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Equations and symmetries of generalized geodesics

Boris Doubrov and Vojtéch Z4dnik

ABsTRACT. We are interested in equations of distinguished curves in general
Cartan geometries. In this paper we present a way to construct equations for
non-parameterized distinguished curves via symmetry algebras of model curves
and Cartan’s method of moving frame. We also discuss the correspondence, well-
known in particular geometries, between maps preserving generalized geodesics of
specific type and morphisms of the geometric structure. As examples we compute
equations together with their symmetries for generalized geodesics in projective,
projective contact and Lagrangean contact geometries.

1. Introduction

For a Lie group G and a closed subgroup H C G, the Cartan geometry of type
(G, H) on a smooth manifold M consists of the following data [13]:

e 3 principal fiber bundle G — M with the structure group H;
e Cartan connection w € Q!(G, g) with g to be the Lie algebra of G.

Cartan geometry is called split if there is a (fixed) subalgebra n C g complementary
to h C g, the Lie algebra of H. The principal H-bundle G — G/H with the
Maurer-Cartan form wg € QY(G, g) is the flat (or homogeneous) model of Cartan
geometries of type (G, H). Cartan geometries appeared first in the pioneer works
of E. Cartan [2, 3| under the name of generalized spaces. One of his ideas was to
generalize his moving frame method to submanifolds in Cartan geometries [4]. This
works especially smoothly for curves, where the structure equations are automatically
satisfied, and leads to the notion of distinguished curves.

First, there are special types of curves in the homogeneous space G/H, namely,
the orbits of one-parameter subgroups of GG, known as homogeneous curves. This
determines special classes of curves on all manifolds endowed with the structure of
Cartan geometry of the same type via the notion of development [11, 15]. Explicitly,
the curve on M is a distinguished curve if and only if it develops (at any point) into
a curve of the form

(1.1) hexp(tX)o = exp(t Adp(X))o
for some h € H and X € g. In fact, any H-invariant set C of curves in G/H, mapping

0 to the origin 0 = eH, leads to a well-defined set of curves on M which we call the
distinguished curves of type C. This is the way how to distinct curves of different
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properties. Particular examples of such curves are geodesics in Euclidean, affine and
projective geometries, conformal circles and null-geodesics in conformal geometries,
chains in hypersurface CR geometries, and others. All these Cartan geometries are
split and the mentioned types of distinguished curves can be specified, according to
the notation above, by the condition X € A where A is a subset in n. In those cases
one speaks about generalized geodesics of type A.

One of the questions of this paper is whether the way from a given Cartan ge-
ometry to the family of distinguished curves of a specified type can be reversed, i.e.,
whether one can recover the whole geometry having just the family of distinguished
curves. There are three major examples with affirmative and negative answers we
have in mind. First, consider an affine geometry with geodesics as distinguished
curves. Then it is well-known that there are many non-equivalent affine geometries
having the same sets of geodesics considered as non-parameterized curves. So, we see
that the affine geometry can not be recovered from its geodesics. On the other hand,
any projective geometry is uniquely determined by its geodesics [2]. In particular,
smooth map keeps the set of non-parameterized geodesics invariant if and only if
it is a projective motion. Besides the projective geometries, the second well-known
instance of the feature above to be satisfied is the conformal geometry; see [14] for
the infinitesimal version of the later statement in the case of definite-signature con-
formal metric concerning conformal circles with distinguished parameters. However,
using the techniques presented below, one can prove the same considering just non-
parameterized conformal circles. Note that the same question in the case of indefinite
conformal metric with null-geodesics as the specified type of distinguished curves is
completely different and more or less trivial to answer.

Let us recall here the converse statement, namely, that any morphism of Cartan
geometry (G,w) respects the distinguished curves of any specified type, is trivially
satisfied due to the equivalent definition of distinguished curves as projections of flow
lines of constant vector fields in X(G), cf. [13].

The main aim of this paper is to develop a method leading up to the system
of differential equations, say £, which describe any specified class of distinguished
curves. In fact, this is a modern presentation of Cartan’s familiar ideas involved in
[2, 3, 4]. The rest of this paper is devoted to making an intuition concerning the
questions above. Concretely, we discuss the infinitesimal symmetries of £ which are
essentially useful, however, one has to be a bit careful in this field. At any rate, there
is no hope to get result of general character in this way but it serves just as a test of
the conjecture above should be satisfied or not. We wish to come back to this topic
elsewhere.

