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Abstract
Almost para-quaternionic structures on smooth manifolds of dimension 2n are equivalent
to almost Grassmannian structures of type (2, n). We remind the equivalence and exhibit
some interrelations between subjects that were previously studied independently from the
para-quaternionic and the Grassmannian point of view. In particular, we relate the respective
normalization conditions, distinguished curves, and twistor constructions.

Keywords Almost para-quaternionic structures · Almost Grassmannian structures · Cartan
connections

Mathematics Subject Classification 53C15 · 53C05

1 Introduction

Almost para-quaternionic structures are geometric structures that are related to the algebra of
para-quaternions similarly as almost quaternionic structures are related to usual quaternions.
Both these structures can be seen as different real forms of the complex quaternionic structure
and as such they have a lot in common. Both these structures can also be studied from various
points of view, which becomes apparent especially in the para-quaternionic case. In this
paper, we focus on a natural equivalence between almost para-quaternionic structures on 2n-
dimensional manifolds and almost Grassmannian structures of type (2, n). Our main intent
is to use consistently this equivalence to compare several notions and constructions that are
already known and studied in respective communities, whose relationships are, however, not
accurately visible in the existing literature. This demarcates the structure of the paper.

In Sect. 2, we collect basic definitions and concepts from para-quaternionic geometry
that are relevant to our purposes. This includes the description of a normalization condition
and the corresponding family of compatible affine connections, distinguished curves and
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twistor constructions. In contrast to almost quaternionic structures, there are distinguished
(null) directions in the tangent bundle of a para-quaternionic manifold. This fact yields a
richer discussion both for distinguished curves and twistor bundles. In Sect. 3, we follow a
similar path for almost Grassmannian structures. In the same section, we also introduce the
main instrument for what follows, namely, the equivalent description in terms of parabolic
geometries. In particular, there is a canonical Cartan connection associated to an almost
Grassmannian structure. There is nothing indeed original in these two sections.

In Sect. 4, we start with comparisons and interactions. The new results concern a detailed
discussion on the equivalence of the two structures in question and some of its consequences.
It, in particular, follows that the normalization condition considered exclusively for almost
para-quaternionic structures coincideswith the one for almostGrassmannian structureswhich
is just a reflection of the canonical normalization condition for general parabolic geometries.
Consequently, the two separately described families of structure adapted affine connections
coincide. These observations allow an easy account of the relation between families of dis-
tinguished curves. The main outcomes are summarized in Theorem 5.

In Sect. 5, we revise the description of twistor spaces of an almost para-quaternionic man-
ifold from the standpoint of the associated Cartan geometry. These spaces are distinguished
by the sign ε ∈ {−1, 0, 1}, which denotes the type of the induced additional structure. As an
instance of the use of the current point of view, we recover the known integrability results for
ε = ±1. New results concern the case ε = 0, to which case the previous reasoning extends
instantly; see Theorem 14. It further follows that it is the 0-twistor space which provides a
link between the para-quaternionic and Grassmannian twistor constructions. In particular,
this bundle allows an immediate interpretation in Grassmannian terms; see Propositions 15
and 16.

Most of the considerations are independent of the dimension of the base manifold. How-
ever, specific features appear in the lowest reasonable dimension, i.e., in dimension four. That
is why we add some remarks to this case in Sect. 6. In the same section, we also comment
on the situation when the structure admits a compatible metric.

There is wide literature both on almost para-quaternionic and almost Grassmannian (and
related) structures. For the former structures, we follow primarily Alekseevsky and Cortés [3]
and David [12]. For the latter ones, our starting reference is [7] by Bailey and Eastwood. It is
worth noticing that twistor constructions discussed in these articles represent different ways
of generalizing the Penrose’s twistor program for four-dimensional conformal structures, cf.
[20], to higher dimensions. A predecessor and the closest relative of the former approach
concerns, of course, almost quaternionic structures connected with the work of Salamon; see,
e.g., [21]. A large amount of relevant material is incorporated in the monograph [9] by Čap
and Slovák in the context of Cartan, respectively parabolic, geometries. That book, especially
its fourth chapter, was the main source of inspiration for this paper.

