distance between the points and (because

(cf., 221); d) the angle between rays and (cf.,
226).

234. See 233. Answer. a), b) The circle of radius 1 (and R) with
centre at the origin of the coordinates; c) the circle of radius R and centre
at the point d) the disc of radius R with centre together with its
bounding circle; e) the straight line perpendicular to the segment joining
points and and passing through its middle point; f) the negative
side of the real axis; g) the bisector of the first quadrant of the plane; h)
the ray defining the angle with the positive side of the axis

235. See 229 and 232. Answer. In the vertices of a regular
with centre at the origin of the coordinates.

236. Let a point and an arbitrary real number be given.
Choose (independently of and of Thus for every satisfying
the condition the inequality
is satisfied. Consequently the function is continuous for every
value of the argument (For one may take an arbitrary positive real
number).

237. Let a point and an arbitrary real number be given.
Choose (independently of Thus for every satisfying the
condition the inequality is
satisfied, i.e., we will have Consequently the function of
complex argument is continuous for every value of the argument.
Considering only the real values of the argument we obtain that the
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function of real argument is also continuous for all values of the
argument.

238. Let a point and an arbitrary real number be chosen. If
is an arbitrary real positive number and then

But
So for we obtain

Now choose a value satisfying the inequality

If then put (taking the positive root of If
then consider the two real positive numbers and and choose
as the smallest of these two numbers. Thus inequalities and

will hold. It follows that

Hence if where takes the value we had chosen, then
Therefore the function of complex argument is

continuous for all values of the argument.

239. a) Let an arbitrary real number be given. We have

Consider instead of Thus by virtue of the continuity of the function
at the point one can choose a real number such that for

every satisfying the inequality holds.
In the same way, by virtue of the continuity of the function at the
point we can choose a real number such that for every
satisfying the inequality holds. Take
as the smallest of and Thus for every satisfying the condition

both inequalities: and
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hold. So for every number satisfying the condition we will
have

i.e., Hence the function is continuous
at the point

b) if then

We thus obtained the same inequality

as in the case (a), and therefore the problem is solved as in the preceding
case.

c) Let a real number be given. We have

Now choose a real number such that for every satisfying the
condition both terms of the sum obtained are smaller than

1) If then consider the number Since the
function is continuous at the point for some real number
the condition involves Thus
for we will have
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i.e.,

Consider the real number Since the function is
continuous at the point for some real number the condition

involves Choose as
the smallest of the numbers and Thus for every satisfying the
condition both inequalities

will hold. Consequently we shall have

If then we follow another argument. Consider as the
number Thus for some real number the condition

involves and since we obtain
Take as the number Thus for some real number

the condition involves
If as we take the smallest of the numbers and then for every
satisfying the condition both inequalities

will hold, and consequently we shall have

2) if consider One thus finds a real
number such that for every the condition will
involve

and consequently the inequality
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will hold. If then as one can take an arbitrary positive real
number, because in this case for every one has

Now choose as the minimum of the numbers and Thus for
every satisfying the condition both inequalities

and

will hold and consequently we shall have

Hence the function is continuous at the point

240. a) Let an arbitrary real number be given. One has

Consider the number Since the function is
continuous at the point then for some real number there will
follow from the condition
We thus obtain that for every satisfying the condition the
following inequality holds:

Consider the number There exists a real number
such that the condition involves



Choose as the smallest of and Thus for every
satisfying the condition the following inequalities will hold:

and consequently we will have

In this way the function is continuous at the point
b) Since the functions and are continuous at the point at

the point the function is continuous (cf., (a)), and consequently
the function is continuous as well (cf.,
239(b)).

241. Let an arbitrary real number be given. Since the function
is continuous at the point there exists a real number such

that the condition involves Now consider
the number Since the function is continuous at the point

there exists a real number such that from it follows
that i.e., But thus the inequality

does hold, i.e., we obtain
Consequently for every satisfying the condition we have

and therefore the function is continuous
at the point

242. Let a point and a real number be given. For the
function we find = (by a
trigonometric formula)

For we find = (by a
trigonometric formula)

(since
In this way in both cases we obtain

Now choose in such a way that for every satisfying
the inequality be satisfied.
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If then the inequality holds for all
and thus can be chosen arbitrarily. If consider on the plane
with coordinates and a circle of radius 1 with centre at the origin of
the coordinates and draw the straight lines and (Figure
49). For the angles and shown in the Figure we obtain

Hence

Choose Thus from it follows that
i.e., Hence

i.e., and Thus

Consequently the functions and are continu-
ous for all the real values of the argument

243. Let a point and an arbitrary positive real number be given.
We have to choose a real number such that for every satisfying
the inequality (and, of course, the inequality

holds. This last inequality is equivalent to the inequalities

FIGURE 49

and
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Since the function is strictly increasing (for the inequalities
(3.7) are equivalent when to the inequalities

We therefore have

In this case, taking as the smallest of numbers and
we obtain that (3.8) follows from the condition

and these inequalities also involve the inequality (3.6). If in (3.7)
then the inequality on the left is always satisfied (for

and (3.7) is equivalent to the inequality

which involves

In this case it suffices to take

and for every satisfying the condition the inequality (3.9)
together with the inequalities (3.7) and (3.6) will be satisfied.

244. Answer. a) See Figure 50. Hint. b), c) See Figure 50.
Hint. d) See Figure 50;

FIGURE 50 FIGURE 51
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e) See Figure 51; f), g) a turn (the
case (f)) and a double turn (the case (g)), both counterclockwise, along
a circle of radius R, with initial point (Figure 52). Hint. (f)

and (g) h) the semi-circle of
radius R (Figure 53); i) See Figure 54.

FIGURE 52

245. See Figure 55. By similarity one obtains
When the point moves along the segment from the

position to the position the parameter varies
from 0 to 1. Thus, for example, one can take

obtaining
It is easy to verify that this

formula describes the initial segment for any position of the points and
so, in particular, for or for

246. Since (cf., 221) it follows that: the case (a)
corresponds to the displacement of the curve by the vector corresponding
to the complex number (Figure 56).

FIGURE 53 FIGURE 54
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FIGURE 55

FIGURE 56 FIGURE 57

FIGURE 58 FIGURE 59

If and then (cf., 226)
and Therefore the case (b) corresponds to a dilation
of the curve by a factor fixing the origin of the coordinates (Figure
57); the case (c) corresponds to a rotation of the curve by the angle

around the origin of the coordinates (Figure 58); the case (d)



corresponds to a dilation by simultaneous with a rotation by the angle
(Figure 59).

247. When varies continuously from 0 to 1, varies continuously
from 1 to 0. The function thus describes the same
geometrical curve as C, but oriented in the opposite way.

248. When varies continuously from 0 to varies continuously
from 0 to 1. When varies continuously from 1/2 to 1, varies
continuously from 0 to 1. Hence the function given by the problem
describes the curve which is obtained by drawing first the curve and
then the curve The condition guarantees the continuity
of the obtained curve.

249. Answer.

250. Answer. a) b) c) d)

251. For every we have where the values of
may be distinct for all We thus write It follows
that Since the functions and are
continuous for the function is also continuous for
(cf., 239, 240). But since the function takes only integer values it is
continuous only if it is a constant, i.e., if where is some given
integer which does not depend on Therefore
and

252. Let and be two functions describing the continuous
variation of and Thus (cf., 251)

where is a given integer. But hence
Consequently and

253. Let and be two functions describing the continuous
variation of Thus (cf., 251) where is a given
integer. In particular, Consequently

and

254. a) One can take Answer. (see Figure
53); b) Answer. (see Figure 52); c) Answer.

d) Answer. (see Figure 60)

255. Answer. a) b)

256. Answer. a) 1; b) –2; c) 2; d) 0.
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257. Suppose one has chosen as the initial point on an oriented con-
tinuous closed curve C the point A in one case and the point B in another
case (Figure 61). If the variation of the argument along C in the segment
AB (according to the orientation of the curve C) is equal to and in the
segment BA it is equal to then the variation of the argument along
the entire curve C is evidently equal to

FIGURE 61

258. a),b),c) If and is a function describing the
continuous variation of then the function
where describes the continuous variation of (cf.,
226, 239). It follows that

Answer. times. This result obviously also depends on the result of
Problem 246.

d) If then (cf., 218(b)). Therefore if is
a function which describes the continuous variation of then the
function describes the continuous variation of
It follows that

FIGURE 60



Answer. times.

259. Answer. a) 1; b) 0; c) 1; d) 2.

260. Solution. If and are two functions which describe the
continuous variation of the argument along the curves and then
as a function describing the continuous variation of the argument
along C on can take: in the case (a) in the case (b)

(cf., 226, 239). It follows that

Answer. a) b)

261. Hint. (use de Moivre’s formula; cf., 227):
a) (a semi-circle of radius
b) (a circle of radius
c) (a circle of radius twice covered).

262. Hint. Use the result of Problem 260(a). Answer. a) b)
c)

263. Let be the parametric equation of the curve C and
By hypothesis the variation of is equal to The

parametric equation of the curve is
The variation of the argument of is thus equal to (cf., 262(c)).
Hence the curve turns around the point times. Answer.

times.

264. By hypothesis the variation of the argument of is equal to
of the argument of to of the argument of to
and of the argument of to By the result of Problem

260 (a) one obtains:
a) The variation of the argument of

is equal to Answer. The curve turns
around the point times.

b)  Answer. times.
c)  Answer. times.
d) Answer.

times.
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FIGURE 62

265.

266.

267. If then (cf., 265) Consequently
the curve lies entirely in the disc of radius with centre at
the point (Figure 62). It is evident that the curve does not turn
at all around the point Therefore
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Let us now prove that We give first a not strictly exact,
but nice, proof called ‘the lady with her little dog’. From the result of
Problem 266 we obtain that if then

Note that Thus for
When covers once the circle of radius the point (the
‘lady’) covers the circle of radius R times. Since
the point (‘the little dog’) cannot remain farther than R/10
from the lady. But thus if the lady turns times around the point
along a circle of radius R, her dog is also obliged to go times around
the point (Figure 63). It follows that

A more exact proof of the equality can be obtained in the

FIGURE 63



following way. If then (cf., 266)
So we obtain, as well as in the proof of the equality that
when the point covers the circle the variation of the argument
of vanishes. The variation of the argument of is equal to
and consequently the variation of the argument of is equal to (cf.,
262). Since (cf., 260) the variation of the argument
of is equal to i.e., the curve turns times around the
point Hence

Answer and

268. Divide the polynomial
by the binomial with remainder (for example, by the Euclidean
algorithm; cf., §2.1). The remainder will be some complex number and
the quotient will be some polynomial We thus have the equation

Replacing by we obtain

But since by hypothesis is a root of the polynomial
So from the equality we obtain that Hence

269. Let By the fundamental
theorem of algebra of complex numbers the equation has a root

By Bézout’s theorem (cf., 268) from which it is
easy to see that has the form If

then the equation has a root from which
and Therefore

Continuing this procedure we obtain at the step a quotient which is
a complex constant, obviously equal to The final result is thus the
required decomposition.

270. Denoting by the polynomial we
obtain (cf., 212) By hypothesis It follows that

i.e., is a root of the equation

271. Let Since all the are
real numbers and is a root of the equation is also a root
of the equation (cf., 270).
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Since is not a real number, Since and are roots of
the equation in the decomposition (cf., 269)

we must find the factors and We
can write:
In this way the polynomial is divisible by the polynomial of second
degree whose coefficients are real (cf., the solution
of Problem 211).

272. Let be the given polynomial. If the degree of the poly-
nomial is higher than 2 then the equation has, by the
fundamental Theorem of algebra of complex numbers, a root If is
a real number we divide by We obtain
(cf., 268). If is not a real number the polynomial is divisible by
a polynomial of second degree with real coefficients (cf., 271). In both
cases the quotient is a polynomial, with real coefficients, which results,
for example, from the Euclidean algorithm (cf., §2.1). This quotient is
again divisible by some polynomial of the first or second degree with real
coefficients, etc.. This procedure ends when the quotient obtained has
first or second degree. So we have obtained the required decomposition.

273.
Answer. 1 is a root of order 3, –1 is a root of order 2.

274. Compare the coefficients of the terms of the same degree in the
two members of the given equalities. Let

Thus

it is easy to see that in the case (a), for every the coefficients of in
the two members of the equality are equal to
and that in the case (b) the coefficients of in the two members are
equal to

c) For brevity let us use the summation symbol The symbol
(respectively, means that one has to consider the expression

which lies on the right of this symbol for (respectively,
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for all such that and to add all the expressions so obtained.
By this notation we write

Let be any integer such that We are looking for
the coefficient of in the product Since

if and only if the coefficient of expanding
and collecting the terms of degree in the polynomial
is equal to Consequently the coefficient of in the
polynomial is equal to Exactly
in the same way we obtain that the coefficient of in the polynomial

is equal to and in the polynomial
is equal to Hence the coefficient

of in the polynomial is equal to

because The expression obtained coincides with
the coefficient of in the polynomial

275. For the claim is true because It
also holds for

Suppose that it holds for i.e., that
We prove that it also holds for We obtain

So if our claim is true for then it is also true for Since
it holds for and it holds for all integers

276. By hypothesis where the polynomial
is not divisible by It follows that

The polynomial
within the last brackets is not divisible by because otherwise the
polynomial should have been divisible by Consequently the
polynomial is divisible by and is not divisible by

277. Answer. a) ±l; b)  c) d)
(here and are the positive values of the square roots).

Solutions 175



176 Problems of Chapter 2

278. The continuous image under the mapping of the upper
(respectively, lower) semi-circle starting at the point is the arc AB
(respectively, the arc AC) (Figure 64). The curve AB ends at point
curve AC at point

Answer. a) b)

279. For may take two values:
(the value of the square root is considered positive). Also for

may take two values: For takes a
unique value:

Answer (see Figure 65). a) The continuous images are represented by
the broken lines AOB and AOC; b) the continuous images are represented
by the broken lines DOB and DOC.

