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Abstra
t. We are interested in equations of distinguished 
urves in general

Cartan geometries. In this paper we present a way to 
onstru
t equations for

non-parameterized distinguished 
urves via symmetry algebras of model 
urves

and Cartan's method of moving frame. We also dis
uss the 
orresponden
e, well-

known in parti
ular geometries, between maps preserving generalized geodesi
s of

spe
i�
 type and morphisms of the geometri
 stru
ture. As examples we 
ompute

equations together with their symmetries for generalized geodesi
s in proje
tive,

proje
tive 
onta
t and Lagrangean 
onta
t geometries.

1. Introdu
tion

For a Lie group G and a 
losed subgroup H ⊂ G, the Cartan geometry of type

(G,H) on a smooth manifold M 
onsists of the following data [13℄:

• a prin
ipal �ber bundle G →M with the stru
ture group H;

• Cartan 
onne
tion ω ∈ Ω1(G, g) with g to be the Lie algebra of G.

Cartan geometry is 
alled split if there is a (�xed) subalgebra n ⊂ g 
omplementary

to h ⊂ g, the Lie algebra of H. The prin
ipal H-bundle G → G/H with the

Maurer�Cartan form ωG ∈ Ω1(G, g) is the �at (or homogeneous) model of Cartan

geometries of type (G,H). Cartan geometries appeared �rst in the pioneer works

of E. Cartan [2, 3℄ under the name of generalized spa
es. One of his ideas was to

generalize his moving frame method to submanifolds in Cartan geometries [4℄. This

works espe
ially smoothly for 
urves, where the stru
ture equations are automati
ally

satis�ed, and leads to the notion of distinguished 
urves.

First, there are spe
ial types of 
urves in the homogeneous spa
e G/H, namely,

the orbits of one-parameter subgroups of G, known as homogeneous 
urves. This

determines spe
ial 
lasses of 
urves on all manifolds endowed with the stru
ture of

Cartan geometry of the same type via the notion of development [11, 15℄. Expli
itly,

the 
urve on M is a distinguished 
urve if and only if it develops (at any point) into

a 
urve of the form

(1.1) h exp(tX)o = exp(tAdh(X))o

for some h ∈ H and X ∈ g. In fa
t, any H-invariant set C of 
urves in G/H, mapping

0 to the origin o = eH, leads to a well-de�ned set of 
urves on M whi
h we 
all the

distinguished 
urves of type C. This is the way how to distin
t 
urves of di�erent
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properties. Parti
ular examples of su
h 
urves are geodesi
s in Eu
lidean, a�ne and

proje
tive geometries, 
onformal 
ir
les and null-geodesi
s in 
onformal geometries,


hains in hypersurfa
e CR geometries, and others. All these Cartan geometries are

split and the mentioned types of distinguished 
urves 
an be spe
i�ed, a

ording to

the notation above, by the 
ondition X ∈ A where A is a subset in n. In those 
ases

one speaks about generalized geodesi
s of type A.
One of the questions of this paper is whether the way from a given Cartan ge-

ometry to the family of distinguished 
urves of a spe
i�ed type 
an be reversed, i.e.,

whether one 
an re
over the whole geometry having just the family of distinguished


urves. There are three major examples with a�rmative and negative answers we

have in mind. First, 
onsider an a�ne geometry with geodesi
s as distinguished


urves. Then it is well-known that there are many non-equivalent a�ne geometries

having the same sets of geodesi
s 
onsidered as non-parameterized 
urves. So, we see

that the a�ne geometry 
an not be re
overed from its geodesi
s. On the other hand,

any proje
tive geometry is uniquely determined by its geodesi
s [2℄. In parti
ular,

smooth map keeps the set of non-parameterized geodesi
s invariant if and only if

it is a proje
tive motion. Besides the proje
tive geometries, the se
ond well-known

instan
e of the feature above to be satis�ed is the 
onformal geometry; see [14℄ for

the in�nitesimal version of the later statement in the 
ase of de�nite-signature 
on-

formal metri
 
on
erning 
onformal 
ir
les with distinguished parameters. However,

using the te
hniques presented below, one 
an prove the same 
onsidering just non-

parameterized 
onformal 
ir
les. Note that the same question in the 
ase of inde�nite


onformal metri
 with null-geodesi
s as the spe
i�ed type of distinguished 
urves is


ompletely di�erent and more or less trivial to answer.

Let us re
all here the 
onverse statement, namely, that any morphism of Cartan

geometry (G, ω) respe
ts the distinguished 
urves of any spe
i�ed type, is trivially

satis�ed due to the equivalent de�nition of distinguished 
urves as proje
tions of �ow

lines of 
onstant ve
tor �elds in X(G), 
f. [13℄.
The main aim of this paper is to develop a method leading up to the system

of di�erential equations, say E , whi
h des
ribe any spe
i�ed 
lass of distinguished


urves. In fa
t, this is a modern presentation of Cartan's familiar ideas involved in

[2, 3, 4℄. The rest of this paper is devoted to making an intuition 
on
erning the

questions above. Con
retely, we dis
uss the in�nitesimal symmetries of E whi
h are

essentially useful, however, one has to be a bit 
areful in this �eld. At any rate, there

is no hope to get result of general 
hara
ter in this way but it serves just as a test of

the 
onje
ture above should be satis�ed or not. We wish to 
ome ba
k to this topi


elsewhere.
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2. Symmetry algebras and distinguished 
urves

Here we summarize all basi
s, skipping those details whi
h 
an be found in the

referred literature. In this se
tion we 
onsider a �xed Cartan geometry of type (G,H)
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and distinguished 
urves spe
i�ed by C, an H-invariant set of homogeneous 
urves

in G/H mapping 0 to the origin.