Acknowledgments. Authors would like to thank Jan Slovék for the fruitful
communication and a number of remarks and corrections. Most of tedious com-
putations is done with the help of the computational system MAPLE including the
DEsoLv package by John Carminati and Khai Vu [1]. Second author supported by
the grant of MSMT CR #MSM14310009 and by the Junior Fellows program of the
Erwin Schrodinger Institute (ESI), in different times.

2. Symmetry algebras and distinguished curves

Here we summarize all basics, skipping those details which can be found in the
referred literature. In this section we consider a fixed Cartan geometry of type (G, H)
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and distinguished curves specified by C, an H-invariant set of homogeneous curves
in G/H mapping 0 to the origin.

One of the convenient tools describing basic properties of homogeneous curves
is the symmetry algebra of a curve defined in [6]. In particular, it encodes the
order of initial condition, which determines the homogeneous curve of the current
type uniquely, as well as it helps to decide whether the admissible distinguished
reparameterizations are projective or affine [5, 7]. This approach also leads to a
handy criterion for a curve to be a distinguished curve of specified type, Corollary
1. Hence, with the help of the Cartan’s moving frame method [4], one obtains the
system &£ of ordinary differential equations describing the curves in question. Such
systems can be thought as a deformation of special invariant differential equations
on a model space, which were well-studied for low-dimensional geometries, see [12].

Having equations of distinguished curves in hand, we use the progress of [12]
in order to look for the infinitesimal symmetries of £. The main output is the
system of partial differential equations, called determining equations, whose solutions
are the infinitesimal symmetries. Occasionally, it happens that the infinitesimal
symmetries of £ are in fact infinitesimal transformations of the geometric structure
we began with. Of course, this must be encoded somehow in the shape of determining
equations, which we demonstrate in Sections 3 and 4 in the cases of projective and
Lagrangean contact geometries.

2.1. As above, let C be a set of homogeneous curves in G/H. Without any loss
of generality, we assume C to be an orbit of the structure group H, i.e., any two
curves of C are conjugated by an element of H. In fact, the study of distinguished
curves goes in this direction in order to discern classes of curves of different behavior.

2.2. Fix a homogeneous curve L(t) = exp(tX)o, the representative of C = Cf,.
Following [6], compute the symmetry algebra sym L C g as follows. For the sequence

(2.1) h=a2a0 DayD...

of Lie subalgebras, defined recursively as ;11 = {Y € a; : [Y, X]| C (X) + a;}, let r
be the order that the sequence stabilizes from. Now we put the symmetry algebra
of L to be the subalgebra sym L = (X) + a, of g.

Equivalently, for any (non-parameterized) curve L C G/H, the symmetry algebra
sym L C g is defined as

(2.2) symL={X €g:Rx(p) € T,Lforallpe L}

where Ry denotes the vector field on G/H generated by X € g so that Rx(p) =
%‘Oexp(tX)p. In fact, R: g — X(G/H) is an (anti-)homomorphism of Lie algebras
and any subalgebra of g gives rise to an integrable distribution on G/H. Obviously,
for any p € L, R(sym L)(p) € T,L and the curve L is homogeneous if and only if
R(sym L)(p) = T, L. For later use, let us mention that under the usual identification
T(G/H) = G xg (g/h), via the Maurer-Cartan form wg on G, the vector field
Ry € X(G/H) is written as

(23) EX(QH) = [[gaAdg—l(X) + h]]a

for any gH € G/H. Easily, homogeneous curves Lj and L9 coincide up to conjugation
by an element of H (say h € H) if and only if the symmetry algebras sym(L;) and
sym(Lsg) are conjugated (via Ad, € GL(g)).
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2.3. Let (p: G — M,w) be a Cartan geometry of type (G, H), and let ¢ be a
(parameterized) smooth curve on M. Denote by C C M the non-parameterized
image of ¢. Then, by definition, ¢ is a curve of type Cr, if and only if it develops
(at any point) into a curve which is conjugated to L by an element of H. Fixing
a point x € C and following the notation of [15], this just means that there is an
element v € p~!(z) C G such that (dev,c)(t) = [u, L(t)] C S;:M = G/H, where
SM =G xg (G/H) is the Cartan’s space of M.

