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Abstract. All parabolic geometries, i.e., Cartan geometries with homogeneous model a real
generalized flag manifold, admit highly interesting classes of distinguished curves. The geodesics
of a projective class of connections on a manifold, conformal circles on conformal Riemannian
manifolds, and Chern–Moser chains on CR-manifolds of hypersurface type are typical examples.
We show that such distinguished curves are always determined by a finite jet in one point, and
study the properties of such jets. We also discuss the question when distinguished curves agree
up to reparametrization and discuss the distinguished parametrizations in this case. We give a
complete description of all distinguished curves for some examples of parabolic geometries.

Elie Cartan’s idea of ‘generalized spaces’ as curved analogs of Felix Klein’s geometries
(i.e., homogeneous spaces) is a well understood geometrical concept, which, for a Lie
subgroup P ⊂ G, generalizes the Maurer–Cartan form on the total space of the principal
P -bundle G → G/P to Cartan connections on principal P -bundles, see e.g., the intro-
ductory book [17]. The concept of parabolic geometries refers to those cases where P is
a parabolic subgroup in a (real or complex) semisimple Lie group G. In [9], C. Feffer-
man initiated a program to exploit the representation theory of parabolic subgroups in
semisimple Lie groups in order to understand invariants of geometric structures like CR-
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geometries, projective geometries, or conformal Riemannian geometries. This approach
has proved to be extremely powerful. First, all parabolic geometries can be described in
terms of weaker analogies of classical G-structures on smooth manifolds and, similarly to
the examples mentioned above, all such structures give rise to canonical normal Cartan
connections, [19, 14, 3]. In fact, these constructions express Cartan’s method of equiva-
lence using the language of the modern representation theory and natural cohomological
reasoning. The existence of the Cartan connection provides an effective calculus to deal
with invariant objects, see e.g., [5] and the references therein. To a large extent, the
understanding of the general (curved) geometries can be reduced to properties of the
homogeneous model, and thus to purely algebraic questions.

The goal of this paper is to use this approach in order to understand invariantly
defined systems of distinguished curves for parabolic geometries, which we call (genera-
lized) geodesics. After recalling basic concepts of parabolic geometries, geodesics are
introduced and discussed along the lines of the classical approach in affine geometry,
which uses the development of curves. This approach may be found in a similar context
in [17] and [13]. In this way, many aspects of the study of the curves are reduced to
the case of the homogeneous model. Thus the original ‘smooth’ question on curved
manifolds can be transformed to an ‘algebraic’ problem, which is discussed in Section 2.
In particular, we obtain estimates on the order of jets necessary to determine a geodesic,
and this approach also leads to an algebraic description of all jets of geodesics in a
point. The third section is devoted to the study of possible reparametrizations in the
class of geodesics. Specializing the general results to |1|-graded Lie algebras, we obtain
generalizations of some well-known results on conformal, projective, and quaternionic
geometries (see e.g., [1]). The final section provides further refinements for specific classes
of curves, see in particular Theorems 4.2 and 4.3.
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the University of Adelaide under an ARC financial support, and his discussions with
Michael Eastwood were most helpful and illuminating. The first author supported by
project P15747 of the FWF. The second and third authors acknowledge the support
from GACR, Grant Nr. 201/02/1390.

1. General concepts

1.1. Parabolic geometries

Let us briefly recall the basic facts, more details can be found in [4] or [17], and the
references therein. Let G be a real semisimple Lie group with Lie algebra g, and P ⊂ G a
parabolic subgroup with Lie algebra p. A (real) parabolic geometry (G, ω) of type (G, P )
is a principal bundle G with structure group P over a manifold M , equipped with a
smooth one-form ω ∈ Ω1(G, g), which satisfies

(1) ω(ζZ)(u) = Z for all u ∈ G and fundamental fields ζZ , Z ∈ p ⊂ g, i.e., ω
reproduces the generators of fundamental vector fields,

(2) (rb)∗ω = Ad(b−1) ◦ ω for all b ∈ P , i.e., ω is P -equivariant with respect to the
adjoint representation, and

(3) ω|TuG : TuG → g is a linear isomorphism for all u ∈ G, i.e., ω is an absolute
parallelism on G.

The curvature of a parabolic geometry (G, ω) is the horizontal two-form K ∈ Ω2(G, g)
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defined by the structure equations

K = dω + 1
2 [ω, ω], i.e., K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].

Clearly, the Maurer–Cartan form ω on the principal fiber bundle G → G/P is a
parabolic geometry and the structure equations say that this geometry is flat, i.e., its cur-
vature vanishes identically. (G → G/P, ω) is called the homogeneous model for parabolic
geometries of type (G,P ).

Morphisms between Cartan geometries (G, ω) and (G′, ω′) are principal fiber bundle
morphisms ϕ : G → G′ such that ϕ∗ω′ = ω. It is quite elementary to prove that a
geometry is locally isomorphic to its homogeneous model if and only if its curvature
vanishes identically, see [17].

Each smooth (left) action of the structure group P on a smooth manifold S leads to a
functor S on the category of Cartan geometries of type (G,P ). The value of S on (G, ω)
is the associated fiber bundle G ×P S with respect to the action of P , while a morphism
ϕ : (G, ω) → (G′, ω′) induces the fiber bundle morphism ϕ×P idS : G ×P S → G′ ×P S.
We call these bundles natural bundles. Moreover, this construction is functorial in the
smooth action entry because each equivariant mapping α : S → S′ induces the fiber
bundle mapping idG ×P α : G ×P S → G ×P S′. Thus we have a bifunctor on Cartan
geometries and smooth left actions with values in fiber bundles.

In particular, linear representations of P lead to functors valued in vector bundles and
their linear morphisms, and the bifunctoriality of the construction extends all natural
constructions like pairings, decompositions, and tensor products of representations to
the natural bundles. Of course, all this is the obvious restriction of the usual functorial
constructions over all principal fiber bundles to the category of Cartan geometries.

A central example, which also illustrates the role of the Cartan connection, is given
by the representation of P on g/p induced by the adjoint representation. This leads to
the functor G ×P g/p, and via the Cartan connection ω this associated bundle can be
identified with the tangent bundle TM . Indeed, since ω defines an absolute parallelism,
there are the corresponding ‘constant’ vector fields ω−1(X) ∈ X(G) for all X ∈ g, defined
by ω(ω−1(X)(u)) = X for all u ∈ G. Denoting by Ju,X + pK the class in G ×P g/p of
(u,X + p) ∈ G × g/p and by π : G → M the bundle projection, one immediately verifies
that Ju,X + pK 7→ Tπ(ω−1(X)(u)) defines the claimed isomorphism.

For any parabolic subalgebra p ⊂ g, there is a grading g−k ⊕ . . .⊕ gk of g such that
p = g0⊕. . .⊕gk, and p+ = g1⊕. . .⊕gk is the nilradical of g, see [20, 3]. In particular, this
implies that g0 is a reductive Levi component for p. Hence we obtain an identification
n = g−k ⊕ . . . ⊕ g−1 with g/p, which is an isomorphism of P -modules if we endow n
with the ‘truncated’ adjoint action Ad. Via the Killing form, one further obtains an
identification of n∗ with p+, which induces the identification of the cotangent bundle
T ∗M with G ×P n∗. Thus all tensor bundles over M are identified with the natural
bundles coming from tensor products of the representations n and n∗. Moreover, the
right hand ends gi = gi ⊕ . . .⊕ gk define a P -invariant filtration of g. Hence we obtain
natural subbundles T iM ⊂ TM for all i < 0. The resulting filtration

TM = T−kM ⊃ T−k+1M ⊃ . . . ⊃ T−1M ⊃ 0

is the most importing object underlying a parabolic geometry. This filtration is trivial
for |1|-graded algebras and we call such parabolic geometries irreducible.
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A very special case of the construction of natural bundles is the choice S = G
with the left action of P on G given by the group multiplication. This leads to the
principal fiber bundle G̃ = G ×P G with the principal action given by the usual right
multiplication in G and the canonical inclusion G ⊂ G̃, u 7→ Ju, eK, where e ∈ G is the
unit element. Now, the Cartan connection ω extends uniquely to a G-equivariant one-
form ω̃ ∈ Ω1(G̃, g) reproducing the fundamental vector fields. One easily verifies that ω̃
is a principal connection on G̃. Whenever we have a left action of P on some manifold
S which is the restriction of a left action of G, then we may view the natural bundle
G ×P S also as G̃ ×G S. Hence on any natural bundle of this type, there is a canonical
connection induced by ω̃. Of course, if we consider restrictions of G-representations to
P , then the resulting natural vector bundles, which are usually called tractor bundles,
are equipped with canonical linear connections.

1.2. Development of curves
The notion of the development of curves is related to a particular instance of natural
bundles associated to restrictions of G-actions to P , namely the case of the canonical
left action on G/P . The resulting space S = G ×P G/P = G̃ ×G G/P is called Cartan’s
space over the underlying manifold M of the Cartan geometry in question. Of course,
S → M is a fiber bundle with typical fiber G/P , and from 1.1 we know that the parabolic
geometry induces a canonical connection on this fiber bundle.