280. Let be the continuous image of the curve C under the map-
ping and let the variation of the argument along the curve
be equal to Thus the curve C is the image of the curve under the
mapping and (cf., 262(a)) Therefore

Answer.

281. Let and the continuous image of the given curve.
Since (and (1)) may take two values:

and
In accord with the condition one may take

a) the variation of the argument along the given segment is, evidently,
Consequently (cf., 280), the variation of the argument along the

curve will be equal to and of the argument of equal to

Answer.

FIGURE 64 FIGURE 65
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b) In order for to vary
continuously one may choose The variation of the ar-
gument along the curve will thus be Hence the
variation of the argument along curve (cf., 280) is equal to
and the argument of is equal to

Answer.
c) The variation of the argument along the given curve

is: The variation of the argument along curve
is equal to The argument of is equal to

Answer.

282. Let let be the continuous image of the given curve
with We have to define We may take

a)  the variation of is equal to Therefore the variation of
is equal to (cf., 280), and

Answer.
b) The variation of is equal to

The variation of is equal to and

Answer.
c) the given curve is a circle of unit radius, whose centre is moved to

the point (cf., 246(a)). This curve does not turn at all around the
point therefore the variation of vanishes. It follows that
the variation of is also equal to zero.

Answer.

283. Let be the continuous image of the curve C under the
mapping Since either or

In order to have it is necessary and sufficient
that be equal to where is any integer. To obtain this
the variation of must be equal to (cf., 280), i.e., the curve C
must turn times around the point

284. Let and be the continuous images of the curves and
under the mapping If the curves and start from the

same point (Figure 66) then the curve is a continuous image
of the curve The ends of the curve (points A and B) will
coincide if and only if the curve turns around the point an
even number of times (cf., 283).
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FIGURE 66

285. Let C be a curve not traversing the cut and joining the points
and Suppose that by choosing two distinct values at the point and
defining the function by continuity along the curve C we obtain the
same value at the point Consider thus the curve i.e., the curve C
oriented in the opposite way. We obtain that the value at the initial point
of is the same in both cases, but the values at the final point
defined by continuity, are different. This is not possible by virtue of the
uniqueness of the continuous image, because the curve C does not pass
through the point It follows that our claim that is not
true.

FIGURE 67 FIGURE 68

286. Let be an arbitrary point outside the cut, and let be a
continuous curve starting from and ending at without crossing the
cut. Let us draw another curve not crossing the cut, going from the
point to the point (Figure 67). By hypothesis we have chosen the
value This means that if we choose and we define

by continuity along the curve we shall obtain exactly But
thus the value of defined by continuity along the curve according
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to the condition coincides, as we easily see, with the value of
defined by continuity along the curve according to the condition

Hence the value of for every outside the cut is equal to

287. Let be a continuous curve joining the points and and not
crossing the cut (Figure 68). Let be the value of the function

defined by continuity along the curve according to the condition
Since the curve does not pass through the cut the values

and correspond to the same branch of the function The curve
turns once around the point The values and are thus

different (cf., 283). Since and correspond to the same branch of
the function and correspond to different branches.

288. If then the circle with centre at the point and with
a sufficiently small radius does not turn at all around the point

Therefore the variation of vanishes, and consequently the
variation of is zero, i.e., the value of does not change. The
variation of along a circle with centre at the point is equal
to In this case the variation of is equal to The value of

during a turn around the point thus changes into the opposite
value.

289.  The curve is the image of the curve under the mapping
Consequently if is the variation of the argument along the

curve then (cf., 262 (b)), from which

290. If then the circle with centre at the point and with
a sufficiently small radius does not turn at all around the point
Consequently the variation of along this circle vanishes. But thus
the variation of also vanishes (cf., 289), i.e., the value of function

does not vary. This means that none of the points is a
branch point.

The variation of along a circle with centre at the point
is equal to Thus the variation of is equal to The value
of the function after a simple turn around the point turns
out to be multiplied by i.e., the point
is a branch point of the function

Answer.

291. Let be a continuous curve, not crossing the cut and joining
the point to the given point. Let be the continuous image of
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this curve under the mapping and let be chosen. If
the variation of is equal to then the variation of is
equal to (cf., 289). Consequently One may
choose for the branch for the branch and

for the branch
a)
Answer.
b)
Answer.
c)
Answer.
d)
Answer.
e)
Answer.

292. As for the function one proves that after making the
cut from the point to infinity, for example along the negative side
of the real axis, the function turns out to be decomposed into three
single-valued continuous branches. During a simple counterclockwise turn
around the point varies by during a double turn by

and only after a triple turn around the point does the value
of the function come back to its initial value. The scheme of the
Riemann surface of the function has thus the form shown in Figure
69. The Riemann surface is represented in Figure 702.

FIGURE 69

293. Suppose first that the curve C does not pass through the point
Let be a function which describes the continuous variation of

(cf., Theorem 6, §2.7), and let Thus and

2 To know the meaning of the details of this figure see the section: Drawings of
Riemann surfaces.
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FIGURE 70

are continuous functions and

Let be the positive real value of Thus is a continuous
function (cf., 243.) and the continuous curves with parametric equa-
tions

are the continuous images of the curve under the mapping
(cf., 229). Since on these curves takes all values of one of
these curves will begin at the point

If the curve C passes through the point then the points at
which divide the curve C into segments. In this case we have, as
before, a continuous image for every segment of the curve, and we take
thus as the initial segment the image which starts from the point If

then also. Hence the images obtained can be joined
in one unique continuous curve, which is the required curve.

294. See solution 280 and 289. Answer.

295. See solution 290. Answer.

296. for every is one of the values of All the values
of for a given are (cf.,
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232). Since the value of at the initial point of the curve can be
chosen in different ways, we have exactly continuous curves, images
of the curve under the mapping (the uniqueness may be
lost only at the point but the curve does not pas through this
point).

Answer. The continuous images are the curves

297. Let be an arbitrary curve joining the point 1 to an arbitrary
point without crossing the cut. From the solution of Problem 296, we
obtain that if the value of the function at the initial point of this curve is
multiplied by then the values at the final point, defined by continuity,
turns out to be multiplied by Hence

Answer.

298. Solving Problem 297 we have found that the branches of
the function are related each other in this way:

The unique branch point of the function is the
point During a simple turn around this point the argument of the
function changes by (cf., 294), i.e., the value of the function

varies by Consequently the scheme of the Riemann surface of the
function has the form shown in Figure 71 (the Riemann surface for

is shown in Figure 119).

FIGURE 71

299. During a turn around the point varies by
and it does not change during any other turn around the other points
(along sufficiently small circles). During a turn around the point

thus changes by and it remains constant during any other



turn around the other points. Consequently the sole branch point is
turning around which the value of the function turns out to be
multiplied by –1. As for the function one proves that after have
made an arbitrary cut from the point to infinity the image plane
turns out to be decomposed into two single-valued continuous branches of
the function The scheme of the Riemann surface of the function

is shown in Figure 72.

300. See the solution 299. The sole branch point is the point
(because turning round which the function
turns out to be multiplied by The scheme of the Riemann surface of
the function is shown in Figure 73.

301. Hint. Consider the mapping as the composition of
two mappings: and (cf., 293).

302. The mapping can be imagined as the composition
of two mappings:

If C is a continuous curve on the plane then on the plane there is only
one image of this curve. Since is a continuous function,
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FIGURE 72

FIGURE 73



is a continuous curve. If the curve with equation is one of
the continuous images of the curve under the mapping
then the curves with the equations

are, as well, continuous images of the curve under the mapping
(cf., 296), and, consequently, they are continuous images of

the curve C under the mapping Thus if the value of the
function at the initial point is multiplied by the value
at the final point of the curve defined by continuity, will be multiplied
by Therefore if is a continuous single-valued branch of the
function then all continuous single-valued branches are obtained
by multiplying by

Answer.

303. a) During a turn around the point or
varies by (cf., 260), and varies by (cf., 280), i.e.,
the value of the function is multiplied by –1. To separate the
single-valued continuous branches of the function it suffices to
make two cuts respectively from the point and from the point
to infinity (the proof is the same as for the function The scheme
of the function is shown in Figure 74 (the Riemann surface is
shown in Figure 120a).

b) See Figure 75 (the Riemann surface is shown in Figure 120b). Hint.

FIGURE 75

304. See 303. a) Since during a turn around
each of the points and the value of the function
is multiplied by The scheme sought is shown
in Figure 76 (the Riemann surface is shown in Figure 121).

b) After a turn around the point the value of the function
turns out to be multiplied by During a turn around the

point varies by and varies by
i.e., the value of the function is multiplied by The scheme
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FIGURE 74



Solutions 185

sought is shown in Figure 77 (the Riemann surface is shown in Figure
122).

c) See Figure 78. Hint.

FIGURE 77 FIGURE 78

305. The single-valued continuous branches of the function de-
fined on the entire plane, are When one passes
through the point changes by and by i.e., the
value of the function does not change. The scheme sought consists
of two disjoints sheets.

306. The problem is solved in the same way as Problem 304. a)
See Figure 79. Hint. b) See Figure
80 (the Riemann surface is shown in Figure 123). c) See Figure 81.
d) See Figure 82 (the Riemann surface is shown in Figure 124). Hint.

e) See Figure 83 (the Riemann
surface is shown in Figure 125). Hint.

FIGURE 79 FIGURE 80

FIGURE 76
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FIGURE 81 FIGURE 82

FIGURE 83

307. See Figure 84. Hint. During a turn around the point
varies by by   (cf., 260(b)) and by

i.e., the value of the function is multiplied by –1.

FIGURE 84 FIGURE 85

308. a) See Figure 85. b) During a turn around the point
varies by and, during a turn around the point

by (cf., 260). Consequently around the point the
value of the function is multiplied by and around
the point by The required scheme is shown in Figure
86. c) See Figure 87 (the Riemann surface is shown in Figure 126).

309. Let a value be chosen at the point and be
another point. If and are two arbitrary continuous curves joining
and without crossing the cuts (Figure 88), then evidently the curve
can be continuously deformed into the curve without passing through
the branch points. Since the function possesses the monodromy
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FIGURE 86

FIGURE 87

property, the values of defined by continuity along the curves
and coincide. Consequently the value is uniquely defined by
continuity along an arbitrary curve joining and without crossing the
cut.

FIGURE 88

310. See Figure 89. Suppose that on moving along AB one moves
from the branch to the branch. We want to know at which branch
we will arrive starting from the branch and traversing the cut along
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CD.
Since the function has a finite number of branch points then

one can choose the curves AB and CD sufficiently short and the curves
CA and BD sufficiently close to the cut, in such a way that in the region
bounded by the curve CABDC there are no branch points of the function

In this case one can evidently transform the curve CABD into the
curve CD without passing through any branch point. Since the function

possesses the monodromy property, the function at the point
D is uniquely defined by continuity along the curves CD and CABD.
Starting from the branch and covering the curve CABD, moving first
on the branch, one passes later to the branch, moving finally on
it. In this way, along the curve CABD and therefore also along the curve
CD, one moves from the branch to the branch, exactly as along
the curve AB.

FIGURE 89

311.  a) Hint. Answer.
(Here is the positive value of the square root)

b) ±1/2; c)
0 ; d ) e) 0.

312. Hint. It suffices to prove that the functions and
possess the properties stated by the problem, and that if the functions

and possess these properties then the functions
(where is an integer) also possess

these properties.
Solution. 1) If then The curve sought is

the curve with the parametric equation where is the
parametric equation of the curve C.

2) If then and the required curve is the curve with
the equation (degenerated to a point).

3) Suppose that and that the statement of the
problem is true for the functions and By the definition of the



Solutions 189

sum of multi-valued functions we have where is one of
the values of and is one of the values of Since for the
functions and the statement of the problem holds, there exist
two continuous images and starting respectively
from the points and If and are the parametric equations
of the curves and then the function (which
is continuous, being the sum of continuous functions) is the parametric
equation of the required curve because

In an identical way one considers the case in which
(in this last case the continuous

function sought is because by hypothesis the curve
C does not pass through the points at which the function is not
defined, and consequently

4) Suppose that and that for the statement of the
problem is true. By the definition of the function we have
where is one of the values of The mapping can be
considered as the composition of two mappings, and
Since for the function the statement of the problem holds, there
exists at least one continuous image of the curve C under the mapping

beginning at the point By virtue of the result of Problem
293, there exists at least one continuous image of the curve under
the mapping beginning at the point The curve is the
curve required.

313. At the point chosen arbitrarily, the function takes
values: where Since
the sum of continuous functions is a continuous function, the single-valued
continuous branches of the function are the following functions:

where

314. a) See Figure 90. Hint. Use the schemes of the Riemann surfaces
of the functions and (cf., 288, 299). b) See Figure 91. Hint.
Cf., 304, 307. c) See Figure 92. Hint. Cf., 288, 292. d) See Figure
93 (the Riemann surface is shown in Figure 127). Hint. Draw first the
schemes of the Riemann surfaces of the functions and
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FIGURE 90

FIGURE 91 FIGURE 92

FIGURE 93

315. Answer. a) Three values: 2, –2, 0. b) Seven values:
c) Six values:
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316. a) Let and be the single-valued continuous
branches of the function The scheme of the Riemann surface of the
function built by the formal method, is shown in Figure
94. The branches and

coincide. To obtain the correct scheme of the Riemann surface of the
function we therefore have to identify the branches
and This scheme is shown in Figure 95.