Here we use the following definition of development. For x = ¢(tg), let ¢: I — G
be any curve over C such that p(é(t)) = c(to+t) and ¢(0) = u. Let further Y: I — g
be given as Y (t) = w(%é(t)). By the existence and uniqueness theorem for ordinary
differential equations on Lie groups, there is a unique curve a: I — G, such that
a*wg =Y and a(0) = e, and then the development of c¢ is given as (dev,c)(t) =
[u,a(t)o] C SyM. Since wg is the Maurer-Cartan form on G, then a*wg = da is
just the Darboux (or left logarithmic) derivative of a. Hence we say, that ¢ is a
curve of type Cr, for L(t) = exp(tX)o, if and only if there is a lift ¢ of ¢ in G as
above such that w(%é(t)) = X, especially, X = dexp(tX) is constant. Concerning
non-parameterized curves, the following Proposition appears.

PROPOSITION 1. Let C C M be an immersed 1-dimensional submanifold. Then
the following two conditions are equivalent:

(1) C admits a (local) parameterization that turns C into a distinguished
curve of type Cr,,

(2) there is a (local) smooth section s: C' — G of the projection G — M
such that s*w € QY(C, g) takes values in sym L C g.

PRrROOF. Consider c: I — C, z = ¢(tg) € C, and ¢: I — G over ¢ as above such
that dev, ¢ = [u, L] with u = ¢(0) € p~!(x) and L(t) = exp(tX)o. Then, defining
the section s: C'— G by the prescription c(t) — ¢é(t —tp), we have got Im(s*w) = X
which belongs to sym L by definition.

Conversely, let ¢: I — C be any parameterization of C' such that ¢(0) = z. Let
s: C'— G be a section such that the assumption Im(s*w) C sym L is satisfied, i.e.,
for ¢ = socand Y(t) = w(4é(t)) we have Im(Y) C sym L. Let further Sym(L)
be a virtual subgroup in G' (not necessarily closed) corresponding to the Lie algebra
sym(L). Then from [6, Theorem 2] it follows that L, considered as unparameterized
curve, (locally) coincides with the orbit of Sym(L) through o. Since Y (t) € sym(L)
for all t € I, we see that a(t) € Sym(L), and thus a(t)o belongs to L.

Let a: t — a(t)o. Show that a/(0) # 0, i.e., a defines a parameterization of L in a
neighborhood of the origin. Indeed, under the identification T(G/H) = G Xy (g/h)
as in 2.2, the tangent vector field of a is written as a/(t) = [a(t), Y (¢) + b]]. Hence,
evaluated in 0, it is equal to ¢’(0) = [e, Y (0) + b]. But Y (0) & b, by definition, since
¢ is transversal to the fibers of p: G — M. O

2.4. On a coordinate neighborhood U of a point x € M, any section s : U — G
of the projection G — M defines the Cartan gauge 0 = s*w € Q'(U, g) which can
only changes, under the change of section by a map h : U — H, according to the
formula

(2.4) 6 = Ad;-1 6 + dh.

Any two Cartan gauges satisfying the condition above, on the intersection of domains,
are called compatible and the relation ‘to be compatible’ is an equivalence relation
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on the set of local 1-forms {0, € Q'(Uy,g)}, see [13, Ch. 5] for details. We will
work in this framework below and, in these terms, Proposition 1 can be formulated
as follows.

COROLLARY 1. Let C be a non-parameterized curve in M. Then the following
two conditions are equivalent:

(1) C is a curve of type Cy,
(2) for any x € C, there is a neighborhood U > x and Cartan gauge
0 € QY(U,g) such that Im(f|¢) C sym(L).

Start with a Cartan gauge 6y = 0|c € Q1(C,g) along C (correctly, along CNU).
The first necessary condition for the curve C' to be a curve of type Cr, is on the
tangent space level. Namely, for some parameterization ¢ : I — C, the tangent
vectors ¢ has to be contained in the subset of T'M which corresponds to the H-
invariant set Ady(X) + b C g/b, provided the curve L representing the class Cy, is
generated by X. If this is the case, one can surely find a calibration h : U — H
such that 6; = Ad;,-1 0 + dh, restricted to C, takes values in (X) + b. Considering
¢ to be a curve of type Cr, (up to reparameterization), we repeat this idea to build
up a sequence of Cartan gauges 6; whose restrictions to C' take values in (X) +a;_1,
i € N, where the subalgebras a; C h are as in (2.1). Basically, this is the idea of
moving frame, cf. [6].