One of the 
onvenient tools des
ribing basi
 properties of homogeneous 
urves

is the symmetry algebra of a 
urve de�ned in [6℄. In parti
ular, it en
odes the

order of initial 
ondition, whi
h determines the homogeneous 
urve of the 
urrent

type uniquely, as well as it helps to de
ide whether the admissible distinguished

reparameterizations are proje
tive or a�ne [5, 7℄. This approa
h also leads to a

handy 
riterion for a 
urve to be a distinguished 
urve of spe
i�ed type, Corollary

1. Hen
e, with the help of the Cartan's moving frame method [4℄, one obtains the

system E of ordinary di�erential equations des
ribing the 
urves in question. Su
h

systems 
an be thought as a deformation of spe
ial invariant di�erential equations

on a model spa
e, whi
h were well-studied for low-dimensional geometries, see [12℄.

Having equations of distinguished 
urves in hand, we use the progress of [12℄

in order to look for the in�nitesimal symmetries of E . The main output is the

system of partial di�erential equations, 
alled determining equations, whose solutions

are the in�nitesimal symmetries. O

asionally, it happens that the in�nitesimal

symmetries of E are in fa
t in�nitesimal transformations of the geometri
 stru
ture

we began with. Of 
ourse, this must be en
oded somehow in the shape of determining

equations, whi
h we demonstrate in Se
tions 3 and 4 in the 
ases of proje
tive and

Lagrangean 
onta
t geometries.

2.1. As above, let C be a set of homogeneous 
urves in G/H. Without any loss

of generality, we assume C to be an orbit of the stru
ture group H, i.e., any two


urves of C are 
onjugated by an element of H. In fa
t, the study of distinguished


urves goes in this dire
tion in order to dis
ern 
lasses of 
urves of di�erent behavior.

2.2. Fix a homogeneous 
urve L(t) = exp(tX)o, the representative of C = CL.

Following [6℄, 
ompute the symmetry algebra symL ⊂ g as follows. For the sequen
e

(2.1) h = a0 ⊇ a1 ⊇ a2 ⊇ . . .

of Lie subalgebras, de�ned re
ursively as ai+1 = {Y ∈ ai : [Y,X] ⊂ 〈X〉 + ai}, let r
be the order that the sequen
e stabilizes from. Now we put the symmetry algebra

of L to be the subalgebra symL = 〈X〉 + ar of g.

Equivalently, for any (non-parameterized) 
urve L ⊂ G/H, the symmetry algebra

symL ⊂ g is de�ned as

(2.2) symL = {X ∈ g : RX(p) ∈ TpL for all p ∈ L}

where RX denotes the ve
tor �eld on G/H generated by X ∈ g so that RX(p) =
d
dt

∣

∣

0
exp(tX)p. In fa
t, R : g → X(G/H) is an (anti-)homomorphism of Lie algebras

and any subalgebra of g gives rise to an integrable distribution on G/H. Obviously,

for any p ∈ L, R(symL)(p) ⊆ TpL and the 
urve L is homogeneous if and only if

R(symL)(p) = TpL. For later use, let us mention that under the usual identi�
ation

T (G/H) ∼= G ×H (g/h), via the Maurer�Cartan form ωG on G, the ve
tor �eld

RX ∈ X(G/H) is written as

(2.3) RX(gH) = Jg,Adg−1(X) + hK,

for any gH ∈ G/H. Easily, homogeneous 
urves L1 and L2 
oin
ide up to 
onjugation

by an element of H (say h ∈ H) if and only if the symmetry algebras sym(L1) and
sym(L2) are 
onjugated (via Adh ∈ GL(g)).
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2.3. Let (p : G → M,ω) be a Cartan geometry of type (G,H), and let c be a

(parameterized) smooth 
urve on M . Denote by C ⊂ M the non-parameterized

image of c. Then, by de�nition, c is a 
urve of type CL if and only if it develops

(at any point) into a 
urve whi
h is 
onjugated to L by an element of H. Fixing

a point x ∈ C and following the notation of [15℄, this just means that there is an

element u ∈ p−1(x) ⊂ G su
h that (devx c)(t) = Ju,L(t)K ⊂ SxM ∼= G/H, where

SM = G ×H (G/H) is the Cartan's spa
e of M .

Here we use the following de�nition of development. For x = c(t0), let ĉ : I → G
be any 
urve over C su
h that p(ĉ(t)) = c(t0 + t) and ĉ(0) = u. Let further Y : I → g

be given as Y (t) = ω
(

d
dt
ĉ(t)

)

. By the existen
e and uniqueness theorem for ordinary

di�erential equations on Lie groups, there is a unique 
urve a : I → G, su
h that

a∗ωG = Y and a(0) = e, and then the development of c is given as (devx c)(t) =
Ju, a(t)oK ⊂ SxM . Sin
e ωG is the Maurer�Cartan form on G, then a∗ωG = δa is

just the Darboux (or left logarithmi
) derivative of a. Hen
e we say, that c is a


urve of type CL, for L(t) = exp(tX)o, if and only if there is a lift ĉ of c in G as

above su
h that ω
(

d
dt
ĉ(t)

)

= X, espe
ially, X = δ exp(tX) is 
onstant. Con
erning

non-parameterized 
urves, the following Proposition appears.