FIGURE 94 FIGURE 95

b) Let and be the single-valued continuous
branches of the function Thus and
Consequently is one of the single-valued continuous branches of
the function The branches of this function are:

The scheme of the
Riemann surface of the function built by the formal
method, is shown in Figure 96. The correct scheme (Figure 97) is obtained
by identifying the coincident branches and

FIGURE 96 FIGURE 97

c) Let be one of the single-valued continuous branches of the
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function Thus the branches are
The scheme of the Riemann surface of the function

built by the formal method, is shown in Figure 98. To obtain
the correct scheme (Figure 99) one has to identify the following coincident
branches: and and and

FIGURE 98

FIGURE 99 FIGURE 100

317. a) Let and be the single-valued continuous
branches of the function Thus and The
single-valued continuous branches of the function are there-
fore
One builds the scheme of the Riemann surface of the function
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by the formal method, afterwards one identifies the following
coincident branches: The remaining branches are
distinct: it suffices to calculate their values at the point The
correct scheme is shown in Figure 100.

b) Let and be the single-valued continuous
branches of the function and let

be the single-valued continuous branches of
the function We build the scheme of the Riemann surface of
the function by the formal method (Figure 101) and
we identify the coincident branches:

The remaining branches are all dis-
tinct: it suffices to calculate their values at the point The correct
scheme shown in Figure 102.

FIGURE 101

c) See Figure 103. The solution is similar to the solution of the case
(b).

FIGURE 102
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d) The function has 3 single-valued continuous
branches: and (cf., solution 316(a)).
The function has 3 single-valued continuous branches
as well: The branches

and coincide: The remain-
ing branches are all distinct: it suffices to calculate their values at the
point The correct scheme is shown in Figure 104 (the Riemann
surface is shown in Figure 128).

318. Answer. The single-valued continuous branches are the func-
tions where

319. a) If
are the single-valued continuous branches of the function then

and The correct scheme is shown in
Figure 32 (§2.9).

b) Cf., 316(a). If and are the single-
valued continuous branches of the function then

FIGURE 103

FIGURE 104



The correct scheme is shown in Figure 105.

c) If is one of the single-valued continuous branches of the func-
tion then the branches are:

Therefore
The required scheme is shown in Figure 32 (§2.9).

320. Suppose that the point is not a branch point of the function
Thus, by one turn around the point along a circle of radius

sufficiently small, the value of does not change.
Suppose all values of be different from 0. Thus the continuous

images under the mapping of circles with centre at and
with radii sufficiently small are closed continuous curves lying close to
the point Since all values of are different from 0, all
these curves–images avoid the point for circles with sufficiently
small radii. It follows that does not change. But thus also the
value of the function does not change. Hence the only possible
branch points of the function are the branch points of the function

and the points where one of the values of vanishes.
Answer. The branch points of and the points where one of the

values of vanishes.

321. Since is a continuous function on the plane with the cuts
described, is also a continuous function. Since for every is
one of the values of is, for every one of the values of the
function Consequently is a single-valued continuous branch
of the function according to the chosen cuts.

322. Cf., 302. Answer.

323. Hint. Since is a continuous curve, is also a continuous
curve; moreover, and consequently

is equal to one of the values of

324. Hint. From the result of Problem 323 it follows that if the value
of the function at the initial point of the curve C is multiplied by

FIGURE 105
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and



326. This problem is solved in the same way as Problem 325: a) cf.,
Figure 107; b) cf., Figure 108. Hint. If is a single-valued continuous

196 Problems of Chapter 2

FIGURE 106

then the value of the function at the final point of the curve
C is also multiplied by

325. Let and be the single-valued continuous
branches of the function such that and Thus

and are the single-valued continuous branches of the
function Each one of these values corresponds to two branches of
the function If then and Therefore
besides the point only the point can be a branch point. The
branch point can lie only in the pack (of two sheets) corresponding to the
branch (because one must have ). We have

By one turn around the point the argument of the denominator does
not change, because The argument of the numerator,
by one turn around the point varies by Thus
varies by varies by and thus the value of
changes. By one turn around the point the value of the function
changes, therefore from the pack of two sheets, corresponding to
one moves to the pack of two sheets corresponding to and
vice versa. By a double turn around the point the final value of
the function coincides with the initial value and does
not change (because ). By a double turn around the point

one comes back onto the first sheet. Combining together the results
obtained we are able to build the scheme of the Riemann surface of the
function shown in Figure 106.
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branch of the function and then

where

FIGURE 107

327. Since the value of changes
as a consequence of one turn around the point and of one turn
round i.e., these points are the branch points of the function

The scheme in both cases (a) and (b) is shown in Figure 75
(Solution 303).

If then and ( is the positive
value of the root). Let i.e., in this case we had chosen
We are looking for the value of Join the point to the
point by a continuous curve not crossing the cuts.

In the case (a) one can take, for example, the segment joining the
points and It is easy to see that on moving along this
segment increases by whereas
decreases by Therefore does not change and conse-
quently the value of does not change. In this way in the case
(a)

In the case (b) on moving along an arbitrary curve joining the points
and and not crossing the cuts, increases by

and increases by So increases by
and increases by the value of changes into the
opposite. Therefore in the case(b) whereas

FIGURE 108
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328. Let and be the single-valued continuous branches of
the function such that (cf., solution
327) and In the case(a) one has
(cf., solution 327) and

By one turn around the points and the argument of the
denominator does not change because
whereas the argument of the denominator increases by Therefore

increases by and increases by then
the value of changes. Consequently the branch points at
and lie in the same pack of sheets. In the same way one proves
that in the case (b) these branch points lie on different packs. It remain
to calculate how the passages amongst the sheets by turning around the
points and match each other.

FIGURE 109

The continuous image under the mapping of the circle
of radius R = 1.1, with centre at the point is the curve shown

in Figure 109 (consider the mappings
This curve does not turn around the point Therefore by turning
along the circle neither nor the value of the function

changes. Consequently turning around the point
and later around the point we must come back onto the

same sheet (cf., Remark 1 §2.10). The required schemes are shown in
Figure 110 and in Figure 111.
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FIGURE 110 FIGURE 111
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329. Hint. In the opposite case, covering the inverse curve one
should lose the uniqueness.

330. Answer.

b)

c)

d)

331. Hint. Use the result of Problem 57: conditions (1)
and (3) are obviously satisfied.

332. Answer. a) The cyclic group b) the cyclic group c) the
cyclic group d) e)

333. Hint. For the function given in Problem 314(a)
we obtain that a turn around the point involves a permutation of
the first indices in the branches and that a turn around the point

involves a permutation of the second indices. Hence the group we
seek is the direct product of groups (cf., §1.7).

For the function given in Problem 314(d) let
be the permutation of the sheets which corresponds to one turn around
the point and the permutation of the sheets which corresponds
to one turn around the point Thus permutes cyclically the
first indices of the branches whereas permutes cyclically
the second indices. Since the subgroup generated by the
permutations and coincides with the subgroup generated by the



permutations and Therefore the required group is the direct
product

In the other cases Problem 333 is solved in a similar way.
Answer. 1. a) the direct product (§1.7) b) (cf.,

77); c) d) a) b) c) d)
3. a) b) c)

334. If the permutation exchanges the two packs of sheets, and the
permutation changes the positions of the sheets in the same pack, then
it is easy to see that the permutation changes the positions of
the sheets of the other pack. So the permutation group of both schemes
contains a permutation which exchanges the packs, a permutation which
permutes the sheets in one pack and a permutation which permutes the
sheets in the other pack.

Our group, generated by these permutations, contains only the permu-
tations such that every pack is sent to itself or to the other pack, whereas
the sheets in each pack are arbitrarily permuted. Numbering the branches
of one bunch (or, equivalently, the sheets of one pack) by the numbers 1
and 3, and those of the other bunch by 2 and 4, one obtains that every
permutation of the group so defined corresponds to a symmetry of the
square with vertices 1, 2, 3, 4 and, conversely, to every symmetry of this
square there corresponds a permutation of the permutation group of the
scheme just defined. Therefore our group is isomorphic in both cases to
the group of symmetries of the square.

335. Let be all values of and let be the
branch points of the function Numbering the sheets of the scheme
of the Riemann surface of the function in such a way that for every

the value corresponds to the sheet, we obtain
that to every permutation of the values there naturally corresponds
a permutation of the sheets. We prove that under this correspondence
the groups and coincide. Let a permutation of the group
produced by a turn along a continuous curve C, starting and ending
at the point Suppose that the curve C crosses the cuts (according
to which the Riemann surface has been built), drawn from the points

If at the point there corresponds a permutation
it is easy to see that to the curve C there corresponds a permutation
of the sheets (together with a permutation of the values ) equal to

where if the cut is traversed counterclockwise,
and if the cut is traversed clockwise (cf., Remark 1 in §2.10).
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It follows that and belong to Inversely, if the
element is given in the group (here )3, then
one easily defines a curve C which produces the same permutation of the
values in the group For example, in Figure 112 one sees a curve
which corresponds to the permutation

FIGURE 112

336. Let be a branch point of the function and suppose that to
one turn around this point there correspond the permutations and
of the schemes of the functions and (If is not a branch point
for one of the functions or then the permutation corresponding
to or to is the identity permutation.) If the branches of
the function are numbered by two indices as we described in
Proposition (a) of Theorem 8 (§2.11), then after a turn around the point

the first and second indices turn out to be independently permuted
(Theorem 8, Proposition (b)). Moreover, the permutation of the first
indices is equal to and that of the second to So to one turn round the
branch point there corresponds a permutation of the sheets of the scheme
of the Riemann surface of the function which can be considered as
a pair of permutations Since and are elements respectively
of the groups F and G, then the pair is an element of the direct
product F × G. These pairs, corresponding to all branch points of the
function generate a certain subgroup of the group F × G.

3It follows from the definition of the permutation group of a given scheme in §2.12
that every element of this group can be put into the indicated form.
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337. The scheme built by the formal method may contain some sets
of sheets on which the branches coincide. (We have seen (Theorem 8
(c)) that in this case we have to identify the sheets in everyone of these
sets in order to obtain the correct scheme of the Riemann surface of the
function By virtue of the uniqueness, by one turn round an arbi-
trary branch point we move from the sheets of one set to the sheets of a
different set of the scheme built by the formal method. Consequently any
permutations of the sheets of the scheme built by the formal method,
corresponding to one turn round a branch point, permutes the sets with-
out destroying them. If the permutations and permute the sets
without destroying them, then also the permutation obviously per-
mutes the sets without destroying them. Therefore all the permutations

of the sheets of a scheme built by the formal method, belonging to
group permute the sets without destroying them. Let us put into
correspondence with every permutation a permutation of the sets.
If to the permutation of sheets there corresponds the sets permutation

and, to the permutation the sets permutation then it easy to
see that to the permutation there corresponds the sets permutation

This means that the mapping we have defined of the group on
the permutation group of the sets of sheets is a homomorphism.

Since to every set (considering the sets containing only one sheet as
well) there corresponds a single sheet of the correct scheme of the Rie-
mann surface of the function (Theorem 8 (c)), and the passages
amongst the sheets of the original scheme are transformed exactly into
passages amongst the sets of sheets, the homomorphism we have defined
is a surjective homomorphism of the group onto the group

338. Cf., 336 and 337. By hypothesis the groups F and G (cf.,
336) are soluble. But thus the group F × G is also soluble (cf., 167).
Since the group (the permutation group of the sheets of the scheme
built by the formal method) can be considered as a subgroup of the group
F×G (cf., 336), then the group is also soluble (cf., 162). Since there
exists a surjective homomorphism of the group onto the group (the
permutation group of the correct scheme of the function (cf., 337)),
it follows that the group is also soluble (cf., 163).

339. Hint. Cf., Theorem 9, §2.11. If F and H are the monodromy
groups for the schemes of the functions and then as in Problem
337 one proves the existence of a surjective homomorphism of the group
F onto the group H. Afterwards one uses the result of Problem 163.
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340. To every sheet of the scheme of the Riemann surface of the
function there corresponds a pack of sheets in the scheme of the
Riemann surface of the function (Proposition (a) of The-
orem 10, §2.11). The permutations of the scheme of the function
which correspond to the turns around the branch points of the function

permute the packs without destroying them (Proposition (b) of The-
orem 10). But thus all permutations of the group H also permute the
packs, without destroying them. Therefore to every permutation of the
group H there corresponds a permutation of the packs. Moreover, if
to the permutation there corresponds the packs permutation and
to the permutation the packs permutation then to the permuta-
tion there corresponds the packs permutation We obtain a
homomorphism of the group H into the permutation group of the packs.
The permutation of the packs, obtained by a turn around an arbitrary
point corresponds to the permutation of the sheets by a turn around
the point in the scheme of the Riemann surface of the function
(Proposition (c) of Theorem 10). Consequently the group of the permu-
tations of the packs, generated by the group H, coincides with the group
F (more precisely, it is isomorphic to F).

The abovedefined homomorphism is thus a surjective homomorphism
of the group H onto the group F.

341. The kernel of the homomorphism, built in the solution of Pro-
blem 340, consists in those permutations of the group H which transform
each pack into itself. Let and be two permutations of such a type.
If the sheets of the packs are numbered in this way:
then both permutations and permute cyclically the sheets of every
pack (cf., Proposition (d) of Theorem 10). Consider an arbitrary pack. If

cyclically displaces the sheets of this pack by sheets, and displaces
them by sheets, then both permutations and displace the
sheets of the given pack by sheets. In this way the permutations
and permute identically the sheets in every pack, i.e.,

342. If is the homomorphism defined in the solution of Problem
340 and is its kernel, then the quotient group H/ is isomorphic
to the group F (Theorem 3, §1.13). Since the group is commutative
(cf., 341) and the group F is soluble by hypothesis, the group H is soluble
as well (cf., 166).