Conversely, considering ¢ to be a general curve on M, the question on Im(6;|¢) C
(X) + a;_; in each step yields some differential conditions on ¢ which must be satis-
fied in order c¢ to be a curve of type Cr, up to ith order and up to reparameterization.
Finally, the last step, corresponding to sym(L) = (X) + a,, gives the system of dif-
ferential equations &, C J"TH(R, M) we are interested in. In general, no all of the
above constraints are differential equalities but often also inequalities. The typical
instance of that case are the first-order conditions on chains in contact parabolic
geometries, see Sections 4 and 5. However, we can always deal just with the final
system of differential equations of order r + 1 keeping in mind that the initial con-
ditions on the solution to be the right curve have to satisfy all the constraints up to
order r.

2.5. Now, in the half-time, write r instead of r + 1 and consider the system
£, € J'(R,M) of ordinary differential equations to be of the form F,(t,z(") =
0, v =1,...,N, where any F, : J (R,M) — R is a smooth function and z(")
represents the derivatives of z = (z!,...,2™), m = dim M, up to order r. Let
further £ € X(R x M) be a vector field on the space of independent and dependent
variables, written as

(25) E(t.2) = v(t,) g + 92

and let £ € X(J"(R,M)) be its rth prolongation, explicitly described in [12,
Theorem 4.16]. Note that £ generates fiber-wise point transformations of R x M if
and only if the function v depends only on ¢, which is the case we are focused on.
If the system of differential equations &, is regular then £ is an infinitesimal
symmetry of &, if and only if §<r>-Fy\5L =0 forall v=1,...,N, see [12, Ch. 6].
In fact, these conditions form an over-determined linear system of partial differential
equations, known as determining equations, for the functions ¢» and ¢ from the co-
ordinate expression of £ in (2.5). In general, that is an elementary but rather tedious
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task to find the determining equations of the system in question but, fortunately,
there is number of softwares which help to bridge over this part of computation, see
[1] for an instance.

Further, at least in the case of locally flat Cartan geometries, the resulting system
of determining equations can be solved explicitly, hence one completely describes the
Lie algebra of infinitesimal symmetries of £;,. Here we just refer to the next sections
for the concrete presentation of mentioned techniques.

2.6. We devote this paragraph to the promised connection between the auto-
morphisms of Cartan geometry and symmetries of distinguished curves of specified
type. Obviously, map f: M — M is a morphism of Cartan geometry if and only if,
for any Cartan gauge 6, the pullback f*6 is compatible with 6, i.e., there is a smooth
map h : U — H such that f*0 = Ad,-10 + 0h, see 2.4. Note that this condition
is satisfied for any Cartan gauge if and only if it is satisfied for one of them, by
transitivity of the relation ‘to be compatible’. For our purposes, we have to find the
infinitesimal analogy of the above compatibility condition. An easy computations
yields that vector field £ € X(M) is an infinitesimal transformation of the Cartan
geometry if and only if, for one (or, equivalently, any) Cartan gauge 6, there is a
smooth map Y : U — h such that

(2.6) L0 =—adyf+dY

holds.

Altogether, the question on whether has an infinitesimal symmetry £ of £, to be
an infinitesimal transformation of the Cartan geometry is equivalent to the question
whether, for general £ satisfying the system of determining equations from 2.5, is
there a smooth map Y: U — b such that the condition (2.6) is satisfied for a Cartan
gauge 0 € Q1(U, g). In order to resolve the later question, one has first to look for
such a Y: U — b that L0 = —ady 0 mod b, because of dY contributes only to b.
The rest should be concluded (if the conjecture is true) by a game with coefficients of
£ and their partial derivatives involving the identities which follow from assumption,
i.e., that the system of determining equations is satisfied by &.

Note that in the homogeneous model one also solves this problem by explicit
solution of determining equations, as suggested in 2.5, which leads to the very vis-
ible description of the Lie algebra inf(£y) of infinitesimal symmetries of ;. Then
one concludes by comparing the dimensions of Lie algebras in question, due to the
inclusion g C inf(&y) which is here by definition.

