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Preface

On each smooth manifold M with an affine connection ∇ there is an impor-
tant system of distinguished curves called geodesics. For instance, in the case of
Riemannian structures, the geodesics induced by the Levi–Civita connection are
very well studied and they provide plenty of applications. Geodesics are uniquely
determined by a tangent vector in one point and each geodesic carries a preferred
class of affine parametrizations, see e.g. [10], [19], [22]. The bundle like approach,
presented by e.g. [14], allows us to define geodesics as projections of the flow lines
of horizontal “constant” vector fields on P 1M according to the principal connection
induced by the affine connection ∇. This is the content of Section 1 culminating
in Proposition 1.4.

The latter approach generalizes immediately to any Cartan geometry which is
split in the sense of 2.1, see Definition 2.4. Any Cartan geometry is modeled
over a homogeneous space G/H and much of the geometry of the homogeneous
model carries over all Cartan geometries of the same type. In particular, general
properties of generalized geodesics can be read just on the level of homogeneous
spaces G/H, where the generalized geodesics come to be cosets of shifted one–
parameter subgroups in G. The crucial construction here is the development of
curves in M into curves in the modeling space G/H (via the parallel transport in
the Cartan’s space) which forms the main point of Section 2. In the case of affine
geometries, we obtain the classical development of curves into the tangent space in
any fixed point, cf. [14], [16], [24]. Our original generalized approach is provided
in 2.7.

The definition of generalized geodesics recovers some well known types of dis-
tinguished curves in particular geometries, for example, the conformal circles in
conformal Riemannian geometries, see e.g. [2], and the chains in hypersurface CR
geometries, see [12], [15], and others. Generalized geodesics behave just like affine
geodesics if the geometry in question is reductive. Otherwise, there are more gen-
eralized geodesics through one point tangent to the given vector, since they are
determined by a jet of higher order in general. Furthermore, there appear curves of
various types on the base manifolds, which may behave rather different. The very
well known instance of such curves are null–geodesics on conformal manifolds of
indefinite signature, [11]. If we look at unparametrized images of the generalized
geodesics then the definition above brings a class of preferred parametrizations to
any geodesic in question. This may differ from that coming from a more classical
definition in particular geometries, however, the freedom in possible reparametriza-
tions forms a Lie group acting on the line. In fact, the freedom is either affine or
projective in most of interesting geometries, see [9]. The main aim of this work is
to decide which initial conditions determine generalized geodesics of a given type
uniquely and which are the preferred reparametrizations of those curves. This is
solved in Chapter II for parabolic Cartan geometries.

Restricting ourselves to the parabolic geometries, we may say much more about
generalized geodesics, which become usual geodesics with respect to certain distin-
guished principal connections underlying the given Cartan connection, see Propo-
sition 3.7. These are called generalized Weyl connections and they can be initially
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2 GENERALIZED GEODESICS

found in conformal Riemannian or projective geometries, see [5] or [23] for details.
In particular, the notion of projective equivalence of affine connections, classically
defined in e.g. [10], can be visibly reformulated in this framework, see 3.8.

Chapter II brings original results following the paper [8]. Contribution of the
author includes the results of sections 5–7, however, the final form presented in the
paper above, and so here, is the issue of fruitful collaborations with coauthors A.
Čap and J. Slovák.

First, we consider (without lost of generality) generalized geodesics in the homo-
geneous space of a parabolic geometry. Then we develop some algebraic techniques
in Section 4 in order to conclude that each generalized geodesic is always deter-
mined by a jet of finite order, Proposition 4.4. The general approach is applied
to irreducible parabolic geometries in Section 5 so that we get a better estimate
of the order of jet determining generalized geodesics—always two—and an ex-
plicit description of preferred reparametrizations which may be projective here,
see Proposition 5.6. A similar process on reparametrizations does not extend eas-
ily in geometries of longer gradation, except the case of geodesics of type Cg−k

in
|k|–gradings, Theorem 6.2. However, for an arbitrary parabolic geometry, there
is an alternative way to prove that the only possible parametrizations of a curve
to be a generalized geodesic are either projective or affine. This is presented in
[9] and the result is very useful especially in applications, where we may identify
the reparametrization ϕ just by the value of ϕ′′ in one point. Next, in the case
of irreducible geometries, we can express the subspace of jets in T r

1M exhausted
by geodesics of some fixed type in a very clear way up to the third order, see 5.3.
This point of view ensures us the best understanding of the problem.

Section 6 resolves the problem of refinement of the rough estimate from 4.4 for
generalized geodesics of some specific types in parabolic geometries with general
length of grading. The most general result is the Theorem 6.4. In the final section
we gather complete classifications of generalized geodesics and their properties in
several |2|–graded geometries, which are represented by the homogeneous models in
low dimensions of projective contact structures, Lagrangean contact structures, CR
structures, and x—x—dot structures. Other examples in the case of |1|–gradings
can be found in 5.7; more precisely, conformal Riemannian structures, Grassman-
nian and projective structures are discussed there. Most of technical computations
was performed with the help of the computational system Maple, by Waterloo
Maple Inc. (1981–2001), see [29].

Acknowledgements. I would like to thank to my supervisor J. Slovák for his
leading in the topic and other discussions. Further, there is a number of people
and other influences which have formed this work. Let me mention, in particular,
the rest of my family and the forthcoming monograph [6] by A. Čap and J. Slovák.
The support of the grant GAČR #201/02/1390 is acknowledged too.

January 6, 2004 Vojtěch Žádńık



CHAPTER I

Introduction

First, we present the classical approach to the study of affine geodesics with the
well known solution of the problem when do two affine connections have the same
unparametrized geodesics, see Proposition 1.1. Next, we describe an alternative
point of view on affine geodesics, Proposition 1.4, in order to generalize this no-
tion for split Cartan geometries in Section 2. At the same time, we generalize the
classical concept of developments of curves in order to attach an alternative defi-
nition of generalized geodesics in 2.8. In Section 3 we deal with generalized Weyl
connections and we restrict ourselves to parabolic Cartan geometries for the rest
of this work. In particular, the notion of Weyl connections allows us to understand
the classical result of 1.1 in a very geometric way.

1. Affine connections

1.1. Affine geodesics. Let ∇ : XM × XM → XM be an affine connection on
a smooth manifold M . A curve c : R → M is called the affine geodesic if it is a
solution of the ordinary differential equation ∇ċċ = 0, where ċ(t) = d

dt
c(t) is the

velocity vector field of c. Affine geodesics are uniquely determined by the initial
conditions c(0) = x ∈ M and ċ(0) = ξ ∈ TxM , i.e. by the 1–jets in one point.
After an arbitrary reparametrization ϕ of the affine geodesic c, a direct calculation
yields that the value of the covariant derivative ∇ċċ becomes the multiple of ċ

by the function − ϕ′′

ϕ′2 , see [19, eq. (7.4)]. Hence each affine geodesic c carries a

preferred class of reparametrizations ϕ such that c ◦ ϕ is an affine geodesic too.
Obviously, these are established by the differential equation ϕ′′ = 0 whose general
solutions are the functions ϕ(t) = at+b. Reparametrizations of this type are called
affine.

Another well known fact on affine geodesics is that geodesics of a given affine
connection coincide with the geodesics of its symmetrization. So let Γi

jk and Γ̃i
jk be

the Christoffel symbols of two symmetric affine connections on M . Some manip-
ulation with the coordinate expression of the equation ∇ċċ leads to the following
classical result, see e.g. [19, §7], [22, p. 72], or [27, p. 30].

Proposition. Two torsion free affine connections have the same unparame-
trized geodesics if and only if the difference tensor P i

jk = Γ̃i
jk − Γi

jk has the form

(1) P i
jk = δijΥk + δikΥj ,

where δij is the Kronecker delta and Υk is an arbitrary covector.

This equation is called the Levi–Civita equation and two affine connections
which are related in this way are called projectively equivalent . In this framework,
the projective geometry on M is understood as a class of projectively equivalent
affine connections, [10, ch. III]. Otherwise put, affine connections ∇ and ∇̃ are
projectively equivalent if and only if there is a one–form Υ ∈ Ω1(M) such that

(2) ∇̃ξη = ∇ξη +Υ(ξ) η +Υ(η) ξ

for all ξ, η ∈ XM , compare with the result of 3.8.
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4 GENERALIZED GEODESICS

1.2. Absolute parallelism. Any affine connection on M , i.e. a linear connec-
tion on TM , is induced by a principal connection on the bundle of linear frames
P 1M and this correspondence is bijective. Let γ ∈ Ω1(P 1M, gl(m,R)) be the cor-
responding connection form and let us define the one–form ω ∈ Ω1(P 1M, a(m,R))
as ω = θ ⊕ γ, where θ ∈ Ω1(P 1M,Rm) is the canonical (or soldering) form on
P 1M . The one–form ω has several nice properties, cf. [6] or [14, ch. III],

⋆ ω(u) : TuP
1M → a(m,R) is a linear isomorphisms for all u ∈ P 1M ,

⋆ ω(Trh ·ξ) = Adh−1(ω(ξ)) for each ξ ∈ TP 1M and all h ∈ GL(m,R),
⋆ and ω(ζX(u)) = X for all X ∈ gl(m,R) and u ∈ P 1M .

In the sequel, the one–form ω determined by the affine connection ∇ will be called
affine connection as well. Next, we are going to recover the definition of affine
geodesics from this point of view, see Proposition 1.4.

First of all, we need the notion of constant vector fields, which are those vector
fields ξ ∈ X(P 1M) that ω(ξ(u)) is constant for all u ∈ P 1M . Clearly, any X ∈
a(m,R) defines a unique constant vector field which we denote by ω−1(X). For
X ∈ R

m ⊂ a(m,R) we obtain a horizontal vector field and this is used to write
down the obvious identification TM = P 1M×GL(m,R)R

m by the formula {u,X} 7→

Tp·ω−1(X)(u). The defining representation of GL(m,R) on R
m is the identical

one, which in fact corresponds to the Ad–representation of A(m,R) restricted to
GL(m,R), see Example 1 in 2.2. The essential ingredient here is the invariance of
the subalgebra R

m in a(m,R). Now one can easily conclude that the latter map is
well defined due to the equivariance of ω.

1.3. Absolute derivative. For a general connection on a fibered bundle Y →
M , there is a notion of absolute derivative as follows. Let ξ ∈ XM be a vector
field, γ(ξ) ∈ XY its horizontal lift, and let s : M → Y be an arbitrary section.
The absolute derivative is an operation ∇ : C∞(Y ) → C∞(T ∗M ⊗V Y ) defined by
the formula [17, 17.9(4)]

(3) ∇ξs = Ts·ξ − γ(ξ) ◦ s,

where we write ∇ξs instead of ∇s(ξ). In other words, ∇ξs is the Lie derivative of s
in the direction of the projectable (horizontal) vector field γ(ξ) ∈ XY . If Y →M
is an associated bundle Y = P ×H S then we identify sections s : M → Y with
H–equivariant mappings s̄ : P → S, the corresponding frame forms. Similarly,
sections of the vertical bundle V Y = P ×H TS correspond to equivariant map-
pings P → TS, and if we consider the connection on Y is induced by a principal
connection γ on P , one can prove the following Lemma [17, 17.10].

Lemma. Let s̄ : P → S be the frame form of a smooth section s : M → Y .
Then the frame form of the absolute derivative ∇ξs :M → V Y is

(4) ∇ξ s̄ = T s̄·γ(ξ).

In the case of associated vector bundles E = P ×H W we have TW = W ⊕W
and the frame form of a section M → E can be interpreted as an H–equivariant
function P → W , so the absolute derivative along a vector field ξ turns sections
of E into the sections of E itself. The formula (4) then reads as the ordinary
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derivative of the vector valued function s̄ in the direction of the horizontal lift of
the vector field ξ ∈ XM . In particular, the concept of absolute derivative for tensor
bundles coincides with the covariant derivative of tensor fields in the classical sense,
cf. [14, p. 116].

1.4. Proposition. Let M be a smooth manifold with an affine connection ∇
and let ω be the corresponding one–form on P 1M according to 1.2. Then the
unique affine geodesic on M going through the point x = p(u) with the tangent

vector {u,X} ∈ TxM is the curve cu,X(t) = p
(

Fl
ω−1(X)
t (u)

)

.

This Proposition provides an alternative view on affine geodesics which will serve
as definition in more general cases of Cartan geometries below, cf. [14, p. 139].

Proof. Using the above identification of the tangent bundle TM , the veloc-
ity vector field ċ(t) = d

dt
c(t) of the curve c = cu,X can be written as ċ(t) =

{Fl
ω−1(X)
t (u), X}. Hence the corresponding frame form is constant along the hor-

izontal curve in P 1M and the previous Lemma yields ∇ċċ = 0.
In order to prove the uniqueness, we have to show that another representative

{uh,Adh−1 X} of the tangent vector {u,X} ∈ Tc(0)M defines the same curve, i.e.

p(Fl
ω−1(X)
t (u)) = p(Fl

ω−1(Ad
h−1 X)

t (uh)) holds for all h ∈ H. Now, the equivariance
of the affine connection ω can be rewritten as

Trh ·ω−1(X)(u) = ω−1(Adh−1 X)(uh)

and the flow lines of vector fields ω−1(X) and Trh ·ω−1(X) starting at u and uh,
respectively, have certainly the same projection. Hence the result follows. �

2. Cartan connections

In the first instance, we put some basic definitions and notions on Cartan and
Klein geometries following [6], [21], and [23]. The main aim of this section is to
generalize the notion of affine geodesics for general split Cartan geometries and
the classical concept of the development of curves which is the crucial construction
for our later purposes; see 2.4, 2.7, and consecutive paragraphs. The geometry in
this view is modeled on a homogeneous space G/H and the construction of the
Cartan’s space consists just of the putting the model space to be “tangent” in each
point of the base manifold M . Then any invariant system of distinguished curves
in G/H gives rise to a system of distinguished curves in M or, more generally, on
all manifolds endowed with a Cartan geometry of the same type. Here we follow
the general approach of [6], [14], [16], and others.

2.1. Definitions. Let us consider a Lie group G with a closed subgroup H and
let g and h be the corresponding Lie algebras. A Cartan geometry of type (G,H)
on a manifold M is a principal H–bundle G → M with the Cartan connection
ω ∈ Ω1(G, g) which is a g–valued one–form satisfying the following properties:

⋆ ω is an absolute parallelism, i.e. the map ω(u) : TuG → g is a linear
isomorphism for each u ∈ G,

⋆ ω is H–equivariant, i.e. the condition (rh)∗ω = Ad(h−1) ◦ ω holds for
all h ∈ H,
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⋆ ω reproduces the fundamental vector fields, i.e. ω(ζX(u)) = X for all
X ∈ h.

Let G1 and G2 be two Cartan geometries of the same type with Cartan connec-
tions ω1 and ω2, respectively. A homomorphism ψ : G1 → G2 of principle fiber
bundles is a morphism of Cartan geometries if ψ∗ω2 = ω1.

The curvature of a Cartan geometry with the Cartan connection ω is the 2–form
K = dω+ 1

2 [ω, ω] ∈ Ω2(G, g). The curvature form is strictly horizontal so it can be
understood as a pullback of a g–valued 2–form on the base manifold with respect
to the projection p : G → M . If ψ : G1 → G2 is a morphism of Cartan geometries
then the corresponding curvature forms K1 and K2 are ψ–related.

Cartan geometry is called split if there is a subalgebra n ⊂ g complementary to
h, i.e. g = n⊕ h on the level of vector spaces. Cartan geometry is called reductive
if there is a complementary H–invariant subspace n ⊂ g, according to the adjoint
representation Ad : G→ GL(g) restricted to H.

For any X ∈ g, the constant vector field ω−1(X) is the unique vector field on
G which satisfies the condition ω(ω−1(X)(u)) = X for all u ∈ G. Next, we can
identify the tangent bundle TM with the associated bundle G ×H (g/h) where the
action of the structure group H on g/h is induced by the Ad–representation on g.
The identification is provided by the mapping {u,X + h} 7→ Tp·ω−1(X + h)(u),
where p denotes the projection G →M .

In the case of a split Cartan geometry, with the splitting g = n⊕ h, we identify
g/h with n and via this identification the subalgebra n becomes an H–module.
The action of the group H on n is called the truncated adjoint representation and
it will be denoted by Ad. Obviously, this action is determined by the condition
Ad(h) = π◦Ad(h) for all h ∈ H, where π is the projection g → n in the direction of
h. Now we can write TM = G×Hn with respect to this action and the identification
above turns into the mapping {u,X} 7→ Tp·ω−1(X)(u) with the inverse ξ 7→

{u, π(ω(ξ̂))}, where ξ̂ ∈ TuG is an arbitrary lift of the vector ξ ∈ Tp(u)M . Further,

any fixed subalgebra n gives rise to a horizontal distribution ω−1(n) on G, hence
each splitting enters a general connection on G. The equivariance of ω yields that
this connection is principal if and only if Ad = Ad, i.e. the geometry in question
is reductive.

Given a Cartan connection on the principle bundle G → M , there is a nat-
ural differential operator acting on sections of natural bundles FM = G ×H S
as follows. The fundamental D–operator is the mapping D : C∞(FM) →
C∞(AM∗ ⊗ V FM) given by the transcription on the frame forms of sections of
FM , i.e. D : C∞(G, S)H → C∞(G, g∗ ⊗ TS)H , so that

(1) Ds(u)(X) = Ts·ω−1(X)(u).

The bundle AM is the vector bundle G ×H g associated via the Ad–representation
restricted to H. The map D is well defined, i.e. the image Ds of a H–equivariant
mapping s : G → S is really H–equivariant, see e.g. [4, 3.1].

In the case of split Cartan geometries, the fundamental D–operator restricts
to an operation ∇ω : C∞(G, S) → C∞(G, n∗ ⊗ TS) which we call the invariant
derivative. The essential difference to the D–operator is that ∇ω does not trans-
form sections into sections, except n is H–invariant, i.e. the geometry in question
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is reductive. In that case, the Cartan connection ω is principal, so ∇ω is the usual
covariant derivative induced on FM . Anyway, for a vector field ξ onM , the symbol
∇ω

ξ s is well understood as a map G → TS such that

(2) ∇ω
ξ s(u) = Ts·ω−1(ξ̄(u))(u),

where ξ̄ : G → n is the frame form of ξ.

Among the natural bundles F , there is one of a particular interest, the bundle
coming from the left multiplication of the group G on itself. So we get G̃ = G×HG,
the principal G–bundle overM which is called the extension of the principal bundle
G to the structure group G. The Cartan connection ω on G determines a unique
principal connection ω̃ ∈ Ω1(G̃, g) on the extension G̃ which coincides with ω on

the image of the obvious inclusion G ⊂ G̃ given as u 7→ {u, e}, cf. [6] or [13, p. 128].
In particular, ω̃(u)|TuG = ω(u) : TuG → g for each u ∈ G and ω̃(ζX(u)) = X for all

X ∈ g, u ∈ G̃. Hence the horizontal lift of the vector ξ = {u,X + h} ∈ Tp(u)M is

(3) ξ̃(u) = ω−1(X)(u)− ζX(u) ∈ TuG̃,

which is really well defined, projects onto ξ, and ω̃(ξ̃) = X−X = 0. Altogether, any
associated bundle G ×H S arising from a restricted G–action is also associated to
G̃, so we get canonical induced connections on all natural bundles coming from G–
actions restricted to H. The most known examples of such bundles are the tractor
bundles, presented in [3] or [4], and the Cartan’s space G ×H (G/H) defined in 2.7
below.

Examples. Easy examples of Cartan connections are affine connections in the
sense of 1.2. Similarly, any first order H–structure ι : G → P 1M endowed with
a principal connection γ induces the Cartan connection ω = θ ⊕ γ, where θ is
the pullback of the soldering form on P 1M with respect to the reduction ι. The
connection form ω takes values in the Lie algebra R

m ⊕ h seen as a subalgebra
of a(m,R) = R

m ⊕ gl(m,R). Morphisms are those homomorphisms of the H–
structure which keep the connection form γ invariant. Cartan geometries of these
types are naturally split and reductive. Hence the operation of invariant derivative
on associated bundles turns sections into sections and it is the usual covariant
derivative.

Principal bundles G → G/H with the Maurer–Cartan form ω ∈ Ω1(G, g)
represent the most important examples of Cartan geometries. The Maurer–Cartan
form fulfils the structure equation dω + 1

2 [ω, ω] = 0, so the curvature of the ge-
ometry vanishes. Given a Cartan geometry of type (G,H), the bundle G→ G/H
with the Maurer–Cartan form is called the flat or homogeneous model of the Car-
tan geometry. One can easily show that Cartan geometry is locally isomorphic
to its homogeneous model if and only if the curvature of the geometry vanishes,
[21, 5.5.1].

2.2. Klein geometries. The notion of Klein geometries could precede the
definition of Cartan geometries as a good motivation, see [21, ch. 4]. Number of
general properties of Cartan geometries is visible just on the level of homogeneous
spaces G → G/H, which form the principal bundles over Klein geometries as



8 GENERALIZED GEODESICS

follows below. This point of view is of a particular interest in the theory of Cartan
geometries and all our techniques will be based on the homogeneous models only.

A Klein geometry is a pair (G,H), where G is a Lie group, H ⊂ G is a closed
subgroup, and the coset space G/H is connected. Since H is closed, there exists
a unique smooth structure on G/H such that the natural projection G→ G/H is
a submersion. This is a principal H–bundle and the base manifold G/H is called
the homogeneous space of G or, in our context, the space of the Klein geometry .
The left multiplication on G induces a left transitive action of G on G/H and the
only automorphisms of the Cartan geometry G→ G/H are just of this form. This
claim follows immediately from [21, 3.5.2], see also 2.3.

On the other hand, the original Felix Klein’s approach to the geometry consists
of a smooth manifoldM endowed with a smooth transitive (and effective) action of
a Lie group G. Studying a geometry in this framework means studying properties
which are invariant with respect to the motions of group G.

Let us fix a point x ∈ M and denote by Hx = {g ∈ G : gx = x} the stabilizer
of the point x. Clearly, Hx is the preimage of x according to the map G → M
defined by g 7→ gx, thus it is a closed subgroup in G. Further, the map G/Hx →M
sending gH 7→ gx is a bijection compatible with the G–actions. So this picture
corresponds to the Klein geometry (G,Hx) in the sense of the definition above.
Another choice of the fixed point y ∈ M leads to another subgroup Hy, which is
the image of Hx with respect to the conjugation by an element g ∈ G satisfying
the condition gx = y.

Example 1. Affine geometry. In this case, M = R
m with the group of affine

motions A(m,R) =
{(

1 0

Y A

)

: Y ∈ R
m, A ∈ GL(m,R)

}

. Under the identifica-

tion X 7→
(

1

X

)

, the action is simply written as
(

1 0

Y A

)

·
(

1

X

)

= AX + Y .