2 Almost para-quaternionic structures

After a quick reminder of para-quaternions, we describe the almost para-quaternionic struc-
tures, their compatible connections and related twistor constructions. Basic references for
this section are [3,4] and [12].
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2.1 Para-quaternions

The algebra of para-quaternions, denoted byHs , is characterized as the unique 4-dimensional
real associative algebra with indefinite multiplicative norm.1 Para-quaternions are written as
q = a + bi + cj + dk, for a, b, c, d ∈ R, with the defining relations

i2 = j2 = 1 and k = i j = − j i .

Consequently, k2 = −1, ik = −ki = j and jk = −k j = −i . The conjugate para-quaternion
to q is q̄ = a−bi−cj−dk and the norm is given by |q|2 = qq̄ = q̄q; the corresponding polar
form is 〈p, q〉 = Re(pq̄). Purely imaginary para-quaternions are characterized by q̄ = −q ,
hence q2 = −qq̄ = −|q|2 holds, for any q ∈ ImHs . The quadruple (1, i, j, k) forms a real
orthonormal basis of Hs , where |i |2 = | j |2 = −1 and |k|2 = 1. There are two-dimensional
real isotropic subspaces in Hs , hence the inner product has the split signature (2, 2).

The algebra of para-quaternions is isomorphic to the algebra of endomorphism ofR2, i.e.,
the matrix algebra Mat2×2(R), so that the norm squared corresponds to the determinant. The
isomorphism is given by

a + bi + cj + dk �→
(
a + b c + d
c − d a − b

)
.

In particular, the standard basis is mapped as

1 �→
(
1 0
0 1

)
, i �→

(
1 0
0 −1

)
, j �→

(
0 1
1 0

)
, k �→

(
0 1

−1 0

)
. (1)

In these terms, the purely imaginary para-quaternions ImHs ⊂ Hs form the three-
dimensional subspace of trace-free matrices, which is invariant under the conjugation by
regular matrices.

The group of automorphisms of Hs is just the subgroup of those elements of SO(Hs) ∼=
SO(2, 2) which acts on ReHs by the identity.2 Hence Aut(Hs) is isomorphic to SO0(1, 2),
the connected component of the identity element in SO(1, 2). Under the identification above,
the group of unit para-quaternions {q ∈ Hs : |q|2 = 1} is isomorphic to SL(2,R). The
conjugation by any such element, p �→ qpq−1 = qpq̄, yields a surjective group homomor-
phism SL(2,R) → Aut(Hs) whose kernel is {±1}. This just recovers the twofold covering
SL(2,R) → PGL(2,R) or, isomorphically written, Spin(1, 2) → SO0(1, 2).

2.2 Almost para-quaternionic structures

A para-quaternionic structure on a real vector spaceW is a three-dimensional subspaceQW

of endomorphisms of W admitting a basis (I , J , K ) such that

I ◦ I = J ◦ J = id and K = I ◦ J = −J ◦ I . (2)

Consequently, K ◦ K = − id, I ◦ K = −K ◦ I = J , J ◦ K = −K ◦ J = −I and, for
any A ∈ QW , the composition A ◦ A is a multiple of the identity map. In particular, QW is
endowed with an inner product of signature (1, 2), determined by

A ◦ A = −|A|2 id, (3)

1 Instead of the prefix para-, various synonyms can be found in the literature; split- is probably the most often.
2 Throughout the paper, we use the standard notation of favorite Lie groups; GL for general linear, PGL
for projective linear, SL for special linear, SO for special orthogonal, Spin for spin. The corresponding Lie
algebras will be denoted as gl, sl and so, respectively.