343. Let If is a multiple root
of the equation then is a root of the equation
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where is the derivative of polynomial with respect to
(cf., 276). We have

Since the equation has four
roots of order 1, only the values can
be multiple roots of the equation (of order 2). Putting these
values in the equation

one obtains that they can be roots of order two if takes the values,
–16, –38, 38, 16, respectively.

Answer. The roots of order two are the values: for
for for for

344. Let Set and consider the
single-valued mapping of the plane onto the complex plane defined
by In the plane let C be a circle of radius with centre
at the point (Figure 113) and the image of the circle C under
the mapping Decompose the polynomial

into monomials of first degree (cf., 269). We obtain
where all values

are roots of the equation By a counterclockwise turn
along the circle C, the argument of the factor does not change
if lies outside the disc D, bounded by C, and increases by if
lies inside this disc. Therefore, going counterclockwise along the circle C,
the argument of the function increases by where is the
number of roots (taking into account their multiplicities) of the equation

which lie inside D. Consequently the curve the image of
the circle C under the mapping turns around the point

times (Figure 114).

FIGURE 113 FIGURE 114
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Since by hypothesis the point the centre of the circle C, is a root
of the equation then There thus exists a value

such that the disc of radius equal to with centre at the point
has no intersection with the curve (Figure 114). Consider now a

different complex number and consider another mapping
Let be the image of the circle C under the mapping Since

the curve is obtained from the curve displacing
it by the vector (cf., 246). If the length of the vector is
smaller than then the curve is displaced with respect to by so
small an amount that along one turns around the point as many
times as along (Equivalently, one may imagine, conversely, that the
point be displaced instead of the curve, see Figure 114). Since the
curve turns times around the point the curve will turn

times around the point as well. Following the same reasoning
as before, we obtain that inside the disc D there are roots of the
equation (taking into account their multiplicities).

345. Let be an arbitrary point, different from and
We thus have 5 different images of the point under the mapping
Let these images be If a continuous curve C

starts from the point then at every point at least
a continuous image of the curve C under the mapping starts. If
two continuous images of the curve C were starting from the point
then the curve C should have at least six continuous images. This is
not possible because an equation of degree 5 cannot have more than five
roots. Consequently the point is not a point of non-uniqueness of the
function

Consider now 5 discs with a certain radius with
centres at the points Choose sufficiently small so that these discs
be disjoint. By virtue of the result of Problem 344 there exists a disc

with centre at the point such that for every point inside this
disc there exists at least (and consequently only) one image in each one
of the discs on the plane. If C is a continuous curve
which lies entirely in the disc all images of its points lie in the discs

But thus a continuous image of the curve C under the
mapping cannot jump from one disc to another, and each one of the
images of C lies entirely in one of the discs If the curve
C, which lies entirely in the disc begins and ends at the point then
the end points of its continuous image are images of the point under
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the mapping Since the curve lies entirely in one of the discs
and in this disc there is only one image of the point

the curve begins and ends at a unique point.
So if C is a closed curve lying entirely inside the disc then the

value of the function at the final point of the curve C, defined by
continuity, coincides with the value at the initial point. In particular,
this holds for all circles with centre at and radius smaller than
Consequently the point is not a branch point of the function

346. From the result of Problem 343 it follows that for
equation (2.8) has four roots: of which one (for example,

) has order 2, and the others are simple. Suppose that the point is
close to the point Thus from the solution of Problem 344, we obtain
that near the point there are two images of the point under the
mapping and near the point and there is a sole image of
the point Let C be a circular curve of small radius, with centre
starting and ending at As in the solution of Problem 345 we obtain
that the continuous images of the circle C under the mapping which
start from the points and end at the initial point, whereas
the continuous images which start from one of the images of the point
near the point may end on the other image of the point which lies
near the point as well. Consequently at the point only two sheets
can meet, whilst there are no passages between the other three sheets.

347. Let us draw a continuous curve from the point to the
point not crossing the images under of the points and

It is possible to draw it, because the points and
have a finite number of images. Now let C be the image of

the curve under the mapping Since
is a continuous function and a continuous curve, C is a continuous
curve as well. Since and are related, under the mapping by the
relation which coincides with that given by
the mapping the curve is itself a continuous image of the curve
C under the mapping Since the curve does not pass through the
images of the points and the curve C does not pass
through the points and The initial and final points of
the curve C are and Consequently C is the curve
we sought.

348. By virtue of the result of Problem 347 one can move from an
arbitrary sheet of the Riemann surface of the function to any other,
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moving along a curve which does not pass through the points
and Moreover, every passage from one sheet to another, whilst
crossing a cut, coincides with the passage indicated on the scheme at that
branch point from which this cut starts (cf., note 1 §2.10). Consequently
the connection of the sheets at the branch points must be made so as
to obtain a connected scheme. Since points different from and

are not branch points (cf., 345), and at each one of the points
and only two sheets can join (cf., 346), in order to

obtain a connected scheme we must put one arrow in correspondence with
each one of the points and i.e., all of these four points
are branch points. All the distinct connected schemes are shown in Figure
115. Any connected scheme of the Riemann surface of the function
matches one of these three schemes after a permutation of the sheets and
of the branch points (here we do not claim that all these three schemes
can be realized).

FIGURE 115

349. We prove that the permutation group of the scheme for all the
three schemes shown in Figure 115 contains all the elementary trans-
positions (cf., §1.15), i.e., the transposition (1, 2), (2, 3), (3, 4), (4, 5).
For the first scheme this is evident because these transpositions corre-
spond to the branch points. In the second and in the third scheme
one of the branch points corresponds to the transposition (1, 2). The
transpositions (2, 3) and (3, 4) are obtained in both cases as the prod-
ucts (2, 3) = (1, 2) · (1, 3) · (1, 2) and (3, 4) = (1, 3) · (1, 4) · (1, 3). The
transposition (4, 5) is obtained for the second scheme as the product
(4, 5) = (1, 4) · (1, 5) · (1, 4) and for the third scheme it simply coincides
with one of the branch points.

Consequently the required group contains, in all cases, all elementary
transpositions, and consequently (Theorem 4, §1.15) it coincides with the
entire group of the permutations of degree 5,
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350. From the result of Problem 349 we obtain that the monodromy
group of the function is the group of all permutations of degree
5, which is not soluble (cf., Theorem 5, 1.15). On the other hand if
the function were representable by radicals, then the corresponding
monodromy group should be soluble (cf., Theorem 11, 2.13). From the
contradiction so obtained it follows that the function is not repre-
sentable by radicals.

351. Hint. If such a formula existed then, taking in it the values
and we would obtain that

the function (cf., 350) is representable by radicals.

352. The function expressing the roots of equation (2.9) in
terms of the parameter possesses a Riemann surface which consists of
a separated sheet, on which and of 5 sheets which represent
the scheme of the function expressing the roots of the equation

in terms of the parameter Hence the monodromy group corresponding
to the function coincides with the monodromy group of the scheme
of the function i.e., with group of all degree 5 permutations,
which is not soluble (cf., 349). On the other hand if the function
were represented by radicals then the corresponding monodromy group
would be soluble (cf., Theorem 11, 2.13). From the contradiction so
obtained it follows that the function is not representable by radicals
and that the general equation of degree for is not solvable by
radicals.
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Drawings of Riemann surfaces

The Riemann surface of a complex function as has been defined
in this book, is a collection of different copies of the plane (the sheets)
suitably joined each other along some cuts, in such a way that the function

defined on these sheets, becomes a single-valued continuous function.
However, the Riemann surface of a function sometimes

can be realized by a suitable projection of its graph, which lives in
For example, the Riemann surface of the function in Figure 27 is
homeomorphic to the surface shown in Figure 116, which is the graph of
the real part of i.e., the projection of the graph of this function onto
the three-dimensional space with coordinates

FIGURE 116

The drawings of Riemann surfaces in this Appendix are not obtained
as projections of graphs, but they are ‘artificial’ surfaces constructed by
the method just explained in §2.10.

Here I explain how to ‘read’ these drawings. The different sheets are
joined in such a way that the passage from one sheet to another when one
traverses a cut is realized by a smooth curve on the surface. The drawing
notations are the following:

Distinct grey colours indicate distinct sheets.
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Ramification points are indicated by small white discs.

The cuts are black.

A dashed vertical surface indicates a connection between two non-
adjacent sheets (i.e., between which there are other sheets): it al-
ways corresponds to a cut.

At every cut 2 sheets meet: going along a smooth curve on the
surface one moves from one sheet to another (see Figure 117).

FIGURE 117

The self-intersection lines of the surface which are not cuts are
white. By a transversal crossing of a line of this type along a smooth
curve lying on the surface one remains on the same sheet (see Figure
118).

FIGURE 118

The following Riemann surfaces are considered in Problems 298–317.
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FIGURE 119
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FIGURE 120
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FIGURE 121
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FIGURE 122
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FIGURE 123
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FIGURE 124
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FIGURE 125
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FIGURE 126
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FIGURE 127
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FIGURE 128



Appendix by A. Khovanskii:
Solvability of equations by
explicit formulae
(Liouville’s theory,
differential Galois theory,
and topological obstructions)

This Appendix is dedicated to the study of the solvability of differential
equations by explicit formulae. This is a quite old problem: the first idea
for solving it dates back to Abel. Today one knows three approaches to
solving this problem. The first belongs to Liouville; the second approach
considers the problem from the point of view of Galois theory: it is related
to the names of Picard, Vessiot, Kolchin, and others; the third approach,
topological, was first introduced in the case of functions of one variable
in my thesis. I am infinitely grateful to my research director V.I. Arnold
who aroused my interest in this subject.

I had always believed that the topological approach cannot be com-
pletely applied to the case of many variables. Only recently I discovered
that this is not true and that in the multi-dimensional case one can obtain
absolutely analogous results [25]–[27].

This Appendix contains the subject of my lectures to the Mathemati-
cal Society of Moscow and to the students of the École Normale Supérieure
at the Independent University of Moscow (October 1994).

The section, concerning the functions of many variables, was added
for this Appendix in autumn 2002.

I would like to thank T.V. Belokrinitska for her help during the editing
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of this Appendix and F. Aicardi for the translation into English.

A.1 Explicit solvability of equations

Some differential equations possess ‘explicit solutions’. If it is the case
the solution gives itself the answer to the problem of solvability. But in
general all attempts to find explicit solutions of equations turn out to be
in vain. One thus tries to prove that for some class of equations explicit
solutions do not exist. We must now define correctly what this means
(otherwise, it will not be clear what we really wish to prove). We choose
the following way: we distinguish some classes of functions, and we say
that an equation is explicitly solvable if its solution belongs to one of
these classes. To different classes of functions there correspond different
notions of solvability.

To define a class of functions we give a list of basic functions and a
list of allowed operations.

The class of functions is thus defined as the set of all functions which
are obtained from the basic functions by means of the allowed operations.

EXAMPLE 1. The class of the functions representable by radicals.
The list of basic functions: constants and the identity function (whose

value is equal to that of the independent variable).
The list of the allowed operations: the arithmetic operations (addition,

subtraction, multiplication, division) and the root extractions
of a given function

The function is an example of a function
representable by radicals.

The famous problem of the solvability of the algebraic equations by
radicals is related to this class. Consider the algebraic equation

in which are rational functions of one variable. The complete answer
to the problem of the solvability of the equation (A.10) by radicals consists
in the Galois theory (see §A.8).

Note that already in the simplest class, that in Example 1, we en-
counter some difficulties: the functions we deal with are multi-valued.

Let us see exactly, for example, what is the sum of two multi-valued
analytic functions and Consider an arbitrary point one of the
germs of the function at the point and one of the germs of the



Solvability of Equations 223

function at the same point We say that the function defined
by the germ is representable as the sum of the functions and

This sum is, however, not defined in a unique. For example, one
easily sees that there are exactly two functions representable as the sum

namely, and
The closure of a class of multi-valued functions with respect to the

addition is a class which contains, together with any two functions, all
functions representable by their sum. One can say the same for all the
operations on the multi-valued functions that we shall encounter in this
chapter.

EXAMPLE 2. Elementary functions. Basic elementary functions are
those functions which one learns at school and which are usually repre-
sented on the keyboard of calculators. Their list is the following: the
constant function, the identity function (associating with every value
of the argument the value itself), the roots the exponential

the logarithm ln the trigonometrical functions:
The allowed operations are: the arithmetic

operations, the composition.
Elementary functions are expressed by formulae, for instance:

From the beginning of the study of analysis we learn that the integra-
tion of elementary functions is very far from being an easy task. Liouville
proved, in fact, that the indefinite integrals of elementary functions are
not, in general, elementary functions.

EXAMPLE 3. Functions representable by quadratures. The basic func-
tions in this class are the basic elementary functions. The allowed opera-
tions are the arithmetic operations, the composition and the integration.
A class is said to be closed with respect to integration if it also contains
together with every function a function such that

For example, the function

is representable by quadratures. But, as Liouville had proved, this func-
tion is not elementary.

Examples 2 and 3 can be modified. We shall say that a class of
functions is closed with respect to the solutions of the algebraic equations
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if together with every set of functions it also contains a function
satisfying the equation

EXAMPLE 4. If in the definition of the class of elementary functions
we add the operation of solution of algebraic equations, we obtain the
class of the generalized elementary functions.

EXAMPLE 5. The class of functions representable by generalized
quadratures contains the functions obtained from the class of functions
representable by quadratures by adding the operation of solution of alge-
braic equations.

A.2 Liouville’s theory

The first exact proofs of the non-solvability of some equations neither by
quadratures nor by elementary functions were obtained by Liouville in
the middle of the XIX century. Here we briefly expound his results.