Proposition 1. Let C ⊂ M be an immersed 1-dimensional submanifold. Then

the following two 
onditions are equivalent:

(1) C admits a (lo
al) parameterization that turns C into a distinguished


urve of type CL,

(2) there is a (lo
al) smooth se
tion s : C → G of the proje
tion G →M
su
h that s∗ω ∈ Ω1(C, g) takes values in symL ⊂ g.

Proof. Consider c : I → C, x = c(t0) ∈ C, and ĉ : I → G over c as above su
h
that devx c = Ju,LK with u = ĉ(0) ∈ p−1(x) and L(t) = exp(tX)o. Then, de�ning

the se
tion s : C → G by the pres
ription c(t) 7→ ĉ(t− t0), we have got Im(s∗ω) = X
whi
h belongs to symL by de�nition.

Conversely, let c : I → C be any parameterization of C su
h that c(0) = x. Let
s : C → G be a se
tion su
h that the assumption Im(s∗ω) ⊂ symL is satis�ed, i.e.,

for ĉ = s ◦ c and Y (t) = ω
(

d
dt
ĉ(t)

)

we have Im(Y ) ⊂ symL. Let further Sym(L)
be a virtual subgroup in G (not ne
essarily 
losed) 
orresponding to the Lie algebra

sym(L). Then from [6, Theorem 2℄ it follows that L, 
onsidered as unparameterized


urve, (lo
ally) 
oin
ides with the orbit of Sym(L) through o. Sin
e Y (t) ∈ sym(L)
for all t ∈ I, we see that a(t) ∈ Sym(L), and thus a(t)o belongs to L.

Let a : t 7→ a(t)o. Show that a′(0) 6= 0, i.e., a de�nes a parameterization of L in a

neighborhood of the origin. Indeed, under the identi�
ation T (G/H) ∼= G×H (g/h)
as in 2.2, the tangent ve
tor �eld of a is written as a′(t) = Ja(t), Y (t) + hK. Hen
e,
evaluated in 0, it is equal to a′(0) = Je, Y (0)+ hK. But Y (0) 6∈ h, by de�nition, sin
e

ĉ is transversal to the �bers of p : G →M . �

2.4. On a 
oordinate neighborhood U of a point x ∈ M , any se
tion s : U → G
of the proje
tion G → M de�nes the Cartan gauge θ = s∗ω ∈ Ω1(U, g) whi
h 
an

only 
hanges, under the 
hange of se
tion by a map h : U → H, a

ording to the

formula

(2.4) θ̃ = Adh−1 θ + δh.

Any two Cartan gauges satisfying the 
ondition above, on the interse
tion of domains,

are 
alled 
ompatible and the relation `to be 
ompatible' is an equivalen
e relation
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on the set of lo
al 1-forms {θα ∈ Ω1(Uα, g)}, see [13, Ch. 5℄ for details. We will

work in this framework below and, in these terms, Proposition 1 
an be formulated

as follows.

Corollary 1. Let C be a non-parameterized 
urve in M . Then the following

two 
onditions are equivalent:

(1) C is a 
urve of type CL,

(2) for any x ∈ C, there is a neighborhood U ∋ x and Cartan gauge

θ ∈ Ω1(U, g) su
h that Im(θ|C) ⊆ sym(L).

Start with a Cartan gauge θ0 = θ|C ∈ Ω1(C, g) along C (
orre
tly, along C ∩U).
The �rst ne
essary 
ondition for the 
urve C to be a 
urve of type CL is on the

tangent spa
e level. Namely, for some parameterization c : I → C, the tangent

ve
tors ċ has to be 
ontained in the subset of TM whi
h 
orresponds to the H-

invariant set AdH(X) + h ⊆ g/h, provided the 
urve L representing the 
lass CL is

generated by X. If this is the 
ase, one 
an surely �nd a 
alibration h : U → H
su
h that θ1 = Adh−1 θ0 + δh, restri
ted to C, takes values in 〈X〉 + h. Considering

c to be a 
urve of type CL (up to reparameterization), we repeat this idea to build

up a sequen
e of Cartan gauges θi whose restri
tions to C take values in 〈X〉+ ai−1,

i ∈ N, where the subalgebras aj ⊆ h are as in (2.1). Basi
ally, this is the idea of

moving frame, 
f. [6℄.

Conversely, 
onsidering c to be a general 
urve onM , the question on Im(θi|C) ⊆
〈X〉+ ai−1 in ea
h step yields some di�erential 
onditions on c whi
h must be satis-

�ed in order c to be a 
urve of type CL up to ith order and up to reparameterization.

Finally, the last step, 
orresponding to sym(L) = 〈X〉 + ar, gives the system of dif-

ferential equations EL ⊂ Jr+1(R,M) we are interested in. In general, no all of the

above 
onstraints are di�erential equalities but often also inequalities. The typi
al

instan
e of that 
ase are the �rst-order 
onditions on 
hains in 
onta
t paraboli


geometries, see Se
tions 4 and 5. However, we 
an always deal just with the �nal

system of di�erential equations of order r + 1 keeping in mind that the initial 
on-

ditions on the solution to be the right 
urve have to satisfy all the 
onstraints up to

order r.