123



Annals of Global Analysis and Geometry

and an orientation, determined by any basis of QW . It follows the dimension of W is nec-
essarily even. A linear map f : W → W is a para-quaternionic homomorphism of QW if
there is a linear map φ : QW → QW such that

f (AX) = φ(A) f (X), (4)

for all X ∈ W and A ∈ QW .
An almost para-quaternionic structure on a smoothmanifoldM of even dimension 2n ≥ 4

is given by a subbundle Q ⊂ End(T M) of rank 3, which is (locally) generated by the triple
(I , J , K ) satisfying (2).3 The bundle Q is endowed with a bundle metric (3) so that the
typical fiber of Q → M is the standard oriented Minkowski space. In the terminology of
[3] and [11], elements A ∈ Q such that |A|2 is 1, 0 and −1 (i.e., endomorphisms such that
A ◦ A is − id, 0 and id), are called almost complex, almost tangent and almost para-complex
structures, respectively. Wemostly use the uniform abbreviation almost ε-complex structure,
where ε = −|A|2 ∈ {−1, 0, 1}.

Note that, for an almost tangent structure A ∈ Q, the condition A ◦ A = 0 implies that
im A = ker A, which yields a distinguished distribution in T M of rank n. Similarly, for
a para-complex structure A ∈ Q, the (±1)-eigenspace decomposition of T M forms two
complementary distributions in T M of the same rank n. All such subspaces form a subset
of distinguished elements in the tangent bundle, which is therefore an important (although
often overlooked) part of the structure. Vectors belonging to this subset are called null. We
return to this subject in Sect. 4.1.

Almost para-quaternionic structures can be regarded as first-order G-structures. We refer
to this interpretation later, and the corresponding structure group is described in Sect. 4.1 in
detail.

Let us emphasize that almost para-quaternionic manifolds may have any even dimension.
Only the existence of a non-degenerate compatible metric brings an additional restriction so
that the dimension of the base manifold has to be a multiple of four. See Sect. 6.2 for some
details.

2.3 Para-quaternionic connections

Acompatible connection of a para-quaternionic structure is a linear connection on T M which
preserves the subbundle Q ⊂ End(T M); any such connection is called para-quaternionic.
Para-quaternionic connections generally have torsion that cannot be eliminated and therefore
yields an important invariant of the structure.

Following the general theory of G-structures, let m = dim M , let G0 ⊂ GL(m,R) be the
structure group in question and let G0 → M be the corresponding reduction of the principal
frame bundle to G0. The change of compatible connection is controlled by a G0-equivariant
mapG0 → R

m∗⊗g0, where g0 is the Lie algebra ofG0. The corresponding change of torsions
is then expressed by an equivariant map G0 → im ∂ , where ∂ : Rm∗ ⊗ g0 → Λ2

R
m∗ ⊗ R

m

is the composition

R
m∗ ⊗ g0 → R

m∗ ⊗ R
m∗ ⊗ R

m → Λ2
R
m∗ ⊗ R

m, (5)

whose first map is given by the inclusion g0 ⊂ gl(m,R) ∼= R
m∗ ⊗R

m and the second map by
the alternation. Thus, compatible connections having the same torsion are parametrized by

3 Almost para-quaternionic structures appear under various names in the literature; the frequent one in older
references is almost quaternionic structures of second type. There are also alternative equivalent definitions
of the structure; see, e.g., [22] for more information.
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equivariant maps with values in ker ∂ = (Rm∗ ⊗ g0)∩ (S2Rm∗ ⊗R
m), the first prolongation

of g0. A choice of G0-invariant complement to im ∂ in Λ2
R
m∗ ⊗ R

m may be used for the
normalization of the torsion.

This way the para-quaternionic structures are discussed in [12]. In analogy to the case
of almost quaternionic structures [5], it follows that ker ∂ ∼= R

m∗, i.e., that compatible
connections having the same torsion are parametrized by one-forms on M . Concretely, for
Υ ∈ Ω1(M), the difference tensor of two such connections may be written as

Υ � id+(Υ ◦ I ) � I + (Υ ◦ J ) � J − (Υ ◦ K ) � K , (6)

where (I , J , K ) is a local basis ofQ satisfying (2). It further follows that ∂ is not surjective
and there is a natural G0-invariant complement to im ∂ in Λ2

R
m∗ ⊗ R

m ; more details are
in Sect. 4.3. Compatible connection whose torsion takes values in that complement is called
minimal.