The affine action is transitive and effective and the stabilizer of the origin is
{(

1 0

0 A

)

: A ∈ GL(m,R)
}

= GL(m,R). Hence, the affine geometry in the above

point of view is the pair (A(m,R), GL(m,R)) and the homogeneous space is nat-

urally identified with the normal abelian subgroup R
m =

{(

1 0

X E

)

: X ∈ R
m
}

of

all translations. On the infinitesimal level, we have the canonical decomposition

a(m,R) = n ⊕ gl(m,R) into subalgebras, where n =
{(

0 0

X 0

)

: X ∈ R
m
}

is an

ideal in a(m,R), hence the geometry is reductive. Moreover, the restricted Ad–

representation of the group GL(m,R) on n is
(

1 0

0 A

)

7→
(

1 0

0 A

)(

0 0

X 0

)(

1 0

0 A−1

)

=
(

0 0

AX 0

)

which is just the standard representation GL(m,R) → GL(Rm). The

Maurer–Cartan form on a(m,R) defines an invariant torsion–free affine connection
on R

m, the usual parallel transport.

Example 2. Projective geometry. Here we have M = RPm and let us consider
the group SL(m + 1,R) to be the principal group of the geometry. The stan-
dard action on R

m+1 induces the action on RPm which is transitive but not

effective. The stabilizer of the ray represented by
(

1

0

)

∈ R
1+m is the group

H =
{(

|A|−1 Z

0 A

)

: A ∈ GL(m,R), Z ∈ R
m∗
}

which is the semidirect product H =

GL(m,R)⋊ expRm∗. The Lie algebra g is naturally split into the sum g = n⊕ h,
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where n =
{(

0 0

X 0

)

: X ∈ R
m
}

and h =
{(

−tr(A) Z

0 A

)

: A ∈ gl(m,R), Z ∈ R
m∗
}

.

The commutative subalgebra n is not H–invariant and there is no H–invariant
complementary subalgebra to h. Hence projective geometries are naturally split
but never reductive.

2.3. Left logarithmic derivative. For later use, let us explain the notion of
left logarithmic derivative in more details. Let G be a Lie group with the Maurer–
Cartan form ω ∈ Ω1(G, g). By definition, ω(ξ) = Tℓg−1 ·ξ for ξ ∈ TgG, which
provides the identification TG = G × g. For any smooth map f : M → G, the
left logarithmic or Darboux derivative of f is the g–valued one–form δf : TM → g

defined as δf = f∗ω. In particular, for M = R the map δf(s,−) : TsR = R → g,
linear for each s, can be identified with the image of the unit vector 1 ∈ TsR, and
this convention will be kept hereafter. More precisely, for any curve f : R → G, the
left logarithmic derivative δf is understood as a curve R → g such that δf(s) =
ω(Tsf ·1) = Tℓf(s)−1 ·f ′(s).

If two smooth maps f1, f2 : M → G on connected M satisfy δf1 = δf2 then
there is a unique element c ∈ G such that f2 = ℓc◦f1. This is the essential property
of the left logarithmic derivative which represents a nonabelian generalization of
the uniqueness of the primitive function in elementary calculus, see [21, 3.5.2] for
the proof and other comments.

For any smooth maps f1, f2 : M → G, the Leibniz rule of the left logarithmic
derivative has the form [17, 4.26]

(4) δ(f1 ·f2)(x) = δf2(x) + Adf2(x)−1(δf1(x)).

Further, we are interested in the left logarithmic derivative of the map exp : g → G.
The formula for the right logarithmic derivative δR exp : Tg → g deduced in
[17, 4.27] can be easily adapted for the left one so that, for all X ∈ TY g, the
condition

(5) (δ exp)(X) =
∞
∑

k=0

1

(k + 1)!
(ad(−Y ))k(X)

is satisfied. If Y is a curve Y : R → g then exp ◦Y : R → G and we understand
δ(exp ◦Y ) to be a map R → g as above. According to (5), the equality

(6) δ(exp ◦Y )(t) =
∞
∑

k=0

1

(k + 1)!
(ad(−Y (t)))k(Y ′(t))

is obviously satisfied for all t.

2.4. Distinguished curves. Here we present the promised generalization of
affine geodesics following Proposition 1.4. The generalized geodesics are defined as
projections of flow lines of horizontal constant vector fields:

Definition. Let p : G → M be a Cartan geometry of type (G,H) split as
g = n ⊕ h and let A ⊆ n be an arbitrary subset. A smooth curve on the base
manifold is called the generalized geodesic of type CA if it has the shape cu,X(t) =

p(Fl
ω−1(X)
t (u)) for some u ∈ G and X ∈ A.
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Any choice of A ⊆ n defines geodesics of type CA on all manifolds equipped
with a Cartan geometry of the same type. The type of geodesics will not be
mentioned if A = n. Further, we always suppose the subset A is neither empty nor
trivial. The generalized geodesic cu,X clearly goes through the point p(u) = c(0)
with the tangent vector {u,X} ∈ Tp(u)M but, in contrast to the affine case, this
initial condition does not determine the generalized geodesic uniquely. Otherwise
put, another representative of the tangent vector may define another generalized
geodesic. In general, generalized geodesics are uniquely given by tangent vectors
if and only if the geometry in question is reductive, which is easily visible by the
second part of the proof of Proposition 1.4.

All generalized geodesics with the common tangent vector {u,X} ∈ Tp(u)M

have the shape cuh,Ad−1
h

X for h ∈ H, so the set of all such curves is identified
with a subset in H. In particular, all elements in H which keep n, or A ⊂ n

for geodesics of type CA, invariant define the same curve, since Ad(h) = Ad(h) is
satisfied in that case. The answer further depends on the type of the tangent vector
if there are distinguished ones. With respect to the identification TM = G ×H n

above, distinguished tangent vectors correspond to H–invariant subsets in n and
generalized geodesics of type CA emanate in directions corresponding to the H–
orbit of the subset A ⊂ n. In other words, for any vector ξ ∈ TxM there is at
least one geodesic of type CA tangent to ξ if and only if ξ lies in the image of the
H–orbit of A in TxM .

Anyway, the equality ∇ω
ċ ċ = 0 is still satisfied in some specific sense due to

the same arguments as in the proof of Proposition 1.4. More precisely, ∇ω
ċ ċ is a

mapping G
∣

∣

c
→ n which is not equivariant in general, see 2.1, hence the vanishing

of ∇ω
ċ ċ along some section does not imply the vanishing at all. This leads to the

following formulation.

Proposition. In the setting above, a curve c in M is a generalized geodesic if
and only if there is a curve ĉ in G covering c such that ∇ω

ċ ċ vanishes along ĉ.

Proof. Let c be a generalized geodesic, i.e. there exist u ∈ G and X ∈ n such

that c(t) = p(Fl
ω−1(X)
t (u)) for all t. Then the identification TM = G ×H n yields

the velocity vector field of c has got the form ċ(t) = {Fl
ω−1(X)
t (u), X}. Hence the

frame form of this partially defined vector field is constant along the horizontal lift

ĉ(t) = Fl
ω−1(X)
t (u), so ∇ω

ċ ċ
∣

∣

ĉ
= 0 by the definition of invariant derivative.

Conversely, let c be a curve on M and let ĉ be any cover of c in G such that
∇ω

ċ ċ
∣

∣

ĉ
= 0. Then the velocity vector field of the curve c ⊂ M can be expressed

as ċ(t) = {ĉ(t), X(t)}, where X is the curve in n given by the condition X(t) =
(π ◦ ω)

(

d
dt
ĉ(t)
)

. Now the assumption ∇ω
ċ ċ
∣

∣

ĉ
= 0 implies that the value of X is

constant, hence ĉ is the flow line of the constant vector field ω−1(X) which is
horizontal by definition. This completes the proof. �

For later use, let us formulate a Proposition.

2.5. Proposition. Let ψ : G1 → G2 be a morphism of Cartan geometries of
type (G,H) which cover ψ : M1 → M2. A smooth curve c on M1 is a geodesic of
type CA if and only if the curve ψ ◦ c is a geodesic of the same type on M2.
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Proof. Let ωi be the Cartan connection on Gi and let pi be the bundle projection
Gi →Mi, for i = 1, 2, respectively. The assumptions yield ψ∗ω2 = ω1 and ψ ◦ p1 =

p2 ◦ψ, in particular, the former equality implies ψ◦Fl
ω−1

1 (X)
t = Fl

ω−1
2 (X)

t ◦ψ for any

X ∈ g and all t where the flow is defined. Now it is obvious that ψ◦p1 ◦Fl
ω−1

1 (X)
t =

p2 ◦Fl
ω−1

2 (X)
t ◦ψ. Hence the image ψ ◦c of a curve c onM1 is a generalized geodesic

of type CA on M2, i.e. ψ ◦ c = cu2,X for some u2 ∈ G2 and X ∈ A, if and only if

c = cu1,X where u1 is the unique element in G1 such that ψ(u1) = u2. �

Remarks. In the homogeneous model G → G/H, constant vector fields are
just the left invariant ones and their flow lines are shifted one–parameter sub-
groups [17, 4.18]. Hence the generalized geodesics of type CA look like cg,X(t) =
g exp tX ·H for any g ∈ G and X ∈ A. All automorphisms of the Cartan geometry
G → G/H are given by the left multiplication on G, so the latter Proposition

is satisfied trivially. In the case of reductive geometries, all geodesics cgh,Ad−1
h

X ,
h ∈ H, coincide with cg,X as follows. Because Ad(h) = Ad(h) holds for all h ∈ H,

we write cgh,Ad−1
h

X(t) = gh exp(tAdh−1 X)·H = ghh−1 exp(tX)h·H = cg,X(t).
This really agrees with the general discussion above.

2.6. Distinguished jets. Let us denote by T r
1M the bundle of r–velocities

on M , i.e. the bundle of r–jets of curves T r
1M = Jr

0 (R,M). For a split Cartan
geometry G → M and a subset A ⊆ n, all r–jets of generalized geodesics of type
CA on M form a subset T r

CA
M in T r

1M . In particular, T 1
CA
M = G ×H H(A) where

H(A) is the H–orbit of A in n. Now, T r
CA

is a functor on the category of Cartan
geometries of type (G,H) split as g = n⊕ h, which takes values in the category of
fibered spaces. Proposition 2.5 implies the functor is well defined, however, T r

CA
M

has not to be a smooth subbundle of T r
1M in general (see the description of the

standard fiber in 5.3).
Let r be an order of jet which determines geodesics of type CA uniquely. Now

the space T r
CA
M is seen as the space of initial conditions where the entire geodesic

of an appropriate type is completely given by a single value in T r
CA
M . In this

setting, all geodesics of type CA with a common tangent vector ξ are in a bijective
correspondence with the preimage of ξ with respect to the jet projection πr

1 :
T r
1M → T 1

1M = TM restricted to T r
CA
M .

2.7. Cartan’s space and developments. Let p : G → M be a Cartan
geometry of type (G,H). The Cartan’s space of M is the associated bundle
SM = G×H (G/H) with the action of H on G/H given by the left multiplication—
this is one of the most prominent natural bundles discussed in 2.1. So we write
SM = G̃×G (G/H) and this bundle is endowed with an induced general connection
coming from the Cartan connection on G. First of all, we have the canonical global
section of the bundle projection SM →M given by the transcription x 7→ {u, eH}
for any u ∈ G staying over x ∈ M . The definition does not depend on a chosen u
and the section is denoted byO. Furthermore, due to the existence of the global sec-
tion O, any fiber of the vertical bundle V SM = G ×H T (G/H) restricted to O(M)
can be thought of an analogy of the tangent space, since the bundles V SM |O(M)

and TM are canonically isomorphic (via the isomorphism To(G/H) ∼= g/h). In
this view, the base manifold M seems to be “osculated” in each point by the ho-
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mogeneous space G/H on the level of tangent spaces. This approach goes really
back to Cartan, see [16] for details and other comments. The construction above
is briefly described also in [13, p. 128].

Let c be a parametrized curve on M with a fixed point x = c(t0). The develop-
ment of c at the point x is a curve c̄ in the fiber SxM ∼= G/H defined as follows.
For a time t, the value c̄(t) is obtained by moving the point O(c(t0 + t)) back to
the fiber SxM using the parallel transport. More precisely, if c̃(s) is the parallel
curve in SM determined by the initial condition c̃(0) = O(c(t0 + t)) and covering
the path s 7→ c(t0 + t + s) in M , then c̄(t) = c̃(−t). For a fixed u ∈ p−1(x) the
development of a curve c at x can be written as c̄(t) = {u, c̆(t)} where c̆ is a curve
in G/H going through the origin eH. Another frame uh ∈ p−1(x) changes the
curve c̆ to ℓh−1 ◦ c̆.

Proposition. Let G →M be the principal bundle of a Cartan geometry of type
(G,H) split as g = n ⊕ h, where n is supposed to be nilpotent. Let c be a smooth
curve in M , ĉ be the parallel horizontal curve over c in G starting at u ∈ G, and
let X be the curve in n determined by the condition X(t) = ω

(

d
dt
ĉ(t)
)

. Then the
development of the curve c at x = p(u) is the curve {u, expY (t)·H} ⊂ SxM , where
Y is the unique curve in n satisfying

(7) Adexp(−Y (t))(X(t)) + δ(exp ◦Y )(t) = 0

for all t.

Proof. We have to prove that the parallel curve over c in SM = G̃ ×G (G/H)
starting at {u, expY (t)·H} attains the point O(c(t0 + t)) = {ĉ(t), eH} just in the
time t, where clearly c(t0) = x = p(u). The essence of the proof is to describe

the parallel curve c̃ over c in G̃ starting at u = ĉ(0) = c̃(0) with respect to the
principal connection ω̃ as described in 2.1. Then the above condition reads as
{c̃(t), expY (t)·H} = {ĉ(t), eH}, so we may write c̃(t) = ĉ(t)· expY (t), and we

are going to find Y : R → n so that c̃ is the appropriate parallel curve in G̃, in
particular, Y (0) = 0.

The definition of X gives d
dt
ĉ(t) = ω−1(X(t))(ĉ(t)) and the vectors d

dt
expY (t)

are obviously written as ToℓexpY (t) ·δ(exp ◦Y )(t). Hence the derivative of c̃(t) =
ĉ(t)· expY (t) yields

d
dt
c̃(t) = TrexpY (t) ·ω−1(X(t))(ĉ(t)) + ζδ(exp ◦Y )(t)(ĉ(t) expY (t)).

The request for vectors d
dt
c̃(t) to be horizontal means that ω̃

(

d
dt
c̃(t)
)

= 0 for all
t. From the right equivariance of the principal connection ω̃ we conclude that the
latter condition is really equivalent to Adexp(−Y (t))(X(t))+δ(exp ◦Y )(t) = 0, since

ω−1(X(t))(ĉ(t)) belongs to Tĉ(t)G where ω̃ and ω coincide.
For the proof of uniqueness of Y , we are going to rewrite the equation (7) in

another way. Firstly, for each z ∈ gl(g) let us denote by g(z) = ez−1
z

the linear

endomorphism
∑∞

k=0
1

(k+1)!z
k, which is invertible if and only if no eigenvalue of

z : g → g has the form 2kπi for k ∈ Z \ {0}, see [17, 4.28]. Then the equation (7),
using (6) and omitting the variable t, reads as

(8) Adexp(−Y )X + g(ad(−Y ))(Y ′) = 0,
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which is a first order ODE linear in Y ′. By the assumption, the only eigenvalue of
ad(−Y ) : n → n is 0, hence g(ad(−Y )) is invertible in n. Now Y ′, lying in n for
all t, can be separated from (8) so that it is a function of X and Y and the initial
condition Y (0) = 0 determines the unique solution of this equation. �

Further, we need another expression of equation (7). Because Ad : G→ GL(g)
is a homomorphism of Lie groups, the derivative ad = Te Ad and the exponential
mappings are related according to the condition Ad ◦ exp = exp ◦ ad. The right
exp goes from gl(g) → GL(g), so we may write

(9) AdexpY (X) = eadY (X) =
∞
∑

k=0

1

k!
(adY )k(X)

for all X,Y ∈ g, cf. [17, 4.25]. Together with the expression (6) of δ(exp ◦Y ), the
equation (7) reads as

(10)

∞
∑

k=0

1

k!

(

ad(−Y (t))
)k(

X(t) +
1

k + 1
Y ′(t)

)

= 0.

This we use heavily below in order to compare the higher derivatives of Y and X.
Especially, in the case of the subalgebra n ⊂ g to be abelian, the latter equation
takes the very nice and easy form X(t) + Y ′(t) = 0 and the solutions are obvious.
This happens, for instance, in all irreducible parabolic geometries. On the other
hand, any parabolic geometry yields the subalgebra n nilpotent, so the assumption
of Proposition above is satisfied and, in particular, the sum in (10) is always finite.

Corollary. In the setting above, two smooth curves on M have the contact of
rth order in x ∈ M if and only if their developments at x have the contact of rth

order in o ∈ G/H.

Proof. Let c1 and c2 be two curves on M such that jr0c1 = jr0c2 and let x ∈
M be the point c1(0) = c2(0). For a fixed frame u ∈ G over x, the lifting of
curves according to the connection ω is a local diffeomorphism which respects the
order of contact. So jr0c1 = jr0c2 if and only if jr0 ĉ1 = jr0 ĉ2, where ĉ1, ĉ2 are the
corresponding parallel curves starting at u. Following the latter Proposition, let
X1, X2 be the curves in n defined as Xi(t) = ω

(

d
dt
ĉi(t)

)

, i = 1, 2, and let Y1, Y2 be
the curves in n coming from the developments of curves c1 and c2, respectively. In
particular, the condition (10) is satisfied for both couples Xi, Yi. We have to prove
that jr0c1 = jr0c2 if and only if jr0 expY1 = jr0 expY2. According to the above ideas,
j10 expYi = d

dt

∣

∣

0
expYi(t) = Y ′

i (0) and Xi(0) is determined by j10ci = d
dt

∣

∣

0
ci(t),

hence the latter statement reduces to the equivalence jr−1
0 X1 = jr−1

0 X2 if and
only if jr0Y1 = jr0Y2, which we prove as follows.

Let us we write the equation (10) as

X(t) + Y ′(t) +

∞
∑

k=1

(−1)k

k!
Sk(t) = 0,
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where obviously Sk(t) =
(

ad(Y (t))
)k(

X(t)+ 1
k+1Y

′(t)
)

. The nth iterated derivative
yields, omitting the variable t,

S
(n)
k =

∑

J

cJ

(

ad(Y (j1)) ◦ · · · ◦ ad(Y (jk))
)(

X(n−|J|) +
1

k + 1
Y (n+1−|J|)

)

= 0,

where the coefficients are cJ = n!
j1!...jk!(n−|J|)! and the sum runs over all k–tuples

of nonnegative integers J = (j1, . . . , jk) such that |J | = j1 + · · ·+ jk ≤ n.
First of all, let us remark that the definition of Y ensures the value Y (0) = 0

and so all summands of S
(n)
k (0) with some ji = 0 vanishes. Then, for all k > n,

each k–tuple J obviously contains some ji = 0 and so S
(n)
k (0) vanishes, hence the

nth iterated derivative of (10) evaluated in 0 is the sum

(11) X(n)(0) + Y (n+1)(0) +
n
∑

k=1

(−1)k

k!
S
(n)
k (0) = 0.

Now, since the nonzero summands correspond to those J ’s with all ji > 0, the

condition |J | > 0 is always satisfied and so each S
(n)
k (0) is expressed in terms of

the derivatives of X and Y in 0 of at most nth order.
The rest is obvious from (11). First, let us assume that jr0X1 = jr0X2, i.e.

X
(n)
1 (0) = X

(n)
2 (0) for all n = 0, . . . , r. Clearly, Y1(0) = Y2(0) = 0 and, in-

ductively, Y
(n)
1 (0) = Y

(n)
2 (0) immediately implies Y

(n+1)
1 (0) = Y

(n+1)
2 (0) for all

n = 0 . . . , r. So we have proved jr+1
0 Y1 = jr+1

0 Y2. Conversely, for n = 0, the
condition Y ′

1(0) = Y ′
2(0) is obviously equivalent to X1(0) = X2(0). Similarly,

the assumption Y
(n)
1 (0) = Y

(n)
2 (0) for all n < r yields X

(n)
1 (0) = X

(n)
2 (0) for all

n < r − 1, which completes the proof. �

For a fixed frame over some point x0 ∈ M , the construction of developments
establishes a correspondence between smooth curves on M which map 0 to the
fixed point x0 ∈ M and smooth curves in the homogeneous space G/H mapping
0 to the origin o = eH. Further, this is a bijection onto the image compatible
with taking jets in 0 in the sense of Corollary above. The injectivity can be seen
as follows. Let c1 and c2 be two curves in M which develop into the same curve
at some point. In accord with the Proposition 2.7, we suppose that the curves
X1 and X2 gives the same Y1 = Y2 and the equality (7) is satisfied for both
couples X1, Y1 and X2, Y2, respectively. This immediately leads to the condition
Adexp(−Y (t))(X1(t)) = Adexp(−Y (t))(X2(t)) provided that we denote Y1 = Y2 by Y .
Hence the curves X1 and X2 coincide since the map Ad(g) : g → g is invertible for
any g ∈ G.

The notion of the development is often used to distinguish curves on manifolds
endowed with a Cartan geometry of some fixed type by means of distinguished
curves in the homogeneous model. The following Proposition may provide an
alternative definition of generalized geodesics.

2.8. Proposition. In the setting above, a curve through the point x ∈ M is a
geodesic of type CA if and only if it develops at x into the curve {u, exp tX ·H} ⊂
SxM for some X ∈ A and u ∈ G.
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Proof. According to Proposition 2.7 with the notation therein, we have only to
prove that the curve X(t) is constant if and only if Y (t) = tX for some X ∈ A. If
X(t) = X is the constant curve, we define Y (t) = −tX, and, conversely, if Y has
the form Y (t) = tX then we put X(t) = −X. However, the equation (10) is still
satisfied, since the sum

∑∞
k=0

1
k! (ad(−tX))k(−X + 1

k+1X) vanishes for all t. The
uniqueness of the development completes the proof. �

Remark. Our definition of developments generalizes the classical concept of the
development of curves on a manifold with an affine connection. In that case, the
homogeneous model is a pair (A(m,R), GL(m,R)) and the model spaceG/H = R

m

is globally identified with n so that the two actions of the structure group H =
GL(m,R) coincide. Then the Cartan’s space SM equals to the tangent bundle
TM and a curve is an affine geodesic if and only if it develops into a straight line
within the tangent space of any single point, cf. [14, p. 138].

3. Weyl connections

This section studies certain more familiar structures which underlie a given
Cartan geometry. However, our aims require to consider parabolic geometries only
and this convention will be kept in the rest of work.