2.5. Now, in the half-time, write r instead of r + 1 and 
onsider the system

EL ⊂ Jr(R,M) of ordinary di�erential equations to be of the form Fν(t, x(r)) =

0, ν = 1, . . . , N , where any Fν : Jr(R,M) → R is a smooth fun
tion and x(r)

represents the derivatives of x = (x1, . . . , xm), m = dimM , up to order r. Let

further ξ ∈ X(R ×M) be a ve
tor �eld on the spa
e of independent and dependent

variables, written as

(2.5) ξ(t, x) = ψ(t, x)
∂

∂t
+ ϕi(t, x)

∂

∂xi
,

and let ξ(r) ∈ X(Jr(R,M)) be its rth prolongation, expli
itly des
ribed in [12,

Theorem 4.16℄. Note that ξ generates �ber-wise point transformations of R ×M if

and only if the fun
tion ψ depends only on t, whi
h is the 
ase we are fo
used on.

If the system of di�erential equations EL is regular then ξ is an in�nitesimal

symmetry of EL if and only if ξ(r) ·Fν

∣

∣

EL

= 0 for all ν = 1, . . . , N , see [12, Ch. 6℄.

In fa
t, these 
onditions form an over-determined linear system of partial di�erential

equations, known as determining equations, for the fun
tions ψ and ϕi
from the 
o-

ordinate expression of ξ in (2.5). In general, that is an elementary but rather tedious
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task to �nd the determining equations of the system in question but, fortunately,

there is number of softwares whi
h help to bridge over this part of 
omputation, see

[1℄ for an instan
e.

Further, at least in the 
ase of lo
ally �at Cartan geometries, the resulting system

of determining equations 
an be solved expli
itly, hen
e one 
ompletely des
ribes the

Lie algebra of in�nitesimal symmetries of EL. Here we just refer to the next se
tions

for the 
on
rete presentation of mentioned te
hniques.

2.6. We devote this paragraph to the promised 
onne
tion between the auto-

morphisms of Cartan geometry and symmetries of distinguished 
urves of spe
i�ed

type. Obviously, map f : M →M is a morphism of Cartan geometry if and only if,

for any Cartan gauge θ, the pullba
k f∗θ is 
ompatible with θ, i.e., there is a smooth

map h : U → H su
h that f∗θ = Adh−1 θ + δh, see 2.4. Note that this 
ondition

is satis�ed for any Cartan gauge if and only if it is satis�ed for one of them, by

transitivity of the relation `to be 
ompatible'. For our purposes, we have to �nd the

in�nitesimal analogy of the above 
ompatibility 
ondition. An easy 
omputations

yields that ve
tor �eld ξ ∈ X(M) is an in�nitesimal transformation of the Cartan

geometry if and only if, for one (or, equivalently, any) Cartan gauge θ, there is a

smooth map Y : U → h su
h that

(2.6) Lξθ = − adY θ + dY

holds.

Altogether, the question on whether has an in�nitesimal symmetry ξ of EL to be

an in�nitesimal transformation of the Cartan geometry is equivalent to the question

whether, for general ξ satisfying the system of determining equations from 2.5, is

there a smooth map Y : U → h su
h that the 
ondition (2.6) is satis�ed for a Cartan

gauge θ ∈ Ω1(U, g). In order to resolve the later question, one has �rst to look for

su
h a Y : U → h that Lξθ ≡ − adY θ mod h, be
ause of dY 
ontributes only to h.

The rest should be 
on
luded (if the 
onje
ture is true) by a game with 
oe�
ients of

ξ and their partial derivatives involving the identities whi
h follow from assumption,

i.e., that the system of determining equations is satis�ed by ξ.
Note that in the homogeneous model one also solves this problem by expli
it

solution of determining equations, as suggested in 2.5, whi
h leads to the very vis-

ible des
ription of the Lie algebra inf(EL) of in�nitesimal symmetries of EL. Then

one 
on
ludes by 
omparing the dimensions of Lie algebras in question, due to the

in
lusion g ⊆ inf(EL) whi
h is here by de�nition.

Thus, 
omputation of the symmetry algebra of EL in the �at 
ase 
an be 
onsid-

ered as a test on whether the 
lass of distinguished 
urves of type CL does determine

the Cartan geometry. If this test fails, i.e., the dimension of inf(EL) is bigger than

dim g, then the answer should be negative (the typi
al instan
e is the 
ase of a�ne


onne
tions). However, even in the 
ase when the test fails it is still possible (usu-

ally, due to some global arguments) that a map keeping the set of 
urves of type

CL stable is a transformation of the geometri
 stru
ture. See Se
tion 5 for example.

Anyway, there are still more arguments required to establish 
orre
tly an answer to

our question, so we wish to visit this problem elsewhere in a more 
on
eptual way.

Espe
ially, in order to make the test and the hypothesis pre
ise, two essential things

are needed to 
larify: �rst, whi
h 
lasses of distinguished 
urves should be 
onsidered

as models and, se
ond, whi
h kind of global arguments 
an arise. . .
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In the next, we demonstrate the just presented te
hniques in three parti
ular


ases. In Se
tion 3 we go 
arefully through the example of proje
tive plane geometry

in order to make the reader familiar with all the general notions above. Se
tions 4 and

5 represent essential points of the pro
ess in the 
ase of 3-dimensional Lagrangean


onta
t and proje
tive 
onta
t geometry, respe
tively. Computation for all these

geometries in higher dimensions is 
ompletely analogous, only a bit more longer.