The torsion of para-quaternionic structure is given by the projection of the torsion of
any compatible connection to the just mentioned complement. An almost para-quaternionic
structure is called para-quaternionic, or integrable, if it has trivial torsion, i.e., if admits a
torsion-free para-quaternionic connection.

2.4 Q-planar curves

Almost para-quaternionic structures belong to a broad family of structures defined by a
set of endomorphisms of the tangent bundle. As such they allow a class of distinguished
curves, the generalized planar curves in the sense of [15]. In our setting, a parametrized
curve γ : I → M , I ⊆ R is called Q-planar with respect to the almost para-quaternionic
structure Q ⊂ End(M) and a para-quaternionic connection ∇ if the covariant derivative of
the tangent vector field γ̇ belongs to its para-quaternionic span, i.e., if

∇γ̇ γ̇ = S(γ̇ ),

where S is a section of 〈id〉 ⊕ Q ⊂ End(T M) along γ . The definition is independent of the
parametrization of the curve.

From (6), it follows that a curve is Q-planar for oneminimal para-quaternionic connection
if and only if it is Q-planar for all of them. Trivially, geodesics of any such connection are
Q-planar for all others, but they need not be their geodesics. For finer discussion, we have to
distinguish curves that are everywhere, respectively, nowhere, tangent to the subset of null
elements of the tangent bundle; the former curves are called null, the latter generic. We return
to this subject in Sect. 4.4. It will, in particular, follow that any generic Q-planar curve is in
fact geodesic of some compatible connection. We will also specify a distinguished subclass
among the class of generic Q-planar curves. The discussion for null Q-planar curves is more
strict.

2.5 Twistor spaces for almost para-quaternionic manifolds

Given an almost para-quaternionic manifold (M,Q) and an arbitrary s ∈ R, the s-twistor
space Z s → M is defined as

Z s := {A ∈ Q : |A|2 = −s, i.e., A ◦ A = s id}.
By definition, each s-twistor space is a fiber bundle over M with two-dimensional fiber, so
the dimension of the total space is also even.
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Following the observations of Sect. 2.2, the typical fiber of Q → M is decomposed into
disjoint subsets consisting of space-, light- and time-like vectors. Accordingly, we denote the
decomposition of Q by Q = Q+ � Q0 � Q−. For s < 0 the typical fibers of Z s → M are
hyperboloids of two sheets, which aremutually identified via the central projection. Similarly,
for s > 0, these are hyperboloids of one sheet. Hence, for any s > 0 and s < 0, the s-twistor
space Z s is identified with the projectivization PQ+ and PQ−, respectively, and we use
the notation Z ± := Z ±1 ∼= PQ±. However, for s = 0, the typical fiber is the cone of
null vectors. Hence Z 0 = Q0 and its projectivization is a circle bundle over M which will
play a distinguished role later. Altogether, we consider just three types of s-twistor spaces
distinguished by the sign of s.

Now, the almost para-quaternionic structure induces almost ε-complex structures on the
respective twistor spaces. The following statement can be found as [3, Prop. 6].

Proposition 1 ([3]) Let (M,Q) be an almost para-quaternionic manifold, and let ε ∈
{−1, 0, 1}. Any para-quaternionic connection induces a natural almost ε-complex structure
J ε on the ε-twistor space Z ε .