Thus, computation of the symmetry algebra of £ in the flat case can be consid-
ered as a test on whether the class of distinguished curves of type Cr, does determine
the Cartan geometry. If this test fails, i.e., the dimension of inf(€r) is bigger than
dim g, then the answer should be negative (the typical instance is the case of affine
connections). However, even in the case when the test fails it is still possible (usu-
ally, due to some global arguments) that a map keeping the set of curves of type
Cy, stable is a transformation of the geometric structure. See Section 5 for example.
Anyway, there are still more arguments required to establish correctly an answer to
our question, so we wish to visit this problem elsewhere in a more conceptual way.
Especially, in order to make the test and the hypothesis precise, two essential things
are needed to clarify: first, which classes of distinguished curves should be considered
as models and, second, which kind of global arguments can arise. . .
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In the next, we demonstrate the just presented techniques in three particular
cases. In Section 3 we go carefully through the example of projective plane geometry
in order to make the reader familiar with all the general notions above. Sections 4 and
5 represent essential points of the process in the case of 3-dimensional Lagrangean
contact and projective contact geometry, respectively. Computation for all these
geometries in higher dimensions is completely analogous, only a bit more longer.

3. Projective geometry

3.1. Projective 2-dimensional geometry is a split Cartan geometry of type (G, H)
modeled by the projective plane RP? with the principal group G = SL(3,R) of
projective transformations and H C G, the stabilizer of some fixed point in RP2. On
the infinitesimal level, we schematically write

ko ok ok
(3.1) h=< |0 * x| :trace=0
0 *x =

with the natural choice of complementary subalgebra

0 00
(3.2) n=<|[x 0 0
* 0 0

There are no distinguished directions and no distinguished types of generalized
geodesics in projective geometries. In other words, any element of n lies in the
H-orbit of the vector

(3.3) Xo =

o = O
o OO

0
0 €n,
0

and any generalized geodesic in G/H is a shift gL of the curve Ly = exp(tXp)o, for
some g € G. Hence we set C = {gLg : g € H}.

3.2. The symmetry algebra of the curve Lg is computed in two steps such that
sym(Lg) = (Xo) + a1, explicitly,

(3.4) sym(Lo) =

S ¥ ¥

*
¥ x| :trace =0
0

The shape of the symmetry algebra involves the basic properties of generalized ge-
odesic as suggested in introduction. In particular, in our case, non-parameterized
geodesics are uniquely given by a direction in one point, which is a consequence
of sym(Lg) = (Xo) + a1, i.e., r = 1, and any such curve admits the projective
class of distinguished parameters, which one concludes from the pair of Lie algebras
((Xo) + ar, a,.), following [5].

3.3. For a coordinate system on U C M, any Cartan gauge § € Q'(U,g) can
be calibrated by h : U — H such that the n-part of € coincides with dz (due to
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surjectivity of the map H — GL(n) induced by Ad). Hence starting on this level,
we write

ag 21k 22k f
_ |51 41 1
(3.5) Oy = 5;5 a%k a%k dx
Op ayy Ay
where of course we sum over k = 1,2 and the trace has to vanish. Consider a general

curve ¢ : I — M and C' C M to be the non-parameterized image of ¢. Then the
pullback of 6y to the curve c(t) = (x!(t),2%(t)) is

ar  Zik 22k
(3.6) 0o = |6} al, ab, | itdt.

O aiy ay
An appropriate calibration leads to a compatible Cartan gauge 61 along C with
values in (Xg) + ag, i.e., with zero in the (3,1)-entry. In particular, for

1 0 0
(3.7) h=10 1 0
0 & 1
we really get, according to (2.4) and summing over k, ¢ = 1,2,
(3.8)
apik 2o Ty F Zopik 0 0 0
0y = | &t a}ki—fik a%kj:k dt+ |0 0 0 at.

2 &l _ 1 @2k (2 1 @2 -k i
0 (agir — ag, (551)2)95 (a3), — ag57)E 0 0

Of course, we have assumed @! # 0, without any loss of generality.

3.4. At this moment, the equations for geodesics are read in the (3,2)-entry of
c*0; in order to take values in the subalgebra sym(Ly) = (Xo) + a1 C g. Alto-
gether, the system of ordinary differential equations describing (non-parameterized)
geodesics is just one equation of second order, namely,

2
(3.9) #al — @it = > (agdi”at — agatit )i,
k=1
Visibly, there is no contribution of functions z1; and zgj, into the equations above and,

as an exercise, one can verify that each affine geodesic (with an arbitrary parameter)
of any linear connection from the projective class is really solution of this system.