The reader can find a wider exposition of the Liouville method and
of the works on analogous subjects by Chebychev, Mordukai-Boltovski,
Ostrovski, and Ritt in book [1].

First of all Liouville showed that the classes of functions in Examples
2–5 can be constructed in a very simple way. Indeed, the set of basic
elementary functions seems to be very large. Moreover, in the definition
of this class one encounters some algebraic difficulties owed to the com-
position operation. Liouville at first proved that one can reduce a great
deal the lists of basic functions, in one half of the cases leaving in it only
the constants, and in the remaining cases leaving only the constants and
the identity function. Secondly, he proved that in the list of the allowed
operations the composition is superfluous. One can define all the neces-
sary operations using only arithmetic operations and differentiation. This
fact plays an essential role for the algebraization of the problem of the
differential fields numerability.

Let us formulate the corresponding definitions in differential algebra.
A field of functions F is called a differential field if it is closed with

respect to the differentiation, i.e., if then One can also
consider the abstract differential fields, i.e., the field in which one can
define a supplementary differentiation operation, satisfying the Leibniz
identity
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Suppose that a differential field F contains another smaller differential
field An element is said to be algebraic over the field

if satisfies an algebraic equation of the type

where the coefficients belong to the field In particular, an element
is said to be radical over the field  if An element is said

to be integral over the field if An element is said to be
logarithmic over the field  if where An element is
said to be exponential integral over the field  if An
element is said to exponential over the field  if

The extension of a field  by means of an element denoted by
is called the minimal differential field containing and The

field consists of the rational functions in with
coefficients in

1) An element is said to be representable by radicals over the field
if there exists a sequence such that every

extension is obtained by adding one radical to the field
and the field  is contained in A sequence of this type

is called a tower.

By this method one also defines other types of representability of
an element over a field  The towers in these definitions are
built by means of the corresponding types of extensions

2) An element is said elementary over the field when one can
add logarithmic and exponential elements.

3) An element is said to be representable by quadratures over the
field when adding integrals and exponential integrals is allowed.

4) An element is called a generalized elementary element over the
field when one can add algebraic, exponential, and logarithmic
elements.

5) An element is said to be representable by generalized quadra-
tures over the field  when one can add algebraic, integral and
exponential integral elements.
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THEOREM 1. (Liouville) A function is elementary (a generalized el-
ementary function) if and only if it is an elementary (generalized ele-
mentary) element over the field of rational functions A function is
representable by quadratures (representable by generalized quadratures) if
and only if it is representable by quadratures (representable by generalized
quadratures) over the field of complex numbers

For example, it follows from Theorem 1 that the basic elementary
function is representable by quadratures over the field

Indeed, this becomes clear from the equation

To prove, for example, the part of Theorem 1 which concerns func-
tions representable by quadratures it suffices to verify first that there exist
analogous representations for all the basic elementary functions, and, fur-
thermore, that the class of functions representable by quadratures over
the field   is closed with respect to the composition.

Liouville constructed a nice theory about the solvability of equations.
Let us show two examples of his results.

THEOREM  2 (Liouville). The indefinite integral of the algebraic
function of one complex variable is representable by generalized ele-
mentary functions if and only if it is representable in the form

where the are algebraic functions.
A priori the integral of an algebraic function could be given by a very

complicated formula. It could have the form

Theorem 2 says that this does not happen. Either the integral of an
algebraic function can be written in a simple way, or in general it is not
a generalized elementary function.

THEOREM 3 (LIOUVILLE). The differential linear equation

where and are rational functions, is solvable by generalized
quadratures if and only if its solution can be written in the form



Solvability of Equations 227

where is an algebraic function.
A priori the solution of equation (A.11) could be expressed by very

complicated formulae. Theorem 3 says that this is nowhere the case.
Either the equation has sufficiently simple roots, or in general it cannot
be solved by generalized quadratures.

Liouville found a series of results of this type. The common idea is the
following: simple equations have either simple solutions, or in general have
no solutions in a given class (by quadratures, by elementary functions,
etc.).

The strategy of the proof in Liouville’s theory is the following: prove
that if a simple equation has a solution which is represented by a compli-
cated formula then this formula can be always simplified.

Liouville, undoubtedly, was inspired by the results by Lagrange, Abel,
and Galois on the non-solvability by radicals of algebraic equations. Dif-
ferently from the Galois theory, Liuoville’s theory does not involve the
notion of the group of automorphisms. Liouville, however, uses, in order
to simplify his formulae, ‘infinitely small automorphisms’.

Let us return to Theorem 2 on the integrability of algebraic functions.
The following corollary follows from this theorem.

COROLLARY. If the integral of an algebraic function A is a generalized
elementary function then the differential form has some unavoid-
able singularities on the Riemann surface of the algebraic function A.

It is well known that on every algebraic curve with positive genus
there exist non-singular differential forms (the so called abelian differen-
tials of first type). It follows that algebraic functions whose Riemann
surfaces have positive genus are not, in general, integrable by generalized
elementary functions.

This was already known by Abel, who discovered it as he was proving
the non-solvability by radicals of a fifth-degree generic equation. Observe
also that the Abel proof of the non-solvability by radicals is based on topo-
logical arguments. I do not know whether the topological properties of the
Riemann surfaces of functions representable by generalized quadratures
are different from those of the Riemann surfaces of generalized elementary
functions. Indeed, I am unable to prove through topological arguments
that the integral of an algebraic function is not an elementary function:
each one of such integrals is by definition a function representable by
generalized quadratures. However, if an algebraic function depends on
a parameter its integral may depend on the parameter in an arbitrar-
ily complicated manner. One can prove that the integral of an algebraic
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function, as function of one parameter, can be not representable by gener-
alized quadratures, and consequently can be not a generalized elementary
function of the parameter (cf., example in §A.9).

A.3 Picard–Vessiot’s theory

Consider the linear differential equation

in which the are rational functions of complex argument.
Near a non-singular point there exist linearly independent solu-

tions of equation (A.12). In this neighbourhood one can con-
sider the functions field obtained by adding to the field
of rational functions all solutions and all their derivatives until
order (The derivatives of higher order are obtained from equation
(A.12).

The field of functions is a differential field, i.e., it is
closed with respect to the differentiation, as well as the field of ra-
tional functions. One calls automorphism of the differential field F an
automorphism of the field F, which also preserves the differentiation,
i.e., Consider an automorphism of the differential field

which fixes all elements of the field The set of all au-
tomorphisms of this type forms a group which is called the Galois group
of equation (A.12). Every automorphism of the Galois group sends
a solution of the equation to a solution of the equation. Hence to each
one of such automorphisms there corresponds a linear transform of
the space of solutions. The automorphism is completely defined
by the transform because the field is generated by the
functions In general, not every linear transform of the space is
an automorphism of the Galois group. The reason is that the automor-
phism preserves all differential relations holding among the solutions.
The Galois group can be considered as a special group of linear transforms
of the solutions. It turns out that this group is algebraic.

So the Galois group of an equation is the algebraic group of linear
transforms of the space of solutions that preserves all differential relations
betweeen the solutions.

Picard began to translate systematically the Galois theory in the case
of linear differential equations. As in the original Galois theory, one also
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finds here an one to one correspondence (the Galois correspondence) be-
tween the intermediate differential field and the algebraic subgroups of
the Galois group.

Picard and Vessiot proved in 1910 that the solvability of an equation
by quadratures and by generalized quadratures depends exclusively on its
Galois group.

PICARD–VESSIOT’S THEOREM. A differential equation is solvable by
quadratures if and only if its Galois group is soluble. A differential equa-
tion is solvable by generalized quadratures if and only if the connected
component of unity in its Galois group is soluble.

The reader can find the basic results of the differential Galois theory
in the book [2]. In [3] he will find a brief exposition of the actual state of
this theory together with a rich bibliography.

Observe that from the Picard–Vessiot theorem it is not difficult to de-
duce that if equation (A. 12) is solvable by generalized quadratures then
it has a solution of the form where is an al-
gebraic function. If the equation has an explicit solution then one can
decrease its order, taking as the new unknown function The
function satisfies a differential equation having an explicit form and a
lower order. If the initial equation was solvable, the new equation for func-
tion is also solvable. By the Picard–Vessiot theorem it must therefore
have a solution of the type where is an algebraic
function, etc.. We see in this way that if a linear equation is solvable by
generalized quadratures, the formulae expressing the solutions are not ex-
ceedingly complicated. Here the Picard–Vessiot approach coincides with
the Liouville approach. Moreover, the criterion of solvability by general-
ized quadratures can be formulated without mentioning the Galois group.
Indeed, equation (A.12) of order is solvable by generalized quadratures
if and only if has a solution of the form and the
equation of order for the function is solvable by generalized
quadratures.

This theorem was enunciated and proved by Murdakai–Boltovskii ex-
actly in this form. Murdakai and Boltovskii obtained at the same time
this result in 1910 using the Liouville method, independently of the works
of Picard and Vessiot. The Mordukai–Boltovskii theorem is a generaliza-
tion of the Liouville theorem (cf., Theorem 3 in the preceding section) to
linear differential equations of any order.
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A.4 Topological obstructions for
the representation of functions
by quadratures

There exists a third approach to the problem of the representability of
a function by quadratures, (cf., [4]–[10]). Consider the functions repre-
sentable by quadratures as multi-valued analytic functions of a complex
variable. It turns out that there are some topological restrictions on the
kind of disposition on the complex plane of the Riemann surface of a
function representable by quadratures. If the function does not satisfy
these conditions, it cannot be represented by quadratures.

This approach, besides the geometrical evidence, possesses the follow-
ing advantage. The topological obstructions are related to the character
of the multi-valued function. They hold not only for functions repre-
sentable by quadratures, but also for a wider class of functions. This
class is obtained by adding to the functions representable by quadratures
all the meromorphic functions and allowing the presence of such functions
in all formulae. Hence the topological results on the non-representability
by quadratures are stronger that those of algebraic nature. The reason
of this is that the composition of two functions is not an algebraic oper-
ation. In differential algebra, instead of the composition of two functions
one considers the differential equation that they satisfy. But, for instance,
the Euler function does not satisfy any algebraic differential equation;
therefore it is useless to seek an equation satisfied, for example, from the
function The unique known results on the non-representability
of functions by quadratures and, for instance, by the Euler functions
are those obtained by our method.

On the other hand, by this method one cannot prove the non-represen-
tability by quadratures of an arbitrary meromorphic single-valued func-
tion.

Using the Galois differential theory (and, to be precise, its linear–
algebraic part, related to the matrix algebraic groups and their differential
invariants) one can prove that the sole reason for the non-solvability by
quadratures of the linear differential equations of Fuchs type (cf., §A.11)
is of topological nature. In other words, when there are no topological
obstructions for the solvability by quadratures for a differential equation
of Fuchs type this equation is solvable by quadratures.

The topological obstructions for the representation of a function by
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quadratures and by generalized quadratures are the following:
First, functions representable by generalized quadratures and, as a

special case, by quadratures can have at most a countable set of singular
points on the complex plane. (cf., §A.5) (even though for the simplest
functions representable by quadratures the set of singular points may be
everywhere dense!).

Second, the monodromy group of a function representable by quadra-
tures is necessarily soluble (cf., §A.7) (whereas for the simplest functions
representable by quadratures the monodromy group may already contain
a continuum of elements!).

There also exist analogous topological restrictions on the disposition
of the Riemann surface for functions representable by generalized quadra-
tures. However, these restrictions cannot be simply formulated: in this
case the monodromy group is not considered as an abstract group, but
as the group of permutations of the sheets of the Riemann surface. In
other words, in the formulation of such restrictions not only the mon-
odromy group intervenes, but also the monodromy pair of the function.
The monodromy pair of a function consists of its monodromy group and
of a stationary subgroup for some germ (cf., §A.9). We shall see this
geometrical approach to the problem of solvability more precisely.

A.5

We define a class of functions which will be the object of this section.

DEFINITION.  One calls                     an analytic multi-valued function
of a complex variable if the set of its singular points is at most countable.

Let us make this definition more precise. Two regular germs and
defined at points and on the Riemann sphere are said to

be equivalent if the germ is obtained from the germ by a regular
continuation along some curve. Every germ equivalent to the germ
is called a regular germ of the analytic multi-valued function generated
by the germ

A point is said to be singular for the germ if there exists a
curve such that the germ cannot
be regularly continued along this curve, but for every this
germ can be continued along the shortened curve It is easy
to see that the sets of singular points for equivalent germs coincide.

A regular germ is called an if the set of its singular points is at
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most countable. An analytic multi-valued function is called an
if each one of its regular germs is an

We proved the following theorem.

THEOREM ON THE CLOSURE OF THE CLASS OF            (seee
[6],[8],[10]). The class of all is closed with respect to the
following operations:

1) differentiation, i.e., if then

2) integration, i.e., if then

3) composition, i.e., if then

4) meromorphic operation, i.e., if
is a meromorphic function of variables and
then

5) solution of algebraic equations, i.e., if and
then

6) solution of linear differential equations, i.e., if
and then

COROLLARY. If the multi-valued function   can be obtained from
single-valued by the operations of integration, differentiation,
meromorphic operations, compositions, solutions of algebraic and linear
differential equations, then the function has at most a countable set of
singular points. In particular, a function having a non countable set of
singular points is not representable by generalized quadratures.

A.6 Monodromy group

The monodromy group of an with a set A of singular points
is the group of all permutations of the sheets of the Riemann surface of

which are visited when one moves around the points of set A.

4 More precisely, the meromorphic operation defined by the meromorphic function
puts into correspondence with the functions a new function
The arithmetic operations and the exponential are examples of mero-

morphic operations, corresponding to the functions
and
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More precisely, let be the set of all germs of the at the
point not belonging to the set A of singular points. Consider a closed
curve in beginning at the point The continuation of every
germ of the set along the curve leads to a germ of the set

Consequently to every curve there corresponds a mapping of set
into itself, and to homotopic curves in there corresponds the same
mapping. To the composition of curves there corresponds the mapping
composition. One has thus defined an homomorphism of the fundamen-
tal group of the set in the group of the bijective mappings of
the set into itself. One calls monodromy group of the the
image of the fundamental group in the group under
the homomorphism

We show some results which are useful in the study of functions rep-
resentable by quadratures as functions of one complex variable.

EXAMPLE. Consider the function where is
an irrational number. The function is an elementary function given by
a very simple formula. However, its Riemann surface is very complicated.
The set A of its singular points consists of the points and of the
points where is any integer. Since is irrational the
points are densely distributed on the unitary circle. It is not difficult
to prove that the fundamental group and the monodromy group
of the function are continuous. One can also prove that the image under
the homomorphism of the fundamental group of the
complement of where is an arbitrary point on the unit
circle, is a proper subgroup of the monodromy group of the function
(That the elimination of a single point can produce a radical change in
the monodromy group makes all proofs essentially difficult).

A.7 Obstructions for the representability
of functions by quadratures

We have proved the following theorem.

THEOREM ([6],[8],[10]). The class of all                 having a soluble
monodromy group is closed with respect to the composition, the meromor-
phic operations, the integration and the differentiation.

We thus obtain the following corollary.
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RESULT ON QUADRATURES. The monodromy group of a function
representable by quadratures is soluble. Moreover, also the monodromy

group of every function which is obtained from single-valued
by means of compositions, meromorphic operations, integration and dif-
ferentiation is soluble.

We see now the application of this result to algebraic equations.

A.8 Solvability of algebraic equations

Consider the algebraic equation

where the are rational functions of complex variable
Near to a non-singular point there are all solutions of

the equation (A. 13). In this neighbourhood one can consider the field of
all functions that is obtained by adding to the field all
solutions

Consider the automorphisms of the field which fix ev-
ery element of ther field   The totality of these automorphisms forms a
group which is called the Galois group of the equation (A. 13). Every auto-
morphism of the Galois group transforms a solution of the equation into
a solution of the equation; consequently to every automorphism there
corresponds a permutation of the solutions. The automorphism is
completely defined by the permutation because the field
is generated by the functions In general, not all permutations of the
solutions can be continued to an automorphism of the Galois group: the
reason is that the automorphisms preserve all relations existing among
the solutions.

The Galois group of an equation is thus the permutation group of the
solutions that preserves all relations among the solutions.

Every permutation of the set of solutions can be continued, as an
automorphism of the monodromy group, to an automorphism of the entire
field Indeed, with functions along the curve
every element of the field is continued meromorphically.
This continuation gives the required automorphism, because during the
continuation the arithmetic operations are preserved and every rational
function returns to its preceding value because of the uniqueness.

In this way the monodromy group of the equation is contained in the
Galois group: in fact, the Galois group coincides with the monodromy
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group. Indeed, the functions of the field that are fixed
under the action of the monodromy group are the single-valued functions.
These functions are algebraic, but every algebraic single-valued function
is a rational function. Therefore the monodromy group and the Galois
group have the same field of invariants, and thus by the Galois theory
they coincide.

According to Galois theory, the equation (A.13) is solvable by radicals
over the field of rational functions if and only if its Galois group is soluble
over this field. In other words, the Galois theory proves the following
theorems:

1) An algebraic function whose monodromy group is soluble is rep-
resentable by radicals.

2) An algebraic function whose monodromy group is not soluble is
not representable by radicals.

Our theorem makes the result (2) stronger:
An algebraic function whose monodromy group is not soluble cannot

be represented through single-valued by means of meromorphic
operations, compositions, integrations, and differentiations.

If an algebraic equation is not solvable by radicals then it remains non
solvable using the logarithms, the exponentials, and the other meromor-
phic functions on the complex plane. A stronger version of this statement
in given in §A.15.

A.9 The monodromy pair

The monodromy group of a function is not only an abstract group but is
the group of transitive permutations of the sheets of its Riemann surface.
Algebraically this object is given by a pair of groups: the permutation
group and a subgroup of it, the stationary group of a certain element.

One calls the monodromy pair of an a pair of groups con-
sisting of the monodromy group of this function and the stationary sub-
group of a sheet of the Riemann surface. The monodromy pair is defined
correctly, i.e., this pair of groups up to isomorphism does not depend on
the choice of the sheet.

DEFINITION. The pair of groups         is called an almost soluble
pair of groups if there exists a sequence of subgroups
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such that for every the group is a normal divisor
of the group and the quotient group is either commutative or
finite.

Any group can be considered as the pair of groups where is
the unit subgroup (the group containing only the unit element). We say
that the group is almost soluble if the pair is almost soluble.

THEOREM ([6],[8],[10]). The class of all having a mon-
odromy pair almost soluble is closed with respect to the composition, the
meromorphic operations, the integration, the differentiation, and the so-
lutions of algebraic equations.

We thus obtain the following corollary.

RESULT ON GENERALIZED QUADRATURES. The monodromy pair of
a function representable by generalized quadratures is almost soluble.
Moreover, also the monodromy pair of every function which is ob-
tained from single-valued by means of the composition, the
meromorphic operations, the integration, the differentiation and the solu-
tions of algebraic equations is almost soluble.

Let us now consider some examples of functions not representable by
generalized quadratures. Suppose the Riemann surface of a function be
a universal covering of where is the Riemann sphere and A is
a finite set, containing at least three points. Thus the function cannot
be expressed in terms of                      by means of generalized quadratures,
compositions, and meromorphic operations. Indeed, the monodromy pair
of this function consists of a free non commutative group and its unit
subgroup. One easily sees that such a pair of groups is not almost soluble.

EXAMPLE. Consider the function   which realizes the conformal
transformation of the upper semi-plane into the triangle with vanishing
angles, bounded by three arcs of circle. The function is the inverse of
the modular Picard function. The Riemann surface of the function is
a universal covering of the sphere without three points; consequently the
function cannot be expressed in terms of single-valued by
means of generalized quadratures, compositions, and meromorphic oper-
ations.

Observe that the function is strictly related to the elliptic integrals
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Every one of the functions and can be obtained
from the others by quadratures. It follows that none of the integrals
and can be expressed in terms of single-valued by means
of generalized quadratures, compositions, and meromorphic operations.

In the following section we will generalize the example above, finding
all polygons, bounded by arcs of circles, to which the upper semi-plane
can be sent by functions representable by generalized quadratures.

A.10 Mapping of the semi-plane to a
polygon bounded by arcs of circles

A.10.1 Application of the symmetry principle
In the complex plane consider a polygon G bounded by arcs of circles. By
Riemann’s theorem, there exists a function sending the upper semi-
plane to polygon the G. This mapping was studied by Riemann, Schwarz,
Christoffel, Klein, and others (cf., for example, [11]). Let us recall some
classical results which will be useful.

Denote by the pre-image of the set of the vertices of the
polygon G under the mapping by H(G) the group of conformal trans-
formations of the sphere generated by the inversions with respect to the
sides of the polygon, and by L(G) the subgroup of homographic mappings
(the quotient of two linear functions). L(G) is a subgroup of index 2 of
the group H(G). From the Riemann–Schwarz symmetry principle one
obtains the following results.

PROPOSITION.

1) The function can be meromorphically continued along any
curve avoiding the set B.

2) All germs of the multi-valued functions in a non-singular point
are obtained by applying to a given germ the group L(G)

of homographic mappings.

3) The monodromy group of the function is isomorphic to the
group L(G).

4) The singularities of the function are of the following types at
the points If at the vertex of the polygon G that corresponds
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to the point the angle is equal to then the function
through a homographic transformation, is put into the form

where and the function is holomorphic
in a neighbourhood of the point If the angle is equal to zero
then the function is put by an homographic transformation into
the form where the function is holomorphic
in a neighbourhood of

From our results it follows that if the function is representable by
generalized quadratures then the group L(G)) and the group H(G) are
almost soluble.

A.10.2 Almost soluble groups of homographic
and conformal mappings

Let be the epimorphism of the group SL(2) of matrices of order 2 with
unit determinant onto the group of the homographic mappings L,

Since ker the group and the group
are both almost soluble. The group is a group of matrices: therefore

is almost soluble if and only if it has a normal subgroup of finite
index which admits a triangular form. (This version of Lie’s theorem is
true also in higher dimensions and plays an important role in differential
Galois theory). Since the group consists of matrices of order 2, the
group can be put into triangular form in one of the three following
cases:

1)

2)

3)

group has only one one-dimensional eigenspace;

group has two one-dimensional eigenspaces;

group has a two-dimensional eigenspace.

Consider now the group of homographic mappings The group
of homographic mappings is almost soluble if and only it has a nor-

mal subgroup of finite index, and the set of invariant points
consists of either a unique point, or two points, or of the whole Riemann
sphere.
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The group of conformal mappings contains the group of index 2
(or of index 1) consisting of the homographic mappings. Hence for the
almost soluble group of conformal mappings an analogous proposition
holds.

LEMMA.  A group of conformal mappings of the sphere is almost sol-
uble if and only if it satisfies at least one of these conditions:

1)

2)

3)

the group has only one invariant point;

the group has an invariant set consisting of two points;

the group is finite.

This lemma follows from the preceding propositions because the set of
invariant points for a normal divisor is invariant under the action of the
group. It is well known that a finite group of homographic mappings
of the sphere is sent by a homographic transformation of coordinates to a
group of rotations.

It is not difficult to prove that if the product of two inversions with
respect to two different circles corresponds under the stereographic pro-
jection to a rotation of the sphere, then these circles correspond to great
circles. Hence every finite group of conformal mappings generated by
the inversions with respect to some circles is sent by a homographic trans-
formation of coordinates to a group of motions of the sphere, generated
by reflections.

All the finite groups of the motions of the sphere generated by re-
flections are well known. They are exactly the symmetry groups of the
following objects:

1) the regular pyramid with a regular as basis;

2) the i.e., the solid made from two regular pyramids
joining their bases;

3) the tetrahedron;

4) the cube or the octahedron;

5) the dodecahedron or the icosahedron.
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All these groups of symmetries, except the group of the dodecahedron–
icosahedron, are soluble. The sphere whose centre coincides with the
centre of gravity of the solid is cut by the symmetry planes of the solid
along a net of great circles. Lattices corresponding to the stated solids
are called the finite nets of great circles. The stereographic projections of
these finite nets are shown in Figures 129–133.

FIG. 129:  PYRAMID FIG. 130:  6-DIHEDRON

FIG. 131: TETRAHEDRON–TETRAHEDRON
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FIG. 132: CUBE–OCTAHEDRON

FIG. 133: DODECAHEDRON–ICOSAHEDRON
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A.10.3 The integrable case
Let us come back to the problem of the representability of the function

by generalized quadratures.
We consider now the different possible cases and we prove that the

condition we have found is not only necessary but also sufficient for the
representability of the function by generalized quadratures.

FIRST INTEGRABILITY CASE. The group H(G) has an invariant point.
This means that the continuations of the edges of the polygon G intersect
in a point. Sending this point to infinity by a homographic transforma-
tion, we obtain the polygon bounded by segments of straight lines (cf.,
Figure 134).

FIGURE 134

All mappings in have the form All germs of the
function at a non-singular point are obtained by applying to
a given germ the group The germ
is invariant under the action of the group This means that the
germ is the germ of a single-valued function. A singular point of
the function can be only a pole (cf., the Proposition in §A.10.1). Thus
the function is rational. The equation is integrable by
quadratures. This case of integrability is well known. The function in
this case is called the Christoffel–Schwarz integral.

SECOND INTEGRABILITY CASE. The invariant set of the group H(G)
consists of two points. This means that there are two points with the
following properties: for every side of the polygon G these points either
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are obtained by an inversion with respect to this side or belong to the
continuation of this side. Sending one of these points to the origin and
the other one to infinity by a homographic transformation, we obtain the
polygon bounded by arcs of circles with centre at the point 0 and by
segments of rays coming from the point 0 (cf., Figure 135).

FIGURE 135

All transformations of the group are of the form
All germs of the function at a non-singular point are

obtained by applying to a given germ the transformations of the group

The germ is invariant under the action of the group
and it is the germ of the single-valued function R. The only singularities
of the function R are poles (cf., the Proposition in §A.10.1). Thus the
function is rational. The equation is integrable by
quadratures.

THIRD INTEGRABILITY CASE. The group H(G) is finite. This means
that polygon G is sent by a homographic transformation to a polygon
whose sides lie on a finite net of great circles (see Figures 129–133). The
group L(G) is finite, and as a consequence the function has a finite
number of values. Since all singularities of the function are of ‘jump’
type ((cf., the Proposition in §A.10.1) the function is an algebraic
function.
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Let us analyze the case in which the group H(G) is finite and soluble.
This happens if and only if the polygon G is sent by a homographic trans-
formation to a polygon whose sides lie on a net of great circles different
from that of the dodecahedron–icosahedron. In this case the group L(G)
is soluble, and the function in expressed in terms of rational functions
by means of arithmetic operations and of radicals (cf., §A.8).

From our results a theorem follows:

THEOREM ON THE POLYGONS BOUNDED BY OF ARCS OF CIRCLES

([6],[8],[10]). For an arbitrary polygon G not belonging to the three cases
of integrability above, the function not only is not representable by
generalized quadratures, but it cannot be expressed in terms of single-
valued by means of generalized quadratures, compositions, and
meromorphic operations.