The construction works roughly as follows. A para-quaternionic connection ∇ gives rise
to a horizontal distribution H∇ ⊂ TZ ε , complementary to the vertical subbundle of the
projection p : Z ε → M . The vertical subspace at any z ∈ Z ε is identified with the tangent
space of an appropriate quadric in the oriented Minkowski space, and hence it carries a
canonical ε-complex structure. Next, any z ∈ Z ε is by definition an almost ε-complex
structure in Tp(z)M , and this lifts up to H∇

z via the inverse map of Tz p. The two pieces
then assemble into a natural almost ε-complex structure on TzZ ε . Moreover, for a section
s : M → Z ε of the projection p, let us denote by J s the corresponding almost ε-complex
structure on M . Then the following compatibility relation holds:

J s = T p ◦ J ε ◦ T s. (7)

It is a natural questionwhen twopara-quaternionic connections induce the same ε-complex
structure on the ε-twistor space. For ε = ±1, this is carefully studied in [12] and [16]. In
particular, it turns out that all minimal para-quaternionic connections induce the same almost
ε-complex structure. Such structure is therefore called canonical.

The main outcome of the previous construction is that the integrability of the almost
para-quaternionic structure is fully controlled by the integrability of the canonical almost
(±1)-complex structures on twistor spaces. The following statement is extracted from [12,
Thm. 21].

Theorem 2 ([12])Let (M,Q)be an almost para-quaternionicmanifold of dimension 2n > 4.
Let (Z ε,J ε) be the ε-twistor space with the canonical almost ε-complex structure, where
ε = ±1. Then Q is integrable if and only if J ε is integrable.

We revise this statement in Sect. 5.3, where we also offer an extension to the case ε = 0.
Integrability of an ε-complex structure is equivalent to the vanishing of the corresponding

Nijenhuis tensor. Given a smooth manifold Z and an endomorphism A ∈ End(T Z) =
Ω1(Z , T Z), the Nijenhuis tensor of A is given by the Frölicher–Nijenhuis bracket, NA :=
1
2 [A, A] ∈ Ω2(Z , T Z), i.e.,

NA(ξ, η) := −A2[ξ, η] − [Aξ, Aη] + A[Aξ, η] + A[ξ, Aη], (8)

for any ξ, η ∈ Γ (T Z), where all brackets in (8) are the Lie brackets of vector fields.
Note that for almost para-complex structures, the Nijenhuis tensor vanishes if and only if

the corresponding distributions are integrable in the sense of Frobenius. However, for almost
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tangent structures, the vanishing of the Nijenhuis tensor is stronger than the integrability of
the corresponding distribution, see, e.g., [17].

3 Almost Grassmannian structures

Herewe collect several views on almostGrassmannian structures. In particular, we emphasize
the presence of the normalCartan connection. Recommended classical references are [1,7,18]
and [9].

3.1 Grassmannians

The Grassmannian of p-dimensional subspaces in (p + q)-dimensional real vector space,
denoted as Gr p(Rp+q), forms the model Grassmannian structure of type (p, q). The tangent
space at each λ ∈ Gr p(Rp+q) is naturally identified with the space of linear maps from λ

to the factor space Rp+q/λ, i.e., with the tensor product λ∗ ⊗ (Rp+q/λ) of vector spaces of
dimensions p and q .

Throughout this paper, we consider just the structures of type (2, n), where n ≥ 2.
TheGrassmannianGr2(R2+n) is the homogeneous spacewith the obvious transitive action

of the Lie group G := PGL(2 + n,R), the quotient of the general linear group by its
center (which consists of all real multiples of the identity). In particular, it coincides with
SL(2 + n,R), for odd n, and with SL(2 + n,R)/{±1}, for even n. Denoting by P the
stabilizer of a two-dimensional subspace in R

2+n , we have Gr2(R2+n) ∼= G/P . If this
subspace is 〈e1, e2〉, the span of the first two vectors of the standard basis of R2+n , then P is
represented by the block triangular matrices(

A Z
0 B

)

with the blocks of sizes 2 and n along the diagonal. The subgroup P ⊂ G is parabolic.
The related grading of the Lie algebra g = sl(2+n,R) is displayed in the following block

form (
g0 g1
g−1 g0

)
,

in particular, g−1 ∼= R
2∗ ⊗ R

n , g0 ∼= s(gl(2,R) ⊕ gl(n,R)) and g1 ∼= R
2 ⊗ R

n∗. The Lie
algebra of P is the sum of the nilpotent ideal g1 and the reductive subalgebra g0, p = g0⊕g1.
The central part of g0 consists of all multiples of the grading element, the semisimple part
gss0 is isomorphic to the direct sum sl(2,R) ⊕ sl(n,R).