3.5. Consider a vector field £ € X(R x M), as in 2.5, with ¢ = 9(¢). Then
the determining differential equations for £ to be an infinitesimal symmetry of the
system (3.9) are found to be

(3.10) ¢l =0,

)

2

(3.11) @fjk + Z(a;'k,éwz + a;"e@,gk) = (-1 (prj(a%k — a3;) — a;k(@,ll - 80,22)) ;
=1
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2
. o : o o
ol + Z(aii,z@ +ajp;) = 2 <80,]z‘j + (a;i@?i - agi@?j))

—1

+ (=1) (@?i(a%j - a%j) - agj(@,ll - 9022)>

)

2
+ Z ((a;z‘,z@[ + a;esﬁ,é') + (a?j,zwz + aﬁﬁﬂ)) ’
=1
for all 4,7,k € {1,2} such that j # ¢ and k # i. Lower indices after the comma
denote the partial derivatives with respect to = (x!,2?). In particular, the first set
of equations reads as % =0, i.e., the functions ' and ¢? depend only on z. The
second clear consequence of the system above is that ¢ = ¢(¢) may be arbitrary,
i.e., any reparameterization of a solution of (3.9) is again solution; just as one could
anticipate.

3.6. Using the normal coordinates in the case of locally flat projective geometry,
one begins with Cartan gauge

0 00

(3.12) 0= |dzt 0 0},

dz? 0 0
which leads to an extra easy version of the geodesic equation &,
(3.13) it — g%t =0,
and the determining equations are

1 2

= = 0,

(3.14) P22 = P11

80,111 = 280,212, 80,222 = 290,121,
with ! and ¢? to be functions only of .

Now, let £ € X(M) be an infinitesimal point symmetry of (3.13), i.e., the system
of partial differential equations (3.14) is satisfied, provided that & = ' 821.. Write
6 instead of 0y and try to find a map Y : U — b such that L0 = —ady 0 + dY,
following 2.6. Using the abbreviated notation as before, the Lie derivative of 4 is

0 0 0
(3.15) L= | 0 0fdat
w5 00

and we have to determine Y such that the n-parts of L¢0 and — ady 6 coincide. Such
a Y is deduced to has the form

%%11 + %‘P?Q , qQ ) q2
(3.16) Y = 0 —390711 ‘; 390,22 , 1—907122 )
0 -5 3P~ 3P

where g; are arbitrary functions. Then we get the difference L¢6) —ady 0 —dY equals
to

qk — %‘P}m - %‘P?zk —q1,k —q2,k
(3.17) 0 —q10 + %CP,IM - %‘P?zk ~q20), + 90,12k dz*
0 —q10% + 90,21k — 267 + %Sp,luc + %30,2%

and, using heavily the identities (3.14), this expression reduces to the form
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(3.18)
qrdz® — %Spfckkdxk —ql,kd$k _qQ,kdxk
ﬁg(g—ady 0—dY = 0 —Q1dx1 + %ﬁp}ndl'l _Qdel + %@?Qdel
0 —qidz® + 39" dx®  —qada® + §phyda?

In order to get zeros in the right-down block, the functions ¢; and ¢ are determined
uniquely so that g1 = %gp}n and g = %90,222, respectively, and the rest of the matrix
vanishes either trivially or as a consequence of (3.14). More concretely, the left-up
corner vanishes because of vanishing of the whole trace and ¢; = %(p] ik vanish, for
any j, k € {1,2}, as follows: <pjjjj = 2cpfjji = 0, where i # j, and, for j # k, one gets
i = %gokjkk = igpfjjk, hence ¢/, = 0 as well.

3.7. Alternative way available in the flat case is to solve the system of determin-
ing equations (3.14), as suggested in 2.6. Going this way, one can find the general
solution of that system looks like

oz, 2?) = c1(zh)? + exl2® + ezt 4 eyz® + ¢,

1

3.19
(3.19) O*(x!, 2?) = crela® + e (2h)? + ozt + cra? + s,

for arbitrary constants ¢; € R. Hence the dimension of inf(£) equals to 8 and
so inf(€) = g by dimension reasons. In fact, G = SL(3,R) is the maximal possible
symmetry group of second-order ordinary differential equation in two variables which
is then necessarily equivalent to that in (3.13), cf. [8, 12].