Weyl connections form a preferred class of connections induced by the Cartan
connection of a given parabolic geometry. The modeling examples could be confor-
mal Riemannian structures where a lot of referred concepts have got their preimage.
In concluding paragraphs we look for a thread between generalized geodesics of the
given Cartan connection and geodesics of induced Weyl connections. In particular,
we illustrate this approach in the homogeneous model of projective geometries in
order to understand the definition of the projective equivalence of affine connec-
tions in 1.1 more geometrically. All facts without references can be checked in [5],
[6], [23], or [26].

3.1. Parabolic geometries. Cartan geometry of type (G,P ) is called parabolic
if G is a semisimple Lie group and P a parabolic subgroup. Let p and g be the
corresponding Lie algebras. The names come from the structure theory of Lie
algebras, where a subalgebra p in semisimple g is called parabolic if it contains a
Borel subalgebra, i.e. maximal solvable subalgebra of g. The nilradical p+ of the
parabolic subalgebra p ⊆ g provides a filtration g = g−k ⊃ g−k+1 ⊃ · · · ⊃ gk so
that p = g0 and p+ = g1. A choice of the Levi factor g0 in p induces a grading
g = g−k⊕· · ·⊕gk such that gj = gj⊕· · ·⊕gk for all j. This is an algebraic analogy
of the construction of Weyl structures, see below. Conversely, for any semisimple
Lie algebra g endowed with a |k|–grading g = g−k ⊕ · · · ⊕ gk, the subalgebra
g0 = g0 ⊕ · · · ⊕ gk is parabolic. Anyway, the subalgebra g0 ⊂ g is reductive. The
subalgebra g− = g−k ⊕· · ·⊕g−1 forms a natural complement to p in g. Obviously,
the subalgebra g− is not ideal and there is no complementary ideal to p in g. Hence
parabolic geometries are never reductive but always naturally split.

Any parabolic subalgebra p ⊆ g is isomorphic by an inner automorphism of
g to some standard parabolic subalgebra, which is simply described by a subset
of simple roots of g containing all of the standard Borel subalgebra. In other
words, for any parabolic subalgebra p, one can choose the Cartan subalgebra and
the system of positive roots in such a way that p is standard parabolic. This is
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clearly described by crosses in corresponding nodes of the Dynkin diagram of g
and, moreover, the number of crosses coincides with the dimension of the center
of g0. Then the semisimple part of g0 is represented by the Dynkin diagram which
is obtained from the initial one by removing all crossed nodes and all edges which
emanate from them.

On the level of Lie groups, P is the semidirect product G0 ⋊ exp p+, where
G0 is the subgroup of P which consists of all elements keeping the gradation of g
invariant with respect to the Ad–representation.

3.2. Weyl structures. Let G → M be the principal bundle of a parabolic
geometry. By G0 we denote the quotient G/ exp p+ which is a principle G0–bundle
over M . A Weyl structure or a Weyl geometry of the given parabolic geometry is
a reduction of G to the structure group G0.

Any Weyl structure is given by a G0–equivariant section of the projection p0 :
G → G0. Such a section always exists and all Weyl structures on M form an affine
bundle modeled over the vector bundle T ∗M . More precisely, if σ1 and σ2 are
Weyl structures then there is a unique G0–equivariant map Υ : G0 → p+ such
that σ1(u) = σ2(u)· expΥ(u) for all u ∈ G0. Due to the Cartan–Killing form
we have got the canonical identification p+ = (g−)

∗ and the cotangent bundle is
then written as T ∗M = G ×P p+. Now any G0–equivariant map Υ : G0 → p+,
extends to a P–equivariant map on G, which is the frame form of some one–form
on M . Conversely, for a Weyl structure σ and any one–form with the frame form
Υ there is another Weyl structure σ +Υ defined by (σ +Υ)(u) = σ(u)· expΥ(u).
Altogether, all Weyl structures form an affine bundle modeled over T ∗M .

Given a Weyl structure σ : G0 → G and the Cartan connection ω, split as
ω−⊕ω0⊕ω+ ∈ Ω1(G, g−⊕g0⊕p+), the pullback σ

∗ω0 defines a principal connection
on G0 called the Weyl connection of the Weyl structure σ. Each Weyl connection
induces connections on all bundles associated to G0.

3.3. Underlying structures. The filtration of the Lie algebra g gives rise to
a filtration of the tangent bundle TM = G ×P (g/p) by projecting the subspaces
ω−1(gj) ⊂ TG. The filtration is written as TM = T−kM ⊃ · · · ⊃ T−1M where
T jM = G×P (gj/p) with respect to the described mapping. If the length of grading
k equals to 1 then the filtration of TM is trivial and so the |1|–graded parabolic
geometries are called irreducible.

By analogy to the principal G0–bundle G0 = G/ exp p+, one can construct other
principal bundles underlying the bundle G. So we define Gj = G/ exp gj+1 which is
a principle bundle overM with the structure group P/ exp gj+1. On the other hand
each G → Gj is a principal bundle with the structure group exp gj+1 and together
we get the so called tower of principal bundles G = Gk → Gk−1 → · · · → G0 →M .
The last but one level in the tower, the bundle Gk−1, is of the particular interest
since it can be understood as a classical first order (P/ exp gk)–structure on M .
The reduction ι : Gk−1 → P 1M is constructed due to the Cartan connection ω on G
descending to a well defined one–form on Gk−1 with values in g/p = g−, which plays
the role of soldering form. Since the kernel of the representation Ad : P → GL(g−)
is the normal subgroup exp gk, the induced mapping P/ exp gk → GL(g−) is an
embedding of groups over which the reduction ι is constructed.

For a Weyl structure σ : G0 → G and any quotient projection pj : G → Gj ,
the composition is again G0–equivariant, so pj ◦ σ : G0 → Gj is a reduction of Gj
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to the structure group G0. Now the Weyl connection σ∗ω0 extends to a principal
connection on all Gj . In particular, any choice of a Weyl structure defines an affine
connection on Gk−1 belonging to the (P/ exp gk)–structure in the sense of Example
2.1.

Moreover, any Weyl structure provides a reduction ι : G0 → P 1M of the linear
frame bundle to the structure group G0 in such a way that ι∗θ = σ∗ω−. At
the same time we get an identification of the tangent bundle TM = G ×P g−

with the associated graded vector bundle gr(TM) =
⊕−1

j=−k T
jM/T j+1M whose

standard fiber is a sum of gj/gj+1 = gj . The later bundle can be written as
gr(TM) = G0 ×G0 (

⊕

j gj) and the promised identification gr(TM) ∼= TM looks

like {u,X} 7→ {σ(u), X}. Now σ∗(ω− ⊕ ω0) is an affine connection which belongs
to the G0–structure and preserves the grading.

Remark. For |1|–graded parabolic geometries, both the reduction ι : G0 → P 1M
and the identification G0×G0g−

∼= G×P g− does not depend on a chosen Weyl struc-
ture. The underlying first order G0–structure with a preferred class of its affine
connections generalizes the notion of Weyl connections in conformal Riemannian
geometries. More comments and motivations can be found in the introduction
section of [23].

3.4. Changes of Weyl connections. Now we consider a vector bundle G0×G0

E and two Weyl structures σ, σ̃ in order to compare induced linear connections
∇σ and ∇σ̃ corresponding to given Weyl structures. Let s be any section of the
vector bundle with the frame form denoted by the same symbol. Following 1.3, the
covariant derivative on the level of frame forms is ∇σ

ξ s = Ts·γσ(ξ), where γσ(ξ)
denotes the horizontal lift of ξ ∈ XM with respect to the principal connection
σ∗ω0 on G0. The two lifts which correspond to Weyl structures σ and σ̃ may
differ only in a vertical direction, so there is a mapping A : G0 → g0 such that
γσ̃(ξ)(u) = γσ(ξ)(u) + ζA(u)(u) for all u ∈ G0.

In order to describe this mapping we have to deal with the tangent map to the
section σ̃ = σ + Υ. By definition, for each u ∈ G0 we have σ̃(u) = σ(u)· expΥ(u)
and a direct computation [5, 3.9] yields T σ̃ ·ξ = TrexpΥ(u)Tσ ·ξ + ζΦ(ξ)(σ̃(u)) for
all ξ ∈ TuG0 and suitable Φ(ξ) ∈ p+. Hence, by the equivariance of the Cartan
connection ω we get

(1) σ̃∗ω(ξ) = ω(T σ̃ ·ξ) = Adexp(−Υ)(σ
∗ω(ξ)) + Φ(ξ).

Now let us write ξ̂ instead of ξ and let us assume the vector ξ̂ ∈ TuG0 is horizontal

with respect to the principal connection σ∗ω0, i.e. σ
∗ω0(ξ̂) = 0. In other words,

there are X ∈ g− and Z ∈ p+ such that Tσ ·ξ̂ = ω−1(X)(σ(u)) + ζZ(σ(u)), which

implies that ξ̂ = Tp0 ·ω
−1(X)(σ(u)) and, obviously, ξ̂ is the horizontal lift of the

vector ξ = {σ(u), X} ∈ TxM . If the Weyl structure is changed to σ̃ = σ + Υ

then σ̃∗ω0(ξ̂) = π0(σ̃
∗ω(ξ̂)) = π0(Adexp(−Υ)X) by equality (1), where π0 : g → g0

is the g0–part, i.e. the projection in the direction of g− ⊕ p+. Hence, in general,
horizontal lifts of a vector field ξ ∈ XM with respect to the Weyl connections σ∗ω0

and (σ+Υ)∗ω0 differ by the vertical vector field ζA where A : G0 → g0 is given by
A = π0(Adexp(−Υ)(ξ̄)). Here ξ̄ : G0 → g− is the frame form of ξ with respect to σ,

i.e. ξ̄ = σ∗ω−(ξ̂) where ξ̂ is an arbitrary lift of ξ. In this notation we may write
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γσ+Υ(ξ) = γσ(ξ) − ζA, which in particular implies that the induced connections
differ as

(2) ∇σ+Υ
ξ s = ∇σ

ξ s+ λ′(A) ◦ s,

where λ′ : g0 → gl(E) is the derivative of the representation defining the associated
bundle G0 ×G0 E.

Remark. In conclusion, in the case of |1|–gradings it is easy to verify that
π0(Adexp(−Υ)(ξ)) = −[Υ, ξ]. Hence the formula above takes the following nice
shape

(3) ∇σ+Υ
ξ s = ∇σ

ξ s+ λ′([ξ,Υ]) ◦ s,

where the ξ in brackets means the frame form of the vector field ξ. See 3.8 for an
application.

3.5. Rho–tensor. The rho–tensor of a Weyl structure σ is defined as Pσ =
σ∗ω+ ∈ Ω1(G0, p+). Obviously, Pσ(ζA) = 0 for each A ∈ g0, so the value of Pσ

does not depend on a lift of vector ξ ∈ TM and so Pσ can be understood as a
pullback of a one–form on the base manifold with values in p+ according to the
projection G0 → M . Together with the canonical identification p+ = (g−)

∗, the
rho–tensor can be seen as a 2–form on M . In the case of conformal Riemannian
structures, the rho–tensor is a well known object usually expressed in terms of the
metric and Ricci tensors. We refer to [7] where authors have explicitly shown that
these two concepts are equivalent.

The rho–tensor Pσ is used to compare the Cartan connection ω and the Weyl
connection σ∗ω0 as follows. The principal connection σ

∗ω0 on G0 extends to a prin-
cipal connection on G and in the image σ(G0) ⊂ G we can compare the horizontal

lifts with respect to these connections. Let ξ̂ ∈ Tσ(u)G be the horizontal lift of the

vector ξ = {σ(u), X} with respect to the connection σ∗ω0. Now ω(ξ̂) = X+ω+(ξ̂),

which yields ξ̂ = ω−1(X)(σ(u)) + ζPσ(ξ)(σ(u)), where ω
−1(X)(σ(u)) is the hori-

zontal lift of ξ with respect to the Cartan connection ω. Altogether, in the image
σ(G0) ⊂ G, the following holds,

(4) ∇σ
ξ s = ∇ω

ξ s− λ′(Pσ(ξ)) ◦ s.

3.6. Normal Weyl structures. Among general Weyl structures there is an
interesting class of them which are related to the notion of normal coordinates

as follows. For any u ∈ G, the mapping Φu : g− → M , X 7→ p(Fl
ω−1(X)
1 (u)),

is a local diffeomorphism around 0 and this is called the normal coordinates at
u. Obviously, generalized geodesics on M are images of straight lines in suitable
normal coordinates and, further, our definition agrees with the notion of normal
coordinates in Riemannian and affine geometries.

Each normal coordinates define a normal Weyl structure as follows. Let Φu be
normal coordinates defined on a neighbourhood U ⊂ g− of 0. Obviously, over the
image Φu(U) ⊂M there is a unique G0–equivariant section σu : G0 → G such that

Fl
ω−1(U)
1 (u) ⊂ σu(G0). Although the section σu is not defined globally, we call σu

the normal Weyl structure at u ∈ G.
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3.7. Proposition. Locally, a curve c is a generalized geodesic if and only if
there is a Weyl structure σ such that the curve is a geodesic of the corresponding
Weyl connection and the rho–tensor vanishes along c. In particular, all geodesics
of normal Weyl structures are generalized geodesics.

Proof. [23, 2.37–39] If c is a geodesic curve of a Weyl connection σ∗ω0 then it
is the projection of a horizontal flow c0(t) with respect to the Weyl connection
on G0. Moreover, Pσ(ċ) = 0 implies that σ(c0(t)) is a horizontal flow of the
Cartan connection ω, so c is a generalized geodesic. Using the formula (4), this
claim is briefly written as ∇ω

ċ ċ = ∇σ
ċ ċ + λ′(Pσ(ċ)) ◦ ċ = 0. Conversely, let us

denote c1(t) = Fl
ω−1(X)
t (u) and consider the generalized geodesic c = p(c1). Let

σ be the unique normal Weyl structure such that σ ◦ p0 ◦ c1 = c1. Such a σ
always exists but not globally if the curve p0(c1) has got nonisolated points of self–
intersection. Then, at least locally, the corresponding rho–tensor fulfils Pσ(ċ) = 0
and so ∇σ

ċ ċ = ∇ω
ċ ċ = 0.

The second statement is obvious from the construction of normal Weyl struc-
tures. More precisely, Pσu is identically zero at u and further Pσu vanishes along
all geodesic of the normal Weyl structure σu. �

3.8. Example. Here we consider the most frequent associated vector bundle—
the tangent bundle—in order to describe the changes of Weyl connections as dis-
cussed in 3.4 in the case of projective geometries. Now, TM = G0 ×G0 g−, where
the defining representation λ : G0 → GL(g−) is the Ad–representation restricted
to G0. Hence the derivative is λ′ = ad |g0 : g0 → gl(g−) and the formula (3) reads

as ∇σ+Υ
ξ η = ∇σ

ξ η + [[ξ,Υ], η]. All brackets are the Lie brackets in g and ξ, η, and
Υ are frame forms of vector fields and a one–form on M , respectively.

Let M be a manifold with a structure of the projective Cartan geometry.
According to Example 2 in 2.2, one can easily verify the bracket equals to

[[ξ,Υ], η] = Υ(ξ) η + Υ(η) ξ, provided that we write ξ =
(

0 0

ξ 0

)

, η =
(

0 0

η 0

)

, and

Υ =
(

0 Υ

0 0

)

. This recovers the definition of the projective equivalence from 1.1,

so we conclude that two affine connections are projectively equivalent if and only
if they belong to the same projective structure. By [13, 7.1], torsion free affine
connections on M , i.e. principal connections on P 1M , are in a bijective corre-
spondence with global sections of the bundle projection P 2M/G1

m → M where
G1

m = GL(m,R) is the structure group of P 1M . Any such section provides a
reduction of P 2M to the subgroup G1

m ⊂ G2
m, i.e. a G1

m–equivariant section of
P 2M → P 1M , which reminds the notion of Weyl structures. Indeed, the principal
bundle G of a projective structure whose g− part of the curvature vanishes can be
given as a reduction ι : G → P 2M such that ι∗θ = ω− ⊕ ω0, where θ is the canon-
ical form on P 2M . Then G0 = P 1M and all Weyl structures induce projectively
equivalent affine connections without torsion on M .

Let c be a generalized geodesic on M . By Proposition 3.7, there exists a Weyl
structure σ such that c is a geodesic of the corresponding Weyl connection, so we
can write ∇σ

ċ ċ = 0. Any other Weyl structure determined by Υ ∈ Ω1(M) yields

∇σ+Υ
ċ ċ = [ċ, [Υ, ċ]] = 2Υ(ċ) ċ, which is a multiple of the velocity vector field of

c. Hence all Weyl connections underlying a projective Cartan geometry have got
common geodesics as unparametrized curves. Moreover, from 1.1 we know that a
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reparametrization ϕ of the geodesic c acts on the result of the covariant derivative

∇ċċ by adding the value − ϕ′′

ϕ′2 ċ, so all reparametrizations of c coming from the

changes of Weyl connections must satisfy the condition

(5) ϕ′′ = −2ϕ′2Υ(ċ).

Let us verify this equality in the homogeneous model. For the sake of sim-
plicity, we consider only geodesics through the origin o = eH which are tan-
gent to the vector {e,X} ∈ To(G/P ), i.e. we have to deal with the curves of

the shape ch,Ad−1
h

X(t) = h exp(tAd−1
h X)·P where h ∈ P and X ∈ g−1. How-

ever, these restrictions describe the geodesics in general due to the notion of de-
velopments of curves and the fact that there are no distinguished tangent vec-
tors in T (G/P ). With respect to 2.4, all geodesics of the above shape with
h ∈ G0 coincide with the curve ce,X , so we consider h = expZ ∈ exp g1 in or-
der to get new generalized geodesics with the given tangent vector. In that case,
AdexpZ X = X+[ZX]+ 1

2 [Z[ZX]] and AdexpZX = X, so we will compare general-

ized geodesics ce,X and cexpZ,X for all Z ∈ g1. Obviously, these two curves coincide
if and only if there is a curve u : R → P such that exp tX ·u(t) = expZ exp tX.
Anyway, this equality defines a curve in G,

(6) u(t) =
(

1 0

−tX E

)

·
(

1+tZ(X) Z

tX E

)

=
(

1+tZ(X) Z

−t2Z(X)X −tX⊗Z+E

)

,

and u belongs to P for all t if only if Z(X) = 0. Otherwise, we get new generalized
geodesics tangent to the vector {e,X} = {expZ,X} and the family of all such
curves is 1–dimensional according to the values of Z(X).

Let us describe the mentioned curves in more details. First of all, we are going
to verify the equality

(7) cexpZ,X(t) =
(

1+tZ(X) Z

tX E

)

·P =
(

1 0
tX

1+tZ(X)
E

)

·P

which clearly recovers the result above, i.e. curves cexpZ,X and ce,X coincide
if and only if Z(X) = 0. Otherwise, we get cexpZ,X(t) = ce,X(ϕ(t)) where
ϕ(t) = t

1+tZ(X) is a local reparametrization. This in particular implies that all gen-

eralized geodesics with the given tangent vector parametrize the same curve and so
each tangent direction determines a unique unparametrized generalized geodesic—
this is the essential property of projective geometries. Now, equality (7) really holds

as follows. Denote by c1 the curve expZ exp tX =
(

1+tZ(X) Z

tX E

)

in G. The projec-

tion c1 ·P = cexpZ,X is certainly represented by c0(t) = c1(t)· exp
(

− Z
1+tZ(X)

)

=
(

|A|−1 0

tX A

)

where A = − t
1+tZ(X) X ⊗ Z + E and |A|−1 = 1 + tZ(X). Finally, the

representative c0(t)·
(

|A| 0

0 A−1

)

=
(

1 0

|A|tX E

)

yields the formula (7).

Next, following the previous sections, we are going to describe the Weyl connec-
tions which have the curves ce,X and cexpZ,X as geodesics, respectively. Obviously,
there is plenty of Weyl connections for which some curve c is a geodesic but all of
them must coincide along c, so we may always describe the defining Weyl struc-
ture along the curve and consider the “constant” extension elsewhere. This actually
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corresponds to the choice of the normal Weyl structure as will be visible later on.
First, let us remind that the principal bundle G is G = SL(m + 1,R) and, by
definition, G0 = G/ exp g1 ∼= A(m,R) is the underlying principal bundle with the
structure group G0 = GL(m,R). The cosets in G0 will be denoted by brackets, so
the quotient projection p0 : G → G0 is written as p0(g) = [g].

Let us consider the curve exp tX =
(

1 0

tX E

)

in G which projects to the gen-

eralized geodesic ce,X in G/P . According to Proposition 3.7, the curve ce,X is a
geodesic of the Weyl connection σ∗ω0 if and only if the defining Weyl structure
σ satisfies σ([exp tX]) = exp tX. Due to the G0–equivariance of σ, the transcrip-

tion
[(

1 0

X E

)]

7→
(

1 0

X E

)

, for all X ∈ g−1, fully determines a Weyl structure

with the property in request and we denote it by σ0. For general elements of G0,

the transcription must look like
[(

a Z

X A

)]

7→
(

a 0

X −
1
a
X⊗Z+A

)

in order the map

to be well defined. Indeed, σ0 is G0–equivariant and p0 ◦ σ0 = id and, more-
over, expX ⊂ σ0(G0) for all X ∈ g−1, so σ0 is the normal Weyl structure for

e ∈ G. Now, let c1 be the curve expZ exp tX =
(

1+tZ(X) Z

tX E

)

in G whose pro-

jection to G/P is the generalized geodesic cexpZ,X . We look for a Weyl structure
σZ such that σZ([c1]) = c1 which is equivalent to finding a G0–equivariant map
Υ : G0 → g1 satisfying σ0([c1])· expΥ([c1]) = c1. Following the notation and ideas
of the paragraph just below the equality (7), we may rewrite the latter condition as

σ0([c0])· expΥ([c0]) = c1 since [c1] = [c0]. Hence we get Υ([c0(t)]) =
(

0 Z
1+tZ(X)

0 0

)

which defines the Weyl structure σZ along the curve. Similarly to the previ-
ous case, we define Υ (and so σZ) globally and σZ is the normal Weyl structure
for expZ ∈ G. Further, one can verify that changes of the frame in G0 yield
Υ([expX]) = (1 + Z(X))Z for all X.

Now we can summarize the achieved results. First, we have proved that gen-
eralized geodesics ce,X and cexpZ,X always parametrize the same curve and the
unique reparametrization which satisfies the condition cexpZ,X = ce,X ◦ ϕ is

ϕ(t) = t
1+tZ(X) . Certainly, ϕ′(t) = 1

(1+tZ(X))2 , ϕ
′′(t) = −2 Z(X)

(1+tZ(X))3 , and so

the frame form of the vector field − ϕ′′

ϕ′2 ċ
e,X with respect to the Weyl structure σ0

maps [exp tX] 7→ 2Z(X)(1+ tZ(X))X ∈ R
m because the frame form of ċe,X maps

[exp tX] 7→ X for all t. Indeed, this agrees with the frame form of the vector field
2Υ(ċe,X) ċe,X and so the formula (5) follows.