Let G0 be the Lie subgroup in P with the Lie algebra g0. Evidently,

G0 ∼= GL(2,R) ·GL(n,R), (9)

the quotient of the direct product of general linear groups by the subgroup consisting of all
real multiples of the identity. The adjoint representation of G on g restricts to an injective
group homomorphism Ad : G0 → GL(g−1). Concretely, the action is given by

Ad(A,B)(X) = B ◦ X ◦ A−1, (10)

where the pair (A, B) ∈ GL(2,R) × GL(n,R) is a representative of an element of G0 and
X ∈ g−1 is seen as a linear map R2 → R

n .
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3.2 Almost Grassmannian structures

An almost Grassmannian structure of type (2, n) on a smooth manifold M of dimension
2n ≥ 4 is given by an identification of the tangent bundle with the tensor product of two
auxiliary vector bundles,

E∗ ⊗ F
∼=−→ T M, (11)

where rank E = 2 and rank F = n.
Note that an additional identification Λ2E∗ ∼= Λn F (or, equivalently, a trivialization

of the line bundle Λ2E ⊗ Λn F) is often taken as a part of the definition. This just brings
the notion of orientation into play; the corresponding geometric structure is called oriented
almost Grassmannian structure. The model in this case is the Grassmannian of oriented
two-dimensional subspaces in R

2+n .
Almost Grassmannian structures are G-structures with structure group as in (9). The

structure group for the oriented version is the lift S(GL(2,R) × GL(n,R)) ⊂ GL(2,R) ×
GL(n,R) consisting of the indicated block matrices with determinant one.

A compatible connection of an almost Grassmannian structure is a linear connection on
T M ∼= E ⊗ F which is the tensor product of two linear connections on the auxiliary vector
bundles E and F . An almost Grassmannian structure is called Grassmannian, or integrable,
if there is a compatible torsion-free connection. A natural class of normalized compatible
connections is described in Sect. 3.4.

Almost Grassmannian structures may be studied via the associated Segre structure, i.e.,
a field of Segre cones; see [1,14,19]. Under the isomorphism (11), the Segre cone in TxM ,
x ∈ M , is exactly the set of simple elements of E∗

x ⊗ Fx , i.e., the set of linear maps Ex → Fx
of rank one. The Segre cone is doubly ruled by linear subspaces of dimensions 2 and n; the
corresponding subbundles in Gr2(T M) and Grn(T M) are denoted as F and E and their
elements are called α- and β-planes, respectively. The notation reflects the fact that these
subbundles are naturally identified with the projectivized auxiliary bundles so thatF ∼= PF
and E ∼= PE . An almost Grassmannian structure is called β-integrable if any β-plane from
E is tangent to a unique immersed n-dimensional submanifold of M whose all tangent spaces
are elements of E . The notion of α-integrability is analogous.

3.3 Normal Cartan connection

Throughout this paper, we rely on the fact that almost Grassmannian structures can be
described as parabolic Cartan geometries. In particular, we have a canonical normalization
condition determining a distinguished class of compatible connections. We have to recall
some generalities first.

In this paragraph, G may denote an arbitrary Lie group, P ⊂ G its Lie subgroup and
p ⊂ g the corresponding Lie algebras. The model Cartan geometry associated with the
homogeneous space G/P consists of the homogeneous principal P-bundle G → G/P and
the Maurer–Cartan form ω ∈ Ω1(G, g). General Cartan geometry of type G/P on a smooth
manifoldM consists of a principal P-bundleG → M and aCartan connectionω ∈ Ω1(G , g).
In particular,ω is an absolute parallelism, i.e., it provides a global identification TG ∼= G×g.
Among other identifications determined by ω, the most frequent one is

T M ∼= G ×P (g/p),
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where the right-hand side reads as the associate bundle to G with the typical fiber g/p and
the natural action of P (i.e., the one induced by the adjoint action on g). The curvature of the
Cartan geometry (G → M, ω) is an element of Ω2(G , g) defined by

κ := dω + ω ∧ ω.