Note that the opposite direction, i.e., the inclusion g C inf(£) which is trivial
in general, can also be verified on this elementary level. In fact, the difference
L — ady 0 — dY in (3.17) vanishes if and only if all the relations in (3.14) are
satisfied, i.e., £ is an infinitesimal symmetry of (3.13).

4. Lagrangean contact geometry

4.1. Lagrangean contact geometry in dimension 3 is a split Cartan geometry
of type (G, H) modeled by the projectivization of the tangent space to RP?. The
group G' = SL(3,R) consists of all projective transformations naturally prolonged to
PT(RP?), and H is the stabilizer of a fixed line in the tangent space at some fixed
point. On the infinitesimal level, we have

(4.1) x| :trace =0

=
I

S O ¥

o % %

with the complementary subalgebra n = nf @ nft @ ny such that

000 000 00 0
42) bl =<{1lx 0 o] p,nff={10 0 0| p,andny=< 1[0 0 0
000 0 = 0 * 0 0

For simplicity we restrict our attention just to the essential points of the process in
the flat case, though most of computations below can be done in general.

There is a natural contact structure on G/H = PT(RP?) generated by tangent
vectors to curves lifted from RP2. Via the identification T(G/H) = G xy (g/h)
as in 2.2 and n = g/b, the contact distribution corresponds to the two-dimensional
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H-invariant subspace in n defined by ny = n¥ @ nff. There are several subsets in n
invariant under the action of H which distinguish tangent vectors in T'(G/H). Except
those within ny, there is just the complement n\ ny corresponding to vectors lying
outside of the contact distribution. There are distinguished curves of the particular
interest which emanate in the later directions, namely, the curves represented by
Ly = exp(tXy)o where X € ny. These are called chains, in analogy with the Chern—
Moser chains well-known from hypersurface CR geometries. From the symmetry
algebra sym(Lg) below one can deduce they behave just like the classical chains, i.e.,
in any direction outside the contact distribution there is a unique unparameterized
chain admitting a projective class of distinguished parameters.

4.2. Computing the symmetry algebra of Lo, we get sym(Lg) = (Xo) + a1 so
that

s trace =0

(4.3) sym(Lo) =

* O *
S % O
* O %

4.3. Let us fix the local coordinates (r,y,z) on G/H = PT(RP?) so that (z,v)
are affine coordinates on RP? and z = %. Then the contact structure on G/H is
defined by the 1-form v = dy — zdz. Similarly to 3.3 and 3.6, we start with the
Cartan gauge

0 0 0
(4.4) Oy = dz 0 0],
dy —zdr dz 0]

and its pullback ¢*fy to the curve ¢(t) = (z(t),y(t), 2(t)). Calibration

—~

1 ——=— 0 ]
Y—zx K

(4.5) h=10 1 2
0 0 1

leads to a compatible Cartan gauge ¢*#; with values in (Xg) + . Of course, this is
possible if and only if y — z& = v(¢) # 0, i.e., vector ¢ is transverse to the contact
distribution.

4.4. Now, the equations on chains are just written in (1,2) and (2,3) entries of
the matrix ¢*6y, explicitly, we have got £ consisting of

i — i = 0,
(4.6)

(29 — 24) + 2(82 — &%) = —2i27.

4.5. Skipping the explicit description and solution of determining equations, we
just conclude that the system (4.6) is really invariant under reparameterizations
and the Lie algebra inf(&) of all infinitesimal symmetries of £ is 8-dimensional and
so coincides with g by dimension reasons. Altogether, we have got a good reason
to believe that the set of chains allows to recover the initial Lagrangean contact
geometry.
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5. Projective contact geometry

5.1. Three-dimensional projective contact geometry is a split Cartan geometry
of type (G, H) modeled by the projective space RP3 with the principal group G =
Sp(4,R) C SL(4,R) acting transitively on RP? via the restriction of the standard
action of SL(4,R). Let H C G be the stabilizer of some fixed point, then RP3 =
G/H. The natural contact structure on RP? arises from the symplectic structure on
R* invariant with respect to the action of Sp(4,R). On the other hand, there is a
natural flat projective connection on RP? and these two structures are compatible in
the following sense. If a straight line (i.e., a geodesic in the flat projective geometry) is
tangent to the contact distribution at one point then it is a contact curve. See [9, 10]
for more details and the compatibility of contact and projective structures in general
case.

An appropriate matrix representation leads to the following infinitesimal descrip-
tion,

a b c d
_ r e f ¢

(5.1) g= y g —e —b )
z Yy —x —a

in particular, dim g = 10. Hence, schematically,

(5.2) h= €g

SO O ¥
S ¥ ¥ ¥
S ¥ ¥ ¥
EE

with the complementary subalgebra n = n; @ ns so that

(5.3) n = cg and ny =

S % ¥ O
* O O O
* O O O
O O OO
* O O O
O O OO
OO OO
OO OO

As in the Lagrangean contact case, we are focused especially on the flat model
hereafter.

There are only two distinct types of tangent vectors in T'(G/H), namely, those
lying inside and outside of the contact subbundle. Under the familiar identification
T(G/H) = G xg (g/h) and n = g/h as before, the former case corresponds to the
2-dimensional subspace n; C n whilst the later one to the complement n\ n;. As in
the Lagrangean contact case, we have also got the chains, the distinguished curves
transversal to the contact distribution which are represented by any element of the
subset no C n in the same sense as before. Further, there is only one more type of
generalized geodesics which can be represented by an arbitrary element of ny. Of
course, these are the geodesics of the projective structure on the contact distribution
and, in particular, they have the same properties as chains up to the initial condition
to be directed within the contact subbundle. In general, projective contact structure
induces the true projective structure whose geodesics are precisely the just discussed
curves.
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5.2. Let Ly = exp(tXp)o, Xy € ng, be a chain. Again, symmetry algebra of Ly
has the form sym(Lg) = (Xo) + a1, schematically written as

)
)

(5.4) sym(Lo) = €g

* O O *
S ¥ ¥
S ¥ ¥
* O O *

5.3. Appropriate local coordinates on G/H = RP? lead to the Cartan gauge

0 0 0 0
da 0 0 0
(5.:5) b0 = dy 0 0 0

dz —ydr +xdy dy —dx 0
and, in these coordinates, the contact distribution is then given as the kernel of the 1-
form v = dz — ydx 4+ xdy. Consider the pullback ¢*6y to curve c(t) = (z(t), y(t), 2(¢))
and choose the calibration
]

L - Z—yitay 2fy:?:+zy O
T
0 0 1 Ty
yz+zy
0 0 0

which yields the compatible Cartan gauge ¢*6; with values in (Xy) + ag. Of course,
we have considered 2z — y& + zy = v(¢) # 0.

5.4. The equations on chains are then read from (1,2) and (1,3) or, equivalently,
from (2,4) and (3,4) entries of ¢*f; in order to take values in sym(Ly). Hence, the
system & consists of two equations
o) (5% — §2) + ylig — &) = 0,

' (2 — 22) + x(Zy — 23) = 0.

5.5. The determining equations of £ form a 3-variable analogy of those in (3.14),
in particular, the system (5.7) is invariant under reparameterizations and the Lie
algebra inf(€) has the maximal possible dimension, i.e., 15. Hence the system of
differential equations £ is equivalent to the trivial one, [8], and the Lie algebra
inf(€) of infinitesimal symmetries of £ coincides with s((4,R), the Lie algebra of
infinitesimal transformations of the true projective structure on G/H = RP3.

Anyway, we still can claim that chain-preserving infinitesimal transformations
coincide with g = sp(4,R), the Lie algebra of infinitesimal transformations of the
projective contact structure. In order to prove this, it just remains to show that any
chain-preserving transformation respects the contact distribution, but this is clear
more or less by definition.

The right reason of the former result, i.e., inf(£) = sl(4,R) D g, is that there is
never used the essential constraint Z—yi+xy # 0 in the computation of infinitesimal
symmetries of £. Omitting this inequality, one really recovers both the chains and
the geodesics of type n; as solutions of £. Of course, this can be nicely presented
using the same techniques as yet: choosing a suitable element X; € ny, computing
the symmetry algebra of Ly = exp(tX1)o, and fixing the same coordinates as in 5.3,
one ends with the differential equation Zy — & = 0 provided that z — y& + g = 0,
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i.e., the curve is tangent to the contact distribution. Now, it is an easy exercise to
show that any solution of these two equations is also solution of (5.7).
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