3. Proje
tive geometry

3.1. Proje
tive 2-dimensional geometry is a split Cartan geometry of type (G,H)
modeled by the proje
tive plane RP

2
with the prin
ipal group G = SL(3,R) of

proje
tive transformations and H ⊂ G, the stabilizer of some �xed point in RP
2
. On

the in�nitesimal level, we s
hemati
ally write

h =











∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗



 : trace = 0







(3.1)

with the natural 
hoi
e of 
omplementary subalgebra

n =











0 0 0
∗ 0 0
∗ 0 0











.(3.2)

There are no distinguished dire
tions and no distinguished types of generalized

geodesi
s in proje
tive geometries. In other words, any element of n lies in the

H-orbit of the ve
tor

(3.3) X0 =





0 0 0
1 0 0
0 0 0



 ∈ n,

and any generalized geodesi
 in G/H is a shift gL0 of the 
urve L0 = exp(tX0)o, for
some g ∈ G. Hen
e we set C = {gL0 : g ∈ H}.

3.2. The symmetry algebra of the 
urve L0 is 
omputed in two steps su
h that

sym(L0) = 〈X0〉 + a1, expli
itly,

(3.4) sym(L0) =











∗ ∗ ∗
∗ ∗ ∗
0 0 ∗



 : trace = 0







.

The shape of the symmetry algebra involves the basi
 properties of generalized ge-

odesi
 as suggested in introdu
tion. In parti
ular, in our 
ase, non-parameterized

geodesi
s are uniquely given by a dire
tion in one point, whi
h is a 
onsequen
e

of sym(L0) = 〈X0〉 + a1, i.e., r = 1, and any su
h 
urve admits the proje
tive


lass of distinguished parameters, whi
h one 
on
ludes from the pair of Lie algebras

(〈X0〉 + ar, ar), following [5℄.

3.3. For a 
oordinate system on U ⊂ M , any Cartan gauge θ ∈ Ω1(U, g) 
an

be 
alibrated by h : U → H su
h that the n-part of θ 
oin
ides with dx (due to
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surje
tivity of the map H → GL(n) indu
ed by Ad). Hen
e starting on this level,

we write

(3.5) θ0 =





ak z1k z2k

δ1k a1
1k a1

2k

δ2k a2
1k a2

2k



 dxk

where of 
ourse we sum over k = 1, 2 and the tra
e has to vanish. Consider a general


urve c : I → M and C ⊂ M to be the non-parameterized image of c. Then the

pullba
k of θ0 to the 
urve c(t) = (x1(t), x2(t)) is

(3.6) c∗θ0 =





ak z1k z2k

δ1k a1
1k a1

2k

δ2k a2
1k a2

2k



 ẋkdt.

An appropriate 
alibration leads to a 
ompatible Cartan gauge θ1 along C with

values in 〈X0〉 + a0, i.e., with zero in the (3,1)-entry. In parti
ular, for

(3.7) h =





1 0 0
0 1 0

0 ẋ2

ẋ1 1





we really get, a

ording to (2.4) and summing over k, ℓ = 1, 2,
(3.8)

c∗θ1 =







akẋ
k zℓk

ẋℓ

ẋ1 ẋ
k z2kẋ

k

ẋ1 a1
ℓk

ẋℓ

ẋ1 ẋ
k a1

2kẋ
k

0 (a2
ℓk

ẋℓ

ẋ1 − a1
ℓk

ẋ2ẋℓ

(ẋ1)2
)ẋk (a2

2k − a1
2k

ẋ2

ẋ1 )ẋk






dt+





0 0 0
0 0 0

0 ẍ2ẋ1−ẋ2ẍ1

(ẋ1)2
0



 dt.

Of 
ourse, we have assumed ẋ1 6= 0, without any loss of generality.

3.4. At this moment, the equations for geodesi
s are read in the (3,2)-entry of

c∗θ1 in order to take values in the subalgebra sym(L0) = 〈X0〉 + a1 ⊂ g. Alto-

gether, the system of ordinary di�erential equations des
ribing (non-parameterized)

geodesi
s is just one equation of se
ond order, namely,

(3.9) ẍ2ẋ1 − ẋ2ẍ1 =

2
∑

k,ℓ=1

(a1
ℓkẋ

2ẋℓ − a2
ℓkẋ

ℓẋ1)ẋk.

Visibly, there is no 
ontribution of fun
tions z1k and z2k into the equations above and,

as an exer
ise, one 
an verify that ea
h a�ne geodesi
 (with an arbitrary parameter)

of any linear 
onne
tion from the proje
tive 
lass is really solution of this system.