Of course, the equation (5) represents a necessary condition for the function
ϕ to be a reparametrization which turns generalized geodesics into generalized
geodesics, but we have found the possible reparametrizations very explicitly. Hap-
pily, we can perform the same for all irreducible parabolic geometries, see Propo-
sition 5.6.

3.9. Exercise. Compute the bracket [[ξ,Υ], η] in order to express the transfor-
mation rules for changes of Weyl connections in the case of conformal Riemannian
structures. Compare the result with the well known transformations of∇ξη accord-
ing to the change of metric in the conformal class. Prove that all null–geodesics
tangent to the given common vector parametrize the same curve. (See 5.7 for the
description of the Lie algebra in question).



CHAPTER II

Conclusion

The main aim of this chapter is to find conditions which determine generalized
geodesics of a given type uniquely. For any parabolic geometry, all generalized
geodesics are determined by a jet of finite order as Proposition 4.4 shows. Section
5 is devoted to detailed discussions on irreducible parabolic geometries. In those
cases, the set of jets distinguished by generalized geodesics in T r

1 can be expressed
explicitly and, moreover, the class of preferred parametrizations is obtained in a
very visible way, Proposition 5.6. Section 6 brings some refinements for geodesics
of specific types in general parabolic geometries, see Theorem 6.3. The concluding
section contains complete classifications of generalized geodesics in several partic-
ular geometries.

The chapter is structured following the article [8] and a lot of paragraphs are
just reformulated here. All of the achieved results generalize some well known facts
especially from conformal, projective, and CR geometries; cf. [2], [15], [16], and
others.

4. General results

Let G → M be the principal bundle of a parabolic geometry of type (G,P ) in
the sense of 3.1. We will prove the order of jet determining generalized geodesics
of an arbitrary type uniquely is finite. In other words, for any A ⊆ g− there is a
finite r such that generalized geodesics of type CA are given by a single value in
T r
CA
M . The functor T r

CA
is defined in 2.6. Obviously, the order must be at least 2

since parabolic geometries are never reductive.
Further, we deduce some technical lemma on reparametrizations which will serve

us to describe possible reparametrizations for |1|–graded geometries in Section 5
and for other particular examples in Section 7.

4.1. Setup. With regard to the ideas of 2.7–2.8, we may restrict ourselves only
to curves in the homogeneous space G/P going through the origin o = eP . In that
case, generalized geodesics of type CA look like cb,X(t) = b exp(tX)·P for any b ∈ P
and X ∈ A ⊆ g−. Further we can restrict our attention to specific expressions for
generalized geodesics as described in the following paragraphs.

First of all, let us remind that Conjb ◦ exp = exp ◦Adb for all b ∈ P , so
b exp(tX) = exp(tAdbX)b and any generalized geodesic through the origin can
be written as cb,X(t) = exp(tAdbX)·P . Further, for any element b ∈ P there are
unique elements b0 ∈ G0 and Z ∈ p+ such that b = b0 exp(Z). Thus, the same
element can be written as well as b = exp(Adb0 Z)b0 and from the definition of gen-
eralized geodesics one can conclude that curves cb0 expZ,X and cexp(Adb0

Z),Adb0
X

coincide. Hence any generalized geodesic can be expressed in the form cexpZ,Y for
some Z ∈ p+ and Y ∈ g−. If we consider geodesics of type CA, A ⊂ g−, we have to
suppose the subset A is G0–invariant for the above elimination to be valid. This
convention will be kept hereafter.

Below we will ask when two generalized geodesics cb1,X1 , cb2,X2 coincide and
have a contact of some order in the origin, respectively. Obviously, the above two

22
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curves coincide if and only if the same is true for the curves ce,X1 and cb
−1
1 b2,X2 .

Similarly, r–jets of the former curves in 0 equal if and only if r–jets in 0 of the
later curves equal. So we may suppose b1 = e in the sequel. Altogether, if we
can prove that for a G0–invariant subset A ⊆ g− and some r the curves ce,X and
cexpZ,Y (with X,Y ∈ A and Z ∈ p+) having the same r–jet in 0 are equal, then
this will mean that all geodesics of type CA are uniquely determined by its r–jet
in one point.

4.2. Technicalities. With respect to the above setting, let us compare gener-
alized geodesics ce,X and cexpZ,Y . The two curves coincide if and only if the curve
u : R → G, uniquely defined by the equation

(1) exp(tX) = exp(tAdexpZ Y ) · u(t),

takes values in P . Since the map exp is analytic, the curve u is analytic too
for arbitrary entries X, Y , and Z, so the previous statement is equivalent to the

requirement that all derivatives u(i)(0) = di

dti

∣

∣

0
u(t) are tangent to P . In order to

make the latter requirement more precise, we shall differentiate the map δu instead
of u, where δu : TR → g is the left logarithmic derivative of u defined in 2.3 by
δu = u∗ω. Let us remind the convention that δu is actually understood as a map
R → g so that δu(s) = ω(Tsu·1) = Tℓu(s)−1 ·u′(s) for all s. This obviously implies

that u(i)(0) ∈ p for all i ≤ r if and only if (δu)(i)(0) ∈ p for all i ≤ r − 1. Hence
the Lemma follows.

Lemma. Let u be the curve defined by (1) and r be arbitrary. Then curves
ce,X and cexpZ,Y have the same r–jet in 0 if and only if the derivatives (δu)(i)(0)
belong to p for all i ≤ r − 1.

Next, according to the general formula (6) in 2.3, we get for curves of the shape
Y (t) = tY the derivative δ(exp ◦Y )(t) = Y constant. Hence, applying the left
logarithmic derivative to equation (1), taking into account the Leibniz rule 2.3(4),
yields

(2) δu(t) = X −Adu(t)−1 AdexpZ Y.

In particular, the condition δu(0) ∈ p is satisfied if and only if X and AdexpZ Y
represent the same class in g/p, i.e. the curves really have the same tangent vector
in the origin. Further, (δu)′(0) = − ad(−u′(0))AdexpZ Y = [u′(0),AdexpZ Y ] and
for u′(0) = δu(0) = X − AdexpZ Y we obtain (δu)′(0) = [δu(0), X]. The same

equality holds for all t ∈ R and, moreover, there is a general formula for (δu)(i)(t)
of any order, as the following Lemma shows.

4.3. Lemma. In the setting above, the following equality holds for all i ≥ 1,

(3) (δu)(i)(t) = ad(−X)iδu(t).

Proof. Let us start with the first order derivative, so we have to prove (δu)′(t) =
[δu(t), X]. In order to do this we have to compute the derivative of Ad ◦ ν ◦ u :
R → GL(g) which maps t 7→ Adu(t)−1 . Clearly, the derivative of this map is
(T Ad ◦Tν)(u′(t)), so we are going to express Tgν and Tg Ad in general.
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From rg ◦ ν ◦ ℓg = ν we have Tg−1rg ◦ Tgν ◦ Teℓg = Teν, thus Tgν =
−Terg−1 ◦Tgℓg−1 . Similarly, Ad ◦ℓg = Adg ◦Ad implies Tg Ad ◦Teℓg = Adg ◦Te Ad,
so Tg Ad = Adg ◦ ad ◦Tgℓg−1 . Altogether,

d
dt

Adu(t)−1 = (Adu(t)−1 ◦ ad ◦Tℓu(t)) ◦ (−Tru(t)−1 ◦ Tℓu(t)−1)(u′(t)).

Since Adg = Te(ℓg ◦ rg−1) and δu(t) = Tℓu(t)−1 ◦ u′(t), the latter expression reads

as d
dt

Adu(t)−1 = (−Adu(t)−1 ◦ ad ◦Adu(t))(δu(t)) and so

(δu)′(t) = Adu(t)−1 [Adu(t) δu(t),AdexpZ Y ] = [δu(t),Adu(t)−1 AdexpZ Y ].

Substituting Adu(t)−1 AdexpZ Y = X − δu(t) from (2), the claim follows.
Now, let i > 1 and assume that the formula is valid for all orders less then i.

Then

(δu)(i)(t) = d
dt

ad(−X)i−1δu(t)

and since ad(−X)i−1 is linear and (δu(t))′ is already computed, we arrive at

(δu)(i)(t) = ad(−X)i−1(δu(t))′ = ad(−X)iδu(t),

which is the required formula. �

An easy consequence of this Lemma is the finiteness of the order of jets deter-
mining generalized geodesics. An estimate depending on the length of grading of
the Lie algebra is deduced in the following Proposition but it is not sharp at all.
Better estimates depend especially on the type of generalized geodesics and they
will be improved for a number of cases in next sections.

4.4. Proposition. Let k be the length of the grading of a Lie algebra g. If two
geodesics of an arbitrary type have the same (k + 2)–jet in one point then they
coincide.

Proof. Let us consider A = g−. Clearly this choice provides the estimate for
all A ⊂ g−. With respect to the setting in 4.1 we have to show that curves ce,X

and cexpZ,Y coincide if they share the same (k + 2)–jet in 0. Let u : R → G be
the curve determined by equation 4.2(1). By Lemmas 4.3 and 4.2, the assumption
on the (k + 2)–jet in 0 implies that ad(−X)i(δu(0)) ∈ p for all i ≤ k + 1. Since
X ∈ g−k ⊕ . . . ⊕ g−1 and δu(0) ∈ g0 ⊕ . . . ⊕ gk, compatibility of Lie bracket with
the grading implies that ad(−X)iδu(0) lies in g−k ⊕ . . .⊕ gk−i. In particular, for
i = k + 1 we see that ad(−X)k+1(Z) has to lie both in g− and in p, so it must be
zero. This implies that (δu)ℓ(0) = 0 ∈ p for all ℓ > k+1 and thus curves ce,X and
cexpZ,Y coincide. �

4.5. Reparametrizations. Here we shall discuss when are two generalized
geodesics equal up to a change of parametrization, i.e. we consider unparametrized
geodesics of a certain type on which a class of preferred parametrizations appears.
We will prove a general technical lemma which will allow us to find the group of
admissible reparametrizations in some particular cases.
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First we have to modify the basic equation (1) as follows. Generalized geodesics
ce,X and cexpZ,Y coincide up to some reparametrization if and only if there exist
mappings u : R → P and ϕ : R → R such that

(4) exp(ϕ(t)X) = exp(tAdexpZ Y ) · u(t).

In order to ϕ be a local reparametrization we require ϕ′(t) 6= 0 and, for simplicity,
ϕ(0) = 0.

First of all, the left logarithmic derivative of δ(exp ◦Y )(t) for Y (t) = ϕ(t)X
equals to ϕ′(t)X by the formula (6) in 2.3. Now, with the Leibniz rule as above,
the left logarithmic derivative of (4) gives

(5) δu(t) = ϕ′(t)X −Adu(t)−1 AdexpZ Y.

Obviously, the condition δu(0) ∈ p is satisfied if and only if tangent vectors of the
two curves in the origin equal up to a scalar multiple ϕ′(0). In the proof of 4.3 we
have shown the equality d

dt
Adu(t)−1 W = −[δu,Adu(t)−1 W ] holds for any W ∈ g.

Now the derivative (δu)′, after some substituting from (5), looks like

(6) (δu)′(t) = ϕ′′(t)X − ϕ′(t)[X, δu(t)].

Inductively, we get a recursive formula without any heavy effort,

(7) (δu)(i)(t) = ϕ(i+1)(t)X −

i
∑

k=1

(

i−1

k−1

)

ϕ(k)(t)[X, (δu)(i−k)(t)].

Another way of expressing (δu)(i) is to substitute (δu)′ from (6) in each step of the
induction, which leads to the following Lemma.

Lemma. With the notation as above, omitting the variable t, the following
holds for all i ≥ 1,

(8) (δu)(i) = ϕ(i+1)X +
i
∑

k=1

∑

J,A

(−1)kcJ,A(ϕ
(j1))a1. . . (ϕ(js))as ad(X)k(δu),

where the internal sum runs over all s–tuples of positive integers J = (j1, . . . , js)
satisfying j1 < j2 < · · · < js and s–tuples of arbitrary positive integers A =
(a1, . . . , as) such that a1j1 + · · ·+ asjs = i and a1 + · · ·+ as = k. The coefficients
cJ,A are

cJ,A =
i!

(j1!)a1 . . . (js!)asa1! . . . as!
.

Let us describe in words what the individual terms in the general formula mean.
The value of k says how many times ϕ occurs in the term in question (and so many
times X hits δu via the adjoint action and the sign is set appropriately), while the
coefficients cA,J express in how many different ways we may split i derivatives

onto k copies of ϕ’s in order to achieve the result (ϕ(j1))a1. . . (ϕ(js))as . Now, the
differentiation of this formula and substitution from (6) means that we perform



26 GENERALIZED GEODESICS

the last derivative on one of the ϕ’s in the individual terms in the formula, or we
attach a new ϕ, which is differentiated only once, to the existing terms.

But this is exactly how all splittings of i+ 1 (distinguishable) hits of k (undis-
tinguishable) targets are obtained from the answers to the same question for i
derivatives and k or k − 1 targets. Either the last hit has been added to some
existing one among k targets, i.e. we use the answer with i hits and k targets, or
we have had to introduce a new target which was hit once, i.e. we used the answer
with i hits and k − 1 targets.

The above ideas provide a way to count the coefficients cJ,A. Now we are ready
to prove the above Lemma by induction.

Proof of Lemma. First of all, let us rewrite the formula (8) as

(9) (δu)(i) = ϕ(i+1)X +
∑

B

cB(ϕ
′)b1. . . (ϕ(i))bi ad(X)|B|(δu),

where the sum runs over all i–tuples of nonnegative integers (b1, . . . , bi) = B which
satisfy b1 + 2b2 + · · ·+ ibi = i. In particular, bi can take only two values, either 1
or 0. Symbol |B| denotes the sum b1 + · · ·+ bi and

cB =
(−1)|B| i!

(2!)b2. . . (i!)bi b1! . . . bi!
.

Let us start with the case i = 1. Then the entire sum has just one possible
term for b1 = 1, which gives the correct formula (6). Inductively, let us assume
the formula holds for i ≥ 1. We are going to prove the same is true for i+ 1.

Let W = cB ·(ϕ′)b1. . . (ϕ(i+1))bi+1 ad(X)|B|(δu) be a summand of (δu)(i+1) ex-

pressed according to (9), i.e.
∑i+1

ℓ=1 ℓ bℓ = i + 1 and |B| =
∑i+1

ℓ=1 bℓ. Any such W ,
written as W = cB ·WB , arises by assembling certain terms from the derivative of
(δu)(i). If bi+1 = 1 then b1 = · · · = bi = 0, cB = 1, and so W = ϕ(i+1)[X, δu].
In that case, WB appears only in the derivative of ϕ(i)[X, δu] and the coefficient
agrees.

For bi+1 = 0, all possible contributions to W occur as follows. For any ℓ =
2, . . . , i such that bℓ > 0, the term WB appears in the derivative of the power

cBℓ
(ϕ′)b1. . . (ϕ(ℓ−1))bℓ−1+1(ϕ(ℓ))bℓ−1. . . (ϕ(i))bi ad(X)|Bℓ|(δu)

with the coefficient (bℓ−1 + 1)cBℓ
. Obviously, |Bℓ| = |B| for all mentioned ℓ. If

b1 > 0, the last contribution comes from

cB1(ϕ
′)b1−1(ϕ′′)b2. . . (ϕ(i))bi ad(X)|B1|(δu)′,

where clearly |B1| = |B|−1. Substituting (δu)′ from (6) really yields WB with the
coefficient −cB1 .

In order to complete the proof we have to show that the sum of all coefficients
obtained above equals to cB . By the inductive presumption, all mentioned coeffi-
cients have the appropriate form, i.e.

cB1 =
(−1)|B1| i!

(2!)b2. . . (i!)bi (b1 − 1)! . . . bi!
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and, for each ℓ = 2, . . . , i,

cBℓ
=

(−1)|B| i!

(2!)b2. . . ((ℓ− 1)!)bℓ−1+1(l!)bℓ−1. . . (i!)bi b1! . . . (bℓ−1 + 1)!(bℓ − 1)! . . . bi!
.

Now we can summarize the coefficients

−cB1 +

i
∑

ℓ=2

(bℓ−1 + 1)cBℓ
=

(−1)|B| i!

(2!)b2. . . (i!)bi b1! . . . bi!

(

b1 +

i
∑

ℓ=2

ℓ! bℓ
(ℓ− 1)!

)

.

Obviously, the sum in brackets is
∑i

ℓ=1 ℓ bℓ which equals to i+1 due to the condition
bi+1 = 0. Hence the right hand side is really cB , which completes the proof. �

5. Irreducible geometries

Irreducible parabolic geometries enjoy the most understandable systems of gen-
eralized geodesics. The main consequence of the |1|–grading of the Lie algebra g

is that the subgroup exp p+ ⊂ P acts trivially on g− so the isotropy representa-
tion of the structure group P on g/p = g− factorizes over G0. Indeed, for any
X ∈ g−1 and Z ∈ p+ = g1, the g− part of AdexpZ X = X + [ZX] + 1

2 [Z[ZX]] is
just X. This fact brings a lot of simplifications in computations which allow us to
refine the estimate from Proposition 4.4, to find the possible reparametrizations
of any geodesic of an arbitrary type, and moreover, to express the space of initial
conditions very explicitly.

5.1. Proposition. Each generalized geodesic in a |1|–graded parabolic geometry
is uniquely determined by its 2–jet in one point.

Proof. Let u : R → G be the curve determined by geodesics ce,X , cexpZ,Y , and
equation 4.2(1). For a |1|–graded geometry the condition δu(0) ∈ p reads as X = Y
and so δu(0) = −[ZX]− 1

2 [Z[ZX]]. Following Lemma 4.3 we get

(δu)′(0) = [X[ZX]] + 1
2 [X[Z[ZX]]],

which belongs to p if and only if [X[ZX]] = 0. This implies [X[Z[ZX]]] =
[[XZ][ZX]] + [Z[X[ZX]]] = 0, thus (δu)′(0) = 0. Altogether, presumptions
δu(0) ∈ p and (δu)′(0) ∈ p imply (δu)(i)(0) = 0 for all i ≥ 2 so the statement
holds true. �

Next paragraphs provide an explicit description of spaces T r
CA
M up to the third

order which enables us, in addition, to recover the above refinement in a very
visible way, see 5.3. Unfortunately, a similar process is much more complicated for
longer gradings.

5.2. Jet bundles. Let us begin with an alternative description of the jet bundle
T r
1M = Jr

0 (R,M) in the case of homogeneous spaces M = G/P . Recall that
T r
1M = P rM ×Gr

m
Jr
0 (R,R

m)0, where P rM = Jr
0 (R

m,M) is the bundle of r–
frames on M and both actions of the structure group Gr

m = invJr
0 (R

m,Rm)0 are
given by the jet compositions. For an arbitrary local diffeomorphism u : Rm →M
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and any path c : R → M with u(0) = c(0), the above identification is indicated
as jr0c 7→ {jr0u, j

r
0(u

−1 ◦ c)}. Further, the standard fiber Jr
0 (R,R

m)0 is obviously
identified with (Rm)r due to the transcription jr0c 7→ (c′(0), . . . , c(r)(0)). Now we
can write T r

1M = P rM ×Gr
m
(Rm)r.

Next, for the homogeneous bundle p : G→ G/P of a parabolic geometry, there
is the standard principal bundles’ homomorphism ι : G → P r(G/P ) over the
homomorphism of Lie groups i : P → Gr

m given by the formulae

ι(g) = jr0(ℓg ◦ ε) and i(b) = jr0(ε
−1 ◦ ℓb ◦ ε).

The map ε is the local diffeomorphism p ◦ exp |g−
: g−1 → G/P , i.e. the normal

coordinates in e ∈ G in the sense of 3.6. If r is at least 2 then the homomorphism
ι is a reduction of the bundle P r(G/P ) to the structure group P , see [18] for the
proof. In that case we can write T r(G/P ) = G ×P (g−1)

r, where the left action
λ : P × (g−1)

r → (g−1)
r is fully determined by the action of Gr

m on Jr
0 (R,R

m)0.
Below we describe the action λ explicitly up to the third order. In particular, for
r = 1 we will recover the truncated adjoint action of P on g−1 defining the tangent
bundle T (G/P ) = G×P g−1.

For any b ∈ P , let us denote by ψb = ε−1 ◦ℓb ◦ε the local diffeomorphism around
0 ∈ g−1 which appears in the definition of the homomorphism i : P → Gr

m. Then
λ(b) is completely given by jr0ψb so that

(1) λ(b)(jr0c) = jr0(ψb ◦ c).

Obviously, for any X ∈ g−1 we have p(b expX) = b expX ·P = exp(AdbX)·P and
so ψb(X) = ε−1(exp(AdbX)·P ). In other words, ψb(X) is the unique Y ∈ g−1

satisfying

(2) exp(AdbX)·P = exp(Y )·P.

It is not easy to find the image ψb(X) in general, but we need the r–jet of this
map only. This is performed for r = 3 in the following Lemma.

Lemma. The action λ : P × (g−1)
3 → (g−1)

3 defined above is given by the
formula

(3) λ(b0 expZ)

(

X1

X2

X3

)

= Ad(b0)

(

X1

X2−[X1[ZX1]]

X3−3[X1[ZX2]]+
3
2 [[X1[ZX1]][ZX1]]

)

,

where b0 ∈ G0, Z ∈ g1, and Ad(b0)(X1, X2, X3) = (Adb0 X1,Adb0 X2,Adb0 X3).

Proof. Inspired by [23, 2.35]. Recall that λ(b)(j30c) = j30(ψb◦c) and let us assume
the 3–jet of c in 0 is (X1, X2, X3). For any b ∈ P , uniquely written as b = b0 expZ
with b0 ∈ G0 and Z ∈ g1, we have ψb = ψb0 ◦ ψexpZ . The understanding of the
action of b0 is effortless, since ψb0 = Ad(b0) is linear and keeps g−1 invariant.
Hence, λ(b0)(X1, X2, X3) = (Adb0 X1,Adb0 X2,Adb0 X3).

Now we are going to describe the action of expZ, so we are dealing with an
expression

exp(AdexpZ X) = exp
(

X + [ZX] + 1
2 [Z[ZX]]

)

.
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Let us denote A = AdexpZ X and write expA = expX · exp(−X)· expA. Then
using the Baker–Campbell–Hausdorff formula [17, 4.29] yields

expA = expX · exp
(

−X +A− 1
2 [XA] +

1
12 ([X[XA]]− [A[AX]]) + r(p) + r(4)

)

,

where r(p) represents terms in p and r(4) represents terms containing at least 4
copies of X. Expanding this equality gives

expA = expX · exp
(

− 1
2 [X[ZX]] + 1

12 (2[X[X[ZX]]] + [X[X[Z[ZX]]]]+

+ [[ZX][X[ZX]]]) + [ZX] + 1
2 [Z[ZX]] + r(p) ∩ r(2) + r(4)

)

.

Now, since [X[X[ZX]]] = 0 and [X[Z[ZX]]] = [Z[X[ZX]]], taken into account the
Jacobi identity, the sum [X[X[Z[ZX]]]] + [[ZX][X[ZX]]] vanishes. Hence we can
write

expA = expX ·e· exp
(

− 1
2 [X[ZX]] + [ZX] + 1

2 [Z[ZX]] + r(p) ∩ r(2) + r(4)
)

.

Next we substitute e = exp(− 1
2 [X[ZX]])· exp( 12 [X[ZX]]) and consecutively e =

exp( 14 [[X[ZX]][ZX]])· exp(− 1
4 [[X[ZX]][ZX]]) in order to get

exp(AdexpZ X) = exp
(

X − 1
2 [X[ZX]]

)

·e· exp
(

1
4 [[X[ZX]][ZX]] + r(p) + r(4)

)

=

= exp
(

X − 1
2 [X[ZX]] + 1

4 [[X[ZX]][ZX]]
)

· exp
(

r(p) + r(4)
)

.

Finally, any 3–jet (X1, X2, X3) is represented by the curve Y (t) = tX1+
1
2 t

2X2+
1
6 t

3X3 which, plugged into the latter equality instead of X, gives

exp(AdexpZ Y (t)) = exp
(

tX1 + t2( 12X2 −
1
2 [X1[ZX1]])+

+ t3( 16X3 −
1
2 [X1[ZX2]] +

1
4 [[X1[ZX1]][ZX1]]) + r(t4)

)

. exp
(

r(p) + r(t4)
)

.

Hence

j30(ψexpZ ◦ Y ) =
(

X1, X2 − [X1[ZX1]], X3 − 3[X1[ZX2]] +
3
2 [[X1[ZX1]][ZX1]]

)

,

which completes the proof. �

5.3. Distinguished jets. Let c : R → G/P be a curve with c(0) = gP . The
3–jet of the curve in 0 is clearly written as j30c = {j30(ℓg ◦ ε), j

3
0(ε

−1 ◦ ℓg−1 ◦ c)} ∈
P 3(G/P ) ×G3

m
J3
0 (R, g−1)0. With respect to the reduction ι : G → P 3(G/P ) and

other constructions in 5.2, we can write j30c = {g, (X1, X2, X3)} ∈ G ×P (g−1)
3,

where Xi = di

dti

∣

∣

0
(ε−1 ◦ ℓg−1 ◦ c). Another representative of c(0) = gP certainly

defines the same 3–jet. If c is a generalized geodesic c = c g,X then c(0) = gP and
(ε−1 ◦ ℓg−1 ◦ c)(t) = tX. Hence the 3–jet has got a rather nice form

j30c
g,X = {g, (X, 0, 0)}.

Let ce,X and cexpZ,Y be two generalized geodesics as in 4.1. The correspond-
ing 3–jets in 0 are j30c

e,X = {e, (X, 0, 0)} and j30c
expZ,Y = {expZ, (Y, 0, 0)} =
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{e, λ(expZ)(Y, 0, 0)}, respectively. Due to Lemma 5.2, one can easily recompute
the coordinates if the frame has been changed. So we obtain

(4) j30c
e,X =

{

e,

(

X

0

0

)}

and j30c
expZ,Y =

{

e,

(

Y

−[Y [ZY ]]
3
2 [[Y [ZY ]][ZY ]]

)}

.

Now the curves share the same 2–jet in 0 if and only if X = Y and [X[ZX]] = 0.
But then the 3–jets equal too, thus by Proposition 4.4 the two curves coincide. So
we have recovered the refinement from 5.1 in a very explicit way.

At the same time, for a G0–invariant subset A ⊆ g−1 we can easily describe the
space T r

CA
(G/P ) = {jr0c

g,X : g ∈ G,X ∈ A} defined in 2.6. In the setting above,

T r
CA

(G/P ) =
{

{g, (X, 0, . . . , 0)} : g ∈ G,X ∈ A
}

, so

T r
CA

(G/P ) = G×P S
r
A

where the standard fiber Sr
A is just the P–orbit of the subset A×{0}× . . .×{0} ⊂

(g−1)
r with respect to the action λ defined in 5.2. Especially, the standard fiber

of the functor T 3
CA

can be written as

S3
A =

{(

X

[X[XZ]]
3
2 [[X[ZX]][ZX]]

)

: Z ∈ g1, X ∈ A

}

due to the G0–invariance of A. This description shows most clearly that the sub-
space T r

CA
(G/P ) ⊆ T r(G/P ) is not a smooth submanifold in general since its fibers

are algebraic submanifolds in (g−1)
r only. We shall meet explicit examples in a

while. An alternative way to the same result, based on the techniques developed
in Section 4, can be found in [8].

Let Cξ
A be the set of geodesics of type CA with a common tangent vector ξ as

suggested in 2.6. Without lost of generality we may suppose ξ = {e,X ∈ A}. For
each r > 2, an arbitrary element of T r

CA
(G/P ) is completely determined by its

projection to T 2
CA

(G/P ), so the set Cξ
A is naturally parametrized by the preimage

of ξ with respect to the jet projection π2
1 : T 2

CA
(G/P ) → TCA

(G/P ). With respect

to the setting above, the projection π2
1 is given by the identity on G and the P–

equivariant projection S2
A → S1

A = A onto the first slot. Hence the preimage
(π2

1)
−1{e,X} is identified with the image of the mapping (adX)2

∣

∣

g1
: g1 → g−1,

which is isomorphic to g1/ ker(adX)2. For similar discussions in more–graded
geometries see 7.1 and consecutive examples.

5.4. Reparametrizations. Further, we can easily find necessary and suffi-
cient conditions for two generalized geodesics ce,X and cexpZ,Y to coincide up to
a change of parametrization. With respect to Proposition 5.1 this is equivalent to
the existence of a reparametrization ϕ such that j20(c

e,X ◦ ϕ) = j20c
expZ,Y , so we

have to describe how reparametrizations effect jets of generalized geodesics.
Let us remind that jr0c

g,X = {g, (X, 0, . . . , 0)}, which has been obtained in 5.3
by differentiating of the curve (ε−1 ◦ ℓg−1 ◦ c g,X)(t) = tX in 0. Similarly, for
a reparametrization ϕ : R → R, ϕ(0) = 0, the corresponding curve in g−1 is
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(ε−1 ◦ ℓg−1 ◦ c g,X ◦ϕ)(t) = ϕ(t)X so the r–jet of the reparametrized geodesic looks
like

jr0(c
g,X ◦ ϕ) =

{

g,

(

ϕ′(0)X

ϕ′′(0)X

...

)}

.

Together with (4), the equality j20(c
e,X ◦ ϕ) = j20c

expZ,Y holds if and only if

(5) ϕ′(0)X = Y and ϕ′′(0)X = −[Y [ZY ]].

So we get the following Lemma.

Lemma. The generalized geodesics ce,X and cexpZ,Y in a |1|–graded parabolic
geometry parametrize the same curve if and only if there is a function ϕ : R → R

such that ce,X ◦ϕ is a generalized geodesic, ϕ(0) = 0, ϕ′(0)X = Y , and ϕ′′(0)X =
−[Y [ZY ]].

Moreover, the same arguments as above yields that j30(c
e,X ◦ ϕ) = j30c

expZ,Y if
and only if we add

(6) ϕ′′′(0)X = 3
2 [[Y [ZY ]][ZY ]]

to the two conditions in (5). Substitution from (5) into (6) leads to the formula

(7) ϕ′′′(0) =
3

2

ϕ′′(0)2

ϕ′(0)

which reminds the Schwartzian differential equation well known from conformal
geometries, see [2].

In order to describe the distinguished reparametrizations which appear in this
way, we have to compute explicitly the consequences of all conditions (δu)(i)(0) ∈ p,
where u is determined by the equality (4) in 4.5.

5.5. Lemma. If the generalized geodesics ce,X and cexpZ,Y in a |1|–graded
parabolic geometry parametrize the same curve then the corresponding reparame-
trization ϕ satisfies the following conditions,

(8) ϕ′(0)X = Y,

(9)
ϕ′′(0)

ϕ′(0)2
X = [X[XZ]], and

(10) ϕ(i+1)(0) =
(i+ 1)!

2i
ϕ′′(0)i

ϕ′(0)i−1
for all i ≥ 2.

Proof. We shall evaluate explicitly the consequences of (δu)(i)(0) ∈ p for all i.
The evaluation of 4.5(5) in 0 yields δu(0) = ϕ′(0)X−(Y +[ZY ]+ 1

2 [Z[ZY ]]). Thus,
δu(0) ∈ p if and only if ϕ′(0)X = Y and so (8) follows. In that case,

(11) δu(0) = −ϕ′(0)
(

[ZX] + 1
2 [Z[ZX]]

)

.
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Similarly, from 4.5(6) we get (δu)′(0) = ϕ′′(0)X−ϕ′(0)[X, δu(0)]. After the substi-
tution of (11) one can easily verify that the condition (9) is correct. Let us remind
that conditions (8) and (9) just recover the two conditions in (5).

In order to complete the proof we need the general formula (8) from Lemma 4.5.
Since our Lie algebra g is |1|–graded, all iterated adjoint actions by X on δu(0)
vanish if the order is more then two. Thus only terms with k ≤ 2 may survive and
the general formula reads as

(δu)(i) = ϕ(i+1)X − ϕ(i)[X, δu] +
1

2

i−1
∑

ℓ=1

i!
ℓ!(i−ℓ)!ϕ

(ℓ)ϕ(i−ℓ)[X[X, δu]],

where the variable t is omitted for the sake of lucidity. Now, evaluating in 0 and
substituting from (11) yields

(δu)(i) = ϕ(i+1)X + ϕ(i)ϕ′[X[ZX]]−

−
1

4

i−1
∑

ℓ=1

(

i

ℓ

)

ϕ(ℓ)ϕ(i−ℓ)ϕ′[X[X[Z[ZX]]]] + term in g0.

Finally, due to the symmetry [X[Z[ZX]]] = [Z[X[ZX]]] and the equality (9), for
i ≥ 2 we get

(δu)(i) =

(

ϕ(i+1) −
ϕ(i)ϕ′′

ϕ′
−

1

4

i−1
∑

ℓ=1

(

i

ℓ

)

ϕ(ℓ)ϕ(i−ℓ)ϕ
′′2

ϕ′3

)

X + term in g0.

In particular, (δu)(i) ∈ p if and only if

(12) ϕ(i+1) =
ϕ(i)ϕ′′

ϕ′
+

1

4

i−1
∑

ℓ=1

(

i

ℓ

)

ϕ(ℓ)ϕ(i−ℓ)ϕ
′′2

ϕ′3
,

all evaluated in 0. For i = 2, the latter equation looks like ϕ′′′ = 3
2
ϕ′′2

ϕ′
, which

really agrees with the formula (10). Let us inductively suppose that i > 2 and the
equality (10) holds up to i − 1, i.e. for all ϕ(k) with k ≤ i. We have to show the
same is true for i.

Obviously, ϕ(i+1) is determined uniquely in terms of ϕ(k) with k ≤ i, so we can

substitute ϕ(k) = k!
2k−1

ϕ′′k−1

ϕ′k−2 into (12) by the inductive assumption. Hence

ϕ(i+1) =
i!

2i−1

ϕ′′1+i−1

ϕ′1+i−2
+

1

4

i−1
∑

ℓ=1

(

i
ℓ

)

ℓ!

2ℓ−1

(i− ℓ)!

2i−ℓ−1

ϕ′′2+ℓ−1+i−ℓ−1

ϕ′3+ℓ−2+i−ℓ−2
=

=

(

i!

2i−1
+

1

4

i−1
∑

ℓ=1

i!

ℓ!(i− ℓ)!

ℓ!(i− ℓ)!

2i−2

)

ϕ′′i

ϕ′i−1

and the coefficient in the bracket simplifies to

i!

2i−1
+
i− 1

4

i!

2i−2
=
i!(2 + i− 1)

2i
=

(i+ 1)!

2i
.
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Hence the formula in (10) is correct. �

Let us summarize what we have achieved so far. If the conditions of (8) and
(9) are satisfied then ϕ′(0) and ϕ′′(0) are determined by the choice of the tangent
vectors to the curve and by the element Z ∈ g1, respectively. All other derivatives
of ϕ may be defined by the formula (10). In particular, the special case i = 2 yields

ϕ′′′(0) =
3

2

ϕ′′(0)2

ϕ′(0)
,

which recovers the equality (7). We shall see that the formulae for ϕ(i)(0) determine

an analytic local solution of the Schwartzian differential equation ϕ′′′ = 3
2
ϕ′′2

ϕ′
.

5.6. Proposition. Suppose that g is |1|–graded. If two generalized geodesics
coincide as unparametrized curves then the corresponding local reparametrization

ϕ has the form ϕ(t) = At+B
Ct+D

where
(

A B

C D

)

∈ SL(2,R). Conversely, if c = cb,X is

a parametrized geodesic then all curves c◦ϕ with reparametrizations ϕ of the latter
form are again geodesics if and only if there is Z ∈ g1 such that [X[XZ]] = X.

Proof. Let two generalized geodesics coincide up to a reparametrization ϕ. Ac-
cording to Lemma 5.5, all derivatives of the order greater than 3 of the function
ϕ are expressed in terms of ϕ′(0) and ϕ′′(0). Now the Taylor development of the
function ϕ in 0 is

ϕ(t) = ϕ′(0)t+
1

2
ϕ′′(0)t2 +

1

6

3

2

ϕ′′(0)2

ϕ′(0)
t3 + · · ·+

1

(i+ 1)!

(i+ 1)!

2i
ϕ′′(0)i

ϕ′(0)i−1
ti+1 + · · ·

and the geometric series ϕ(t) = ϕ′(0)t
∑∞

i=0

( ϕ′′(0)
2ϕ′(0) t

)i
locally converges around 0

with the value

ϕ(t) = ϕ′(0)t

(

1−
ϕ′′(0)

2ϕ′(0)
t

)−1

.

If we want to allow reparametrizations with ϕ(0) 6= 0, we have just to replace
equation 4.5(4) by

exp((ϕ(t)− ϕ(0))X) = exp(tAdexpZ Y ) · u(t)

and the result differs only by adding the value ϕ(0) to the fraction above. In that
case the reparametrization takes the form

ϕ(t) =
At+B

Ct+D
, where A = ϕ′(0)−

ϕ′′(0)

2ϕ′(0)
ϕ(0), B = ϕ(0), C = −

ϕ′′(0)

2ϕ′(0)
, D = 1.

In particular, the solution with ϕ′′(0) = 0 yields the affine reparametrization of
the curve which of course have to be a geodesic too. Moreover, the determinant of

the matrix
(

A B

C D

)

is ϕ′(0) which must be nonzero, so we may normalize this just

to 1 and the first statement of the Proposition is proved.
For the second statement we may obviously restrict ourselves to the case when

ϕ(0) = 0 and b = e. Let us fix ϕ′(0) and ϕ′′(0) and choose Z with [X[XZ]] =
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ϕ′′(0)X and Y = ϕ′(0)X. Then there is a solution of the Schwartzian differential
equation with these initial data and so ϕ satisfies all conditions from Lemma 5.5. In
particular, δu(i)(0) ∈ p for all i with this choice for ϕ and so ϕ is a reparametrization
of ce,X and cexpZ,Y . �

In all cases we know, there always exists an element Z ∈ g1 for each X ∈
g−1 such that [X[XZ]] = X . This provides an invariant class of preferred
reparametrizations on each generalized geodesic with the freedom of SL(2,R),
the projective group of line. Therefore reparametrizations of this type are called
projective—in fact, they exhaust all nonsingular solutions of the Schwartzian dif-
ferential equation.

Sometimes, for a fixed X ∈ g−1 all elements Z ∈ g1 satisfy [X[XZ]] = X, which
implies that all geodesics in the given direction parametrize the same curve. In
particular, all vectors in projective or null vectors in conformal geometries have
got this property, see examples in 5.7.

Corollary. The generalized geodesics ce,X and cexpZ,Y in a |1|–graded parabolic
geometry parametrize the same curve if and only if there are a 6= 0 and b such that
Y = aX, and [Y [Y Z]] = bX.

Proof. The statement follows immediately from the latter Proposition and
Lemma 5.4. The appropriate projective reparametrization ϕ is uniquely deter-
mined by the initial condition ϕ(0) = 0, ϕ′(0) = a, and ϕ′′(0) = b. �

5.7. Examples. Let us recall that in the case of a |1|–grading all elements
from P+ = exp g1 act trivially on To(G/P ) = g/p, so the P–action on this space
factorizes over G0. In particular, any G0–invariant subset in g−1 is actually P–
invariant, hence the various types of distinguished geodesics are determined by the
P–orbits of tangent vectors in To(G/P ). In other words, all geodesics tangent to
vectors in a common P–orbit belong always to the same class (and thus behave
the same).

Example 1. Conformal Riemannian structures. The principal group of the ge-
ometry corresponds to G = O(p + 1, q + 1) and the parabolic subgroup P is the
Poincaré conformal group, which can be indicated by a block upper triangular
matrices with blocks of ranks 1, p + q, and 1, see e.g. [26, 4.4]. In an appropri-
ate matrix representation, given by the inner product on R

p+q+2 with the matrix
(

0 0 1

0 J 0

1 0 0

)

in the standard basis, the grading of the Lie algebra g has the form

g−1 =

{(

0 0 0

X 0 0
0 −XtJ 0

)

: X ∈ R
p+q

}

,

g0 =

{(

a 0 0

0 A 0

0 0 −a

)

: A ∈ o(p, q), a ∈ R,

}

, g1 =
{(

0 Z 0
0 0 −JZt

0 0 0

)

: Z ∈ R
p+q∗

}

.

Here J is the matrix defining the standard pseudo–metric of signature (p, q) on
R

p+q = g−1.

Any element

(

a 0 0

0 A 0

0 0 a−1

)

∈ G0 acts on g−1 by the transcription X 7→ a−1AX,

where A ∈ O(p, q). Hence the space g−1 splits into three different orbits of
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the action of G0 according to the sign of ‖X‖2 = XtJX, so we get three dis-
tinct types of generalized geodesics which emanate in directions of positive, neg-
ative, and zero length, respectively. A direct calculation shows that [X[XZ]] =
−2Z(X)X−‖X‖2JZt, where Z(X) = ZX is a real number. The orbit of null vec-
tors is of a particular interest since [X[XZ]] = −2Z(X)X in that case. This just

means that the family Cξ
A of geodesics tangent to a null vector ξ is 1–dimensional

and, in particular, all curves from Cξ
A differ by a reparametrization. Of course,

curves of this type have tangent vectors null in all their points and they are called
null–geodesics. For remaining two cases, where tangent vectors are not null, the
bracket [X[XZ]] takes all values in g−1, i.e. the second derivative may be chosen

arbitrarily and the dimension of the appropriate spaces Cξ
A equals to dim(g−1).

More explicitly, for any Y ∈ g−1 such that ‖Y ‖2 6= 0, one can choose X = Y and
Z = aY tJ , with an appropriate a ∈ R, to get [X[XZ]] = Y .

In particular, for any X ∈ g−1 there always exists an element Z ∈ g1 such that
[X[XZ]] = X, so all geodesics carry a natural projective structure.

Example 2. Almost Grassmannian structures. In this case, G = SL(n +m,R)
and the parabolic subgroup P is the stabilizer of Rn ⊂ R

n+m, so it consists of
block upper triangular matrices with the blocks of sizes n and m on the diagonal.
On the infinitesimal level,

g−1 =
{(

0 0

X 0

)

: X ∈ R
mn
}

,

g0 =
{(

A 0

0 B

)

: tr(A) + tr(B) = 0
}

, g1 =
{(

0 Z

0 0

)

: Z ∈ R
nm
}

.

First, it is easy to see that the subgroup G0 consists of block diagonal matrices,

and its action on g−1 is given by X 7→ TXS−1 for
(

S 0

0 T

)

∈ G0. Two elements

of g−1 lie in the same G0–orbit if and only if they have the same rank, so we
get min(n,m) distinct types of generalized geodesics on manifolds with almost
Grassmannian structures of type (n,m). Further, the computation of the iterated
bracket yields [X[XZ]] = −2XZX. In particular, the choice of the pseudoinverse
matrix Z = X† provides always a multiple of X and so all generalized geodesics
enjoy the distinguished projective structure.

If the rank of X is one, then we may choose X to be the matrix with the left
upper element x11 = 1 and all other 0. Then [X[XZ]] equals to z11X for all Z and
this behavior is shared by all matrices of rank one. Hence geodesics corresponding
to rank one matrices behave like null–geodesics in conformal geometries of indefi-
nite signature. The other extreme is that X has maximal rank, where one gets a
lot of freedom in the available second derivatives of the curves. The case that all
elements of g−1 have the form [X[XZ]] with a fixed X ∈ g−1 occurs only if m = n
and X has rank n.

Example 3. Projective structures. Projective structures are the special case
n = 1 of Example 2 above, in particular, the rank of X 6= 0 is always one. More
explicitly, the product ZX is a real number, so the bracket [X[XZ]] is always a
multiple of X, which in particular implies that all generalized geodesics are deter-
mined, as unparametrized curves, by the direction in one point. This agrees with
the classical definition of a projective structure as a class of affine connections shar-
ing the same unparametrized geodesics. All such connections are parametrized by
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smooth one–forms on the base manifold and they correspond to the Weyl connec-
tions underlying the Cartan connection in the sense of Section 3. See Example
3.8 for an elementary and very clear discussion on generalized geodesics in the
homogeneous projective space.

6. More refinements

In the whole section, letM be a manifold equipped with a parabolic geometry of
some fixed type (G,P ) with a |k|–graded Lie algebra g. We will focus on geodesics
of types Cg−j

, with 0 < j ≤ k, in order to improve the estimate on jets deduced
in 4.4. The most general result is in Theorem 6.4, but since the proof is a bit
technical, we prefer to discuss two simpler special cases first. Let us begin with
some useful observations.

6.1. Technicalities. From 4.1 we know that for each X ∈ A we have to com-
pare ce,X to all curves of the form cexpZ,Y with Z ∈ p+ = g1⊕· · ·⊕gk and Y ∈ A.
Now, according to [26, 3.11], we can get a nicer presentation of expZ, namely, there
are unique elements Zi ∈ gi for i = 1, . . . , k such that expZ = expZ1 · · · expZk.
Since Ad ◦ exp = exp ◦ ad, we get AdexpZ X =

∑∞
i=0

1
i! ad

i
Z(X). Further for

AdexpZ = AdexpZ1 ◦ · · · ◦AdexpZk
and the linearity of Adb : g → g we may write

(1) AdexpZ X =
∑

i1,...,ik

1
i1!···ik!

(adi1Z1
◦ · · · ◦ adikZk

)(X).

Moreover, if X ∈ g−j then a summand in the right hand side lies in gℓ if and
only if i1 + 2i2 + · · · + kik − j = ℓ. Hence the only nonzero terms of the above
sum correspond to all k–tuples of nonnegative integers (i1, . . . , ik) such that 0 ≤
i1 + 2i2 + · · ·+ kik ≤ k + j.

In all cases discussed below, i.e. for all A = g−j with 1 ≤ j ≤ k, the curves
ce,X and cexpZ,Y share the same tangent vector only if Y = X. Then the curve u
associated to these geodesics by equation 4.2(1) yields δu(0) = X −AdexpZ X and
from (1) we get

(2) δu(0) = −
∑

i1,...,ik

1
i1!···ik!

(adi1Z1
◦ · · · ◦ adikZk

)(X),

where the sum runs over all k–tuples (i1, . . . , ik) such that 0 < i1+2i2+ · · ·+kik ≤

k + j. Denoting δu(0) by W , Lemma 4.3 implies that (δu)(i)(0) = adi−X(W ) and
consequently, by Lemma 4.2, in order to prove that geodesics of a type in question
are determined by its r–jets we have to show that adiX(W ) ∈ p for all i ≤ r − 1

implies adiX(W ) ∈ p for all i.
Finally, for each ℓ ≥ 1 define W ′

ℓ to be the sum of those terms in the expression
(2) of W for which all exponents ij with j > ℓ are zero, and put W ′′

ℓ = W −W ′
ℓ .

In particular, we have got W ′′
h = 0, i.e. W ′

h =W , for all h ≥ k.

Further we need another observation for the proofs. For anyX,Y ∈ g, the Jacobi
identity reads as adX ◦ adY = ad[X,Y ] +adY ◦ adX . We shall see in a moment that
this generalizes to

(3) adnX ◦ adY =

n
∑

j=0

(

n

j

)

adadj

X
(Y ) ◦ ad

n−j
X .
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In particular, if adℓ+1
X (Y ) = 0 for some ℓ ≥ 0 then for each n > ℓ the above

sum actually runs over all j such that 0 ≤ j ≤ ℓ, so we can write adnX ◦ adY =
(

∑ℓ
j=0

(

n

j

)

adadj

X
(Y ) ◦ ad

ℓ−j
X

)

◦adn−ℓ
X . This means that the highest order iteration

of adX which might be brought to the right hand side of the expression is adn−ℓ
X .

Let us denote the sum in brackets by ϕ, so we have concluded that the assumption
adℓ+1

X (Y ) = 0 implies the existence of a linear map ϕ : g → g such that adnX ◦ adY =

ϕ◦adn−ℓ
X , provided n > ℓ. Now we are going to prove a slightly more general result.

Lemma. For any n, i ∈ N and X,Y ∈ g, the following equality holds,

(4) adnX ◦ adiY =
∑

j1,...,ji

cJ · ad
ad

j1
X

(Y )
◦ · · · ◦ ad

ad
ji
X
(Y )

◦ ad
n−|J|
X ,

where the sum runs over all i–tuples J = (j1, . . . , ji) such that 0 ≤ |J | ≤ n,
|J | = j1 + · · ·+ ji, and the coefficients are cJ = n!

j1!...ji!(n−|J|)! .

Proof. We prove the claim by induction on i. For i = 1 we obtain the formula
(3) which is visible by induction on n as follows. So n = 1 gives the Jacobi identity
and let us assume inductively that n > 1 and the formula holds for 1, . . . , n − 1.
Then from adnX ◦ adY = adX ◦(adn−1

X ◦ adY ) we get

adnX ◦ adY =
n−1
∑

j=0

(

n−1
j

) (

adX ◦ adadj

X
(Y )

)

◦ adn−1−j
X =

=

n−1
∑

j=0

(

n−1
j

) (

adadj+1
X

(Y ) ◦ ad
n−1−j
X +adadj

X
(Y ) ◦ ad

n−j
X

)

=

= adadn
X
(Y ) +adnX +

n−1
∑

j=1

((

n−1
j−1

)

+
(

n−1
j

))

adadj

X
(Y ) ◦ ad

n−j
X ,

which indeed yields the formula (3) since
(

n−1

j−1

)

+
(

n−1

j

)

=
(

n

j

)

and terms adnX
and adadn

X
(Y ) correspond to j = 0 and j = n, respectively. Thus we have proved

the case i = 1.
Now let us assume that i > 1 and formula (4) holds for i − 1. Obviously,

adnX ◦ adiY = (adnX ◦ adi−1
Y ) ◦ adY and by induction we get

adnX ◦ adiY =
∑

0≤|J|≤n

cJ · ad
ad

j1
X

(Y )
◦ · · · ◦ ad

ad
ji−1
X

(Y )
◦
(

ad
n−|J|
X ◦ adY

)

.

Applying formula (3) to the expression in brackets we obtain

∑

0≤|J|≤n

n−|J|
∑

j=0

cj,J · ad
ad

j1
X

(Y )
◦ · · · ◦ ad

ad
ji−1
X

(Y )
◦ adadj

X
(Y ) ◦ ad

n−|J|−j
X ,

where the coefficients are cj,J = cJ ·
(

n−|J|

j

)

= n!
j1!...ji−1!j!(n−|J|−j)! , so we may

write cj,J = cJ̄ for the i–tuple J̄ = (j1, . . . , ji−1, j) and the result follows. �
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An easy consequence of (4) is that if adℓ+1
X (Y ) = 0 for some ℓ ≥ 0 then for

any i–tuple J all its elements may be supposed to be less or equal to ℓ, hence the
sum actually runs over all J such that 0 ≤ |J | ≤ iℓ. Altogether, the presumption

adℓ+1
X (Y ) = 0 yields the existence of a linear map ϕ : g → g such that

adnX ◦ adiY = ϕ ◦ adn−iℓ
X ,

provided that the condition n > iℓ is satisfied.

6.2. Geodesics of type Cg−k
. For a |k|–graded g, let us begin with an extreme

choice A = g−k defining the geodesics which emanate in directions from TM \
T−k+1M but not necessarily in all of them. In general, tangent vectors of these
geodesics usually form a smaller subset in each tangent space. In other words,
with respect to the truncated adjoint action of P on g−, the P–orbit of A = g−k

is always contained in g− \ g−k+1 but the two sets are not equal in general, see
Example 7.6.

Nevertheless, geodesics of type Cg−k
in |k|–graded parabolic geometries embody

a lot of properties which have been described in the previous section for irreducible
parabolic geometries.

Theorem. Each generalized geodesic of type Cg−k
in a |k|–graded parabolic ge-

ometry is uniquely determined by its 2–jet in a single point.
Moreover, if two of such curves coincide up to parametrization, then this

reparametrization is projective. Conversely, given a generalized geodesic of type
Cg−k

corresponding to (u,X) ∈ G × g−k, every projective change of parametriza-
tion defines a geodesic of the same type if and only if there exists a Z ∈ gk such
that [X[XZ]] = X.

Proof. First, we have to prove that geodesics of type Cg−k
are determined by

2–jets. We shall rely on notation and results from 6.1. With respect to the
above observations, this is equivalent to prove that conditions δu(0) =W ∈ p and

adX(W ) ∈ p imply adiX(W ) ∈ p for all i. From W ∈ p we conclude that vanishing
of the component in g−k+1 is equivalent to [Z1X] = 0. Hence we may omit all
terms in the expansion for which i1 is the only nonzero exponent. Similarly, vanish-
ing of the component in g−k+2 implies [Z2X] = 0, so we omit terms in which only
i1 and i2 are nonzero. Inductively, we get [ZℓX] = 0 for all ℓ = 1, . . . , k− 1 and so
W = −[ZkX]− 1

2 [[Zk[ZkX]]. Now the condition [XW ] ∈ p implies [X[ZkX]] = 0

which yields [XW ] = 0 and so adiX(W ) = 0 for all i, exactly as in 5.1.
Concerning reparametrizations, we may adapt the proofs of Lemma 5.5 and

Proposition 5.6 along the same lines. Using the notation from there, the condition
δu(0) ∈ p implies Y = ϕ′(0)X and moreover, inductively as above, we get [Zℓ Y ] =
0 for all ℓ ≤ k − 1, which is the only difference to the |1|–graded case. Further,
(δu)′(0) ∈ p if and only if ϕ′′(0)X = ϕ′(0)2[Y [Y Zk]] and we finish the proof exactly
as in the |1|–graded case. �

6.3. Geodesics of type Cg−1 . The other extreme class of geodesics is provided
by the choice A = g−1 which is a P–invariant linear subspace in g−, so geodesics
of type Cg−1 emanate from any fixed point in M in all directions of T−1M . The
following Proposition is a special case of Theorem 6.4 and the same observation
holds for the proofs, so the following paragraphs may be skipped over.
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Proposition. Each generalized geodesic of type Cg−1 in a |k|–graded parabolic
geometry is uniquely determined by its (k + 1)–jet in a single point.

Let us start the proof by a claim which concludes the Proposition in a very easy
way. Recall the sums W ′

ℓ and W ′′
ℓ defined in 6.1.

Claim. Let X ∈ g−1 and let adiX(W ) ∈ p for all i ≤ ℓ. Then for each m ≤ ℓ
we have adm+1

X (Zm) = 0 and, in particular, for each n we get adnX(W ′
ℓ) ∈ p.

Proof. We prove this claim by induction on ℓ. If ℓ = 1, we only suppose that
adX(W ) ∈ p. Looking at formula 6.1(2) for W and taking into account that X ∈
g−1, we see that adX(W ) ∈ p implies (and is actually equivalent to) [X[Z1X]] = 0
and thus ad2X(Z1) = 0. Hence it remains to show that adnX(W ′

1) ∈ p for all n.

By definition, W ′
1 =

∑k+1
i=1

1
i! ad

i
Z1
X, thus adnX(W ′

1) ∈ p is equivalent to vanishing

of (adnX ◦ adiZ1
)(X) for all i ≤ n. From the consequence of Lemma 6.1 we know

that ad2X(Z1) = 0 implies that adnX ◦ adiZ1
= ϕ ◦ adn−i+1

X ◦ adZ1 for some linear
map ϕ, where by assumption n− i+ 1 ≥ 1. Hence applying this element to X we
get (adnX ◦ adiZ1

)(X) = ϕ ◦ adn−i+2
X (Z1) which vanishes since n − i + 2 ≥ 2. This

completes the proof of the case ℓ = 1.
Assume inductively that ℓ > 1 and we have proved the result for ℓ−1. Given that

adiX(W ) ∈ p for all i ≤ ℓ, we by induction conclude that adm+1
X (Zm) = 0 for m < ℓ

and adnX(W ′
ℓ−1) ∈ p for all n. In particular, the condition adℓX(W ) ∈ p implies

adℓX(W ′′
ℓ−1) ∈ p. By definition, W ′′

ℓ−1 ∈ gℓ−1 ⊕ · · · ⊕ gk and the only summand of

W ′′
ℓ−1 which belongs to gℓ−1 is [ZℓX]. Hence adℓX([ZℓX]) ∈ g−1 is the only term

in adℓX(W ′′
ℓ−1) which does not lie in p, so the condition adℓX(W ′′

ℓ−1) ∈ p implies

adℓ+1
X (Zℓ) = 0. Now it remains to show that adnX(W ′

ℓ) ∈ p for all n. Since we know
by induction that adnX(W ′

ℓ−1) ∈ p, it suffices to consider adnX(W ′
ℓ −W ′

ℓ−1). From
the expression for W we conclude that

W ′
ℓ −W ′

ℓ−1 =
∑

i1,...,iℓ

1
i1!···iℓ!

(adi1Z1
◦ · · · ◦ adiℓZℓ

)(X),

where each iℓ is always positive. Obviously, the condition adnX(W ′
ℓ − W ′

ℓ−1) ∈

p is equivalent to vanishing of (adnX ◦ adi1Z1
◦ . . . ◦ adiℓZℓ

)(X) for all multi–indices

(i1, . . . , iℓ) such that i1 + 2i2 + · · · + ℓiℓ ≤ n. Since adm+1
X (Zm) = 0, we see from

Lemma 6.1 that adnX ◦ adimZm
= ϕ ◦ adn−mim

X for some linear map ϕ provided that
n > mim. Thus we conclude

adnX ◦ adi1Z1
◦ . . . ◦ adiℓZℓ

= ψ ◦ ad
n−i1−2i2−···−ℓ(iℓ−1)
X ◦ adZℓ

,

and by assumption n− i1 − 2i2 − · · · − ℓ(iℓ − 1) ≥ ℓ. Applying this element to X
we obtain ψ ◦ adrX(Zℓ), where by construction r ≥ ℓ+ 1, so this vanishes and the
statement follows. �

Proof of Proposition. Considering the claim in the case ℓ = k, we see that
adiX(W ) ∈ p for all i ≤ k implies that adnX(W ′

k) ∈ p for all n. Since we have
observed above that W ′

k =W , this completes the proof. �
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6.4. Geodesics of type Cg−j
. The most general case discussed here is provided

by the geodesics of type Cg−j
with arbitrary j = 1, . . . , k. Geodesics of this type

are always tangent to T−jM in all points. More precisely, they emanate from a
given point in certain directions of T−jM \ T−j+1M which correspond just to the
P–orbit of g−j in g− with respect to the truncated adjoint action.

Theorem. Each generalized geodesic of type Cg−j
in a |k|–graded parabolic ge-

ometry, 1 ≤ j ≤ k, is uniquely determined by its r–jet in a single point provided
that rj ≥ k + 1.

Proof of this Theorem generalizes the proof of Proposition 6.3 including some
ideas of the proof of Theorem 6.2. Let us begin with a more general version of
Claim 6.3, then the result follows immediately.

Claim. Let X ∈ g−j and let adiX(W ) ∈ p for all i ≤ ℓ. Then for each s ≤ ℓ

and m satisfying sj ≤ m < (s+1)j we have ads+1
X (Zm) = 0 and, in particular, for

each m < (ℓ+ 1)j we get adnX(W ′
m) ∈ p for all n.

Proof. As in the special case of j = 1, we prove this claim by induction on ℓ.
For ℓ = 1 we suppose W ∈ p and adX(W ) ∈ p. The condition W ∈ p yields
that vanishing of the component in g−j+1 is equivalent to [Z1X] = 0 and by the
same induction as in the proof of 6.2 we obtain that [ZℓX] = 0 for all ℓ < j,
which proves the first statement for s = 0. From adX(W ) ∈ p we conclude that
vanishing of the component in g−j is equivalent to [X[ZjX]] = 0. Similarly, the
component in g−j+1 is [X[Zj+1X]] + [X[Z1[ZjX]]] and its vanishing is equivalent
to [X[Zj+1X]] = 0 since the second summand vanishes due to relations which have

been achieved so far. Inductively, one can conclude that ad2X(Zm) = 0 for each m
satisfying j ≤ m < 2j, which is the first statement for s = 1 = ℓ.

Now, for each n, it remains to prove that adnX(W ′
2j−1) ∈ p, which yields

adnX(W ′
m) ∈ p for all m < 2j. The above condition is equivalent to vanishing of all

terms (adnX ◦ adi1Z1
◦ · · · ◦ ad

i2j−1

Z2j−1
)(X) with i1 +2i2 + · · ·+(2j− 1)i2j−1 < j(n+1).

Let ih be the last nonzero exponent in this expression and let us suppose h ≥ j
at first. Lemma 6.1 with relations adX(Zm) = 0 for m < j and ad2X(Zm) = 0 for
m < 2j yields the above term equals to

(ϕ ◦ ad
n−(ij+···+ih−1)
X ◦ adZh

)(X) = ϕ ◦ ad
n−(ij+···+ih)+2
X (Zh)

for some linear map ϕ. The term in question vanishes if the latter exponent is
grater or equal 2, i.e. n + 1 > ij + · · · + ih, which is obviously satisfied by the
assumption i1 + 2i2 + · · · + hih < j(n + 1). If h < j then we have to deal with a
term ϕ ◦ adn+1

X (Zh) which vanishes trivially. So we have proved the case ℓ = 1.
Let us assume that ℓ > 1 and the claim holds for 1, . . . , ℓ − 1. Given that

adnX(W ) ∈ p for all i ≤ ℓ we obtain by induction that ads+1
X (Zm) = 0 for each s and

m satisfying s ≤ ℓ− 1 and sj ≤ m < (s+1)j and, in particular, adnX(W ′
j(ℓ−1)) ∈ p

for all n. We have to prove that adℓ+1
X (Zm) = 0 and adnX(W ′

m) ∈ p for all n and

m satisfying ℓj ≤ m < (ℓ + 1)j. In particular, the condition adℓX(W ) ∈ p implies

adℓX(W ′′
j(ℓ−1)) ∈ p, where W ′′

j(ℓ−1) belongs to gj(ℓ−2)+1 ⊕ · · · ⊕ gk by definition.

The component of W ′′
j(ℓ−1) which lies in gj(ℓ−1) is the sum of elements of the form

(adi1Z1
◦ · · · ◦ ad

ijℓ
Zjℓ

)(X) where i1 + 2i2 + · · · + jℓ ijℓ = jℓ. In particular, the only
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element from the sum with ijℓ = 1 corresponds to [Zjℓ, X] and the others have

ijℓ = 0. Now, all terms (adℓX ◦ adi1Z1
◦ · · · ◦ ad

ijℓ−1

Zjℓ−1
)(X) with

∑jℓ−1
m=1mim = jℓ

vanishes due to the same arguments as above, hence the condition adℓX(W ′′
j(ℓ−1)) ∈

p implies adℓX([Zjℓ, X]) = 0. More precisely, by the inductive assumptions for any

m < ℓj and s = ⌊m
j
⌋ (the greatest integer ≤ m

j
) we have ads+1

X (Zm) = 0, so there

is a linear map ϕ such that

(adℓX ◦ adi1Z1
◦ · · · ◦ adihZh

)(X) = (ϕ ◦ adrX ◦ adZh
)(X) = ϕ ◦ adr+1

X (Zh)

where ih is the last nonzero number from the sequence i1, . . . , ijℓ−1 and

r = ℓ−
h
∑

m=1

⌊m

j

⌋

im +
⌊h

j

⌋

.

Now the condition r+1 ≥ ⌊h
j
⌋ is equivalent to ℓ+1 ≥

∑h
m=1⌊

m
j
⌋ im which follows

immediately from ℓ =
∑jℓ−1

m=1
m
j
im =

∑h
m=1

m
j
im. So we have really proved that

adℓX([Zjℓ, X]) = 0. Inductively, one can conclude that adℓ+1
X (Zm) = 0 for each m

satisfying ℓj ≤ m < (ℓ+ 1)j.
Finally, we have to prove adnX(W ′

j(ℓ+1)−1) ∈ p for each n, which is equivalent to

vanishing of all terms (adi1Z1
◦ · · · ◦ad

ij(ℓ+1)−1

Zj(ℓ+1)−1
)(X) with

∑j(ℓ+1)−1
m=1 mim < j(n+1).

The same ideas as above leads to the conclusion that any such term vanishes if

n + 1 ≥
∑h

m=1⌊
m
j
⌋ im, where h is an index of the last nonzero exponent ih in

the term in question. Now the latter inequality is obviously satisfied due to the

assumption n+ 1 >
∑h

m=1
m
j
im, so the proof is complete. �

Proof of Theorem. With respect to the above Claim, let ℓ be an integer such
that j(ℓ + 1) − 1 ≥ k. Then W ′

j(ℓ+1)−1 = W and the assumption adiX(W ) ∈ p

for i ≤ ℓ implies adiX(W ) ∈ p for all i. Altogether, geodesics of type Cg−j
are

determined by (ℓ+1)–jets if the number ℓ satisfies the inequality j(ℓ+1)− 1 ≥ k,
i.e. j(ℓ+ 1) ≥ k + 1. Hence the result follows. �

7. More examples

In this section we present a complete classification of generalized geodesics for
several specific more–graded parabolic geometries. First of all, we introduce a
recipe according to which all computations are conducted. The process will be
very natural and rather similar to that of |1|–graded parabolic geometries applied
in 5.7.

Examples 7.2, 7.3, and 7.4 represent some special cases of parabolic contact
structures. According to the standard identification T (G/P ) = G ×P g−, the
underlying contact structure corresponds to the P–invariant subspace g−1 ⊂ g−
and we are dealing with |2|–gradings where g−2 is one–dimensional and the bracket
g−1 × g−1 → g−2 is nondegenerate. In these cases geodesics of type Cg−2 always
emanate in all directions from TM \ T−1M , in other words, the P–orbit of g−2

is the entire complement of g−1 in g−. A very well known instance of this type
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of generalized geodesics is provided by the Chern–Moser chains on CR–structures
of hypersurface type, Example 7.4. In general, from Theorem 6.2 we know that
curves of this type are determined by their 2–jet in a point as parametrized curves,
and it follows that they are uniquely determined by their direction in one point up
to parametrization, by dimension reasons. Moreover, each such geodesic carries a
natural projective structure of distinguished parametrizations.

A slightly more general example of this type was studied for 6–dimensional
CR–structures of codimension 2 in [20]. The whole discussion of those cases is
included in Example 7.5. Finally, Example 7.6 contains a classification of gener-
alized geodesics in the so called x—x—dot geometries which are |2|–graded too.
In the latter cases, the subalgebra g−2 is not one–dimensional and, in contrast to
the contact geometries, geodesics of type Cg−2 does not exhaust all directions from
TM \ T−1M , so the discussion is a bit richer.

7.1. Recipe. The recipe presented here is based only on general results from
Section 4. The developed process will serve us to solve the following problems in
some specific parabolic geometries with nontrivial filtration of tangent bundle. We
have to find

⋆ the sufficient order of jet which determines geodesics of type CA
uniquely,

⋆ the family of generalized geodesics which emanate with a given tangent
vector from one point,

⋆ the class of preferred parametrizations on geodesics of the type in ques-
tion.

1. First of all, we start with the description of distinguished types of tangent
vectors. According to 2.4, they correspond to P–invariant subsets in g− with
respect to the truncated adjoint action Ad. To any such subset we will look for its
G0–invariant subsets which define generalized geodesics emanating in the actual
directions. Sometimes two distinct G0–invariant subsets define the same class of
curves so one of them will be omitted in further discussions. More concretely, for
G0–invariant subsets A,B ⊂ g− the classes of curves CA and CB obviously coincide
if for any X ∈ A there is an element b ∈ P such that Adb(X) ∈ B, and conversely.
Although this condition is very restrictive, it happens in some interesting cases,
see e.g. 7.3, but it has not to be necessary as the computations in 7.2 or 7.4 show.
Further, curves of type CA are contained in a class of curves CB only if the P–orbit
of A belongs to the P–orbit of B, hence we may only control G0–invariant subsets
in the common P–orbit in order to omit the superfluous cases.

2. From 4.1 we know that it suffices to compare geodesics ce,X and cexpZ,Y

(with X,Y ∈ A and Z ∈ p+) in the homogeneous space G/P in order to answer all
above questions. Let A be a G0–invariant subset in g− and ce,X be a generalized
geodesic of type CA. Step by step, following Lemmas 4.2 and 4.3, we will search
Z ∈ p+ and Y ∈ A such that the curves ce,X and cexpZ,Y coincide. At the same
time we get the order of jet which decides the two curves are equal.

The first condition δu(0) ∈ p restricts Z ∈ p+ to fulfill the condition Y =
Ad−1

expZ(X) ∈ A. The other conditions (δu)(i)(0) ∈ p further reduce possible

Z ∈ p+ in order the two curves share a common (i + 1)–jet. All such elements
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form a subspace in p+ denoted by the symbol Bi+1. More precisely, for any r ≥ 1
we put Br = {Z ∈ p+ : jr0c

e,X = jr0c
expZ,Y where Y = Ad−1

expZ(X) ∈ A}. In

particular, B1 = {Z ∈ p+ : Ad−1
expZ(X) ∈ A}. Generalized geodesics of a given

type are obviously determined by a jet of order r if the condition (δu)(r−1)(0) ∈ p

implies (δu)(r)(0) = 0 or, more generally, if the sequence of Bi stabilizes at i = r.
In that case, the assumption (δu)(i)(0) ∈ p implies (δu)(i+1)(0) ∈ p for all i ≥ r−1.

3. Now we are interested in the dimension of the set of geodesics of type CA
sharing the same tangent vector ξ. This set is denoted by Cξ

A as in 5.3 and its
dimension does not depend on a particular vector but only on its type. In view
of the above arguments, let ξ = {e,X} be the fixed vector and further let r be an
order of jet which determines generalized geodesics with the given tangent vector

uniquely. Obviously, for any Z ∈ Br the curves ce,X and cexpZ,Ad−1
expZ

(X) coincide.
If another representative of the vector {e,X} is chosen then the analogously defined

subsets Bi ⊆ p+ are naturally identified with the initial ones, so the set Cξ
A is

parametrized by the quotient B1/Br, which is easy to describe.

4. Finally, we are interested in distinguished parametrizations of generalized
geodesics of a given type. Lemma 4.5 helps us to find all reparametrizations which
appear when two generalized geodesics parametrize the same curve. In all ex-
amples, the function ϕ is estimated according to its behavior in 0, so we must
always check if the estimation is right, i.e. equation 4.5(4) holds true for all t.
Reparametrizations which appear in this way will be either projective or affine
(which is not a coincidence, rather the general rule, cf. [9]).

On the other hand, for any generalized geodesic cg,X and any reparametrization
ϕ of the admissible type the curve cg,X ◦ ϕ is a generalized geodesic too. This
is trivially satisfied if ϕ is affine. Otherwise, the statement is true if and only if
ϕ′′(0) can get any nonzero (and so all) value. This can be easily verified in all cases
discussed below. Further, the value of ϕ′′(0) is expressed during the computation in
variables ϕ′(0), X, and Z so that ϕ′′(0) = −2ϕ′(0)2Z(X), where Z(X) corresponds
to the central part of the bracket [Z,X]. All details are left to the reader, however,
this heavily remind the formula (5) in 3.8.

5. Most of necessary computations has been done with the help of the compu-
tational system Maple, so all technical details are presented in the format of Maple
worksheets [29] and we will only summarize the achieved results of any particular
example into a table of the form:

type X B1 B2 B3 ord dim R ϕ′′(0)

The first column denotes the type of generalized geodesics in question, i.e. a G0–
invariant subset A ⊂ g−. The second column presents a general element X ∈ A, in
particular, all indicated entries are supposed to be nonzero. Columns Bi describe
the sets defined in the point 2 above and if the sequence Bi stabilizes we use the
symbol † instead of rewriting the previous result. The next column is the minimal
order of jet which determines geodesics of type CA uniquely. The column dim
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contains the dimension of the set Cξ
A from the point 3 above with respect to the

vector ξ = {e,X}. The number is simply the difference dim(B1)− dim(B3) since
the sufficient order is never grater than 3 in all examples discussed below. For
all geodesics with the common tangent vector ξ = {e,X} we have to consider all
subsets A ⊂ g− with a common P–orbit containing X. These are indicated in the
table by a one common row. A star ∗ in an expression always means any entry of
the parameter in question.

The rest of the table is devoted to reparametrizations. The column R describes
the subset in B1 such that any curve cexpZ,Y with Z ∈ R and Y = Ad−1

expZ(X)

coincide with ce,X up to a reparametrization ϕ in the sense of 4.5(4). The last
column then expresses the value of ϕ′′(0) with respect to the chosen Z ∈ R, in
particular, for Z ∈ B1 we have ϕ′(0) = 1. The geodesics in question allow only
affine class of reparametrizations if and only if R/B3 = 0, otherwise, the quotient
R/B3 ⊆ B1/B3 is 1–dimensional and any nonzero element of R/B3 determines a
nonzero value of ϕ′′(0). Together with conditions ϕ′(0) = 1 and ϕ(0) = 0 one can
get an explicit expression of the corresponding projective reparametrization ϕ.

7.2. Projective contact structures. Projective contact structures are con-
tact structures with a projective structure on the contact distribution. The stan-
dard homogeneous model in an odd dimension 2n − 1 is the real projective space
RP 2n−1 with a transitive action of the semisimple Lie group Sp(2n,R) ⊆ SL(2n,R)
which is obtained as a restriction of the usual action of the group SL(2n,R) on
RP 2n−1. The stabilizer of any ray in R

2n is isomorphic to the parabolic subgroup
in G = Sp(2n,R) which is indicated by the Satake diagram x—o · · · o=<=o. In an
appropriate matrix representation, the parabolic subgroup P is formed by upper
triangular matrices with blocks of sizes 1, 2n − 2, and 1 on the diagonal. See
[26, 4.4] for details.

The lowest dimensional nontrivial case corresponds to n = 2, so we suppose
G = Sp(4,R) given as a group of linear automorphisms on R

4 which preserve

the symplectic form determined by the matrix

( 0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

)

in the standard basis.

The Lie algebra sp(4,R) consists of block matrices
(

A B

C D

)

where A is an arbitrary

matrix of size 2, B = BT , C = CT , and D = −AT . The symbol T means
the transposition with respect to the antidiagonal. Hence the grading of the Lie
algebra g has the form

g−2 =

{(

0 0 0

0 0 0

x 0 0

)

: x ∈ R

}

, g−1 =

{(

0 0 0

X1 0 0
0 Xt

1J 0

)

: X1 ∈ R
2

}

,

g0 =

{(

a 0 0

0 A 0

0 0 −a

)

: a ∈ R, A ∈ sp(2,R)

}

,

g1 =

{(

0 Z1 0
0 0 JZt

1
0 0 0

)

: Z1 ∈ R
2∗

}

, g2 =

{(

0 0 z

0 0 0

0 0 0

)

: z ∈ R

}

,

where J denotes the submatrix
(

0 1

−1 0

)

. The truncated adjoint action of the struc-

ture group P on g− is described as follows. First of all, let us identify an element
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(

0 0 0

X1 0 0

x Xt
1J 0

)

∈ g−2 ⊕ g−1 with the pair (x,X1) ∈ R × R
2 and, similarly, elements

from p+ = g1 ⊕ g2 are written as (Z1, z) ∈ R
2∗ × R. With this notation, any

element

(

a 0 0

0 A 0

0 0 a−1

)

∈ G0 = R+ × Sp(2,R) maps (x,X1) 7→ (a−2x, a−1AX) and

exp(Z1, z) ∈ P+ acts according to the transcription (x,X1) 7→ (x,X1 − xJZt
1).

Now it is obvious that there are two complementary P–invariant subsets in g− and
the corresponding tangent directions are those inside and outside of the contact
subbundle, respectively. Further there are three distinct G0–invariant subsets in
g−:

A1 = g−1 \ {0},

A2 = g−2 \ {0},

A3 = g− \ (g−1 ∪ g−2).

Clearly, the subset A1 is P–invariant, so only the geodesics of type CA1 emanate
in directions from the contact distribution. The P–orbit of A2, denoted by P (A2),
equals to P (A3) = g− \ g−1, so for any vector which is transversal to the contact
subbundle there may be geodesics of types CA2 and CA3 tangent to the given vector.
But, for any X = (x,X1) ∈ A3 there are Y = (x, 0) ∈ A2 and Z = (−c−1Xt

1J, 0) ∈
g1 ⊕ g2 such that the curve exp tX equals to expZ exp tY modulo P . Hence any
geodesic of the generic type is a “chain” and so we consider only geodesics of types
Cg−1 and Cg−2 in the sequel. Altogether, for any type of tangent vectors there are
geodesics of a unique type which emanate in those directions.

Resume. The expression (Z1(X1) = 0, ∗) below denotes the set {(Z1, z) ∈ g1 ⊕
g2 : Z1(X1) = 0}. Similar abbreviations are often used hereafter.

type X B1 B2 B3 ord dim R ϕ′′(0)

A1 (0, X1) p+ (Z1(X1) = 0, ∗) † 2 1 (Z1, ∗) −2Z1(X1)

A2 (x, 0) g2 0 † 2 1 (0, z) −2 zx

Remarks. In both particular cases, the geodesics are determined by a 2–jet in
one point and for a fixed vector there is a 1–dimensional family of curves of an ap-
propriate type tangent to the given vector. Moreover, geodesics of any mentioned
type carry the projective class of distinguished parametrizations, so each general-
ized geodesic is uniquely given by a tangent direction as an unparametrized curve.
This mimics the behavior of geodesics in classical projective geometries where the
filtration of the tangent bundle is trivial and the whole classification allows only
geodesics of a unique type with just the same properties, cf. Example 3 in 5.7.

Moreover, the above classification goes through unchanged for small dimensions
and so it seems to be valid for a general n, although the above case n = 2 is rather
special because G0 = R+ × Sp(2n− 2,R) and Sp(2,R) = SL(2,R). In particular,
from the description of the truncated action it is obvious that there are neither
new distinguished G0–invariant nor P–invariant subsets in g− which would define
new types of curves and new tangent directions, respectively.



46 GENERALIZED GEODESICS

7.3. Lagrangean contact structures. Lagrangean contact structures are
contact structures endowed with a fixed decomposition of the contact subbun-
dle into a direct sum of two distinguished subbundles such that the differential of
the one–form defining the contact distribution restricted to one of these subbundles
vanishes. Complementary subbundles with this property are called a Lagrangean
pair. The standard homogeneous model is provided by the projectivized cotan-
gent bundle to the real projective space RPn with a transitive action of the Lie
group G = SL(n+1,R). The stabilizer of any point in P (T ∗(RPn)) is a parabolic
subgroup of G which can be indicated in a block–wise form as subgroup of upper
triangular matrices with blocks of ranks 1, n−1, and 1. The corresponding Satake
diagram is x—o · · · o—x, where the number of uncrossed nodes is n. See [25] for
details and precise definitions.

Let us consider the lowest dimensional case which corresponds to the principal
group G = SL(3,R) and P being the Borel subgroup. On the infinitesimal level,
the grading of the Lie algebra g has the form

g−2 =

{(

0 0 0

0 0 0

∗ 0 0

)}

, g−1 =

{(

0 0 0

∗ 0 0

0 ∗ 0

)}

,

g0 =

{(

∗ 0 0

0 ∗ 0

0 0 ∗

)

: trace = 0

}

, g1 =

{(

0 ∗ 0

0 0 ∗

0 0 0

)}

, g2 =

{(

0 0 ∗

0 0 0

0 0 0

)}

,

where the stars represent arbitrary real entries.

Geometrically, there are four different classes of tangent vectors on manifolds
endowed with a Lagrangean contact structure. They correspond to P–invariant
subsets in g− as follows. Vectors tangent to one of the two Lagrangean subbundles

correspond to linear subspaces gL−1 =

{(

0 0 0

∗ 0 0

0 0 0

)}

and gR−1 =

{(

0 0 0

0 0 0

0 ∗ 0

)}

in g−1,

respectively. Remaining vectors in the contact distribution are given by g−1\(g
L
−1∪

gR−1) and, finally, those outside of the contact subbundle correspond to g− \ g−1.
All the mentioned subsets are really P–invariant which is easily visible by the
explicit description of the truncated adjoint action of P on g−. More precisely,

any element exp

(

0 zL w

0 0 zR
0 0 0

)

∈ P+ acts as

(

0 0 0

xL 0 0

y xR 0

)

7→

(

0 0 0

xL+yzR 0 0

y xR−yzL 0

)

and

the action of the subgroup G0 rescales each entry of a matrix in g− by a nonzero
factor. Hence the G0–orbits in g− are determined simply by the nonzero entries
of a matrix and so we get seven G0–invariant subsets in g−. Let us focus on the

subsets

{(

0 0 0

∗ 0 0

∗ 0 0

)}

⊂ g−2×gL−1 and

{(

0 0 0

0 0 0

∗ ∗ 0

)}

⊂ g−2×gR−1 at first. Any element

of either of these subsets can be mapped to g−2 by some Adb with b ∈ P , and vice
versa. From the point 1 in 7.1 we know that these subsets lead to the same curves
as A = g−2, so geodesics of these two types may be omitted in further discussion.

More explicitly, for any X =

(

0 0 0

xL 0 0

y 0 0

)

∈ gL−1 × g−2 and Z =

(

0 0 0

0 0 zR
0 0 0

)

∈ p one

can compute AdexpZ X =

(

0 0 0

xL+yzR 0 0

y 0 0

)

, which provides the above mentioned

correspondence if y 6= 0; the second case is similar. Altogether we get five types of



7. MORE EXAMPLES 47

generalized geodesics given by the following G0–invariant subsets in g−:

A1 = gL−1 \ {0},

A2 = gR−1 \ {0},

A3 = g−1 \ (g
L
−1 ∪ gR−1),

A4 = g−2 \ {0},

A5 = g− \ (g−1 ∪ g−2 × (gL−1 ∪ gR−1)).

Obviously, the first three subsets are P–invariant, so only geodesics either of
type CA1 or CA2 emanate in a direction from the Lagrangean pair and for remaining
directions in the contact distribution there are geodesics only of type CA3 . Further,
P (A4) = P (A5) = g− \ g−1 and for any vector out of the contact subbundle there
are geodesics of both types CA4 and CA5 tangent to the given vector.

Resume. Direct computations lead to the following results.

type X B1 B2 B3 ord dim R ϕ′′(0)

A1

(

0 0 0
xL 0 0
0 0 0

)

p+

(

0 0 ∗
0 0 ∗
0 0 0

)

† 2 1
(

0 s ∗
0 0 ∗
0 0 0

)

−2sxL

A2

(

0 0 0
0 0 0
0 xR 0

)

p+

(

0 ∗ ∗
0 0 0
0 0 0

)

† 2 1
(

0 ∗ ∗
0 0 s
0 0 0

)

−2sxR

A3

(

0 0 0
xL 0 0
0 xR 0

)

p+ g2 0 3 3 = 2n+ 1 s
(

0 xR 0
0 0 xL
0 0 0

)

−sxLxR

A4

(

0 0 0
0 0 0
y 0 0

)

g2 0 † 2 1
(

0 0 s
0 0 0
0 0 0

)

−2sy

A5

(

0 0 0
xL 0 0
y xR 0

)

p+ 0 † 2 3 = 2n+ 1 0 0

Remarks. Of course, geodesics of types CA1 and CA2 have got exactly the same
properties which are similar to those of null–geodesics in conformal geometries, i.e.
in a given direction there is just one unparametrized geodesic emanating in this
direction and any Z ∈ p+ provides at most a new (projective) reparametrization
of the curve. These properties survive even in a more dimensional cases, where, in
addition, a new specific class of the tangent vectors in the kernel of the algebraic
bracket on the contact subbundle appears. Of course, this leads to a new type of
generalized geodesics.

Geodesics of type CA4 represent an exact analogy to CR–chains discussed in 7.4.
In the most generic case given by the subset A5 there are no two geodesics with
a common tangent vector, which would be the same up to a reparametrization,
so here only affine reparametrizations appear. Altogether, for any vector out of
the contact distribution there is just one unparametrized “chain” with a canonical
projective structure and a 3–dimensional family of uniquely parametrized geodesics
of the generic type CA5 .

7.4. CR–structures of hypersurface type. Hypersurface CR–structures are
contact structures with an almost complex structure on the contact distribution.
The standard homogeneous model of dimension 2n+ 1 is provided by real hyper-
quadrics in C

n+1 where the whole structure is induced by the complex structure of
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C
n+1. Usually we consider quadrics given by the equation Im(w) = h(z, z̄) where

(z, w) = (z1, . . . , zn, w) are coordinates in C
n+1 and h is a nondegenerated Her-

mitean form on C
n. The CR–subbundle is established in the tangent bundle of the

quadric by the condition Re(w) = 0 and we say the quadric has CR–dimension n
and real codimension 1. Let us assume the signature of h is (p, q), p+ q = n. Sim-
ilarly to conformal geometries, the Lie group G = SU(p+1, q+1) acts transitively
on the CR–quadric due to the identification with the complex projectivization of a
light cone in C

n+2. The stabilizer of the origin is a parabolic subgroup in semisim-
ple G. In an appropriate representation of G, the parabolic subgroup P can be
viewed as a subgroup of block upper triangular matrices with the middle blocks
belonging to SU(p, q). These structures provide other real forms of the Lagrangean
contact structures presented in 7.3. All details can be found in [12], [15], [20], and
others.

The classification of generalized geodesics will depend on the signature of the
modeling quadric, so we discuss two lowest dimensional cases corresponding to
strictly definite and indefinite case, respectively.

A. Definite case. The lowest possible case is provided by the CR–dimension 1.
The modeling quadric is 3–dimensional CR–sphere defined by the equation
Im(w) = |z|2 with respect to coordinates (z, w) in C

2. The group of CR–
automorphisms of the CR–sphere is a quotient of the semisimple Lie group SU(2, 1)
by the noneffective kernel which is isomorphic to Z3. Hence the principal group
of the geometry is G = SU(2, 1)/Z3. Let SU(2, 1) be given as a group of lin-
ear automorphisms of C3 preserving the Hermitean inner product with the matrix
(

0 0 − i
2

0 1 0
i
2 0 0

)

in the standard basis. The stabilizer of the origin is a parabolic sub-

group B/Z3 where B is the Borel subgroup in SU(2, 1). On the infinitesimal level,
the grading of the Lie algebra g = su(2, 1) has the form

g−2 =

{(

0 0 0

0 0 0

u 0 0

)

: u ∈ R

}

, g−1 =

{(

0 0 0

x 0 0

0 −2ix̄

)

: x ∈ C

}

,

g0 =

{(

w 0 0

0 ir 0

0 0 −w̄

)

: w ∈ C, r ∈ R, r + 2Im(w) = 0

}

,

g1 =

{(

0 2iz 0

0 0 z̄

0 0 0

)

: z ∈ C

}

, g2 =

{(

0 0 v

0 0 0

0 0 0

)

: v ∈ R

}

.

Geometrically, there are two classes of tangent vectors on CR–manifolds of codi-
mension 1 with the definite Levi form. The vectors from the CR–subbundle corre-
spond to vectors in the P–invariant subset g−1 ⊂ g− and the vectors transversal
to the CR–distribution are described by the complement g− \ g−1 in g−. More
explicitly, the truncated adjoint action of P on g− is given as follows. Any element

exp

(

0 2iz v

0 0 z̄

0 0 0

)

∈ P+ maps

(

0 0 0

x 0 0

u −2ix̄

)

7→

(

0 0 0

x+uz̄ 0 0

u −2i(x̄+uz)

)

and the action of the

subgroup G0 multiplies by nonzero complex numbers on g−1 and by nonzero real
numbers on g−2. Hence the nontrivial G0–orbits in g− are given just by nonzero
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entries of the matrix, so we get the following G0–invariant subsets in g−:

A1 = g−1 \ {0},

A2 = g−2 \ {0},

A3 = g− \ (g−1 ∪ g−2).

Obviously, P (A1) = A1 and P (A2) = P (A3) = g− \ g−1, so for any direction in
the CR–distribution only geodesics of type CA1 can emanate in this direction and
for any vector which is transversal, there are geodesics of both types CA2 and CA3

tangent to this vector.

Resume.

type X B1 B2 B3 ord dim R ϕ′′(0)

A1

(

0 0 0
x 0 0
0 −2ix̄ 0

)

p+ g2 0 3 3 = 2n+ 1 s
(

0 2x̄ 0
0 0 ix
0 0 0

)

−2s|x|2

A2

(

0 0 0
0 0 0
u 0 0

)

g2 0 † 2 1
(

0 0 v
0 0 0
0 0 0

)

−2vu

A3

(

0 0 0
x 0 0
u −2ix̄ 0

)

p+ 0 † 2 3 = 2n+ 1 0 0

Remarks. The case of real hypersurfaces in C
2 was carefully studied by Cartan

who involves the chains (in our setting, the geodesics of type Cg−2) among the
system of invariants, which resolve two real hypersurfaces in C

2 are equivalent
under a biholomorphic transformation. Furthermore, the standard homogeneous
models of embedded CR–manifolds, the CR–quadrics, are obtained by osculating
the initial CR–manifold up to the second order in any its point, and this is probably
the most initial example of the construction of the Cartan’s space; see 2.7 for the
abstract definition and [16] for other comments and details.

B. Indefinite case. Let us consider the case with CR–dimension 2 and Hermitean
form of signature (1, 1). The modeling quadric is the 5-dimensional hypersurface
Im(w) = |z1|

2 − |z2|
2 in C

3. The group of CR–automorphisms of this quadric is
isomorphic to G = SU(2, 2)/K, where K is the discrete noneffective kernel. Let
us suppose the group SU(2, 2) is given by the Hermitean inner product with the

block matrix

(

0 0 − i
2

0 J 0
i
2 0 0

)

where J =
(

1 0

0 −1

)

. The stabilizer of the origin is the

block upper triangular matrix as above with the middle block of size 2×2. On the
infinitesimal level we get

g−2 =

{(

0 0 0

0 0 0

u 0 0

)

: u ∈ R

}

, g−1 =

{(

0 0 0

X1 0 0
0 −2iX̄t

1J

)

: X1 ∈ C
2

}

,

g0 =

{(

w 0 0

0 W 0

0 0 −w̄

)

: w ∈ C,W ∈ u(1, 1), tr(W ) + 2 Im(w) = 0

}

g1 =

{(

0 2iZ1 0
0 0 JZ̄t

1
0 0 0

)

: Z1 ∈ C
2∗

}

, g2 =

{(

0 0 v

0 0 0

0 0 0

)

: v ∈ R

}

.
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In contrast to the definite case, there are new types of tangent vectors in the CR–
subbundle given by the sign of their length. More precisely, the property of positive,
negative, and zero length of a vector is invariant with respect to the truncated
adjoint action of the structure group P which factors over G0 = R × U(1, 1) on

the CR–subbundle. Explicitly, the action of an element

(

w 0 0

0 A 0

0 0 w̄−1

)

∈ G0 on

g− is given by the transcription (u,X1) 7→ (|w|−2u,w−1AX1) if we identify each

element

(

0 0 0

X1 0 0

u −2iX̄t
1J

)

∈ g−2 ⊕ g−1 with the pair (u,X1) ∈ R × C
2. Similarly,

each element

(

0 2iZ1 v

0 0 JZ̄t
1

0 0 0

)

∈ g1 ⊕ g2 is determined by a pair (Z1, v) ∈ C
2∗ × R

and exp(Z1, v) ∈ P+ acts as (u,X1) 7→ (u,X1+uJZ̄
t
1). Altogether, there are three

distinguished classes of vectors in the CR–distribution and one class of vectors
which are transversal. For the transversal directions there are four G0–invariant
subsets with the common P–orbit g− \ g−1, established by the conditions X1 = 0,
‖X1‖

2 = X̄t
1JX1 = 0, and ‖X1‖

2 6= 0, respectively. First of all, let us focus on
the subset A = {(u,X1) : u 6= 0, ‖X1‖ = 0} in order to show that all geodesics
of type CA are chains, i.e. curves of type Cg−2 . This is satisfied since for any

X = (u,X1) ∈ A there is Y = (u, 0) ∈ g−2 and Z = (u−1X̄t
1J, 0) ∈ p+ such that

exp tX = expZ exp tY modulo P . Hence, there are six G0–invariant subsets left
to be discussed, which are indicated as follows. Let us denote by the symbol g0−1

the set of all nonzero vectors in g−1 which have the zero length, analogously for
g+−1 and g−−1. Now, all distinct classes of generalized geodesics correspond to the
following G0–invariant subsets in g−:

A1 = g0−1,

A2 = g+−1,

A3 = g−−1,

A4 = g−2 \ {0},

A5 = g+−1 × (g−2 \ {0}),

A6 = g−−1 × (g−2 \ {0}).

The first three subsets are P–invariant and the remaining three lie in the common
P–orbit g− \ g−1. For any vector out of the CR–subbundle there are geodesics of
the latter three types tangent to that vector.

Resume. In the table below we only refer to the properties which characterize
the subsets in question instead of the explicit description.
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type X B1 B2 B3 ord dim R ϕ′′(0)

A1 (0, ‖X1‖
2 = 0) p+ (Z1(X1) = 0, ∗) † 2 2 (Z1(X1) ∈ R, ∗) −2Z1(X1)

A2,3 (0, ‖X1‖
2 6= 0) p+ g2 0 3 5 = 2n+ 1 (−isX̄t

1J, 0) −2s‖X1‖
2

A4 (u, 0) g2 0 † 2 1 (0, v) −2vu

A5,6 (u, ‖X1‖
2 6= 0) p+ 0 † 2 5 = 2n+ 1 0 0

Remarks. This classification generalizes that in the definite case and it seems
to be valid for hypersurface CR–manifolds of a general CR–dimension n. In par-
ticular, for n = 1 the geodesics of type CA1 can not appear and the couples A2, A3

and A5, A6 reduce either to the positive or the negative case, so we get just the
table in the case of the definite signature above.

For general n, the notion of chains (the geodesics of type CA4) is well understood
due to Chern and Moser, who extend the ideas of Cartan for n = 1 to all nondegen-
erated CR–manifolds of hypersurface type. Through any point in each direction
transversal to the CR–subbundle there emanates a unique unparametrized chain
which carries a distinguished class of projective reparametrizations. Next, there
is another invariant class of curves on nondegenerated CR–manifolds of indefinite
types which completes the system of chains in some specific sense. These was in-
troduced by Koch as null–chains and they correspond to geodesics of type CA1 in
our setting, see [15] for details. Through any point in each null–direction in the
CR–distribution, there is a 2–dimensional family of (parametrized) null–chains,
each of them endowed with a canonical projective structure; the dimension 2 is
computed as 2 = 2n+ 1− 2(n− 1)− 1.

Further we discuss geodesics of generic types corresponding to the subsets A2,3

and A5,6, which are tangent and transversal to the CR–subbundle, respectively.

Their properties are visible from the table above, the dimensions of Cξ
Ai

are obvious.
In particular, the geodesics of types CA5 and CA6 , which complete the system of
distinguished curves transversal to the CR–subbundle, carry only affine class of
distinguished reparametrizations.

7.5. CR–structures of codimension 2. While CR–geometries of codimen-
sion 1 are always parabolic, there are only a few cases among CR–geometries of
higher codimension where the CR–manifolds in question allow to be endowed with
a structure of parabolic geometry. One of the exceptional cases corresponds to the
CR–structures of CR–dimension 2 and real codimension 2. The modeling quadrics
in C

4 are given by the system of equations Im(wj) = hj(z, z̄), j = 1, 2, where
(z1, z2, w1, w2) are coordinates in C

4 and hj are Hermitean forms on C
2. Hence

the list of modeling quadrics depends just on the classification of nondegenerated
Hermitean forms on C

2 with values in C
2. Any such form takes in suitable coor-

dinates one of the following forms

h(z, z̄) = (|z1|
2, |z2|

2),

h(z, z̄) = (|z1|
2,Re(z1z̄2)),

h(z, z̄) = (Re(z1z̄2), Im(z1z̄2)),
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which are called hyperbolic, parabolic, and elliptic, respectively. From these possi-
bilities only the hyperbolic and elliptic quadric carries the structure of a |2|–graded
parabolic geometry, which is due to the fact that in both cases the automorphism
group of the corresponding quadric is a semisimple Lie group and the stabilizer of
any its point is a parabolic subgroup. All details can be found in [20] and refer-
ences therein. Generalized geodesics on hyperbolic and elliptic CR–manifolds have
been discussed in [28] and we only summarize the achieved results here.

A. Hyperbolic quadric. According to the above ideas, the hyperbolic quadric in
C

4 is expressed by the equations

Im(w1) = |z1|
2, Im(w2) = |z2|

2.

Obviously, this is a direct product of two CR–spheres from the definite part of
7.4. The product of the two actions of SU(2, 1)/Z3 on each CR–sphere defines
a transitive action of the Lie group SU(2, 1)/Z3 × SU(2, 1)/Z3 on the hyperbolic
quadric. Any element of the latter group acts by a CR–automorphism but there
is another (involutive) automorphism which interchanges the two spheres in the
product. Hence the group of automorphisms of the hyperbolic quadric is isomor-
phic to G = (SU(2, 1)/Z3 × SU(2, 1)/Z3) ⋊ Z2. The stabilizer of the origin is
P = (B/Z3 × B/Z3)⋊ Z2 where B is the Borel subgroup in SU(2, 1). Obviously,
G is semisimple and P parabolic.

The following discussion is based only on results achieved for the CR–sphere
in 7.4 due to the product structure of the hyperbolic quadric. In particular, the
tangent bundle is a direct product of two subbundles which correspond to vanishing
left and right part of g− = gL− × gR−, respectively. This distinguishes a class of
vectors in the tangent bundle which we call singular. All P–invariant and G0–
invariant subsets in g− = gL−× gR− are obtained as products of P and G0–invariant
subsets in each slot up to their interchanging. Especially, the singular directions
correspond to the P–invariant subset gL− ∪ gR− which is just the P–orbit of gL−.
Similarly, all P and G0–invariant subsets in g− discussed below are written in the
brief form, i.e. A × B ⊂ gL− × gR− means its P and G0–orbit A × B ∪ B × A,
respectively. Altogether, we shall see that there are five types of tangent vectors
on the hyperbolic quadric. First, let us consider the subsets

A1 = {0} × (gR−1 \ {0}),

A2 = {0} × (gR−2 \ {0}),

A3 = {0} × (gR− \ (gR−1 ∪ gR−2)).

Obviously, the subset P (A1) = A1 corresponds to singular vectors in the CR–
subbundle and P (A2) = P (A3) = {0}× (gR− \gR−1) gives singular vectors which are
transversal. Curves of these types have been fully classified in 7.4.

Now, by the symbol gL−− we denote the set of generic elements in gL−, i.e. g
L
−− =

gL−\(gL−1∪g
L
−2), and similarly for gR−− and g−−. The symbol S represents the set of

singular tangent vectors, i.e. S = {0} × gR− with respect to the conventions above.
All remaining G0–invariant subsets in g− determining geodesics in nonsingular
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directions are

A4 = g−1 \ S,

A5 = gL−1 × gR−2 \ S,

A6 = gL−1 × gR−− \ S,

A7 = g−2 \ S,

A8 = gL−2 × gR−− \ S,

A9 = g−− \ S.

The subset A4 is P–invariant and the corresponding vectors in the tangent bun-
dle of the hyperbolic quadric are the nonsingular vectors in the CR–distribution.
Further, the subset P (A5) = P (A6) = gL−1 × (gR− \ gR−1) determines a specific class
of nonsingular vectors not belonging to the CR–subbundle and, finally, the sub-
set P (A7) = P (A8) = P (A9) = g− \ g−1 corresponds to the generic nonsingular
directions out of the CR–subbundle.

Resume. The product structure of the hyperbolic quadric with the isolated ac-
tion of the structure group on each slot leads directly to the following results com-
piled only from the CR–sphere case. Below we use a natural notation where any
element X ∈ g− = gL−2×gL−1×gR−2×gR−1 is indicated by a quadruple

( uL uR

xL xR

)

with

ui ∈ R and xi ∈ C. Similar conventions are kept for Z ∈ gL1 × gL2 × gR1 × gR2 = p+.

type X B1 B2 B3 ord dim R ϕ′′(0)

A4 ( 0 0
xL xR ) p+ g2 0 3 6 s

(

|xR|2xL |xL|2xR

0 0

)

−2s |xLxR|
2

A5

(

0 uR
xL 0

)

pL+ × gR2 gL2 × {0} 0 3 4 s
(

uRxL 0
0 |xL|2

)

−2s uR|xL|
2

A6 ( 0 uR
xL xR

) p+ gL2 × {0} 0 3 6 0 0

A7 ( uL uR
0 0 ) g2 0 † 2 2 s ( 0 0

uR uL ) −2s uLuR

A8 ( uL uR
0 xR

) gL2 × pR+ 0 † 2 4 0 0

A9 ( uL uR
xL xR ) p+ 0 † 2 6 0 0

Remarks. Among all nonsingular types of generalized geodesics there are three
of them of a particular interest. The first type is given by the choice A4 = g−1 \A1

and geodesics of this type are the only ones which emanate in generic directions of
the CR–distribution.

The second distinguished choice is A7 = g−2, which generalizes the notion of
chains in nonsingular directions as discussed in [20], and the last choice A9 = g−−

defines curves of the generic type. For any nonsingular direction which does not
belong to the CR–subbundle there is a 1–dimensional family of unparametrized
chains with the projective class of parametrizations, 4–dimensional family of
uniquely parametrized geodesics of type CA8 , and 6–dimensional family of uniquely
parametrized curves of the generic type CA9 .
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B. Elliptic quadric. The elliptic quadric in C
4 is expressed as a graph of

Im(w1) = Re(z1z̄2), Im(w2) = Im(z1z̄2).

The group of automorphisms of the CR–structure on the elliptic quadric is less
visible than in the hyperbolic case, however, the group is isomorphic to

G = SL(3,C)/Z3 ⋊ Z2

as shown in [20]. Similarly to the hyperbolic case, Z3 represents a noneffective
kernel in SL(3,C) and, on the infinitesimal level, Z2 provides an interchanging of
the two components of the CR–subspace, see below. Isotropy parabolic subgroup
P of the origin is the semidirect product B/Z3⋊Z2 where B is the Borel subgroup
of SL(3,C) consisting of upper triangular matrices. The Lie algebra of G is g =
sl(3,C), viewed as a real Lie algebra, and the corresponding parabolic subalgebra
p defines the gradation of g according to the five diagonals.

In addition, the subspace g−1 =

{(

0 0 0

xL 0 0

0 xR 0

)

: xL, xR ∈ C

}

⊂ g− defining the

CR–distribution decomposes into g−1 = gL−1 × gR−1 which induces a product struc-
ture on the CR–subbundle. This distinguishes a class of tangent vectors in the
CR–subbundle which correspond to the P–invariant subset P (gL−1) = P (gR−1) =

gL−1 ∪ gR−1. The classification of remaining P and G0–invariant subsets in g− is
the same as in 7.3 except for all entries are complex now. In particular, there is a
G0–invariant subset g−2 × (gL−1 ∪ gR−1) in g− which determines the same geodesics
as the subset g−2, so we omit this possibility in further discussion. Altogether, all
G0–invariant subsets in g− which define distinct classes of generalized geodesics
are

A1 = (gL−1 ∪ gR−1) \ {0},

A2 = g−1 \ (g
L
−1 ∪ gR−1),

A3 = g−2 \ {0},

A4 = g− \ (g−1 ∪ g−2 × (gL−1 ∪ gR−1)).

Obviously, subsets A1 and A2 are P–invariant and they correspond to distin-
guished and generic vectors in the CR–subbundle, respectively. Further, the subset
P (A3) = P (A4) = g− \ g−1 determines vectors out of the CR–distribution.

Resume.

type X B1 B2 B3 ord dim R ϕ′′(0)

A1

(

0 0 0
xL 0 0
0 0 0

)

p+

(

0 0 ∗
0 0 ∗
0 0 0

)

† 2 2 s
(

0 x̄L ∗
0 0 ∗
0 0 0

)

−2s|xL|
2

A2

(

0 0 0
xL 0 0
0 xR 0

)

p+ g2 0 3 6 s

(

0 x−1
L

0

0 0 x−1
R

0 0 0

)

−s

A3

(

0 0 0
0 0 0
y 0 0

)

g2 0 † 2 2 s
(

0 0 ȳ
0 0 0
0 0 0

)

−2s|y|2

A4

(

0 0 0
xL 0 0
y xR 0

)

p+ 0 † 2 6 0 0
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Remarks. The above classification looks like a complex analogy of Example
7.3 with the only difference that the two distinguished subspaces of T−1M in the
Lagrangean case are not distinguishable here. Further, geodesics of type CA3 , which
generalize chains from hypersurface CR–structures, share just the same properties
as in the hyperbolic case.

7.6. x—x—dot structures. Let us conclude with the discussion of generalized
geodesics in the so called x—x—dot geometries which are established by the Satake
diagram x—x—o, i.e. the principal group is G = SL(4,R) with the parabolic

subgroup indicated as P =

{( ∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗

)}

, see e.g. [26, 4.4]. Such structures appear

as correspondence spaces in classical twistor theory, and they are related to the
geometric theory of ODE’s. The following discussion may be also understood as
a block–wise generalization of the discussion in 7.3 which corresponds to the x—x
case. The final classification will be quite similar to that for the x—x case except
for the curves which emanate in directions out of the distribution T−1M , where
we get two distinct types of tangent vectors.

The grading of the Lie algebra g = sl(4,R) is described by block matrices of the
form

g−2 =

{(

0 0 0

0 0 0

X2 0 0

)

: X2 ∈ R
2

}

, g−1 =

{(

0 0 0

x 0 0

0 X1 0

)

: x ∈ R, X1 ∈ R
2

}

,

g0 =

{(

a 0 0

0 b 0

0 0 C

)

: a+ b+ tr(C) = 0

}

,

g1 =

{(

0 z 0

0 0 Z1
0 0 0

)

: z ∈ R, Z1 ∈ R
2∗

}

, g2 =

{(

0 0 Z2
0 0 0

0 0 0

)

: Z2 ∈ R
2∗

}

.

The truncated adjoint action of P on g− is described as follows. Any ele-

ment

(

a 0 0

0 b 0

0 0 C

)

∈ G0 acts as

(

0 0 0

x 0 0

X2 X1 0

)

7→

(

0 0 0

bxa−1 0 0

CX2a
−1 CX1b

−1 0

)

and the ac-

tion of an element exp

(

0 z Z2

0 0 Z1

0 0 0

)

∈ P+ is given by the formula

(

0 0 0

x 0 0

X2 X1 0

)

7→
(

0 0 0

x+Z1(X2) 0 0

X2 X1−zX2 0

)

. In particular, the P–action respects the linear indepen-

dence of vectors X1 and X2 since the condition a · b · det(C) = 1 is still satisfied
and vectors X1, X2 are independent if and only if the vectors X2 and X1 − zX2

are independent too, for any z ∈ R.
There are two distinct P–invariant subspaces in g−1 which distinguish two com-

plementary subbundles in T−1M . These sets are given by the blocks x and X1

and we denote them by gL−1 and gR−1, respectively. Generic vectors in T−1M cor-

respond to the P–invariant complement g−1 \ (gL−1 ∪ gR−1). Further, the P–orbit

of g−2 is

{(

0 0 0

Z1(X2) 0 0

X2 −zX2 0

)}

⊂ g−, so it never exhausts all vectors in g− \ g−1.

Let us denote by C the hyperquadric in g− consisting of all elements such that
vectors X1 and X2 are linearly dependent. Obviously, P (g−2) = C \ g−1 and the
complement g−\ C, formed by all elements in g− where X1 and X2 are indepen-
dent, is P–invariant too. This provides the second class of vectors which are not
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tangent to T−1M . Altogether, we have got five distinct classes of tangent vectors
on manifolds with x—x—dot structures.

Now, let us consider the G0–invariant subsets

{(

0 0 0

x 0 0

X2 0 0

)}

⊂ g−2 × gL−1 and
{(

0 0 0

0 0 0

X2 aX2 0

)}

⊂ g−2× gR−1. The same arguments as in 7.3 show that generalized

geodesics of these two types coincide with geodesics of type Cg−2 , hence we omit
these choices in the sequel. Altogether, one can conclude that all distinct types of
generalized geodesics correspond to the following G0–invariant subsets in g−:

A1 = gL−1 \ {0},

A2 = gR−1 \ {0},

A3 = g−1 \ (g
L
−1 ∪ gR−1),

A4 = g−2 \ {0},

A5 = C \ (g−1 ∪ g−2 × (gL−1 ∪ gR−1)),

A6 = (g−\ C) ∩ (g−2 × gR−1),

A7 = (g−\ C) \ (g−2 × gR−1).

Obviously, P (A1) = A1, P (A2) = A2, and P (A3) = A3, so only geodesics
of these types emanate in appropriate directions in T−1M . Further, P (A4) =
P (A5) = C \ g−1 and P (A6) = P (A7) = g−\ C and so for each vector which is
transversal to the distribution T−1M , either there are geodesics of types CA4 and
CA5 , or of types CA6 and CA7 , according to the type of the tangent vector.

Resume. Each element of p+ is determined by a triple (z, Z1, Z2) ∈ R×R
2∗×R

2∗

and we use this notation in the table below in order to indicate the properties
which characterize the mentioned subsets of p+. Moreover, we write the triples as
columns for the sake of economy.

type X B1 B2 B3 ord dim R ϕ′′(0)

A1

(

0 0 0
x 0 0
0 0 0

)

p+
(

0
∗
∗

)

† 2 1
( z
∗
∗

)

−2xz

A2

(

0 0 0
0 0 0
0 X1 0

)

p+

(

∗
Z1(X1)=0

∗

)

† 2 1
(

∗
Z1
∗

)

−2Z1(X1)

A3

(

0 0 0
x 0 0
0 X1 0

)

p+

(

0
Z1(X1)=0

∗

)

(

0
Z1(X1)=0
Z2(X1)=0

)

3 3

(

Z1(X1)
Z1

Z2(X1)=0

)

−xZ1(X1)

A4

(

0 0 0
0 0 0
X2 0 0

) (

0
Z1(X2)=0

∗

)

(

0
Z1(X2)=0
Z2(X2)=0

)

† 2 1
( 0

Z1(X2)=0
Z2

)

−2Z2(X2)

A5

(

0 0 0
x 0 0
X2 aX2 0

)

p+

(

0
Z1(X2)=0
Z2(X2)=0

)

† 2 3 B3 0

A6

(

0 0 0
0 0 0
X2 X1 0

) (

∗
Z1(X2)=0

∗

) (

∗
0
0

)

† 2 3 = 2n− 1

(

Z1(X1)
Z1(X2)=0

Z2(X2)=Z1(X1)

)

−2Z2(X2)

A7

(

0 0 0
x 0 0
X2 X1 0

)

p+ 0 † 2 5 = 2n+ 1

(

Z1(X1)
Z1(X2)=0

0

)

−Z1(X1)

Remarks. The above classification seems to be valid for a general value of n,
which corresponds to n − 1 circles in the Satake diagram x—x—o · · · o—o. For
n = 1 the first five rows really recover the classification in the x—x case presented
in 7.3 (the last two possibilities, where the vectors X1 and X2 are independent,

could not appear in that case). Further, the dimensions of sets Cξ
A for geodesics of
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first five types does not depend on the value of n. For instance, the dimension of

Cξ
A4

is computed as 2n − 1 − (2n − 2) = 1, the others are similar. In particular,
geodesics of type Cg−2 have got just the same properties as the chains in parabolic
contact geometries, although the dimension of g−2 equals n here. Of course, this
is due to the bracket [X[XZ]] equals to a multiple of X ∈ g−2 for all Z ∈ g2.



List of symbols

Ad adjoint representation G→ GL(g)
ad = Te Ad : g → gl(g)
Ad truncated adjoint representation, p. 6
[ , ] Lie bracket
cu,X generalized geodesic corresponding to (u,X) ∈ G ×A
CA geodesics of specific type, 2.4

Cξ
A geodesics of type CA tangent to ξ, pp. 30, 43
δ left logarithmic derivative, 2.3
exp exponential mapping g → G
ε normal coordinates in e ∈ G, p. 28
Fl flow
γ principal connection form
γ(ξ) lift of ξ ∈ TM according to γ, pp. 4, 17
G/H homogeneous space
G principal bundle of Cartan geometry, 2.1
G̃ extension of G, p. 7
Gr

m jet group of order r in dimension m
GL(m,R) = G1

m, general linear group
jraf r–jet of f at a
Jr(M,N) bundle of r–jets of maps M → N
ℓ left multiplication in Lie group
λ left action of Lie group
M smooth manifold
∇ absolute/covariant derivative of general/affine connection, 1.3
∇ω invariant derivative of Cartan connection, 2.1
∇σ covariant derivative of Weyl connection, 3.4
o = eH, origin in G/H
ω Cartan connection, 2.1
Ω1(M,V ) V –valued one–forms on M
P r bundle of r–frames
P rho–tensor, 3.5
R real numbers
r principal right action
S Cartan’s space bundle, 2.7
σ Weyl structure, 3.2
⋊ semidirect product
T r
1 bundle of r–velocities
T = T 1

1 , tangent bundle
T r
CA

r–velocities of geodesics of type CA, 2.6, 5.3
θ canonical form on P rM
XM vector fields on M
ζX fundamental vector field generated by X
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[5] A. Čap, J. Slovák, Weyl structures for parabolic geometries, Math. Scand. 93 (2003), 53–90.
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