A.11 Topological obstructions for the
solvability of differential equations

A.11.1 The monodromy group of a linear
differential equation and its relation
with the Galois group

Consider the linear differential equation

where the are rational functions of the complex variable The poles
of the functions and are called the singular points of the equation
(A.14).

Near a non-singular point the solutions of the equations form a
space of dimension Consider now an arbitrary curve on the
complex plane, beginning at and ending at the point and avoiding
the singular points The solutions of the equation can be analytically
continued along the curve, remaining solutions of the equation. Hence to
every curve there corresponds a linear mapping of the space of
the solutions at the point in the space of the solutions at the point

If one changes the curve avoiding the singular points and leaving its
ends fixed, the mapping does not vary. Hence to a closed curve there
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corresponds a linear transform of the space into itself. The totality
of these linear transforms of the space forms a group which is called
the monodromy group of the equation (A. 14). So the monodromy group
of an equation is the group of the linear transforms of the solutions which
correspond to different turns around the singular points. The monodromy
group of an equation characterizes the property of its solutions being
multi- valued.

Near a non-singular point there are linearly independent solu-
tions, of the equation (A.14). In this neighbourhood one can
consider the field of functions that is obtained by adding to
the field of rational functions all solutions and all their derivatives.

Every transformation of the monodromy group of the space of solu-
tions can be continued to an automorphism of the entire field
Indeed, with functions along the curve every element of the
field can be analytically continued. This continuation gives
the required automorphism, because during the continuation the arith-
metic operations and the differentiation are preserved, and the rational
functions come back to their initial values because of their uniqueness.

In this way the monodromy group of an equation is contained in its
Galois group.

The field of the invariants of the monodromy group is a subfield of
consisting of the single-valued functions. Differently from

the algebraic case, for differential equations the field of invariants under
the action of the monodromy group can be bigger than the field of rational
functions.

For example, for the differential equation (A.14), in which all the co-
efficients are polynomials, all solutions are single-valued. But of
course the solutions of such equations are not always polynomials. The
reason is that here the solutions of differential equations may grow ex-
ponentially in approaching the singular points. One knows an extension
of the class of linear differential equations for which there are no similar
complications, i.e., for which the solutions, whilst approaching the sin-
gular points, grow at most as some power. Differential equations which
possess this property are called equations of Fuchs’ type.

For differential equations of Fuchs’ type the Frobenius theorem holds.

THEOREM 1. For the differential equations of Fuchs’ type the sub-
field of the differential field that consists of single-valued
functions coincides with the field of rational functions.

According to the differential Galois theory, from the Frobenius the-
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orem it follows that the algebraic closure of the monodromy group M
(i.e., the smallest algebraic group containing M) coincides with the Ga-
lois group.

The differential Galois theory thus gives the following criterion of solv-
ability of differential equations of Fuchs’ type.

THEOREM 2. A differential equation of Fuchs’ type is solvable by
quadratures or by generalized quadratures if its monodromy group is, re-
spectively, soluble or almost soluble.

The differential Galois theory provides at the same time two results:

1) if the monodromy group of a differential equation of Fuchs’ type is
soluble (almost soluble) then this equation is solvable by quadratures
(by generalized quadratures).

2) if the monodromy group of a differential equation of Fuchs’ type
is not soluble (almost soluble) then this equation is not solvable by
quadratures (by generalized quadratures).

Our theorem makes the result (2) stronger. Indeed, it is easy to see
that for almost every solution of the differential equation (A. 14) the mon-
odromy pair is [M, where M is the monodromy group of the equation,
and e its trivial subgroup. We thus have the following:

THEOREM 3 ([6],[8]). If the monodromy group of the differential equa-
tion (A. 14) is not soluble (almost soluble) then almost every solution of
this equation is not representable in terms of single-valued by
means of compositions, meromorphic operations, integrations, differenti-
ations, and solutions of algebraic equations.

Is the monodromy group of a given linear differential equation soluble
(almost soluble)? This question turns out to be quite difficult. However,
there exists an interesting example in which the answer to this question
is very simple.

A.11.2 Systems of differential equations of Fuchs’
type with small coefficients

Consider a system of linear differential equations of Fuchs type, i.e., a
system of the type
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where is the unknown vectorial function and A is an
matrix consisting of rational functions of the complex variable having
the following form:

where the are constant matrices.
If the matrices are at the same time put into triangular form, then

the system (A.15), as every triangular system, is solvable by quadratures.
There are undoubtedly non-triangular systems which are solvable. How-
ever, if the matrices are sufficiently small, then such systems do not
exist. More precisely, we have obtained the following results:

THEOREM 4([9]). A non-triangular system (A.15) with matrices
sufficiently small, is strictly non-solvable, i.e.,
it is not solvable even using all single-valued compositions,
meromorphic operations, integrations, differentiations, and solutions of
algebraic equations.

The proof of this theorem uses the Lappo-Danilevskij theory [12].

A.12 Algebraic functions of several
variables

Up to now we have considered only single-valued functions. We are ready
to make two observations concerning functions of several variables, the
proofs of which do not require new notions and are obtained by the same
method we used for single-valued functions.

Consider the algebraic equation

where the are rational functions of complex variables
1) According to the Galois theory the equation (A.16), having a soluble

monodromy group, is solvable by radicals. But if the monodromy group
of the equation (A.16) is not soluble then not only is the equation not
solvable by radicals, but it cannot be solved even by using radicals of entire
functions of several variables, arithmetic operations and compositions.
This statement can be considered as a variation of the Abel theorem
about the non-solvability of algebraic equations of degree higher than
four. (A stronger result is presented in §A.15).
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2) The equation (A.16) defines an algebraic function of variables.
What are the conditions for representing a function of variables by
algebraic functions of a smaller number of variables, using compositions
and arithmetic operations? The 13th Hilbert problem consists of this
question5. If one excludes the remarkable results [13],[14] on this subject6,

5 The problem of the composition was formulated by Hilbert for classes of continu-
ous functions, not for algebraic functions. A.G. Vitushkin considered this problem for
smooth functions and proved the non-representability of functions of variables with
continuous derivatives up to order by functions of variables with continuous deriva-
tives up to order having a lower ‘complexity’, i.e., for Afterwards he
applied his method to the study of complexity in the problem of tabularizations [16].

Vitushkin’s results was also proved by Kolmogorov, developing his own theory of
the for classes of functions, measuring their complexity as well: this entropy,
expressed by the logarithm of the number of functions, grows, for decreasing

as
The solution of the problem in the Hilbert initial formulation turned out to be the

opposite of that conjectured by Hilbert himself: Kolmogorov [18] was able to represent
continuous functions of variables by means of continuous functions of 3 variables,
Arnold [19] represented the functions of three variables by means of functions of two,
and finally Kolmogorov [20] represented functions of two variables as the composition
of functions of a single variable with the help of the sole addition. (Translator’s note.)

6V. I. Arnold [13] invented a completely new approach to the proof of the non-
representability of an algebraic entire function of several variables as a composition of
algebraic entire functions of fewer variables. This approach is based on the study of
the cohomology of the complement of the set of the branches of the function, which
leads to the study of the cohomology of the braid groups.

We must remark that here the definition of representability of an algebraic function
differs from the classical definition. Classical formulae for the solutions by radicals
of equations of degree 3 and 4 cannot be completely considered mere compositions:
these multi-valued expressions by radicals contain, with the required roots, ‘parasite’
values also. The new methods show that these parasite values are unavoidable: even
equations of degree 3 and 4 are not strictly (i.e., without parasite values) solvable by
radicals.

In particular, Arnold proved [13] that if the algebraic function
of complex variables defined by the equation

is not strictly representable in any neighbourhood of the origin as a composition of
algebraic entire functions (division is not allowed) with fewer than variables and
of single-valued holomorphic functions of any number of variables. V.Ya. Lin [14]
proved the same proposition for any

The work of Arnold had a great resonance: the successive calculations of the co-
homologies with other coefficients of the generalized braid groups allowed more and
more extended results to be found.

The methods of the theory of the cohomologies of the braid groups, elaborated in
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up to now there had been no proof that there exist algebraic functions of
several variables which are not representable by algebraic functions of a
single variable.

We know, however, the following result:

THEOREM ([4], [5]). An entire function of two variables defined
by the equation

cannot be expressed in terms of entire functions of a single variable by
means of compositions, additions, and subtractions.

The reason is the following. To every singular point of an algebraic
function one can associate a local monodromy group, i.e., the group of
the permutations of the sheets of the Riemann surface which is obtained
by going around the singularities of the function along curves lying in an
arbitrarily small neighbourhood of the point For algebraic functions of
one variable this local group is commutative; as a consequence the local
monodromy group of an algebraic function which is expressed by means
of sums and differences of integer functions must be soluble. But the local
monodromy group of the function

near the point (0,0) is the group S(5) of all permutations of five elements,
which is not soluble. This explains the statement of the theorem.

Observe that if the operation of division is allowed, then the above
argument no longer holds. Indeed, the division is an operation killing the
continuity and its application destroys the locality. In fact, the function

satisfying

can be expressed by means of division in terms of a function of one
variable, defined by the equation

and of the function of one variable It is not difficult to see
that

the study of compositions of algebraic functions, were afterwards applied by Vassiliev
and Smale [21],[22],[23] to the problem of finding the topologically necessary number
of ramifications in the numeric algorithms for the approximate calculation of roots of
polynomials. (The number of ramifications is of the order of for a polynomial of
degree (Translator’s note.)
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A.13 Functions of several complex variables
representable by quadratures and
generalized quadratures

The multi-dimensional case is more complicated than the one-dimensional
case. We have to reformulate the basic definitions and, in particular, to
change slightly the definition of representability of functions by quadra-
tures and by generalized quadratures. In this section we give a new for-
mulation of the problem.

Suppose there have been fixed a class of basic functions and a set of
allowed operations. Is a given function (being, for instance, the solution
of a given algebraic or differential equation, or the result of one of the
other allowed operations) representable in terms of the basic functions by
means of the allowed operations? First of all, we are interested in exactly
this problem but we give to it a slightly different meaning. We consider
the distinct single-valued branches of a multi-valued function as single-
valued functions on different domains: we consider also every multi-valued
function as the set of its single-valued branches. We apply the allowed
operations (such as the arithmetic operations or the composition) only
to the single-valued branches on different domains. Since our functions
are analytic, it suffices to consider as domains only small neighbourhoods
of points. The problem now is the following: is it possible to express a
given germ of a function at a given point in terms of the germs of the
basic functions by means of the allowed operations ? Of course, here the
answer depends on the choice of the single-valued germ of the multi-valued
function at that point. However, it happens that (for the class of basic
functions we are interested in) either the representation sought does not
exist for any germ of the single-valued function at any point, or, on the
contrary, all germs of the given multi-valued function are expressed by the
same representation at almost all points. In the former case we say that
no branches of the given multi-valued function can be expressed in terms
of the branches of the basic functions by means of the allowed operations;
in the latter case we say that this representation exists.

First of all, observe the difference between this formulation of the
problem and that of the problem expounded in §A.1. For analytic func-
tions of a single variable there exists amongst the allowed operations, in
fact, the operation of analytic continuation.

Consider the following example. Let be an analytic function, de-
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fined in a domain U of the plane which cannot be continued beyond
the boundaries of a domain U, and let be the analytic function in the
domain U defined by the equation According to the defini-
tion in §A.1, the zero function is representable in the form for
all the values of the argument. From this new point of view the equation

is satisfied only inside the domain U, not outside it. Previ-
ously we were not interested in the existence of a unique domain in which
all required properties should hold on the single-valued branches of the
multi-valued function: a result of an operation could hold on a domain,
another result in another domain on the analytic continuations of the
functions obtained. For the of a single variable one can ob-
tain the needed topological limitations even with this extended notion of
the operation on analytic multi-valued functions. For functions of several
variables we can no longer use this extended notion and we must adopt a
new formulation with some restrictions, which can seem less (but which
is perhaps more) natural.

Let us start by giving precise definitions. Fix the standard space
with coordinates system

DEFINITION. 1) The germ of a function at a point can be
expressed in terms of the germs of the functions at the point
a by means of the integration if it satisfies the equation where

For the germs of the given functions
the germ exists if and only if the 1-form is closed. The germ is
thus defined up to additive constants.

2) The germ of a function at the point can be expressed in
terms of the germs of the functions at the point a by means of
the exponential and of integrations if it satisfies the equation
where For the germs of the given functions

the germ exists if and only if the 1-form is closed. The
germ is thus defined up to multiplicative constants.

3) The germ of a function at a point can be expressed in
terms of the germs of the functions at the point a by means of
a solution of an algebraic equation if the germ does not vanish and
satisfies the equation

DEFINITION. 1) The class of germs of functions in representable
by quadratures (over the field of the constants) is defined by the following
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choice: the germs of the basic functions are the germs of the constant
functions (at every point of the space the allowed operations are the
arithmetic operations, the integration, and raising to the power of the
integral.

2) The class of germs of functions in representable by generalized
quadratures (over the field of the constants) is defined by the following
choice: the germs of the basic functions are the germs of the constant
functions (at every point of the space the allowed operations are
the arithmetic operations, the integration, the raising to the power of the
integral, and the solution of algebraic equations.

Notice that the above definitions can be translated almost literally
in the case of abstract differential fields, provided with commutative
differentiation operations In such a generalized form
these definitions are owed to Kolchin.

Now consider the class of the germs of functions representable by
quadratures and by generalized quadratures in the spaces of any di-
mension Repeating the Liouville argument (cf., Theorem 1 in
§A.2), it is not difficult to prove that the class of the germs of functions of
several variables representable by quadratures and by generalized quadra-
tures contains the germs of the rational functions of several variables and
the germs of all elementary basic functions; these classes of germs are
closed with respect to the composition. (The closure with respect to the
composition of a class of germs of functions representable by quadratures
means the following: if are germs of functions representable by
quadratures at a point and is a germ of a function representable
by quadratures at the point where then
the germ at the point is the germ of a function
representable by quadratures).

A.14

Does there exist a class of germs of functions of several variables suffi-
ciently wide (containing the germs of functions representable by general-
ized quadratures, the germs of entire functions of several variables and
closed with respect to the natural operations such as the composition)
for which the monodromy group is defined? In this section we define the
class of and we state the theorem about the closure of this class
with respect to the natural operations: this gives an affirmative answer to
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the question posed. I discovered the class of relatively recently:
up to that time I believed the answer were negative.

In the case of functions of a single variable it was useful to introduce
the class of the Let us start with a direct generalization of
the class of to the multi-dimensional case.

A subspace in a connected analytic manifold
M is said to be thin if there exists a countable set of open subsets
and a countable set of analytic subspaces in these open subsets
such that An analytic multi-valued function on the manifold
M is called an if the set of its singular points is thin. Let us
make this definition more precise.

Two regular germs and given at the points and of the man-
ifold M, are said to be equivalent if the germ is obtained by a regular
continuation of the germ along some curve. Every germ equivalent
to the germ is also called a regular germ of the analytic multi-valued
function generated by the germ

A point is said to be singular for the germ if there exists
a curve such that the germ cannot
be regularly continued along this curve, but for every this
germ can be continued along the shortened curve It is easy
to see that the sets of singular points for equivalent germs coincide.

A regular germ is said to be an if the set of its singular points
is thin. An analytic multi-valued function is called an if every
one of its regular germs is an

REMARK. For functions of one complex variable we have already given
two definitions of The first one is the above definition, the
second one is given by the theorem in §A.5. These definitions obviously
coincide.

For of several variables the notions of monodromy group
and of monodromy pair are automatically translated.

Let us clarify way the multi-dimensional case is more complicated than
the one-dimensional case.

Imagine the following situation. Let be a multi-valued analytic
function of two variables with a set A of branch points, where is
an analytic curve on the complex plane. It can happen that at one of the
points there exists an analytic germ of the multi-valued analytic
function (by the definition of the set A of branch points, at the point

not every germ of the function exists; yet some of them can exist).
Now let and be two analytic functions of the complex variable
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given by the mapping of the complex line on the complex plane
such that the image of the line is contained in A, i.e.,
for every Let be the pre-image of the point under this mapping,
i.e., What can we say about the multi-valued analytic
function, on the complex line, generated by the germ of at the
point obtained as the result of the composition of the germs of the
rational function at the point and of the germ of the function
at the point It is clear that the analytic properties of this function
depend essentially on the continuation of the germ along the singular
curve A.

Nothing like this may happen under the composition of functions of
a single variable. Indeed, the set of singularities of an of one
variable consists of isolated points. If the image of the complex space
under an analytic mapping is entirely contained in the set of the singular
points of a function then the function is a constant. It is evident that
if the function is constant, after having defined on its set of singular
points, the function turns out to to be constant, too.

In the one-dimensional case, for our purpose it suffices to study the
values of an analytic multi-valued function only in the complement of
its singular points. In the multi-dimensional case we have to study the
possibility of continuing those germs of functions which meet along their
set of singularities (if, of course, the germ of the function is defined in an
arbitrary point of the set of singularities). It happens that the germs of
multi-valued functions sometimes are automatically continued along their
set of singularities [24]: this thus allows us to pass all difficulties.

An important role is played by the following definition:

DEFINITION. A germ of an analytic function at the point of the
space is called an if the following condition is satisfied. For
every connected complex analytic manifold M, every analytic mapping

and every pre-image c of the point there exists a
thin subset such that for every curve beginning at
the point and having no intersection with the set A, except,
at most, at the initial point, i.e., for the germ can be
analytically continued along the curve

PROPOSITION. If the set of singular points of an is an
analytic set then every germ of this function is an

This proposition follows directly from the results set out in [24].
It is evident that every is the germ of an For the
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the notions of monodromy group and of monodromy pair are
thus well defined.

In the sequel we will need the notion of a holonomic system of linear
differential equations. A system of N linear differential equations

for the unknown function whose coefficients are analytic func-
tions of complex variables is said to be holonomic if the
space of its solutions has a finite dimension.

THEOREM ON THE CLOSURE OF THE CLASS OF The class
of the in is closed with respect to the following operations:

1) differentiation, i.e., if is an at a point then
for every the germs of the partial derivatives
are also at the point

2) integration, i.e., if where are
at a point then also is an at the point

3) composition with the of variables, i.e., if
are at a point and is an at the point

in the space then is an
at the point as well;

4) solutions of algebraic equations, i.e., if are
at a point the germ is not zero and the germ satisfies
the equation then the germ is also
an at the point

5) solutions of holonomic systems of linear differential equations,
i.e., if the germ of a function at a point satisfies the
holonomic system of N linear differential equations

all of whose coefficients are at the point then
is also an at the point



This section is dedicated to the topological obstructions for the repre-
sentability by quadratures and by generalized quadratures of functions
of several complex variables. These obstructions are analogous to those
holding for functions of one variable considered in §§A.7–A.9.

THEOREM 1. The class of all in having a soluble mon-
odromy group, is closed with respect to the operations of integration and of
differentiation. Moreover, this class is closed with respect to the composi-
tion with the of variables having soluble monodromy
groups.

RESULT ON QUADRATURES. The monodromy group of any germ of a
function representable by quadratures is soluble. Moreover, every germ
of a function, representable by the germs of single-valued hav-
ing an analytic set of singular points is also soluble by means of integra-
tions, of differentiations, and compositions.

COROLLARY. If the monodromy group of the algebraic equation

in which the are rational functions of variables is not soluble, then
any germ of its solutions not only is not representable by radicals, but
cannot be represented in terms of the germs of single-valued
having an analytic set of singular points by means of integrations, of dif-
ferentiations, and compositions.

This corollary represents the strongest version of the Abel theorem.
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COROLLARY.  If a germ of a function can be obtained from the germs
of single-valued having an analytic set of singular points by
means of integrations, of differentiations, meromorphic operations, com-
positions, solutions of algebraic equations, and solutions of holonomic sys-
tems of linear differential equations, then this germ of is an
In particular, a germ which is not an cannot be represented by
generalized quadratures.

A.15 Topological obstructions for the
representability by quadratures
of functions of several variables



THEOREM 2. The class of all in having an almost soluble
monodromy pair is closed with respect to the operations of integration,
differentiation, and solution of algebraic equations. Moreover, this class
is closed with respect to the composition with the of variables

having an almost soluble monodromy pair.

RESULT ON GENERALIZED QUADRATURES. The monodromy pair of a

germ of a function representable by generalized quadratures, is almost
soluble. Moreover, the monodromy pair of every germ of a function
representable in terms of the germs of single-valued having an
analytic set of singular points by means of integrations, differentiations,
compositions, and solutions of algebraic equations is also almost soluble.

Consider a holonomic system of N differential equations

where is the unknown function, and the coefficients are rational
functions of the complex variables

One knows that for any holonomic system there exists a singular alge-
braic surface in the space that have the following properties. Every
solution of the system can be analytically continued along an arbitrary
curve avoiding the hypersurface Let V be the finite-dimensional space
of the solutions of a holonomic system near a point which lies outside
the hypersurface Consider an arbitrary curve in the space
with the initial point not crossing the hypersurface The solutions
of the system can be analytically continued along the curve remain-
ing solutions of the system. Consequently to every curve of this type
there corresponds a linear transformation of the space of solutions V
in itself. The totality of the linear transformations corresponding to

A.16 Topological obstruction for the
solvability of the holonomic systems
of linear differential equations

A.16.1 The monodromy group of a holonomic
system of linear differential equations

Solvability of Equations 257
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all curves forms a group, which is called the monodromy group of the
holonomic system.

Kolchin generalized the Picard–Vessiot theory to the case of holonomic
systems of differential equations. From the Kolchin theory we obtain two
corollaries concerning the solvability by quadratures of the holonomic
systems of differential equations. As in the one-dimensional case, a holo-
nomic system is said to be regular if approaching the singular set and
infinity its solutions grow at most as some power.

THEOREM 1. A regular holonomic system of linear differential equa-
tions is soluble by quadratures and by generalized quadrature if its mon-
odromy group is, respectively, soluble and almost soluble.

Kolchin’s theory proves at the same time two results.

1) If the monodromy group of a regular holonomic system of linear
differential equations is soluble (almost soluble) then this system is
solvable by quadratures (by generalized quadratures).

2) If the monodromy group of a regular holonomic system of linear
differential equations is not soluble (is not almost soluble) then this
system is not solvable by quadratures (by generalized quadratures).

Our theorem makes the result (2) stronger.

THEOREM 2. If the monodromy group of a holonomic system of equa-
tions of linear differential equations is not soluble (is not almost soluble),
then every germ of almost all solutions of this system cannot be expressed
in terms of the germs of single-valued having an analytic set
of singular points by means of compositions, meromorphic operations, in-
tegrations and differentiations (by means of compositions, meromorphic
operations, integrations, differentiations and solutions of algebraic equa-
tions).

A.16.2 Holonomic systems of equations of linear
differential equations with small coefficients

Consider a system of linear differential equations completely integrable of
the following form
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where is the unknown vector function and A is an
matrix consisting of differential 1-forms with rational coefficients in the
space satisfying the condition of complete integrability
and having the following form:

where the are constant matrices and the are linear non-homogeneous
functions in

If the matrices can be put at the same time into triangular form,
then the system (A. 17), as every completely integrable triangular sys-
tem, is solvable by quadratures. There undoubtedly exist integrable non-
triangular systems. However, when the matrices are sufficiently small
such systems do not exist. More precisely, we have proved the following
theorem.

THEOREM 3. A completely integrable non-triangular system (A. 17),
with the moduli of the matrices sufficiently small, is strictly not solv-
able, i.e., its solution cannot be represented even through the germs of
all single-valued having an analytic set of singular points, by
means of compositions, meromorphic operations, integrations, differenti-
ations, and solutions of algebraic equations.

The proof of this theorem uses a multi-dimensional variation of the
Lappo-Danilevskij theorem [28].
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Appendix (V.I. Arnold)

The topological arguments for the different types of non-solvability (of
equations by radicals, of integrals by elementary functions, of differential
equations by quadratures etc.) can be expressed in terms of very precise
questions.

Consider, for example, the problem of the integration of algebraic
functions (i.e, the search for Abelian integrals). The question in this
example consists in knowing whether these integrals and their inverse
functions (for example, the elliptic sinus) are topologically equivalent to
elementary functions.

The topological equivalence of two mappings and of M to N means
the existence of a homeomorphisms of M into M and a homeomorphism

of N into N which transform into i.e, such that
The absence amongst the objects of a class B of an object topologi-
cally equivalent to the objects of a class A means the topological non-
reducibility of A to B (of the Abelian integrals and of the elliptic functions
to the elementary functions, etc.).

In my lectures in the years 1963–1964 I expounded the topological
proof of all three aforementioned versions of the Abel problems (cf., [6],
[7]), but the book extracted from my lectures contains only the topological
proof of the non-solvability by radicals of the algebraic equations of degree
5.

Since I am unable to give references of the unpublished proofs of the
two remaining enunciations of the topological non-solvability, here it is
convenient to call them ‘problems’. I underline only that, although the
non-solvability of every problem follows from the non-solvability in the
topological sense explained above, the assertion about the topological
non-solvability is stronger and it is not proved by means of calculations,
showing the non-existence of the formulae sought.

This topological point of view of the non-solvability is also applied
to many other problems; for example, to the results by Newton [4], [5],
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to the problem of the Lyapounov stability of the equilibrium states of
a dynamical system [1], to the problem of the topological classification
of the singular points of differential equations [1], to the question of the
16th Hilbert problem about the limit cycles (cf., [2]), to the topological
formulation of the 13th Hilbert problem about the composition of complex
algebraic functions [3], and to the problem of the non-existence of first
integrals in Hamiltonian systems (as a consequence of the presence of
many closed isolated curves) [8].

These applications of the idea of the topological non-solvability, com-
ing out of the range of the Abel theory, can be found in the papers [1]–[8].

1. Arnold V.I., Algebraic Unsolvabitity of the Problem of Lyapounov
Stability and the Problem of Topological Classification of Singular Points
of an Analytic System of Differential Equations., Funct. Anal. and Appl.,
4, 3, 1970, 173–180.

2. Arnol’d V.I., Olejnik O.A., Topologiya deistvitel’nyh algebraicheskih
mnogoobrazij. Vestnik MGU, ser. 1, matem - mekhan., 6, 1979, 7–17

3. Arnol’d V.I., Superpozitsii. In the book: A.N. Kolmogorov, Izbran-
nye trudy, matematika i mehanika, Nauka, 1985, 444–451.

4. Arnol’d V.I., Topologicheskoe dokazatel’stvo transtsendentnosti abe-
levykh integralov “Matematicheskih nachalah natural’noj filosofii” N’yu-
tona. Istoriko-Matematicheskie Issledovaniya, 31, 1989, 7–17.

5. Arnold V.I., Vassiliev V.A., Newton’s “Principia” read 300 years
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2, 144].
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tive, Sémiophysique et Intelligibilité. Dédié à R. Thom, ENS Éditions:
Fontenay-St. Cloud, 1994, 411–417.

7. Petrovskij I.G., Hilbert’s Topological Problems, and Modern Math-
ematics. Russ. Math. Surv. 57, 4, 2002, 833-845.
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V.I. Arnol’d — Izbrannoe 60, Fazis, 1997, 533–551 (also: Topol. Methods
Nonlinear Anal., 4, 2, 1994, 209–225).
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