3.5. Consider a ve
tor �eld ξ ∈ X(R × M), as in 2.5, with ψ = ψ(t). Then

the determining di�erential equations for ξ to be an in�nitesimal symmetry of the

system (3.9) are found to be

(3.10) ϕi
,t = 0,

(3.11) ϕi
,jk +

2
∑

ℓ=1

(ai
jk,ℓϕ

ℓ + ai
jℓϕ

ℓ
,k) = (−1)i

(

ϕi
,j(a

1
1k − a2

2k) − ai
jk(ϕ

1
,1 − ϕ2

,2)
)

,
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ϕi
,ii +

2
∑

ℓ=1

(ai
ii,ℓϕ

ℓ + ai
iℓϕ

ℓ
,i) = 2

(

ϕj
,ij + (ai

jiϕ
j
,i − aj

iiϕ
i
,j)

)

+ (−1)j
(

ϕj
,i(a

1
1j − a2

2j) − aj
ij(ϕ

1
,1 − ϕ2

,2)
)

+
2

∑

ℓ=1

(

(aj
ji,ℓϕ

ℓ + aj
jℓϕ

ℓ
,i) + (aj

ij,ℓϕ
ℓ + aj

iℓϕ
ℓ
,j)

)

,

for all i, j, k ∈ {1, 2} su
h that j 6= i and k 6= i. Lower indi
es after the 
omma

denote the partial derivatives with respe
t to x = (x1, x2). In parti
ular, the �rst set

of equations reads as

∂ϕi

∂t
= 0, i.e., the fun
tions ϕ1

and ϕ2
depend only on x. The

se
ond 
lear 
onsequen
e of the system above is that ψ = ψ(t) may be arbitrary,

i.e., any reparameterization of a solution of (3.9) is again solution; just as one 
ould

anti
ipate.

3.6. Using the normal 
oordinates in the 
ase of lo
ally �at proje
tive geometry,

one begins with Cartan gauge

(3.12) θ0 =





0 0 0
dx1 0 0
dx2 0 0



 ,

whi
h leads to an extra easy version of the geodesi
 equation E ,

(3.13) ẍ2ẋ1 − ẋ2ẍ1 = 0,

and the determining equations are

(3.14)

ϕ1
,22 = ϕ2

,11 = 0,

ϕ1
,11 = 2ϕ2

,12, ϕ
2
,22 = 2ϕ1

,21,

with ϕ1
and ϕ2

to be fun
tions only of x.
Now, let ξ ∈ X(M) be an in�nitesimal point symmetry of (3.13), i.e., the system

of partial di�erential equations (3.14) is satis�ed, provided that ξ = ϕi ∂
∂xi . Write

θ instead of θ0 and try to �nd a map Y : U → h su
h that Lξθ = − adY θ + dY ,
following 2.6. Using the abbreviated notation as before, the Lie derivative of θ is

(3.15) Lξθ =





0 0 0
ϕ1

,k 0 0

ϕ2
,k 0 0



 dxk,

and we have to determine Y su
h that the n-parts of Lξθ and − adY θ 
oin
ide. Su
h
a Y is dedu
ed to has the form

(3.16) Y =





1
3ϕ

1
,1 + 1

3ϕ
2
,2 q1 q2

0 −2
3ϕ

1
,1 + 1

3ϕ
2
,2 −ϕ1

,2

0 −ϕ2
,1

1
3ϕ

1
,1 −

2
3ϕ

2
,2





where qj are arbitrary fun
tions. Then we get the di�eren
e Lξθ−adY θ−dY equals

to

(3.17)





qk −
1
3ϕ

1
,1k − 1

3ϕ
2
,2k −q1,k −q2,k

0 −q1δ
1
k + 2

3ϕ
1
,1k − 1

3ϕ
2
,2k −q2δ

1
k + ϕ1

,2k

0 −q1δ
2
k + ϕ2

,1k −q2δ
2
k + 1

3ϕ
1
,1k + 2

3ϕ
2
,2k



 dxk

and, using heavily the identities (3.14), this expression redu
es to the form



212 BORIS DOUBROV AND VOJT�CH �ÁDNÍK

(3.18)

Lξθ−adY θ−dY =





qkdx
k − 1

2ϕ
k
,kkdx

k −q1,kdx
k −q2,kdx

k

0 −q1dx
1 + 1

2ϕ
1
,11dx

1 −q2dx
1 + 1

2ϕ
2
,22dx

1

0 −q1dx
2 + 1

2ϕ
1
,11dx

2 −q2dx
2 + 1

2ϕ
2
,22dx

2



 .

In order to get zeros in the right-down blo
k, the fun
tions q1 and q2 are determined

uniquely so that q1 = 1
2ϕ

1
,11 and q2 = 1

2ϕ
2
,22, respe
tively, and the rest of the matrix

vanishes either trivially or as a 
onsequen
e of (3.14). More 
on
retely, the left-up


orner vanishes be
ause of vanishing of the whole tra
e and qj,k = 1
2ϕ

j
,jjk vanish, for

any j, k ∈ {1, 2}, as follows: ϕj
,jjj = 2ϕi

,jji = 0, where i 6= j, and, for j 6= k, one gets

ϕj
,jjk = 1

2ϕ
k
,jkk = 1

4ϕ
j
,jjk, hen
e ϕ

j
,jjk = 0 as well.

3.7. Alternative way available in the �at 
ase is to solve the system of determin-

ing equations (3.14), as suggested in 2.6. Going this way, one 
an �nd the general

solution of that system looks like

(3.19)

ϕ1(x1, x2) = c1(x
1)2 + c2x

1x2 + c3x
1 + c4x

2 + c5,

ϕ2(x1, x2) = c1x
1x2 + c2(x

2)2 + c6x
1 + c7x

2 + c8,

for arbitrary 
onstants ci ∈ R. Hen
e the dimension of inf(E) equals to 8 and

so inf(E) = g by dimension reasons. In fa
t, G = SL(3,R) is the maximal possible

symmetry group of se
ond-order ordinary di�erential equation in two variables whi
h

is then ne
essarily equivalent to that in (3.13), 
f. [8, 12℄.

Note that the opposite dire
tion, i.e., the in
lusion g ⊆ inf(E) whi
h is trivial

in general, 
an also be veri�ed on this elementary level. In fa
t, the di�eren
e

Lξθ − adY θ − dY in (3.17) vanishes if and only if all the relations in (3.14) are

satis�ed, i.e., ξ is an in�nitesimal symmetry of (3.13).

4. Lagrangean 
onta
t geometry

4.1. Lagrangean 
onta
t geometry in dimension 3 is a split Cartan geometry

of type (G,H) modeled by the proje
tivization of the tangent spa
e to RP
2
. The

group G = SL(3,R) 
onsists of all proje
tive transformations naturally prolonged to

PT (RP
2), and H is the stabilizer of a �xed line in the tangent spa
e at some �xed

point. On the in�nitesimal level, we have

h =











∗ ∗ ∗
0 ∗ ∗
0 0 ∗



 : trace = 0







(4.1)

with the 
omplementary subalgebra n = nL
1 ⊕ nR

1 ⊕ n2 su
h that

nL
1 =











0 0 0
∗ 0 0
0 0 0











, nR
1 =











0 0 0
0 0 0
0 ∗ 0











, and n2 =











0 0 0
0 0 0
∗ 0 0











.(4.2)

For simpli
ity we restri
t our attention just to the essential points of the pro
ess in

the �at 
ase, though most of 
omputations below 
an be done in general.

There is a natural 
onta
t stru
ture on G/H = PT (RP
2) generated by tangent

ve
tors to 
urves lifted from RP
2
. Via the identi�
ation T (G/H) ∼= G ×H (g/h)

as in 2.2 and n ∼= g/h, the 
onta
t distribution 
orresponds to the two-dimensional
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H-invariant subspa
e in n de�ned by n1 = nL
1 ⊕ nR

1 . There are several subsets in n

invariant under the a
tion ofH whi
h distinguish tangent ve
tors in T (G/H). Ex
ept
those within n1, there is just the 
omplement n \ n1 
orresponding to ve
tors lying

outside of the 
onta
t distribution. There are distinguished 
urves of the parti
ular

interest whi
h emanate in the later dire
tions, namely, the 
urves represented by

L0 = exp(tX0)o where X0 ∈ n2. These are 
alled 
hains, in analogy with the Chern�

Moser 
hains well-known from hypersurfa
e CR geometries. From the symmetry

algebra sym(L0) below one 
an dedu
e they behave just like the 
lassi
al 
hains, i.e.,

in any dire
tion outside the 
onta
t distribution there is a unique unparameterized


hain admitting a proje
tive 
lass of distinguished parameters.

4.2. Computing the symmetry algebra of L0, we get sym(L0) = 〈X0〉 + a1 so

that

(4.3) sym(L0) =











∗ 0 ∗
0 ∗ 0
∗ 0 ∗



 : trace = 0







.

4.3. Let us �x the lo
al 
oordinates (x, y, z) on G/H = PT (RP
2) so that (x, y)

are a�ne 
oordinates on RP
2
and z = dy

dx
. Then the 
onta
t stru
ture on G/H is

de�ned by the 1-form γ = dy − z dx. Similarly to 3.3 and 3.6, we start with the

Cartan gauge

(4.4) θ0 =





0 0 0
dx 0 0

dy − z dx dz 0



 ,

and its pullba
k c∗θ0 to the 
urve c(t) = (x(t), y(t), z(t)). Calibration

(4.5) h =





1 − ż
ẏ−zẋ

0

0 1 ẋ
ẏ−zẋ

0 0 1





leads to a 
ompatible Cartan gauge c∗θ1 with values in 〈X0〉 + h. Of 
ourse, this is

possible if and only if ẏ − zẋ = γ(ċ) 6= 0, i.e., ve
tor ċ is transverse to the 
onta
t

distribution.

4.4. Now, the equations on 
hains are just written in (1, 2) and (2, 3) entries of
the matrix c∗θ1, expli
itly, we have got E 
onsisting of

(4.6)

ÿẋ− ẏẍ = 0,

(z̈ẏ − żÿ) + z(ẍż − ẋz̈) = −2ẋż2.

4.5. Skipping the expli
it des
ription and solution of determining equations, we

just 
on
lude that the system (4.6) is really invariant under reparameterizations

and the Lie algebra inf(E) of all in�nitesimal symmetries of E is 8-dimensional and

so 
oin
ides with g by dimension reasons. Altogether, we have got a good reason

to believe that the set of 
hains allows to re
over the initial Lagrangean 
onta
t

geometry.
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5. Proje
tive 
onta
t geometry

5.1. Three-dimensional proje
tive 
onta
t geometry is a split Cartan geometry

of type (G,H) modeled by the proje
tive spa
e RP
3
with the prin
ipal group G =

Sp(4,R) ⊂ SL(4,R) a
ting transitively on RP
3
via the restri
tion of the standard

a
tion of SL(4,R). Let H ⊂ G be the stabilizer of some �xed point, then RP
3 =

G/H. The natural 
onta
t stru
ture on RP
3
arises from the symple
ti
 stru
ture on

R
4
invariant with respe
t to the a
tion of Sp(4,R). On the other hand, there is a

natural �at proje
tive 
onne
tion on RP
3
and these two stru
tures are 
ompatible in

the following sense. If a straight line (i.e., a geodesi
 in the �at proje
tive geometry) is

tangent to the 
onta
t distribution at one point then it is a 
onta
t 
urve. See [9, 10℄

for more details and the 
ompatibility of 
onta
t and proje
tive stru
tures in general


ase.

An appropriate matrix representation leads to the following in�nitesimal des
rip-

tion,

g =























a b c d
x e f c
y g −e −b
z y −x −a























,(5.1)

in parti
ular, dim g = 10. Hen
e, s
hemati
ally,

h =























∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗









∈ g















(5.2)

with the 
omplementary subalgebra n = n1 ⊕ n2 so that

n1 =























0 0 0 0
∗ 0 0 0
∗ 0 0 0
0 ∗ ∗ 0









∈ g















and n2 =























0 0 0 0
0 0 0 0
0 0 0 0
∗ 0 0 0























.(5.3)

As in the Lagrangean 
onta
t 
ase, we are fo
used espe
ially on the �at model

hereafter.

There are only two distin
t types of tangent ve
tors in T (G/H), namely, those

lying inside and outside of the 
onta
t subbundle. Under the familiar identi�
ation

T (G/H) ∼= G ×H (g/h) and n ∼= g/h as before, the former 
ase 
orresponds to the

2-dimensional subspa
e n1 ⊂ n whilst the later one to the 
omplement n \ n1. As in

the Lagrangean 
onta
t 
ase, we have also got the 
hains, the distinguished 
urves

transversal to the 
onta
t distribution whi
h are represented by any element of the

subset n2 ⊂ n in the same sense as before. Further, there is only one more type of

generalized geodesi
s whi
h 
an be represented by an arbitrary element of n1. Of


ourse, these are the geodesi
s of the proje
tive stru
ture on the 
onta
t distribution

and, in parti
ular, they have the same properties as 
hains up to the initial 
ondition

to be dire
ted within the 
onta
t subbundle. In general, proje
tive 
onta
t stru
ture

indu
es the true proje
tive stru
ture whose geodesi
s are pre
isely the just dis
ussed


urves.
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5.2. Let L0 = exp(tX0)o, X0 ∈ n2, be a 
hain. Again, symmetry algebra of L0

has the form sym(L0) = 〈X0〉 + a1, s
hemati
ally written as

(5.4) sym(L0) =























∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗









∈ g















.

5.3. Appropriate lo
al 
oordinates on G/H = RP
3
lead to the Cartan gauge

(5.5) θ0 =









0 0 0 0
dx 0 0 0
dy 0 0 0

dz − ydx+ xdy dy −dx 0









and, in these 
oordinates, the 
onta
t distribution is then given as the kernel of the 1-

form γ = dz−ydx+xdy. Consider the pullba
k c∗θ0 to 
urve c(t) = (x(t), y(t), z(t))
and 
hoose the 
alibration

(5.6) h =











1 − ẏ
ż−yẋ+xẏ

ẋ
ż−yẋ+xẏ

0

0 1 0 ẋ
ż−yẋ+xẏ

0 0 1 ẏ
ż−yẋ+xẏ

0 0 0 1











whi
h yields the 
ompatible Cartan gauge c∗θ1 with values in 〈X0〉 + a0. Of 
ourse,

we have 
onsidered ż − yẋ+ xẏ = γ(ċ) 6= 0.

5.4. The equations on 
hains are then read from (1,2) and (1,3) or, equivalently,

from (2,4) and (3,4) entries of c∗θ1 in order to take values in sym(L0). Hen
e, the

system E 
onsists of two equations

(5.7)

(ÿż − ẏz̈) + y(ẍẏ − ẋÿ) = 0,

(ẍż − ẋz̈) + x(ẍẏ − ẋÿ) = 0.

5.5. The determining equations of E form a 3-variable analogy of those in (3.14),

in parti
ular, the system (5.7) is invariant under reparameterizations and the Lie

algebra inf(E) has the maximal possible dimension, i.e., 15. Hen
e the system of

di�erential equations E is equivalent to the trivial one, [8℄, and the Lie algebra

inf(E) of in�nitesimal symmetries of E 
oin
ides with sl(4,R), the Lie algebra of

in�nitesimal transformations of the true proje
tive stru
ture on G/H = RP
3
.

Anyway, we still 
an 
laim that 
hain-preserving in�nitesimal transformations


oin
ide with g = sp(4,R), the Lie algebra of in�nitesimal transformations of the

proje
tive 
onta
t stru
ture. In order to prove this, it just remains to show that any


hain-preserving transformation respe
ts the 
onta
t distribution, but this is 
lear

more or less by de�nition.

The right reason of the former result, i.e., inf(E) = sl(4,R) ⊃ g, is that there is

never used the essential 
onstraint ż−yẋ+xẏ 6= 0 in the 
omputation of in�nitesimal

symmetries of E . Omitting this inequality, one really re
overs both the 
hains and

the geodesi
s of type n1 as solutions of E . Of 
ourse, this 
an be ni
ely presented

using the same te
hniques as yet: 
hoosing a suitable element X1 ∈ n1, 
omputing

the symmetry algebra of L1 = exp(tX1)o, and �xing the same 
oordinates as in 5.3,

one ends with the di�erential equation ẍẏ − ẋÿ = 0 provided that ż − yẋ+ xẏ = 0,
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i.e., the 
urve is tangent to the 
onta
t distribution. Now, it is an easy exer
ise to

show that any solution of these two equations is also solution of (5.7).
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