Since the curvature is strictly horizontal, the corresponding frame form reduces to a P-
equivariant map G → Λ2(g/p)∗ ⊗ g, the so-called curvature function. Composing with
the quotient projection g → g/p, we obtain a P-equivariant map G → Λ2(g/p)∗ ⊗ (g/p)

representing a tensor field τ ∈ Ω2(M, T M), which is called the torsion of the Cartan
geometry.

In the case that G is semisimple and P parabolic, the corresponding Cartan geometry is
called parabolic. The pair P ⊂ G from Sect. 3.1 related to Grassmannians is of this type
and, moreover, the length of the corresponding grading g = g−1 ⊕ g0 ⊕ g1 is the smallest
possible. Parabolic geometries with this property are called |1|-graded. In contrast to general
parabolic geometries, a lot of things simplifies if the structure is |1|-graded. In the following,
we repeatedly enjoy this fact.

It turns out that (as for most |1|-graded parabolic geometries) the nilpotent subalgebra
g1 ⊂ p coincides with the first prolongation of g0 ⊂ p and its second prolongation vanishes.
For g−1 ∼= R

m , m = dim M , the map from (5) can be seen as the G0-equivariant map
g∗−1 ⊗ g0 → Λ2g∗−1 ⊗ g−1 deduced (according to the gradation of g) from the differential ∂
in the chain complex computing the cohomology of the Lie algebra g−1 with coefficients in
g. In this context, we also use the duality between g/p ∼= g−1 and g1 via the Cartan–Killing
form. In particular, the curvature function may be seen as a map G → Λ2g1 ⊗ g.

The natural normalization condition is given by the P-equivariant map ∂∗, the codif-
ferential in the complex computing the Lie algebra homology of g1 with coefficients in g:
the parabolic geometry is called normal if its curvature function takes values in ker ∂∗ ⊂
Λ2g1⊗g. In such case, the composition with the quotient projection ker ∂∗ → ker ∂∗/ im ∂∗
yields a new quantity, the harmonic curvature. It follows that harmonic curvature determines
the full curvature and has an interpretation in underlying terms.

The maps ∂∗ and ∂ are adjoint with respect to an appropriate inner product. This gives rise
to the G0-equivariant self-adjoint endomorphism � := ∂ ◦ ∂∗ + ∂∗ ◦ ∂ , the so-called Kostant
Laplacian, which determines a Hodge decomposition of the chain complex. In particular, the
kernel of this operator,

ker� ⊂ ker ∂∗ ⊂ Λ2g1 ⊗ g,

is isomorphic to the second homology group. It follows that the lowest nonzero homoge-
neous component of the curvature function has values in ker�, i.e., it coincides with the
corresponding homogeneous component of the harmonic curvature. The nice thing is that
ker� is algorithmically computable as a G0-representation.

The following statement is the starting point of our further considerations, cf. [18, sec. 2–3]
and [9, sec. 4.1.3]:

Proposition 3 ([9,18]) An almost Grassmannian structure of type (2, n) on M is equivalent
to a normal parabolic geometry (G → M, ω) of type G/P, where G = PGL(2 + n,R)

and P is the parabolic subgroup as above. In terms of (11), the components of the harmonic
curvature are indicated in the following tables.

In particular, the torsion of the Cartan geometry vanishes for n = 2 and coincides with
the harmonic curvature component of homogeneity one for n > 2.
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n = 2 n > 2

Homogeneity Section of Homogeneity Section of

2 S2E ⊗ Λ2F∗ ⊗ sl(E) 1 S2E ⊗ Λ2F∗ ⊗ E∗ ⊗ F
2 Λ2E ⊗ S2F∗ ⊗ sl(F) 2 Λ2E ