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Abstrat. We are interested in equations of distinguished urves in general

Cartan geometries. In this paper we present a way to onstrut equations for

non-parameterized distinguished urves via symmetry algebras of model urves

and Cartan's method of moving frame. We also disuss the orrespondene, well-

known in partiular geometries, between maps preserving generalized geodesis of

spei� type and morphisms of the geometri struture. As examples we ompute

equations together with their symmetries for generalized geodesis in projetive,

projetive ontat and Lagrangean ontat geometries.

1. Introdution

For a Lie group G and a losed subgroup H ⊂ G, the Cartan geometry of type

(G,H) on a smooth manifold M onsists of the following data [13℄:

• a prinipal �ber bundle G →M with the struture group H;

• Cartan onnetion ω ∈ Ω1(G, g) with g to be the Lie algebra of G.

Cartan geometry is alled split if there is a (�xed) subalgebra n ⊂ g omplementary

to h ⊂ g, the Lie algebra of H. The prinipal H-bundle G → G/H with the

Maurer�Cartan form ωG ∈ Ω1(G, g) is the �at (or homogeneous) model of Cartan

geometries of type (G,H). Cartan geometries appeared �rst in the pioneer works

of E. Cartan [2, 3℄ under the name of generalized spaes. One of his ideas was to

generalize his moving frame method to submanifolds in Cartan geometries [4℄. This

works espeially smoothly for urves, where the struture equations are automatially

satis�ed, and leads to the notion of distinguished urves.

First, there are speial types of urves in the homogeneous spae G/H, namely,

the orbits of one-parameter subgroups of G, known as homogeneous urves. This

determines speial lasses of urves on all manifolds endowed with the struture of

Cartan geometry of the same type via the notion of development [11, 15℄. Expliitly,

the urve on M is a distinguished urve if and only if it develops (at any point) into

a urve of the form

(1.1) h exp(tX)o = exp(tAdh(X))o

for some h ∈ H and X ∈ g. In fat, any H-invariant set C of urves in G/H, mapping

0 to the origin o = eH, leads to a well-de�ned set of urves on M whih we all the

distinguished urves of type C. This is the way how to distint urves of di�erent
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properties. Partiular examples of suh urves are geodesis in Eulidean, a�ne and

projetive geometries, onformal irles and null-geodesis in onformal geometries,

hains in hypersurfae CR geometries, and others. All these Cartan geometries are

split and the mentioned types of distinguished urves an be spei�ed, aording to

the notation above, by the ondition X ∈ A where A is a subset in n. In those ases

one speaks about generalized geodesis of type A.
One of the questions of this paper is whether the way from a given Cartan ge-

ometry to the family of distinguished urves of a spei�ed type an be reversed, i.e.,

whether one an reover the whole geometry having just the family of distinguished

urves. There are three major examples with a�rmative and negative answers we

have in mind. First, onsider an a�ne geometry with geodesis as distinguished

urves. Then it is well-known that there are many non-equivalent a�ne geometries

having the same sets of geodesis onsidered as non-parameterized urves. So, we see

that the a�ne geometry an not be reovered from its geodesis. On the other hand,

any projetive geometry is uniquely determined by its geodesis [2℄. In partiular,

smooth map keeps the set of non-parameterized geodesis invariant if and only if

it is a projetive motion. Besides the projetive geometries, the seond well-known

instane of the feature above to be satis�ed is the onformal geometry; see [14℄ for

the in�nitesimal version of the later statement in the ase of de�nite-signature on-

formal metri onerning onformal irles with distinguished parameters. However,

using the tehniques presented below, one an prove the same onsidering just non-

parameterized onformal irles. Note that the same question in the ase of inde�nite

onformal metri with null-geodesis as the spei�ed type of distinguished urves is

ompletely di�erent and more or less trivial to answer.

Let us reall here the onverse statement, namely, that any morphism of Cartan

geometry (G, ω) respets the distinguished urves of any spei�ed type, is trivially

satis�ed due to the equivalent de�nition of distinguished urves as projetions of �ow

lines of onstant vetor �elds in X(G), f. [13℄.
The main aim of this paper is to develop a method leading up to the system

of di�erential equations, say E , whih desribe any spei�ed lass of distinguished

urves. In fat, this is a modern presentation of Cartan's familiar ideas involved in

[2, 3, 4℄. The rest of this paper is devoted to making an intuition onerning the

questions above. Conretely, we disuss the in�nitesimal symmetries of E whih are

essentially useful, however, one has to be a bit areful in this �eld. At any rate, there

is no hope to get result of general harater in this way but it serves just as a test of

the onjeture above should be satis�ed or not. We wish to ome bak to this topi

elsewhere.

Aknowledgments. Authors would like to thank Jan Slovák for the fruitful

ommuniation and a number of remarks and orretions. Most of tedious om-

putations is done with the help of the omputational system Maple inluding the

Desolv pakage by John Carminati and Khai Vu [1℄. Seond author supported by

the grant of M�MT �R #MSM14310009 and by the Junior Fellows program of the

Erwin Shrödinger Institute (ESI), in di�erent times.

2. Symmetry algebras and distinguished urves

Here we summarize all basis, skipping those details whih an be found in the

referred literature. In this setion we onsider a �xed Cartan geometry of type (G,H)
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and distinguished urves spei�ed by C, an H-invariant set of homogeneous urves

in G/H mapping 0 to the origin.

One of the onvenient tools desribing basi properties of homogeneous urves

is the symmetry algebra of a urve de�ned in [6℄. In partiular, it enodes the

order of initial ondition, whih determines the homogeneous urve of the urrent

type uniquely, as well as it helps to deide whether the admissible distinguished

reparameterizations are projetive or a�ne [5, 7℄. This approah also leads to a

handy riterion for a urve to be a distinguished urve of spei�ed type, Corollary

1. Hene, with the help of the Cartan's moving frame method [4℄, one obtains the

system E of ordinary di�erential equations desribing the urves in question. Suh

systems an be thought as a deformation of speial invariant di�erential equations

on a model spae, whih were well-studied for low-dimensional geometries, see [12℄.

Having equations of distinguished urves in hand, we use the progress of [12℄

in order to look for the in�nitesimal symmetries of E . The main output is the

system of partial di�erential equations, alled determining equations, whose solutions

are the in�nitesimal symmetries. Oasionally, it happens that the in�nitesimal

symmetries of E are in fat in�nitesimal transformations of the geometri struture

we began with. Of ourse, this must be enoded somehow in the shape of determining

equations, whih we demonstrate in Setions 3 and 4 in the ases of projetive and

Lagrangean ontat geometries.

2.1. As above, let C be a set of homogeneous urves in G/H. Without any loss

of generality, we assume C to be an orbit of the struture group H, i.e., any two

urves of C are onjugated by an element of H. In fat, the study of distinguished

urves goes in this diretion in order to disern lasses of urves of di�erent behavior.

2.2. Fix a homogeneous urve L(t) = exp(tX)o, the representative of C = CL.

Following [6℄, ompute the symmetry algebra symL ⊂ g as follows. For the sequene

(2.1) h = a0 ⊇ a1 ⊇ a2 ⊇ . . .

of Lie subalgebras, de�ned reursively as ai+1 = {Y ∈ ai : [Y,X] ⊂ 〈X〉 + ai}, let r
be the order that the sequene stabilizes from. Now we put the symmetry algebra

of L to be the subalgebra symL = 〈X〉 + ar of g.

Equivalently, for any (non-parameterized) urve L ⊂ G/H, the symmetry algebra

symL ⊂ g is de�ned as

(2.2) symL = {X ∈ g : RX(p) ∈ TpL for all p ∈ L}

where RX denotes the vetor �eld on G/H generated by X ∈ g so that RX(p) =
d
dt

∣

∣

0
exp(tX)p. In fat, R : g → X(G/H) is an (anti-)homomorphism of Lie algebras

and any subalgebra of g gives rise to an integrable distribution on G/H. Obviously,

for any p ∈ L, R(symL)(p) ⊆ TpL and the urve L is homogeneous if and only if

R(symL)(p) = TpL. For later use, let us mention that under the usual identi�ation

T (G/H) ∼= G ×H (g/h), via the Maurer�Cartan form ωG on G, the vetor �eld

RX ∈ X(G/H) is written as

(2.3) RX(gH) = Jg,Adg−1(X) + hK,

for any gH ∈ G/H. Easily, homogeneous urves L1 and L2 oinide up to onjugation

by an element of H (say h ∈ H) if and only if the symmetry algebras sym(L1) and
sym(L2) are onjugated (via Adh ∈ GL(g)).
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2.3. Let (p : G → M,ω) be a Cartan geometry of type (G,H), and let c be a

(parameterized) smooth urve on M . Denote by C ⊂ M the non-parameterized

image of c. Then, by de�nition, c is a urve of type CL if and only if it develops

(at any point) into a urve whih is onjugated to L by an element of H. Fixing

a point x ∈ C and following the notation of [15℄, this just means that there is an

element u ∈ p−1(x) ⊂ G suh that (devx c)(t) = Ju,L(t)K ⊂ SxM ∼= G/H, where

SM = G ×H (G/H) is the Cartan's spae of M .

Here we use the following de�nition of development. For x = c(t0), let ĉ : I → G
be any urve over C suh that p(ĉ(t)) = c(t0 + t) and ĉ(0) = u. Let further Y : I → g

be given as Y (t) = ω
(

d
dt
ĉ(t)

)

. By the existene and uniqueness theorem for ordinary

di�erential equations on Lie groups, there is a unique urve a : I → G, suh that

a∗ωG = Y and a(0) = e, and then the development of c is given as (devx c)(t) =
Ju, a(t)oK ⊂ SxM . Sine ωG is the Maurer�Cartan form on G, then a∗ωG = δa is

just the Darboux (or left logarithmi) derivative of a. Hene we say, that c is a

urve of type CL, for L(t) = exp(tX)o, if and only if there is a lift ĉ of c in G as

above suh that ω
(

d
dt
ĉ(t)

)

= X, espeially, X = δ exp(tX) is onstant. Conerning

non-parameterized urves, the following Proposition appears.

Proposition 1. Let C ⊂ M be an immersed 1-dimensional submanifold. Then

the following two onditions are equivalent:

(1) C admits a (loal) parameterization that turns C into a distinguished

urve of type CL,

(2) there is a (loal) smooth setion s : C → G of the projetion G →M
suh that s∗ω ∈ Ω1(C, g) takes values in symL ⊂ g.

Proof. Consider c : I → C, x = c(t0) ∈ C, and ĉ : I → G over c as above suh
that devx c = Ju,LK with u = ĉ(0) ∈ p−1(x) and L(t) = exp(tX)o. Then, de�ning

the setion s : C → G by the presription c(t) 7→ ĉ(t− t0), we have got Im(s∗ω) = X
whih belongs to symL by de�nition.

Conversely, let c : I → C be any parameterization of C suh that c(0) = x. Let
s : C → G be a setion suh that the assumption Im(s∗ω) ⊂ symL is satis�ed, i.e.,

for ĉ = s ◦ c and Y (t) = ω
(

d
dt
ĉ(t)

)

we have Im(Y ) ⊂ symL. Let further Sym(L)
be a virtual subgroup in G (not neessarily losed) orresponding to the Lie algebra

sym(L). Then from [6, Theorem 2℄ it follows that L, onsidered as unparameterized

urve, (loally) oinides with the orbit of Sym(L) through o. Sine Y (t) ∈ sym(L)
for all t ∈ I, we see that a(t) ∈ Sym(L), and thus a(t)o belongs to L.

Let a : t 7→ a(t)o. Show that a′(0) 6= 0, i.e., a de�nes a parameterization of L in a

neighborhood of the origin. Indeed, under the identi�ation T (G/H) ∼= G×H (g/h)
as in 2.2, the tangent vetor �eld of a is written as a′(t) = Ja(t), Y (t) + hK. Hene,
evaluated in 0, it is equal to a′(0) = Je, Y (0)+ hK. But Y (0) 6∈ h, by de�nition, sine

ĉ is transversal to the �bers of p : G →M . �

2.4. On a oordinate neighborhood U of a point x ∈ M , any setion s : U → G
of the projetion G → M de�nes the Cartan gauge θ = s∗ω ∈ Ω1(U, g) whih an

only hanges, under the hange of setion by a map h : U → H, aording to the

formula

(2.4) θ̃ = Adh−1 θ + δh.

Any two Cartan gauges satisfying the ondition above, on the intersetion of domains,

are alled ompatible and the relation `to be ompatible' is an equivalene relation
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on the set of loal 1-forms {θα ∈ Ω1(Uα, g)}, see [13, Ch. 5℄ for details. We will

work in this framework below and, in these terms, Proposition 1 an be formulated

as follows.

Corollary 1. Let C be a non-parameterized urve in M . Then the following

two onditions are equivalent:

(1) C is a urve of type CL,

(2) for any x ∈ C, there is a neighborhood U ∋ x and Cartan gauge

θ ∈ Ω1(U, g) suh that Im(θ|C) ⊆ sym(L).

Start with a Cartan gauge θ0 = θ|C ∈ Ω1(C, g) along C (orretly, along C ∩U).
The �rst neessary ondition for the urve C to be a urve of type CL is on the

tangent spae level. Namely, for some parameterization c : I → C, the tangent

vetors ċ has to be ontained in the subset of TM whih orresponds to the H-

invariant set AdH(X) + h ⊆ g/h, provided the urve L representing the lass CL is

generated by X. If this is the ase, one an surely �nd a alibration h : U → H
suh that θ1 = Adh−1 θ0 + δh, restrited to C, takes values in 〈X〉 + h. Considering

c to be a urve of type CL (up to reparameterization), we repeat this idea to build

up a sequene of Cartan gauges θi whose restritions to C take values in 〈X〉+ ai−1,

i ∈ N, where the subalgebras aj ⊆ h are as in (2.1). Basially, this is the idea of

moving frame, f. [6℄.

Conversely, onsidering c to be a general urve onM , the question on Im(θi|C) ⊆
〈X〉+ ai−1 in eah step yields some di�erential onditions on c whih must be satis-

�ed in order c to be a urve of type CL up to ith order and up to reparameterization.

Finally, the last step, orresponding to sym(L) = 〈X〉 + ar, gives the system of dif-

ferential equations EL ⊂ Jr+1(R,M) we are interested in. In general, no all of the

above onstraints are di�erential equalities but often also inequalities. The typial

instane of that ase are the �rst-order onditions on hains in ontat paraboli

geometries, see Setions 4 and 5. However, we an always deal just with the �nal

system of di�erential equations of order r + 1 keeping in mind that the initial on-

ditions on the solution to be the right urve have to satisfy all the onstraints up to

order r.

2.5. Now, in the half-time, write r instead of r + 1 and onsider the system

EL ⊂ Jr(R,M) of ordinary di�erential equations to be of the form Fν(t, x(r)) =

0, ν = 1, . . . , N , where any Fν : Jr(R,M) → R is a smooth funtion and x(r)

represents the derivatives of x = (x1, . . . , xm), m = dimM , up to order r. Let

further ξ ∈ X(R ×M) be a vetor �eld on the spae of independent and dependent

variables, written as

(2.5) ξ(t, x) = ψ(t, x)
∂

∂t
+ ϕi(t, x)

∂

∂xi
,

and let ξ(r) ∈ X(Jr(R,M)) be its rth prolongation, expliitly desribed in [12,

Theorem 4.16℄. Note that ξ generates �ber-wise point transformations of R ×M if

and only if the funtion ψ depends only on t, whih is the ase we are foused on.

If the system of di�erential equations EL is regular then ξ is an in�nitesimal

symmetry of EL if and only if ξ(r) ·Fν

∣

∣

EL

= 0 for all ν = 1, . . . , N , see [12, Ch. 6℄.

In fat, these onditions form an over-determined linear system of partial di�erential

equations, known as determining equations, for the funtions ψ and ϕi
from the o-

ordinate expression of ξ in (2.5). In general, that is an elementary but rather tedious
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task to �nd the determining equations of the system in question but, fortunately,

there is number of softwares whih help to bridge over this part of omputation, see

[1℄ for an instane.

Further, at least in the ase of loally �at Cartan geometries, the resulting system

of determining equations an be solved expliitly, hene one ompletely desribes the

Lie algebra of in�nitesimal symmetries of EL. Here we just refer to the next setions

for the onrete presentation of mentioned tehniques.

2.6. We devote this paragraph to the promised onnetion between the auto-

morphisms of Cartan geometry and symmetries of distinguished urves of spei�ed

type. Obviously, map f : M →M is a morphism of Cartan geometry if and only if,

for any Cartan gauge θ, the pullbak f∗θ is ompatible with θ, i.e., there is a smooth

map h : U → H suh that f∗θ = Adh−1 θ + δh, see 2.4. Note that this ondition

is satis�ed for any Cartan gauge if and only if it is satis�ed for one of them, by

transitivity of the relation `to be ompatible'. For our purposes, we have to �nd the

in�nitesimal analogy of the above ompatibility ondition. An easy omputations

yields that vetor �eld ξ ∈ X(M) is an in�nitesimal transformation of the Cartan

geometry if and only if, for one (or, equivalently, any) Cartan gauge θ, there is a

smooth map Y : U → h suh that

(2.6) Lξθ = − adY θ + dY

holds.

Altogether, the question on whether has an in�nitesimal symmetry ξ of EL to be

an in�nitesimal transformation of the Cartan geometry is equivalent to the question

whether, for general ξ satisfying the system of determining equations from 2.5, is

there a smooth map Y : U → h suh that the ondition (2.6) is satis�ed for a Cartan

gauge θ ∈ Ω1(U, g). In order to resolve the later question, one has �rst to look for

suh a Y : U → h that Lξθ ≡ − adY θ mod h, beause of dY ontributes only to h.

The rest should be onluded (if the onjeture is true) by a game with oe�ients of

ξ and their partial derivatives involving the identities whih follow from assumption,

i.e., that the system of determining equations is satis�ed by ξ.
Note that in the homogeneous model one also solves this problem by expliit

solution of determining equations, as suggested in 2.5, whih leads to the very vis-

ible desription of the Lie algebra inf(EL) of in�nitesimal symmetries of EL. Then

one onludes by omparing the dimensions of Lie algebras in question, due to the

inlusion g ⊆ inf(EL) whih is here by de�nition.

Thus, omputation of the symmetry algebra of EL in the �at ase an be onsid-

ered as a test on whether the lass of distinguished urves of type CL does determine

the Cartan geometry. If this test fails, i.e., the dimension of inf(EL) is bigger than

dim g, then the answer should be negative (the typial instane is the ase of a�ne

onnetions). However, even in the ase when the test fails it is still possible (usu-

ally, due to some global arguments) that a map keeping the set of urves of type

CL stable is a transformation of the geometri struture. See Setion 5 for example.

Anyway, there are still more arguments required to establish orretly an answer to

our question, so we wish to visit this problem elsewhere in a more oneptual way.

Espeially, in order to make the test and the hypothesis preise, two essential things

are needed to larify: �rst, whih lasses of distinguished urves should be onsidered

as models and, seond, whih kind of global arguments an arise. . .
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In the next, we demonstrate the just presented tehniques in three partiular

ases. In Setion 3 we go arefully through the example of projetive plane geometry

in order to make the reader familiar with all the general notions above. Setions 4 and

5 represent essential points of the proess in the ase of 3-dimensional Lagrangean

ontat and projetive ontat geometry, respetively. Computation for all these

geometries in higher dimensions is ompletely analogous, only a bit more longer.

3. Projetive geometry

3.1. Projetive 2-dimensional geometry is a split Cartan geometry of type (G,H)
modeled by the projetive plane RP

2
with the prinipal group G = SL(3,R) of

projetive transformations and H ⊂ G, the stabilizer of some �xed point in RP
2
. On

the in�nitesimal level, we shematially write

h =











∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗



 : trace = 0







(3.1)

with the natural hoie of omplementary subalgebra

n =











0 0 0
∗ 0 0
∗ 0 0











.(3.2)

There are no distinguished diretions and no distinguished types of generalized

geodesis in projetive geometries. In other words, any element of n lies in the

H-orbit of the vetor

(3.3) X0 =





0 0 0
1 0 0
0 0 0



 ∈ n,

and any generalized geodesi in G/H is a shift gL0 of the urve L0 = exp(tX0)o, for
some g ∈ G. Hene we set C = {gL0 : g ∈ H}.

3.2. The symmetry algebra of the urve L0 is omputed in two steps suh that

sym(L0) = 〈X0〉 + a1, expliitly,

(3.4) sym(L0) =











∗ ∗ ∗
∗ ∗ ∗
0 0 ∗



 : trace = 0







.

The shape of the symmetry algebra involves the basi properties of generalized ge-

odesi as suggested in introdution. In partiular, in our ase, non-parameterized

geodesis are uniquely given by a diretion in one point, whih is a onsequene

of sym(L0) = 〈X0〉 + a1, i.e., r = 1, and any suh urve admits the projetive

lass of distinguished parameters, whih one onludes from the pair of Lie algebras

(〈X0〉 + ar, ar), following [5℄.

3.3. For a oordinate system on U ⊂ M , any Cartan gauge θ ∈ Ω1(U, g) an

be alibrated by h : U → H suh that the n-part of θ oinides with dx (due to
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surjetivity of the map H → GL(n) indued by Ad). Hene starting on this level,

we write

(3.5) θ0 =





ak z1k z2k

δ1k a1
1k a1

2k

δ2k a2
1k a2

2k



 dxk

where of ourse we sum over k = 1, 2 and the trae has to vanish. Consider a general

urve c : I → M and C ⊂ M to be the non-parameterized image of c. Then the

pullbak of θ0 to the urve c(t) = (x1(t), x2(t)) is

(3.6) c∗θ0 =





ak z1k z2k

δ1k a1
1k a1

2k

δ2k a2
1k a2

2k



 ẋkdt.

An appropriate alibration leads to a ompatible Cartan gauge θ1 along C with

values in 〈X0〉 + a0, i.e., with zero in the (3,1)-entry. In partiular, for

(3.7) h =





1 0 0
0 1 0

0 ẋ2

ẋ1 1





we really get, aording to (2.4) and summing over k, ℓ = 1, 2,
(3.8)

c∗θ1 =







akẋ
k zℓk

ẋℓ

ẋ1 ẋ
k z2kẋ

k

ẋ1 a1
ℓk

ẋℓ

ẋ1 ẋ
k a1

2kẋ
k

0 (a2
ℓk

ẋℓ

ẋ1 − a1
ℓk

ẋ2ẋℓ

(ẋ1)2
)ẋk (a2

2k − a1
2k

ẋ2

ẋ1 )ẋk






dt+





0 0 0
0 0 0

0 ẍ2ẋ1−ẋ2ẍ1

(ẋ1)2
0



 dt.

Of ourse, we have assumed ẋ1 6= 0, without any loss of generality.

3.4. At this moment, the equations for geodesis are read in the (3,2)-entry of

c∗θ1 in order to take values in the subalgebra sym(L0) = 〈X0〉 + a1 ⊂ g. Alto-

gether, the system of ordinary di�erential equations desribing (non-parameterized)

geodesis is just one equation of seond order, namely,

(3.9) ẍ2ẋ1 − ẋ2ẍ1 =

2
∑

k,ℓ=1

(a1
ℓkẋ

2ẋℓ − a2
ℓkẋ

ℓẋ1)ẋk.

Visibly, there is no ontribution of funtions z1k and z2k into the equations above and,

as an exerise, one an verify that eah a�ne geodesi (with an arbitrary parameter)

of any linear onnetion from the projetive lass is really solution of this system.

3.5. Consider a vetor �eld ξ ∈ X(R × M), as in 2.5, with ψ = ψ(t). Then

the determining di�erential equations for ξ to be an in�nitesimal symmetry of the

system (3.9) are found to be

(3.10) ϕi
,t = 0,

(3.11) ϕi
,jk +

2
∑

ℓ=1

(ai
jk,ℓϕ

ℓ + ai
jℓϕ

ℓ
,k) = (−1)i

(

ϕi
,j(a

1
1k − a2

2k) − ai
jk(ϕ

1
,1 − ϕ2

,2)
)

,
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ϕi
,ii +

2
∑

ℓ=1

(ai
ii,ℓϕ

ℓ + ai
iℓϕ

ℓ
,i) = 2

(

ϕj
,ij + (ai

jiϕ
j
,i − aj

iiϕ
i
,j)

)

+ (−1)j
(

ϕj
,i(a

1
1j − a2

2j) − aj
ij(ϕ

1
,1 − ϕ2

,2)
)

+
2

∑

ℓ=1

(

(aj
ji,ℓϕ

ℓ + aj
jℓϕ

ℓ
,i) + (aj

ij,ℓϕ
ℓ + aj

iℓϕ
ℓ
,j)

)

,

for all i, j, k ∈ {1, 2} suh that j 6= i and k 6= i. Lower indies after the omma

denote the partial derivatives with respet to x = (x1, x2). In partiular, the �rst set

of equations reads as

∂ϕi

∂t
= 0, i.e., the funtions ϕ1

and ϕ2
depend only on x. The

seond lear onsequene of the system above is that ψ = ψ(t) may be arbitrary,

i.e., any reparameterization of a solution of (3.9) is again solution; just as one ould

antiipate.

3.6. Using the normal oordinates in the ase of loally �at projetive geometry,

one begins with Cartan gauge

(3.12) θ0 =





0 0 0
dx1 0 0
dx2 0 0



 ,

whih leads to an extra easy version of the geodesi equation E ,

(3.13) ẍ2ẋ1 − ẋ2ẍ1 = 0,

and the determining equations are

(3.14)

ϕ1
,22 = ϕ2

,11 = 0,

ϕ1
,11 = 2ϕ2

,12, ϕ
2
,22 = 2ϕ1

,21,

with ϕ1
and ϕ2

to be funtions only of x.
Now, let ξ ∈ X(M) be an in�nitesimal point symmetry of (3.13), i.e., the system

of partial di�erential equations (3.14) is satis�ed, provided that ξ = ϕi ∂
∂xi . Write

θ instead of θ0 and try to �nd a map Y : U → h suh that Lξθ = − adY θ + dY ,
following 2.6. Using the abbreviated notation as before, the Lie derivative of θ is

(3.15) Lξθ =





0 0 0
ϕ1

,k 0 0

ϕ2
,k 0 0



 dxk,

and we have to determine Y suh that the n-parts of Lξθ and − adY θ oinide. Suh
a Y is dedued to has the form

(3.16) Y =





1
3ϕ

1
,1 + 1

3ϕ
2
,2 q1 q2

0 −2
3ϕ

1
,1 + 1

3ϕ
2
,2 −ϕ1

,2

0 −ϕ2
,1

1
3ϕ

1
,1 −

2
3ϕ

2
,2





where qj are arbitrary funtions. Then we get the di�erene Lξθ−adY θ−dY equals

to

(3.17)





qk −
1
3ϕ

1
,1k − 1

3ϕ
2
,2k −q1,k −q2,k

0 −q1δ
1
k + 2

3ϕ
1
,1k − 1

3ϕ
2
,2k −q2δ

1
k + ϕ1

,2k

0 −q1δ
2
k + ϕ2

,1k −q2δ
2
k + 1

3ϕ
1
,1k + 2

3ϕ
2
,2k



 dxk

and, using heavily the identities (3.14), this expression redues to the form
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(3.18)

Lξθ−adY θ−dY =





qkdx
k − 1

2ϕ
k
,kkdx

k −q1,kdx
k −q2,kdx

k

0 −q1dx
1 + 1

2ϕ
1
,11dx

1 −q2dx
1 + 1

2ϕ
2
,22dx

1

0 −q1dx
2 + 1

2ϕ
1
,11dx

2 −q2dx
2 + 1

2ϕ
2
,22dx

2



 .

In order to get zeros in the right-down blok, the funtions q1 and q2 are determined

uniquely so that q1 = 1
2ϕ

1
,11 and q2 = 1

2ϕ
2
,22, respetively, and the rest of the matrix

vanishes either trivially or as a onsequene of (3.14). More onretely, the left-up

orner vanishes beause of vanishing of the whole trae and qj,k = 1
2ϕ

j
,jjk vanish, for

any j, k ∈ {1, 2}, as follows: ϕj
,jjj = 2ϕi

,jji = 0, where i 6= j, and, for j 6= k, one gets

ϕj
,jjk = 1

2ϕ
k
,jkk = 1

4ϕ
j
,jjk, hene ϕ

j
,jjk = 0 as well.

3.7. Alternative way available in the �at ase is to solve the system of determin-

ing equations (3.14), as suggested in 2.6. Going this way, one an �nd the general

solution of that system looks like

(3.19)

ϕ1(x1, x2) = c1(x
1)2 + c2x

1x2 + c3x
1 + c4x

2 + c5,

ϕ2(x1, x2) = c1x
1x2 + c2(x

2)2 + c6x
1 + c7x

2 + c8,

for arbitrary onstants ci ∈ R. Hene the dimension of inf(E) equals to 8 and

so inf(E) = g by dimension reasons. In fat, G = SL(3,R) is the maximal possible

symmetry group of seond-order ordinary di�erential equation in two variables whih

is then neessarily equivalent to that in (3.13), f. [8, 12℄.

Note that the opposite diretion, i.e., the inlusion g ⊆ inf(E) whih is trivial

in general, an also be veri�ed on this elementary level. In fat, the di�erene

Lξθ − adY θ − dY in (3.17) vanishes if and only if all the relations in (3.14) are

satis�ed, i.e., ξ is an in�nitesimal symmetry of (3.13).

4. Lagrangean ontat geometry

4.1. Lagrangean ontat geometry in dimension 3 is a split Cartan geometry

of type (G,H) modeled by the projetivization of the tangent spae to RP
2
. The

group G = SL(3,R) onsists of all projetive transformations naturally prolonged to

PT (RP
2), and H is the stabilizer of a �xed line in the tangent spae at some �xed

point. On the in�nitesimal level, we have

h =











∗ ∗ ∗
0 ∗ ∗
0 0 ∗



 : trace = 0







(4.1)

with the omplementary subalgebra n = nL
1 ⊕ nR

1 ⊕ n2 suh that

nL
1 =











0 0 0
∗ 0 0
0 0 0











, nR
1 =











0 0 0
0 0 0
0 ∗ 0











, and n2 =











0 0 0
0 0 0
∗ 0 0











.(4.2)

For simpliity we restrit our attention just to the essential points of the proess in

the �at ase, though most of omputations below an be done in general.

There is a natural ontat struture on G/H = PT (RP
2) generated by tangent

vetors to urves lifted from RP
2
. Via the identi�ation T (G/H) ∼= G ×H (g/h)

as in 2.2 and n ∼= g/h, the ontat distribution orresponds to the two-dimensional
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H-invariant subspae in n de�ned by n1 = nL
1 ⊕ nR

1 . There are several subsets in n

invariant under the ation ofH whih distinguish tangent vetors in T (G/H). Exept
those within n1, there is just the omplement n \ n1 orresponding to vetors lying

outside of the ontat distribution. There are distinguished urves of the partiular

interest whih emanate in the later diretions, namely, the urves represented by

L0 = exp(tX0)o where X0 ∈ n2. These are alled hains, in analogy with the Chern�

Moser hains well-known from hypersurfae CR geometries. From the symmetry

algebra sym(L0) below one an dedue they behave just like the lassial hains, i.e.,

in any diretion outside the ontat distribution there is a unique unparameterized

hain admitting a projetive lass of distinguished parameters.

4.2. Computing the symmetry algebra of L0, we get sym(L0) = 〈X0〉 + a1 so

that

(4.3) sym(L0) =











∗ 0 ∗
0 ∗ 0
∗ 0 ∗



 : trace = 0







.

4.3. Let us �x the loal oordinates (x, y, z) on G/H = PT (RP
2) so that (x, y)

are a�ne oordinates on RP
2
and z = dy

dx
. Then the ontat struture on G/H is

de�ned by the 1-form γ = dy − z dx. Similarly to 3.3 and 3.6, we start with the

Cartan gauge

(4.4) θ0 =





0 0 0
dx 0 0

dy − z dx dz 0



 ,

and its pullbak c∗θ0 to the urve c(t) = (x(t), y(t), z(t)). Calibration

(4.5) h =





1 − ż
ẏ−zẋ

0

0 1 ẋ
ẏ−zẋ

0 0 1





leads to a ompatible Cartan gauge c∗θ1 with values in 〈X0〉 + h. Of ourse, this is

possible if and only if ẏ − zẋ = γ(ċ) 6= 0, i.e., vetor ċ is transverse to the ontat

distribution.

4.4. Now, the equations on hains are just written in (1, 2) and (2, 3) entries of
the matrix c∗θ1, expliitly, we have got E onsisting of

(4.6)

ÿẋ− ẏẍ = 0,

(z̈ẏ − żÿ) + z(ẍż − ẋz̈) = −2ẋż2.

4.5. Skipping the expliit desription and solution of determining equations, we

just onlude that the system (4.6) is really invariant under reparameterizations

and the Lie algebra inf(E) of all in�nitesimal symmetries of E is 8-dimensional and

so oinides with g by dimension reasons. Altogether, we have got a good reason

to believe that the set of hains allows to reover the initial Lagrangean ontat

geometry.
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5. Projetive ontat geometry

5.1. Three-dimensional projetive ontat geometry is a split Cartan geometry

of type (G,H) modeled by the projetive spae RP
3
with the prinipal group G =

Sp(4,R) ⊂ SL(4,R) ating transitively on RP
3
via the restrition of the standard

ation of SL(4,R). Let H ⊂ G be the stabilizer of some �xed point, then RP
3 =

G/H. The natural ontat struture on RP
3
arises from the sympleti struture on

R
4
invariant with respet to the ation of Sp(4,R). On the other hand, there is a

natural �at projetive onnetion on RP
3
and these two strutures are ompatible in

the following sense. If a straight line (i.e., a geodesi in the �at projetive geometry) is

tangent to the ontat distribution at one point then it is a ontat urve. See [9, 10℄

for more details and the ompatibility of ontat and projetive strutures in general

ase.

An appropriate matrix representation leads to the following in�nitesimal desrip-

tion,

g =























a b c d
x e f c
y g −e −b
z y −x −a























,(5.1)

in partiular, dim g = 10. Hene, shematially,

h =























∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗









∈ g















(5.2)

with the omplementary subalgebra n = n1 ⊕ n2 so that

n1 =























0 0 0 0
∗ 0 0 0
∗ 0 0 0
0 ∗ ∗ 0









∈ g















and n2 =























0 0 0 0
0 0 0 0
0 0 0 0
∗ 0 0 0























.(5.3)

As in the Lagrangean ontat ase, we are foused espeially on the �at model

hereafter.

There are only two distint types of tangent vetors in T (G/H), namely, those

lying inside and outside of the ontat subbundle. Under the familiar identi�ation

T (G/H) ∼= G ×H (g/h) and n ∼= g/h as before, the former ase orresponds to the

2-dimensional subspae n1 ⊂ n whilst the later one to the omplement n \ n1. As in

the Lagrangean ontat ase, we have also got the hains, the distinguished urves

transversal to the ontat distribution whih are represented by any element of the

subset n2 ⊂ n in the same sense as before. Further, there is only one more type of

generalized geodesis whih an be represented by an arbitrary element of n1. Of

ourse, these are the geodesis of the projetive struture on the ontat distribution

and, in partiular, they have the same properties as hains up to the initial ondition

to be direted within the ontat subbundle. In general, projetive ontat struture

indues the true projetive struture whose geodesis are preisely the just disussed

urves.
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5.2. Let L0 = exp(tX0)o, X0 ∈ n2, be a hain. Again, symmetry algebra of L0

has the form sym(L0) = 〈X0〉 + a1, shematially written as

(5.4) sym(L0) =























∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗









∈ g















.

5.3. Appropriate loal oordinates on G/H = RP
3
lead to the Cartan gauge

(5.5) θ0 =









0 0 0 0
dx 0 0 0
dy 0 0 0

dz − ydx+ xdy dy −dx 0









and, in these oordinates, the ontat distribution is then given as the kernel of the 1-

form γ = dz−ydx+xdy. Consider the pullbak c∗θ0 to urve c(t) = (x(t), y(t), z(t))
and hoose the alibration

(5.6) h =











1 − ẏ
ż−yẋ+xẏ

ẋ
ż−yẋ+xẏ

0

0 1 0 ẋ
ż−yẋ+xẏ

0 0 1 ẏ
ż−yẋ+xẏ

0 0 0 1











whih yields the ompatible Cartan gauge c∗θ1 with values in 〈X0〉 + a0. Of ourse,

we have onsidered ż − yẋ+ xẏ = γ(ċ) 6= 0.

5.4. The equations on hains are then read from (1,2) and (1,3) or, equivalently,

from (2,4) and (3,4) entries of c∗θ1 in order to take values in sym(L0). Hene, the

system E onsists of two equations

(5.7)

(ÿż − ẏz̈) + y(ẍẏ − ẋÿ) = 0,

(ẍż − ẋz̈) + x(ẍẏ − ẋÿ) = 0.

5.5. The determining equations of E form a 3-variable analogy of those in (3.14),

in partiular, the system (5.7) is invariant under reparameterizations and the Lie

algebra inf(E) has the maximal possible dimension, i.e., 15. Hene the system of

di�erential equations E is equivalent to the trivial one, [8℄, and the Lie algebra

inf(E) of in�nitesimal symmetries of E oinides with sl(4,R), the Lie algebra of

in�nitesimal transformations of the true projetive struture on G/H = RP
3
.

Anyway, we still an laim that hain-preserving in�nitesimal transformations

oinide with g = sp(4,R), the Lie algebra of in�nitesimal transformations of the

projetive ontat struture. In order to prove this, it just remains to show that any

hain-preserving transformation respets the ontat distribution, but this is lear

more or less by de�nition.

The right reason of the former result, i.e., inf(E) = sl(4,R) ⊃ g, is that there is

never used the essential onstraint ż−yẋ+xẏ 6= 0 in the omputation of in�nitesimal

symmetries of E . Omitting this inequality, one really reovers both the hains and

the geodesis of type n1 as solutions of E . Of ourse, this an be niely presented

using the same tehniques as yet: hoosing a suitable element X1 ∈ n1, omputing

the symmetry algebra of L1 = exp(tX1)o, and �xing the same oordinates as in 5.3,

one ends with the di�erential equation ẍẏ − ẋÿ = 0 provided that ż − yẋ+ xẏ = 0,
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i.e., the urve is tangent to the ontat distribution. Now, it is an easy exerise to

show that any solution of these two equations is also solution of (5.7).
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