Another remarkable fact about S is that for the point o = eP ∈ G/P , and a point
x ∈ M , all points u ∈ G with π(u) = x lead to the same class O(x) = Ju, oK ∈ G×P G/P .
Hence we obtain a canonical smooth section O of S → M for every parabolic geometry
(G → M, ω) of type (G, P ). Moreover, the vertical tangent bundle V S can be identified
with the associated bundle G×P T (G/P ). Since the basepoint o ∈ G/P is a fix point for
the action of P , we see that the restriction of V S to the image O(M) of the canonical
section is the associated bundle G×P To(G/P ). Since To(G/P ) is canonically isomorphic
with g/p and G×P (g/p) is naturally isomorphic to TM , we get a canonical isomorphism
V S|O(x)

∼= TM . Thus we may view the Cartan’s space S as a nonlinear version of the
tangent bundle in which the geometry in question is encoded by means of the local
parallel transport of the induced connection. This point of view goes back to Cartan,
and it was developed further in an abstract way in the second half of the 20th century
(see e.g., [11]).

This canonical parallel transport provides a straightforward generalization of the
classical concept of the development of curves. By composing with O, a curve c : I → M
with I = (a, b) ⊆ R may be also viewed as a parametrized curve in S. Fixing t0 ∈ I we
find a neighborhood J of t0 in I on which the parallel transport along c : I → M is well
defined. Given s ∈ J , we may follow the curve O ◦ c from t0 to s and then follow the
parallel transport backward for time t0− s to return to the fiber over t0. More formally,
we define a smooth curve dev(c, t0) from an open neighborhood of 0 in R to Sc(t0) by
dev(c, t0)(s) := c̃s(s), where c̃s is the parallel curve in S lying over t 7→ c(t0 +s− t) with
the initial point O(c(s)). This curve is called the development of c at t0. For a point
u ∈ G over c(t0), there is a unique curve c̄(t) in G/P mapping 0 ∈ R to o ∈ G/P such
that dev(c, t0)(t) = Ju, c̄(t)K. Any other choice for the point in G has the form u·b for
b ∈ P , and for that choice the curve changes to `b−1 ◦ c̄.

Hence we conclude that each choice of a P -invariant class C of curves which map
0 ∈ R to o ∈ G/P leads to a distinguished class of curves on all manifolds endowed
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with a Cartan geometry of type (G,P ). We say that a curve c on M is a distinguished
curve of type C at a point c(t0) ∈ M , if for some (and thus any) point u ∈ G the curve
c̄ constructed above lies in C.

The natural choices for such sets C of curves, of course come from one-parameter
subgroups in G: For a subset A ⊆ g, we can define a class CA as {t 7→ b exp(tX)P |
X ∈ A, b ∈ P}. So we take the one-parametric subgroups with generators in A, allow
them to be shifted by left multiplications with elements of P , and project the resulting
curves to G/P . Of course, for X ∈ p this always leads to the constant curve o, so we
may assume A ∩ p = ∅. On the other hand, if we want to have curves in all directions
in the class CA, then we have to assume that the restriction of the projection g → g/p
to A is surjective. The most obvious choice for A which satisfies this requirement is
A = n. It should be noted that for X ∈ g \ p the curve t 7→ b exp(tX)P does not lie in
Cn in general. Following the case of affine geometry and since we are mainly interested
in having sets of distinguished curves which are as small as possible, we shall always
assume A ⊆ n in the sequel.

The parabolic subgroup P ⊂ G always has a canonical closed subgroup G0 which
corresponds to the Lie subalgebra g0 ⊂ p. This group turns out to be reductive, and
it can be characterized as the subgroup of those elements in G, whose adjoint action
preserves the grading of g. In particular, the subspace n is stable under the adjoint action
of G0. Now for b ∈ G0 and X ∈ n, we of course have b exp(tX) = exp(t Adb X)b, and thus
b exp(tX)P = exp(t Adb X)P . Thus it is natural to restrict attention to G0-invariant
subsets A ⊆ n, and the corresponding distinguished curves are called (generalized)
geodesics of type CA. We often do not mention the type if A = n.

The generalized geodesics of type CA are easily described explicitly by means of
the constant vector fields ω−1(X). Let us consider the projection c(t) of the flow line
Flω

−1(X)
t (u) ∈ G to the manifold M . From the construction of the principal connection

ω̃ on G̃ one immediately concludes that the horizontal vectors for ω̃ in points u ∈ G
are ω−1(X)(u) − ζX(u) for all X ∈ n. Thus, the curve t 7→ Flω

−1(X)
t (u)· exp(−tX)

must be the horizontal lift of c to G̃. Now, the induced parallel transport of an element
Ju, exp tXK ∈ S along c is given at time s by JFlω

−1(X)
s (u), exp(t− s)XK and it reaches

exactly the point O(c(t)) in the canonical embedding of M into S at time s = t. But
this exactly means that for each X ∈ n the curve t 7→ Ju, exp tXK is the development of
the projection of the flow line through u of the constant vector field ω−1(X) ∈ X(G).
Since the allowed developments for curves in CA have the form t 7→ Ju, exp tXK for u ∈ G
and X ∈ A, we have proved the first part of:

1.3. Proposition. Let (p : G → M,ω) be a parabolic geometry of type (G,P ) and let
A ⊆ n be a G0-invariant subset.

(1) The geodesics of type CA on M are exactly the projections of flow lines of the
constant vector fields ω−1(X) ∈ X(G) with X ∈ A.

(2) Let (p′ : G′ → M ′, ω′) be another parabolic geometry of type (G,P ), let ϕ : G → G′
be a morphism of parabolic geometries covering ϕ0 : M → M ′, and let c : I → M be a
smooth curve. Then c is a geodesic of type CA if and only if ϕ0 ◦c : I → M ′ is a geodesic
of type CA.

Proof. The curve c in M is a geodesics if an only if c(t) = p ◦ Flω
−1(X)

t (u) for some
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X ∈ A and u ∈ G. Since ϕ∗ω′ = ω, we get

p′ ◦ Flω
′−1(X)

t (ϕ(u)) = p′ ◦ ϕ ◦ Flω
−1(X)

t (u) = ϕ0 ◦ p ◦ Flω
−1(X)

t (u),

and the claim follows. ¤
Remark. (1) Our definition of geodesics and their general description is valid for arbi-
trary Cartan geometries. Though this is not a parabolic geometry, we may thus illustrate
it in the case of affine connections on manifolds (i.e., G is the affine group RmoGL(m,R)
and P = GL(m,R)). Here the complement n = Rm is P -invariant, and so any Cartan
connection ω on G splits into the soldering form ωn ∈ Ω1(G,Rm) and the principal con-
nection form ωp ∈ Ω1(G, p). Thus a Cartan geometry equips the underlying manifold
M with the linear frame bundle (G, ωn) and the principal connection ωp on G. The
projections of flow lines of the constant horizontal vector fields are exactly the geodesics
of the linear connection on TM induced by ω. Part (1) of the proposition recovers the
classical fact that the geodesics are those curves whose developments are straight lines
in Rm = G/P . On the other hand, if we choose A = g \ p, then more curves appear.
For example, the following curves are projections of shifts of one-parametric subgroups
in the affine group to the plane R2: y = x log x through (1, 0), y = ex through (0, 1),
y = xα through (1, 1), see [8].

(2) Exactly as in the homogeneous case, each choice of u ∈ G defines local coor-
dinates around its projection p(u) ∈ M . Consider the mapping X 7→ p(Flω

−1(X)
1 (u)),

which is well defined on some neighborhood U ⊆ n of 0. Choosing U sufficiently small,
this becomes a diffeomorphism onto its image, thus giving rise to local coordinates on
M . These are called normal coordinates for the Cartan geometry in question. Of course,
in the setting of (1), we recover exactly the usual normal coordinates for affine connec-
tions on manifolds in this way. More information and a characterization of the normal
coordinates can be found in [4].

We may rephrase our definition in terms of normal coordinates as follows: The
geodesics of type CA are those curves which are linearly parametrized straight lines
through the origin with directions in A ⊆ n in some normal coordinates. Again, this
generalizes the standard facts on affine connections.

1.4. Example. Let us mention four well-known examples of distinguished curves in
parabolic geometries.

(1) G = SL(m + 1,R), P is the stabilizer of a line in Rm+1. Normal parabolic ge-
ometries of type (G, P ) are classical projective structures on m-dimensional manifolds.
Generalized geodesics (of type Cn) are exactly the geodesics of all connections in the
projective class. They are determined by their 2-jet at one point as parametrized curves,
but already determined by their direction in one point as unparametrized curves.

(2) G = SL(m + 1,H), P is the stabilizer of a quaternionic line. This choice leads
to almost quaternionic geometries (the complex version of which is dealt with in [1]).
Again generalized geodesics are determined by their 2-jet at one point, but they form
more complicated systems of curves than in the projective case, see [1].

(3) G = O(p+1, q+1), P is the stabilizer of a null line. This leads to conformal pseudo-
Riemannian geometries of signature (p, q). Here the (generalized) geodesics are the well-
known conformal circles, which owe their name to the fact that for the homogeneous
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model with signature (n, 0) one obtains all circles on the sphere. For general signatures,
the geodesics in null directions, which behave similarly to the projective case, form an
interesting subclass.

(4) G = SU(p + 1, q + 1), P the stabilizer of a (complex) null line. This Hermitian
analog of (3) leads to nondegenerate CR-structures of hypersurface type with signature
(p, q). Here the Lie algebra is 2-graded and the geodesics of type Cg−2 are the well-known
Chern–Moser chains.

2. Jets of distinguished curves

2.1. The bundles of CA-velocities

Let us recall the natural bundles T r
k of rth order k-dimensional velocities on all smooth

manifolds. By definition, T r
k M = Jr

0 (Rk,M); so this is the bundle of r-jets of paramet-
rized k-dimensional (singular) submanifolds in M . In particular, r-jets of curves are
elements in T r

1 M . The action of all diffeomorphisms of M on T r
k M is defined by jet

composition. Let us consider a category of Cartan geometries of fixed type (G,P ) and
a class of generalized geodesics CA, for a G0-invariant subset A of n. Then the jets
of distinguished curves of type CA form a natural subbundle T r

CA
⊂ T r

1 on parabolic
geometries of type (G,P ). Clearly, T r

CA
is a well defined functor, see Proposition 1.3(2)

above, however its values are not smooth bundles in general, see the examples below.
In the cases with G0-invariant subsets A ⊂ n we call the latter functors the bundle of
rth order velocities of geodesics of type CA.

Our next goal is to prove that there always is a finite order r for which the entire
geodesic is completely determined by a single value in T r

CA
.

2.2. Jets of curves on G/P

Using Cartan’s space S, the development of curves defines a bijection between smooth
curves c : I → M defined on some neighborhood I of 0 ∈ R such that c(0) = x0, and
smooth curves to G/P which map 0 to o = eP . Of course, this bijection is compatible
with taking jets in x0, i.e., two curves have the same `-jet in x0 if and only if the
corresponding curves in G/P have the same `-jet in o. By definition, this bijection also
respects generalized geodesics of any type. Thus, to prove that geodesics of some type
CA are determined by some jet at one point, it suffices to consider the homogeneous
model G/P and the point o. We start by considering A = n (which of course provides
an estimate for any A ⊆ n). Thus, we have to study the curves cb,X(t) = b exp(tX)P ,
with b ∈ P and X ∈ n, cf. 1.2.

Since b exp(tX) = exp(tAdb X)b we see that cb,X(t) = exp(t Adb ·X)P . For any two
curves c(t) and d(t) in G, there is a uniquely determined curve u(t) in G such that
c(t) = d(t)·u(t). The projections of c(t) and d(t) to G/P coincide if and only if u(t) ∈ P
for all t. Thus the curves cb1,X1 and cb2,X2 coincide if and only if the uniquely determined
curve u such that

exp(tAdb1 X1) = exp(tAdb2 X2)·u(t) (1)

has values in P . Since exp is analytic, the curve u must be analytic too, and hence it has
values in P if and only if all derivatives u(i)(0) = di

dti

∣∣
0
u are tangent to P . To formulate

this precisely, we use left logarithmic derivative δu : R → g of the curve u : R → G,
see e.g., [10, p. 39]. In fact δu : TR = R × R → g, δu(t) = Tλu(t)−1 ◦ Ttu, but we shall
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identify the linear map δu(t, ) : R→ g with its value at the unit 1 ∈ TtR. Since knowing
δu is equivalent to knowing Tu, the following lemma is a simple observation.

Lemma. For each order k ∈ N we have jk
0 cb1,X1 = jk

0 cb2,X2 if and only if the derivatives
(δu)(i)(0) lie in p for all i ≤ k − 1.

2.3. Some technicalities
In order to compute the derivatives of δu from formula 2.2(1), we can use the Leibniz
rule for the left logarithmic derivative,

δ(f ·g)(x) = δg(x) + Adg(x)−1 δf(x),

see [10, p. 39], so it remains to compute the left logarithmic derivative of the curve
t 7→ exp tX. For later use, we shall compute this expression with an arbitrary curve
Y : R→ g instead of the line tX. By definition, the logarithmic derivative δ(f ◦g) of the
composition of two smooth maps f : M → G, g : N → M is given by δ(f ◦g) = (δf)◦Tg.
Thus, the key ingredient is the formula for δ(exp) : Tg → g. The proof of this formula
for the right logarithmic derivative in [10, p. 39] can be easily adapted to our case,
leading to

δ(exp)(Y ) =
∑∞

p=0
1

(p+1)! ad(−Y )p.

This proves:

Lemma. Let Y : R→ g be a smooth curve with derivative Y ′ : R→ g. Then

δ(exp ◦Y )(t) =
∞∑

p=0

1
(p + 1)!

ad(−Y (t))p·Y ′(t).

The first terms in the formula for δ(exp Y (t)) read as

Y ′(t)− 1
2 [Y (t), Y ′(t)] + 1

6 [Y (t), [Y (t), Y ′(t)]] + . . . .

Notice that if Y has values in n, then also Y ′ has values in n, and compatibility of the
grading of g with the Lie bracket implies that at most k of these terms may be non-zero
for |k|-graded g. Thus, for example,

δ(exp Y (t)) = Y ′(t), if k = 1,

δ(exp Y (t)) = Y ′(t)− 1
2 [Y (t), Y ′(t)], if k = 2,

δ(exp Y (t)) = Y ′(t)− 1
2 [Y (t), Y ′(t)] + 1

6 [Y (t), [Y (t), Y ′(t)]], if k = 3.

On the other hand, if Y (t) = ϕ(t)Y for some fixed Y ∈ g and a smooth function ϕ, then
[Y (t), Y ′(t)] = 0 and hence we always get

δ(exp ϕ(t)Y ) = ϕ′(t)Y. (1)

Applying the left logarithmic derivative to equation 2.2(1) yields

δu(t) = Adb1 X1 −Adu(t)−1 Adb2 X2. (2)
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In particular, δu(0) = Adb1 X1 − Adb2 X2, and this lies in p if and only if Adb1 X1 and
Adb2 X2 represent the same class in g/p, i.e., if the curves have the same tangent vector
at 0.

Differentiating equation (2) at zero we obtain

(δu)′(0) = − ad(−u′(0)) Adb2 X2 = [u′(0), Adb2 X2],

and u′(0) is the image of 1 ∈ T0R by δu(0).
Substituting (2) yields (δu)′(0) = [δu(0),Adb1 X1]. Surprisingly, there is a general

formula for (δu)(i)(t) for all t ∈ R and all orders i.

2.4. Lemma. For all i ≥ 1, (δu)(i)(t) = (ad(−Adb1 X1))i(δu(t)).

Proof. Let us start with the first order derivative, so we have to prove (δu)′(t) =
[δu(t), Adb1 X1]. To do this, we have to compute the derivative of t 7→ Adu(t)−1 : R →
GL(g). Clearly, d

dt (t 7→ Adu(t)−1) = (T Ad ◦Tν)(u′(t)), where ν is the inversion in G
and Ttu = u′(t). First, we will express Tgν and Tg Ad in general.

From ρg ◦ ν ◦ λg = ν we have Tg−1ρg ◦ Tgν ◦ Teλg = Teν, thus Tgν = −Teρg−1 ◦
Tgλg−1 . Similarly, Ad ◦λg = Adg ◦Ad implies Tg Ad ◦Teλg = Adg ◦Te Ad, so Tg Ad =
Adg ◦ ad ◦Tgλg−1 . Altogether,

d
dt Adu(t)−1 = (Adu(t)−1 ◦ ad ◦Tλu(t)) ◦ (−Tρu(t)−1 ◦ Tλu(t)−1)(u′(t)).

Since Adg = Te(λg ◦ ρg−1) and δu(t) = Tλu(t)−1 ◦ u′(t) the latter expression equals
(−Adu(t)−1 ◦ ad ◦Adu(t))(δu(t)). Thus,

(δu)′(t) = Adu(t)−1 [Adu(t) δu(t),Adb2 X2] = [δu(t),Adu(t)−1 Adb2 X2]

and substituting Adu(t)−1 Adb2 X2 = Adb1 X1 − δu(t) from 2.3(2) the claim follows.
Now, let i > 1 and assume that the formula is valid for all orders less then i. Then

(δu)(i)(t) = d
dt

∣∣
t
(ad(−Adb1 X)i−1δu(t))

and since (ad(−Adb1 X))i−1 is a linear map and we have computed (δu(t))′ already, we
arrive at

(δu)(i)(t) = ad(−Adb1 X)i−1(δu(t))′ = ad(−Adb1 X)iδu(t),

which is the required formula. ¤
Let us notice that we have also derived the more general formula for the derivative

of Adu(t)−1 Y (t) with Y : R→ n. From the proof above we conclude

d
dt

∣∣
t
(Adu(t)−1 Y (t)) = Adu(t)−1 Y ′(t)− [δu(t),Adu(t)−1 Y (t)]. (1)

As a simple consequence of this lemma, we can prove that any geodesic is determined
by a finite jet at one point:

2.5. Proposition. Let g be a |k|-graded Lie algebra, and let A ⊆ n be any G0-invariant
subset. If two geodesics of type CA have the same (k + 2)-jet at one point, then they
coincide.
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Proof. As we have noticed in 2.2 it suffices to consider A = n, and we can complete the
proof by showing that two curves cb1,X1 and cb2,X2 coincide if they have the same (k+2)-
jet in 0. Denoting by u : R → G the curve determined by equation 2.2(1), Lemma 2.4
tells us that (δu)(i)(0) = (ad(−Adb1 X1))i(δu(0)). By Lemma 2.2, the assumption on
the (k+2)-jet in 0 implies that ad(−Adb1 X1)i(δu(0)) ∈ p for all i ≤ k+1. Since b1 ∈ P ,
we may hit this element with Ad−1

b1
, and the result remains in p. Putting X = X1 ∈ n

and Z = Adb−1
1

δu(0) ∈ p we conclude that ad(−X)i(Z) ∈ p for all i = 1, . . . , k + 1.
Since Z ∈ p = g0⊕ . . .⊕ gk and −X ∈ n = g−k⊕ . . .⊕ g−1, compatibility of the bracket
with the grading implies that ad(−X)i(Z) ∈ g−k ⊕ . . .⊕ gk−i. Putting i = k +1, we see
that ad(−X)k+1(Z) has to lie both in n and in p, so it must be zero. This implies that
(δu)`(0) = 0 ∈ p for all ` > k + 1, and thus cb1,X1 = cb2,X2 and the claim follows. ¤

Let us remark at this point that the estimate r = k+2 on the jet needed to pin down
a geodesic is not at all sharp and we will improve it heavily depending on a particular
choice of the class of geodesics.

2.6. Distinguished curves in a given direction
The most natural way to approach the problem of distinguished curves is usually to fix
a point x ∈ M and a tangent vector ξ ∈ TxM , and look for geodesics emanating from x
in direction ξ. Given a G0-invariant subset A ∈ n, the basic question then is how many
geodesics of type CA pass through x in direction ξ. Of course, it may happen that there
are no such geodesics. As before, one may restrict the discussion to the point o in the
homogeneous model G/P . Since the above question is perfectly geometric, the answer
for a tangent vector ξ ∈ To(G/P ) ∼= g/p will only depend on the P -orbit of ξ. Clearly,
there is at least one geodesic of type CA in direction X, if the image of A in g/p meets
the P -orbit of ξ. Otherwise put, if X ∈ n ⊂ g is the unique element such that ξ = X +p,
then there is at least one geodesic of type CA in direction ξ if Adb(X) ∈ A for some
b ∈ P .

Second, suppose that A,B ⊂ n are G0-invariant subsets, and that for each X ∈ A
there is an element b ∈ P such that Adb X ∈ B, and vice versa. (Of course, this is a
very restrictive condition, since we are using Adb, which does not leave n invariant, but
it happens in interesting cases.) Then this gives rise to a bijection between the sets CA

and CB of curves in G/P , and consequently, geodesics of type CA coincide with geodesics
of type CB .

Fix a G0-invariant subset A ⊆ n and an element X ∈ A, and consider the tangent
vector ξ = X + p ∈ To(G/P ). Clearly, ce,X(t) = exp(tX)P is a geodesic of type CA in
direction X, and any other geodesic of that type can be written as cb,Y with b ∈ P and
Y ∈ A. It is a general fact, see [3, 2.10], that there are unique elements b0 ∈ G0 and
Z ∈ p+ such that b = b0 exp(Z) = exp(Adb0 Z)b0. From the definition of distinguished
curves, we conclude that

cb0 exp Z,Y = cexp(Adb0 Z),Adb0 Y ,

and Adb0 Y ∈ A. Hence any geodesic of type CA may be written as cexp(Z),Y for Z ∈ p+

and Y ∈ A. Hence we conclude that the set of geodesics of type CA in direction ξ = X+p
can be equivalently described as

{cexp(Z),Y | Z ∈ p+, Y ∈ A,Adexp(Z) ·Y = X}.
Passing to a general curved geometry via developments as before, we obtain
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Proposition. Let (p : G → M,ω) be a Cartan geometry of type (G,P ), x ∈ M a
point, ξ ∈ TxM a tangent vector, and let A ⊆ n be a G0-invariant subset. Then there
is a geodesic of type CA through x in direction ξ if and only if there are elements u ∈
p−1(x) ⊂ G and X ∈ A such that ξ = Tup·ω−1(X). Moreover, for any such pair (u, X),
one obtains a bijection between the set of geodesics of type CA through x in direction
ξ and the set {cexp(Z),Y | Z ∈ p+, Y ∈ A,Adexp(Z) ·Y = X} of curves in G/P . This
bijection is compatible with finite jets in 0 in the obvious sense.

Finally note that the curves cexp(Z1),Y1 and cexp(Z2),Y2 have the same `-jet in 0 re-
spectively coincide if and only if the same is true for ce,Y1 and cexp(Z1)

−1 exp(Z2),Y2 , and
we can write exp(Z1)−1 exp(Z2) as exp(Z) for some Z ∈ p+. Hence we conclude that if
for some ` and each X ∈ A we can show that any curve cexp(Z),Y with Y ∈ A which has
the same `-jet in 0 as ce,X must actually equal ce,X , then this implies that any geodesic
of type CA is uniquely determined by its `-jet at a single point.

2.7. The |1|-graded case

For irreducible parabolic geometries we easily reach a complete description. So we as-
sume g = g−1 ⊕ g0 ⊕ g1 and A = n. The main simplification in the |1|-graded case
comes from the fact that in this case p+ acts trivially on g/p, so the P action on this
quotient factorizes over G0. In particular, for Z ∈ p+ = g1 and Y ∈ n = g−1 we
get Adexp(Z) Y = Y , so in view of Proposition 2.6 it remains to compare the curves
ce,X and cexp(Z),X with Z ∈ g1. For the corresponding curve u, we obviously get
δu(0) = −[Z, X] − 1

2 [Z, [Z, X]]. For the two curves having the same two-jet in 0, we
must have

(δu)′(0) = −[X1, δu(0)] = [X1, [Z, X1]] + 1
2 [X1, [Z, [Z, X1]]] ∈ p,

and thus [X1, [Z, X1]] = 0. But this implies [X1, [Z, [Z, X1]]] = [Z, [X1, [Z,X1]]] = 0,
and so (δu)(i)(0) = 0 for all i ≥ 2. Thus, we have proved:

Proposition. Each generalized geodesic in an irreducible parabolic geometry is uniquely
determined by its 2-jet at one point.

2.8. The distinguished jets

Using the procedures above, one may compute explicitly the jets of all geodesics of
type CA. For the sake of simplicity, we shall restrict ourselves again to the case of |1|-
graded Lie algebras. Thus, the value in T 2

1 (G/P ) over the origin will always determine
a geodesic completely, and we shall compute explicitly the algebraic description of the
standard fibers of T 2

CA
. Understanding the higher jets of geodesics is an interesting

problem, however the computations grow quickly out of hand.
Let us describe all distinguished curves in normal coordinates through the origin,

i.e., we have to represent each geodesic in the form t 7→ exp(Y (t))P for a smooth curve
Y : R→ g−1 with Y (0) = 0. This means that rather than with formula 2.2(1), we have
to deal with

exp(Y (t))·u(t) = exp(tAdexp Z X)

for Z ∈ g1 and X ∈ A ⊆ g−1.
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Using the results in 2.3 and formula 2.4(1), straightforward computations yield

δu(t) = X + [Z,X] + 1
2 [Z, [Z, X]]−Adu(t)−1(Y ′(t)),

(δu)′(t) =
[
X + [Z,X] + 1

2 [Z, [Z, X]], Adu(t)−1 Y ′(t)
]−Adu(t)−1 Y ′′(t).

The requirement (δu)(i)(0) ∈ p, for i = 0, 1 immediately implies

Y ′(0) = X,

Y ′′(0) = [X, [X,Z]].

Now it is easy to describe the standard fiber of T 2
CA

as follows. The standard fiber
of T 2

1 is the smooth manifold J2
0 (R, g−1)0, which is naturally identified with g−1 × g−1.

Hence the standard fiber of T 2
CA

is a subset in g−1 × g−1, which we have computed to
be

S =
{[

X
[X,[X,Z]]

]
| X ∈ A,Z ∈ g1

}
.

Recall that A is assumed to be G0-invariant, but not necessarily a linear subspace. A
good example in which it is not a subspace is given by the null cone in Rp+q in the
setting of Example 1.4(3). In that case, [X, [Z, X]] happens to be a multiple of X for
each Z, which corresponds to the fact that geodesics in null directions are conformally
invariant up to parametrization.

For every parabolic geometry of type (G,P ), there is the standard embedding i : P →
G2

m = inv J2
0 (Rm,Rm)0, see e.g., [15, 17]. Further, the action of the structure group G2

m

on J2
0 (R,Rm)0 transforms to the action on g−1×g−1, whose restriction to the subgroup

i(P ) keeps the subset S invariant because the set CA of all geodesics is P -invariant.
In fact, the action of G0 obviously is the product of the adjoint actions on g−1×g−1,

while the action of P+ = exp g1 comes by the very definition of the curves from the left
shift by the elements expW , W ∈ g1. Since g1 is an abelian subalgebra, the action by
expW is given by

expW ·
[

Y ′
Y ′′

]
=

[
Y ′

Y ′′+[Y ′,[Y ′,W ]]

]
.

Hence we obtain an alternative description of the standard fiber as the P -orbit of the
G0-invariant subspace A× {0} ⊆ g−1 × g−1.

3. Reparametrizations

In this section we shall generalize our basic question to: When are two distinguished
curves equal up to a change of parametrization? Thus we shall discuss the nonparamet-
rized geodesics together with their preferred parametrizations.

3.1. Technicalities
In order to deal with this question, we have to modify our basic equation 2.2(1). The
answer is positive if and only if there exist mappings u : R → P and ϕ : R → R such
that

exp(ϕ(t)Adb1 X1) = exp(tAdb2 X2)·u(t), (1)

where ϕ is a local reparametrization, i.e., we require ϕ′(t) 6= 0 and, for simplicity,
ϕ(0) = 0. As discussed in 2.6, we may restrict ourselves to G0-invariant subsets A,
b1 = e, b2 = expZ with Z ∈ p+.
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The left logarithmic derivative of (1) gives, see 2.3(1)

δu(t) = ϕ′(t)X1 −Adu(t)−1 ·Adexp Z X2. (2)

In particular, δu(0) ∈ p if and only if tangent vectors of the two distinguished curves at
0 are equal up to a scalar multiple.

By formula 2.4(1), and the above equation (2), we get

(δu)′(t) = ϕ′′(t)X1 − ϕ′(t)[X1, δu(t)]. (3)

Now, similarly as in the parametrized case we prove a general iterative formula for
(δu)(i):

3.2. Lemma. For all i ≥ 1 and at every t ∈ R, with the notation as above

(δu)(i) = ϕ(i+1)X1 +
i∑

k=1

(−1)k
(∑

j,a

cj,a(ϕ(j1))a1. . . (ϕ(js))as

)
(adX1)

k(δu)

where the internal sum runs over all s-tuples of natural numbers j = (j1, . . . , js), j1 <
j2 < . . . < js, and s-tuples of arbitrary natural numbers a = (a1, . . . , as) such that
a1j1 + . . . + asjs = i and a1 + . . . + as = k, and the coefficients cj,a are

cj,a =
i!

(j1!)a1 . . . (js!)asa1! . . . as!
.

Proof. In the case i = 1, the entire sum in the formula has just one possible term for
k = 1, j1 = 1 and a1 = 1. As we have seen, this is the correct formula (3). The general
case is proved by a tedious induction. ¤

Remark. As a hint for the induction mentioned in the proof above, let us describe
what the individual terms in the general formula mean. The value of k says how many
times ϕ occurs in the term in question (and so many times X hits δu via the adjoint
action and the sign is set appropriately), while the coefficients cj,a express in how many
different ways we may split i derivatives onto k copies of ϕ’s in order to achieve the
result (ϕ(j1))a1. . . (ϕ(js))as . Now, the differentiation of this formula and substitution
from 3.1(3) means that we perform the last derivative on one of the ϕ’s in the individual
terms in the formula, or we attach a new ϕ to the existing terms which is differentiated
only once. But this is exactly how all splittings of i + 1 (distinguishable) hits of k
(indistinguishable) targets are obtained from the answers to the same question for i
derivatives and k or k − 1 targets. Either the last hit has been to some existing one
among k targets, i.e., we use the answer with i hits and k targets, or we have had to
introduce a new target which was hit once, i.e., we used the answer with i hits and k−1
targets.

It is probably hard to deduce general results for all parabolic geometries and all
classes of distinguished curves from this formula, but let us see how to use it in more
specific situations.
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3.3. Irreducible parabolic geometries
We are going to give a complete answer to our question for |1|-graded algebras g. In
order to decide when two distinguished paths cb1,X1 , cb2,X2 parametrize the same curve
we have to compute explicitly the consequences of (δu)(i)(0) ∈ p in relation to the
necessary and sufficient conditions for the solution of the given problem. At the same
time we shall get a complete and explicit description of the reparametrizations.

Lemma. With the notation as above, δu(0) ∈ p if and only if

ϕ′(0)X1 = X2. (1)

If δu(0) ∈ p, then (δu)′(0) ∈ p if and only if

ϕ′′(0)
ϕ′(0)2 X1 = [X1, [X1, Z]], (2)

and if i ≥ 2 and (δu)(j)(0) ∈ p for all j < i, then (δu)(i)(0) ∈ p if and only if

ϕ(i+1)(0) = (i+1)!
2i

ϕ′′(0)i

ϕ′(0)i−1 , for all i ≥ 2. (3)

Proof. Since our algebra g is |1|-graded, all iterated adjoint actions by X1 on δu(0)
vanish if the order is more than two. Thus only terms with k ≤ 2 in Lemma 3.2 may
survive and the general formula for i ≥ 1 reads

(δu)(i)(0) = ϕ(i+1)(0)X1 − ϕ(i)(0)[X1, δu(0)] +
1
2

∑i−1
`=1

i!
`!(i−`)!ϕ

(`)(0)ϕ(i−`)(0)[X1, [X1, δu(0)]].

Indeed, this can be either proved by inserting into the general formula from Lemma 3.2
or directly by induction.

Next, recall δu(0) = ϕ′(0)X1 −X2 − [Z, X2]− 1
2 [Z, [Z, X2]]. Thus (1) is obvious. We

shall assume δu(0) ∈ p and therefore

δu(0) = −ϕ′(0)([Z,X1] + 1
2 [Z, [Z, X1]]).

Now, (2) follows from the general formula with i = 1. The most interesting step is the
case i = 2 (i.e., we deal with the third-order jets of the curves, so that these must be
determined by the lower order derivatives already). Indeed, substitutions of the equality
above and (2) into the general formula yields

(δu)(i)(0) = ϕ(i+1)(0)X1 + ϕ(i)(0)ϕ′(0)[X1, [Z,X1]]

− 1
4

∑i−1
`=1

(
i
l

)
ϕ(`)(0)ϕ(i−`)(0)ϕ′(0)[X1, [X1, [Z, [Z, X1]]]] + term in g0

=
(
ϕ(i+1)(0)− ϕ(i)(0)ϕ′′(0)

ϕ′(0) − 1
4

∑i−1
`=1

(
i
l

)
ϕ(`)(0)ϕ(i−`)(0)ϕ′′(0)2

ϕ′(0)3

)
X1

+ term in g0.

The structure of the latter equation implies that ϕ(i+1)(0) is determined uniquely in
terms of the values ϕ(k)(0) with k ≤ i and a direct computation checks that the formula
in (3) is correct. ¤
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Let us summarize what we have achieved so far. If the conditions of (1) and (2) are
satisfied, then ϕ(0), ϕ′(0) and ϕ′′(0) are determined by the choice of the tangent vectors
to the curve and by the element Z ∈ g1 and we may define all other derivatives of ϕ by
the formula (3). In particular, the special case i = 2 yields

ϕ′′′(0) = 3
2

ϕ′′(0)2

ϕ′(0) (4)

which reminds one the well-known Schwartzian differential equation. We shall see that
the formulae for ϕ(i)(0) determine an analytic local solution for this equation.

If we denote a = ϕ′(0) and b = ϕ′′(0), the Taylor development of the function ϕ at
0 must be

ϕ(t) = at + 1
2bt2 + 1

6
3
2

b2

a t3 + · · ·+ 1
(i+1)!

(i+1)!
2i

bi

ai−1 ti+1 + · · · .

Thus, we have obtained the geometric series ϕ(t) = at
∑∞

i=0(
bt
2a )i which converges locally

around 0 and its value is
ϕ(t) = at

(
1− b

2a t
)−1

.

If we want to allow the reparametrizations with ϕ(0) 6= 0, we have just to replace
equation 3.1(1) by exp(ϕ(t)−ϕ(0))Adb1 X1 = exp(t Adb2 X2)·u(t) and the result differs
only by adding the value ϕ(0) to the fraction above. In such a case the reparametrization
takes a form

ϕ(t) = At+B
Ct+D , where A = ϕ′(0)− ϕ′′(0)

2ϕ′(0)ϕ(0), B = ϕ(0), C = − ϕ′′(0)
2ϕ′(0) , D = 1.

In particular, the solution with ϕ′′(0) = 0 yields the affine reparametrization of the
curve which of course has to be geodesic as well. The determinant of the matrix

[
A B
C D

]
is ϕ′(0) 6= 0, so we may normalize this to 1, and we have proved:

3.4. Proposition. Suppose that g is |1|-graded. If the curves cb1,X1 and cb2,X2 coincide
as unparametrized curves, then the corresponding local reparametrization ϕ has the form
ϕ(t) = At+B

Ct+D , where
[

A B
C D

] ∈ SL(2,R). Conversely, if c = cb,X is a parametrized
geodesic, then all curves c ◦ ϕ with reparametrizations ϕ : R→ R of the latter form are
again geodesics if and only if there is Z ∈ g1 such that [X, [X, Z]] = X.

Proof. It remains to prove the second statement. Obviously we may restrict ourselves to
the case when ϕ(0) = 0. Then each ϕ satisfies all conditions from Lemma 3.3, provided
there is a suitable Z for (2). ¤

Reparametrizations of the above type are called projective, see [2], where they are
obtained as solutions of the Schwartzian differential equation ϕ′′′ = 3

2
(ϕ′′)2

ϕ′ .

Corollary. Suppose that g is |1|-graded. Then the curves ce,X1 and cexp Z,X2 parametrize
the same unparametrized geodesic if and only if there are a 6= 0 and b such that X2 =
aX1 and [X2, [X2, Z]] = bX1. This is equivalent to the existence of the projective local
reparametrization ϕ which is uniquely determined by the initial condition ϕ(0) = 0,
ϕ′(0) = a, and ϕ′′(0) = b.
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3.5. Example. In the following examples we use the obvious fact that in the case of a
|1|-grading, elements of P of the form exp(Z) for Z ∈ g1 act trivially on To(G/P ) = g/p.
Then the P -action on this space factorizes over G0.

(1) Conformal Riemannian structures correspond to G = O(p + 1, q + 1) and the
parabolic subgroup P as in 1.4(3). In an appropriate matrix representation, the grading
of the Lie algebra g has the form

g−1 =
{[ 0 0 0

X 0 0
0 −XtJ 0

]
| X ∈ Rp+q

}
, g0 =

{[
a 0 0
0 A 0
0 0 −a

]
| A ∈ o(p, q), a ∈ R

}
,

g1 =
{[

0 Z 0
0 0 −JZt

0 0 0

]
| Z ∈ Rp+q∗

}
.

Here J is the matrix defining the standard pseudo-metric of signature (p, q) on Rp+q =
g−1.

A direct calculation shows that [X, [X, Z]] = −2Z(X)X − ||X||2JZt, where ||X||2 =
XtJX and Z(X) = ZX is a real number. Obviously, the space g−1 splits into three
different orbits of the action of G0 according to the sign of ‖X‖2. The orbit of null-
vectors is of particular interest, since [X, [X, Z]] = −2Z(X)X in that case. This just
means that all distinguished curves with the common tangent null-vector differ by a
reparametrization; this recovers the classical result that the null geodesics of the met-
rics in the conformal class together with the class of projective parametrizations are
invariants of the conformal structure. Of course, these curves will have their tangent
vectors null in all their points.

For all tangent vectors which are not null, the second derivative may be chosen
arbitrarily. So that the standard fiber S in 2.8 has arbitrary entries in the bottom row
if X is not null, but only multiples of X if X is null. On the other hand, there always is
an element Z ∈ g1 such that [[Z, X], X] = X, so all geodesics carry a natural projective
structure.

(2) Almost Grassmannian structures. In this case, G = SL(n+m,R) and the parabolic
subgroup P is the stabilizer of Rn ⊂ Rn+m, so it consists of block upper triangular
matrices with two blocks of sizes n and m. On the infinitesimal level,

g−1 = {[ 0 0
X 0

] | X ∈ Rmn}, g0 = {[ A 0
0 B

] | tr(A) + tr(B) = 0},
g1 = {[ 0 Z

0 0

] | Z ∈ Rnm}.

First, it is easy to see that the subgroup G0 consists of block diagonal matrices, and
its action on g−1 is given by X 7→ TXS−1, (S, T ) ∈ G0. Thus two elements of g−1 lie
in the same G0-orbit if and only if they have the same rank. Further, the computation
of the iterated bracket yields [X, [X, Z]] = −2XZX. In particular, the choice of the
pseudoinverse matrix Z = X† provides always a multiple of X, and so all generalized
geodesics enjoy the distinguished projective structure. If the rank of X is one, then we
may choose X to be the matrix with the left upper element x11 = 1 and all other 0.
Then [X, [X,Z]] equals to z11X for all Z and so this behavior must be shared by all
matrices of rank one. Thus, the directions corresponding to rank one matrices behave
like null directions in pseudo-conformal geometries. The other extreme is that X has
maximal rank. Then one gets a lot of freedom in the available second derivatives of the
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curves. The case that all elements of g−1 are possible second derivatives occurs only if
m = n and X has rank n.

(3) Projective structures are the special case n = 1 of Example (2) above. In this case,
the rank of X 6= 0 is always one. More explicitly, the product ZX is a real number, so the
bracket [X, [X,Z]] is always a multiple of X. From this it follows that all unparametrized
distinguished curves are determined by the direction at a given point. This agrees with
the classical definition of a projective structure as a class of affine connections sharing
the same unparametrized geodesics. All such connections are parametrized by smooth
one-forms on the base manifold and they correspond to the Weyl connections defined
in [4].

4. More refinements

In this section we improve the estimates on the jet at a point needed to pin down a
geodesic for geodesics of certain types. The most general result is Theorem 4.3 but since
the proofs of these results are a bit technical, we prefer to discuss two simpler special
cases first.

4.1. Curves tangent to T −1M

Let M be any manifold equipped with a parabolic geometry of some fixed type (G,P ).
A (generalized) geodesics with development of the form cb,X emanates in a direction
in T−1M if and only if X ∈ g−1. Thus we are dealing with distinguished curves of
type Cg−1 and from Proposition 1.3 we see that they will be tangent to the distribution
T−1M at all points.

To discuss geodesics of type Cg−1 , by Proposition 2.6 we have to fix X ∈ g−1 and study
the curves cexp(Z),Y for Z ∈ p+ = g1⊕ . . .⊕gk and Y ∈ g−1 such that Ad(exp(Z))(Y ) =
X. Since Y ∈ g−1 we get Ad(exp(Z))(Y ) = Y for any Z, so we have to consider all
curves of the form cexp(Z),X with Z ∈ p+. By [3, 2.10] we get a nicer presentation of
exp(Z). Namely, there are unique elements Zi ∈ gi for i = 1, . . . , k such that exp(Z) =
exp(Z1) · · · exp(Zk). Since Ad(exp(W )) = ead(W ) for each W ∈ g, we get

Adexp Z X =
∑

i1,...,ik

1
i1!···ik! (ad Z1)i1 · · · (ad Zk)ikX.

Moreover, since X ∈ g−1 a summand in the right-hand side lies in g` if and only if
i1 + 2i2 + . . . + kik = ` + 1.

We need another observation for the proof: Suppose that Y ∈ g is any element. The
Jacobi identity reads as adX ◦ adY = ad[X,Y ] +adY ◦ adX . Inductively, this implies that
adn

X ◦ adY can be written as a linear combination of terms of the form adadi
X(Y ) ◦ adj

X

with 0 ≤ i, j and i + j = n. In particular, if ad`+1
X (Y ) = 0 for some ` ≥ 0, then for each

n > ` there is a linear map ϕ such that adn
X ◦ adY = ϕ ◦ adn−`

X . Of course, it is not
difficult to compute ϕ explicitly, but we will not need this explicit form.

Proposition. A parametrized generalized geodesic of type Cg−1 in a parabolic geometry
corresponding to a |k|-grading of g is uniquely determined by its (k + 1)-jet in a single
point.

Proof. Of course, we have proved this for k = 1 in 2.7. In view of the above discussion
and the last observation in 2.6 we have to show that for each fixed X ∈ g−1 any curve
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of the form cexp(Z1)··· exp(Zk),X with Zi ∈ gi which has the same (k + 1)-jet in 0 as ce,X

actually equals ce,X .
Given Z1, . . . , Zk define W := Ad(exp(Z1) · · · exp(Zk))(X)−X ∈ p. From the above

discussion we see that

W =
∑

i1,...,ik

1
i1!···ik! (ad Z1)i1 · · · (ad Zk)ikX, (1)

where the sum is over all (i1, . . . , ik) such that 0 < i1+2i2+. . .+kik ≤ k+1. Considering
the curve u(t) associated to ce,X and cexp(Z1)··· exp(Zk),X by equation 2.2(1), we see
from 2.3 that δu(0) = −W and Lemma 2.4 implies that (δu)(i)(0) = (−1)i+1 adi

X(W ).
Consequently by Lemma 2.2 proving the result boils down to showing that adi

X(W ) ∈ p
for all i ≤ k implies adi

X(W ) ∈ p for all i ∈ N.
For each ` = 1, . . . , k define W ′

` to be the sum of those terms in the expression (1)
for W for which all ij with j > ` are zero, and put W ′′

` = W −W ′
` . In particular, we

have W ′′
k = 0, i.e., W ′

k = W .

Claim. If adi
X(W ) ∈ p for all i ≤ `, then for each j ≤ ` we have adj+1

X (Zj) = 0, and
for each n > ` we get adn

X(W ′
`) ∈ p.

We prove this claim by induction on `. If ` = 1, we know that adX(W ) ∈ p. Looking
at formula (1) for W and taking into account that X ∈ g−1 we see that adX(W ) ∈ p
implies (and is actually equivalent to) [X, [Z1, X]] = 0 and thus to ad2

X(Z1) = 0. Hence
it remains to show that adn

X(W ′
1) ∈ p for all n > 1. By definition, W ′

1 =
∑k+1

i=1
1
i! adi

Z1
X.

Thus adn
X(W ′

1) ∈ p is equivalent to adn
X ◦ adi

Z1
X = 0 for i ≤ n. From above we know

that ad2
X(Z1) = 0 implies that adn

X ◦ adZ1 = ϕ ◦ adn−1
X , so inductively we conclude that

adn
X ◦ adi

Z1
= ψ ◦ adn−i+1

X ◦ adZ1 for some linear map ψ and by assumption n− i + 1 >

0. Hence applying this element to X we get ψ ◦ adn−i+2
X (Z1) which vanishes since

n− i + 2 ≥ 2. This completes the proof of the case ` = 1.
Assume inductively that ` > 1 and we have proved the result for ` − 1. Given that

adi
X(W ) ∈ p for all i ≤ `, we by induction conclude that adj+1

X (Zj) = 0 for j =
1, . . . , `− 1. Moreover, we know by induction that ad`

X(W ) ∈ p implies ad`
X(W ′′

`−1) ∈ p.
By definition of W ′′

`−1 the only term in ad`
X(W ′′

`−1) which does not automatically lie in
p is ad`

X([Z`, X]), so we conclude that ad`+1
X (Z`) = 0. Hence it remains to show that

adn
X(W ′

`) ∈ p for all n > `. Since we know by induction that adn
X(W ′

`−1) ∈ p, it suffices
to consider adn

X(W ′
` −W ′

`−1). Now from the expression (1) for W we conclude that

W ′
` −W ′

`−1 =
∑

i1,...,i`

1
i1!···i`!

(adZ1)i1 · · · (adZ`)i`X,

with the sum going over i` > 0 and i1 + 2i2 + . . . + `i` ≤ k + 1. Obviously, adn
X(W ′

` −
W ′

`−1) ∈ p is equivalent to vanishing of adn
X ◦ adi1

Z1
◦ · · · ◦ adi`

Z`
X for all multi-indices

(i1, . . . , i`) such that i1 + 2i2 + . . . + `i` ≤ n. Since adj+1
X (Zj) = 0, we see from above

that adm
X ◦ adZj = ϕ ◦ adm−j

X for m > j. Inductively we conclude that for m > jij we
get adm

X ◦ adij

Zj
= ψ ◦ adm−jij

X for some linear map ψ. Thus we conclude that

adn
X ◦ adi1

Z1
◦ . . . ◦ adi`

Z`
= ψ̃ ◦ adn−i1−2i2−...−`(i`−1)

X ◦ adZ`
,
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and by assumption n− i1 − 2i2 − . . .− `(i` − 1) ≥ `. Thus applying the right hand side
to X, we obtain adr

X(Z`), and by construction r ≥ ` + 1, so this vanishes. Hence the
proof of the claim is complete.

But taking the claim in the case ` = k, we see that adi
X(W ) ∈ p for all i ≤ k implies

that adn
X(W ′

k) ∈ p for all n > k. Since we have observed above that W ′
k = W , this

completes the proof. ¤

4.2. The case A = g−k

The other extreme class of geodesics on a manifold M equipped with a parabolic geomet-
ry of type (G,P ) with |k|-graded g is provided by the generalized geodesics of type
Cg−k

. Of course, for a point x ∈ M and a tangent vector ξ ∈ TxM one must have
ξ ∈ TxM \ T−k+1

x M in order to have a nontrivial geodesic of type Cg−k
in direction ξ.

On the other hand, this condition is not sufficient for such a geodesic, and the directions
of these geodesics usually form a smaller cone in each tangent space.

An important special case is parabolic contact geometries, i.e., those geometries cor-
responding to |2|-gradings, such that g−2 has dimension one and the bracket g−1×g−1 →
g−2 is nondegenerate. These geometries always have an underlying contact structure.
In these cases geodesics of type Cg−2 always exist for all directions in TM \ T−1M . A
very well-known instance of this type of generalized geodesics is provided by the Chern–
Moser chains on hypersurface type CR-structures. A slightly more general example of
this type was studied for 6-dimensional CR-structures of codimension 2, in [16].

Let us recall that reparametrizations of the form ϕ(t) = At+B
Ct+D with A 6= 0 and

AD −BC = 1 are called projective.

Theorem. Each generalized geodesic of type Cg−k
in a parabolic geometry of type (G, P )

corresponding to a |k|-grading on g is uniquely determined by its 2-jet at a single point.
Moreover, if two of such curves coincide up to parametrization, then this reparametriza-
tion is projective. Conversely, given a generalized geodesic of type Cg−k

corresponding to
(u,X) ∈ G × g−k, every projective change of parametrization defines a geodesic of the
same type if and only if there exists a Z ∈ gk such that [X, [X, Z]] = X.

Proof. From 2.6 and 4.1 we know that for each X ∈ g−k we have to compare ce,X

to all curves of the form cb,Y with b = exp(Z1) · · · exp(Zk) for Zi ∈ gi, Y ∈ g−k

and Ad(b)(Y ) = X. The last condition immediately implies that Y = X. Expanding
W = Ad(b)(X) − X as in equation 4.1(1), we conclude that if this expression has
trivial component in g−k+1, then [Z1, X] = 0. Hence we may omit all terms in the
expansion for which i1 is the only nonzero index. Vanishing of the component in g−k+2

then implies [Z2, X] = 0, so we may omit terms in which only i1 and i2 are nonzero.
Inductively, we get [Z`, X] = 0 for all ` = 1, . . . , k − 1. Hence we conclude that δu(0) =
−[Zk, X]− 1

2 [[Zk, [Zk, X]]. Now (δu)′(0) ∈ p implies [X, [Zk, X]] = 0 and so (δu)′(0) = 0
exactly as in 2.7.

Concerning reparametrizations, we may adapt the proofs of Lemma 3.3 and Propo-
sition 3.4 along the same lines. Using the notation from there, the condition δu(0) ∈ p
implies X2 = ϕ′(0)X1 and moreover [Z`, X2] = 0 for all ` ≤ k− 1, inductively as above,
and this is the only difference to the |1|-graded case. Further, (δu)′(0) ∈ p if and only
if ϕ′′(0)X1 = ϕ′(0)2[X2, [X2, Zk]] and we finish the proof exactly as in the |1|-graded
case. ¤
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More generally, let us consider generalized geodesics of type Cg−j
with arbitrary j.

Geodesics of this type are always curves with tangents in T−jM and they emanate from
a given point in M in certain directions in T−jM \ T−j+1M .

4.3. Theorem. Each generalized geodesic of type Cg−j in a parabolic geometry of type
(G,P ) with a |k|-graded g, 1 ≤ j ≤ k is uniquely determined by its r-jet at a single point
provided that rj ≥ k + 1.

Proof. This is a combination of the proofs of Theorem 4.2 and of Proposition 4.1 with
minor generalizations, so we just outline the basic steps: For X ∈ g−j we have to compa-
re ce,X to cb,Y for b = exp(Z1) · · · exp(Zk) with Zi ∈ gi and Y ∈ g−j and Ad(b)(Y ) = X.
This immediately implies Y = X, and we put W = Ad(b)(X) −X and expand this as
in 4.1(1). The proof boils down to showing that adi

X(W ) ∈ p for i ≤ r implies the same
result for all i. As in 4.2, W ∈ p implies that [Z`, X] = 0 for all ` < j, so in the notation
of the proof of Proposition 4.1 we obtain W ′

j−1 = 0.
The analog of the claim in the proof of Proposition 4.1 is that if adi

X(W ) ∈ p for
all i ≤ `, then for each s ≤ ` and m < (s + 1)j, we get ads+1

X (Zm) = 0, and further
adn

X(W ′
j(`+1)−1) ∈ p for all n > `. This is proved by induction using the same arguments

as in 4.1.
For ` = r − 1, we obtain jr ≥ k + 1, and as in 4.1, W ′

k = W , and we conclude that
adi

X(W ) ∈ p for all i ≤ r implies the same property for all i, as required. ¤

The following two examples expose the diversity of the possible behavior of various
classes of distinguished curves in specific parabolic geometries. All claims may be checked
by direct computations following the results above and their more detailed version may
be also found in [21].

4.4. Example. Let us briefly illustrate the general results in the simplest cases of
parabolic contact structures, so we are dealing with |2|-gradings such that g−2 is one-
dimensional and the bracket g−1× g−1 → g−2 is nondegenerate. As we have mentioned
in 4.2, we get in each direction outside the contact subbundle geodesics of type Cg−2

which generalize the Chern–Moser chains for CR-structure. From 4.2 we know that they
are determined by their two-jet in a point as parametrized curves, and it follows that
they are uniquely determined by their direction in one point up to parametrization, by
dimension reasons. Moreover, each such geodesic carries a natural projective structure
of distinguished parametrizations.

Apart of these types of generalized geodesics, there are several other possibilities for
nonequivalent types of geodesics as we may already observe at the simplest example of
G being a real form of SL(3,C) and P the Borel subgroup.

(1) G = SL(3,R). The corresponding geometries are the Lagrangian contact struc-
tures on 3-dimensional manifolds, i.e., three dimensional contact structures endowed
with a decomposition of the contact subbundle into a direct sum of two line subbundles,
cf. [18]. Geometrically, there are four different classes of tangent vectors. First, we have
vectors tangent to one of the two subbundles (two classes); then there are the remaining
vectors in the contact subbundle, and finally those outside of the contact subbundle.

The subgroup P consists of all elements of G which are upper triangular, so on the Lie
algebra level, we obtain n as the subalgebra of strictly lower triangular matrices, with
the two entries directly below the main diagonal corresponding to g−1 and the entry in



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 163

the lower left corner corresponding to g−2. The action of the subgroup G0 rescales each
entry of a matrix in n by a nonzero factor, so the G0-orbits in n are determined simply
by the nonzero entries of a matrix.

First, there are two canonical invariant subspaces in g−1 which correspond to the
Lagrange subspaces of the contact distribution. They are A1 =

{[
0 0 0
∗ 0 0
0 0 0

]}
and A2 ={[

0 0 0
0 0 0
0 ∗ 0

]}
, respectively, where the star denotes a nonzero entry. Generalized geodesics

of these types exist exactly in directions tangent to one of the two line subbundles,
so the two classes are disjoint but have the same properties. In both cases they be-
have like null-geodesics in conformal geometry, i.e., each such curve is determined by
its 2-jet at one point, and with a given tangent vector there is a 1-dimensional fam-
ily of parametrized generalized geodesics determined by elements of the form

[
0 ∗ 0
0 0 0
0 0 0

]

and
[

0 0 0
0 0 ∗
0 0 0

]
∈ p+, respectively. Moreover, all curves from this family coincide up to a

projective reparametrization.
For A = g−1 we get directions in the contact distribution. From 4.1 we know that

such curves are determined by their 3-jet at one point. There is a 3-dimensional fam-
ily of parametrized generalized geodesics (corresponding to all elements in p+) sharing
a given tangent vector, which is not tangent to one of the two line subbundles. Ad-
missible reparametrizations are the projective ones, so the dimension of the space of
unparametrized generalized geodesics with the common direction in T−1M but outside
of the Lagrange subspaces is two.

Now we discuss the curves emanating in directions which do not belong to the con-
tact distribution. For A = g−2 we obtain the analog of CR-chains as described in
Theorem 4.2.

Besides these chains, there are another curves going in all directions except those
in the contact distribution; this class of curves corresponds to the generic choice of
A =

{[
0 0 0
∗ 0 0
∗ ∗ 0

]}
. Curves of this type are determined by a 2-jet and to any tangent vector

there is a 3-dimensional family of generalized geodesics. This set is parametrized by
elements of p+. In contrast to the previous cases, there are no two curves with the
common tangent vector, which would be the same up to a reparametrization. So here
only affine reparametrizations are allowed.

The two G0-orbits in n, which have not yet been mentioned are
{[

0 0 0
∗ 0 0
∗ 0 0

]}
and{[

0 0 0
0 0 0
∗ ∗ 0

]}
. Any element of either of these can by mapped to g−2 by some Adb with

b ∈ P , and vice versa. Hence from 2.6 we know that these lead to the same curves as
A = g−2, and thus the discussion is complete.

(2) G = SU(2, 1). The corresponding geometries are nondegenerated strictly pseudo-
convex 3-dimensional CR-structures. In contrast to the Lagrangian contact structures,
there is no distinguished G0-invariant subset in g−1, so the discussion is similar as above,
but easier, so we skip the details.

4.5. Example. Let us finish the paper with the discussion of generalized geodesics
in the so-called x–x–dot geometries (the name comes from the shape of the Dynkin
diagram with crosses describing the corresponding parabolic subgroup in sl(4,C)). Such
structures appear as correspondence spaces in classical twistor theory, and they are
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related to the geometric theory of ODE’s.
Let us consider the group G = SL(4,R) with the parabolic subgroup P which may

be indicated as P =
{[ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

]}
. The following discussion may be also understood as a

block-wise generalization of the discussion of the matrices in the example 4.4(1) which
we shall call the ‘x–x’ case. The examples with more ‘dots’ in the Dynkin diagram and
just two crosses over the first two nods on the left will behave quite similarly to the
x–x–dot case.

The Lie algebra g− is described by block matrices of the form g− =
{[

0 0 0
x1 0 0
X2 X1 0

]}
,

where the blocks x1, X1 generate the subalgebra g−1 and X2 belongs to g−2. The

truncated adjoint action of an element exp
[

0 z1 Z2
0 0 Z1
0 0 0

]
∈ P+ is given by the formula

[
0 0 0
x1 0 0
X2 X1 0

]
7→

[
0 0 0

x1+Z1(X2) 0 0
X2 X1−z1X2 0

]
.

In accordance with the x–x case, there are two distinguished G0-invariant subspaces
in g−1 corresponding to the blocks x1 and X1, respectively. The generalized geodesics
emanating in the appropriate directions of the distribution T−1M have the same prop-
erties as above. In particular, curves of this type are determined by a 2-jet but as
unparametrized curves they are given by a direction. Parametrized geodesics of this
type with the common tangent vector form a 1-dimensional family parametrized by
the elements of the form

{[
0 z1 0
0 0 0
0 0 0

]}
and

{[
0 0 0
0 0 Z1
0 0 0

]}/
K, respectively, where K ={[

0 0 0
0 0 Z1
0 0 0

]
| Z1(X1) = 0

}
, briefly written as K = {Z1(X1) = 0}. In the latter case, what

really affects the 2-jet is the value Z1(X1) instead of Z1, which is why the quotient
appears.

Generalized geodesics with the generic directions in T−1M are determined by a 3-jet
and to any tangent vector there is a 3-dimensional family of (projectively) parametrized
geodesics described by elements of p+/K, where K = {z1 = 0, Z1(X1) = 0, Z2(X1) = 0}.

The only contrast with the x–x case appears in the directions not belonging to T−1M .
The analogy of chains, i.e., the curves from Cg−2 , does not exhaust all directions out of

the distribution T−1M but only a 4-dimensional ‘cylinder’
{[

0 0 0
Z1(X2) 0 0

X2 −z1X2 0

]}
⊂ g−

(at each point) according to the orbit of g−2 with respect to the truncated adjoint action
of P . Obviously, the complement is formed by all elements of g− such that vectors X1

and X2 are linearly independent; this set is G0-invariant. Now, the discussion splits
into two branches where the first one follows the x–x case, but the second one brings
something new.

Let us start with the directions given by chains. First, it is easy to verify that the
sets of curves given by the invariant subsets A1 =

{[
0 0 0
0 0 0

X2 aX2 0

]}
and A2 =

{[
0 0 0
x1 0 0
X2 0 0

]}

are the same and both of these choices coincide with chains defined by A = g−2. Of
course, all chains depend on 2-jets in one point. For any tangent vector of this type
there is a 1-dimensional family of parametrized chains, described by the elements of
g2/{Z2(X2) = 0}, all parameterizing the same curve.

Besides the chains, there is a 3-dimensional family of generalized geodesics ema-
nating in the same directions as chains from a given point, defined by the subset
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A =
{[

0 0 0
x1 0 0
X2 aX2 0

]}
. This family is parametrized by the quotient p+/K, where K =

{z1 = 0, Z1(X2) = 0, Z2(X2) = 0}. Curves of this type are also determined by a 2-jet
and the admissible reparametrizations are affine.

Finally, we fix a tangent vector which does not belong to T−1M and is not tan-
gent to a chain. By analogy to the previous case, there are two disjunct classes of
generalized geodesics emanating in such directions, but having rather different proper-
ties than above. The first class corresponds to the invariant subset A =

{[
0 0 0
0 0 0

X2 X1 0

]}
,

where X1 and X2 are supposed to be linearly independent (we assume this in the rest
of the example). Curves of this type are determined by a 2-jet; they allow projective
reparametrizations, and to the given tangent vector there is a 3-dimensional family of
parametrized geodesics described by elements of the form

{[
0 0 Z2
0 0 Z1
0 0 0

]
| Z1(X2) = 0

}
. The

last distinguished class of curves corresponds to the generic choice of A =
{[

0 0 0
x1 0 0
X2 X1 0

]}
.

Again, curves of this type are determined by a 2-jet and allow the projective class of
reparametrizations. The family of parametrized geodesics with the common tangent
vector has got the maximal dimension 5 and it is described by all elements of p+.
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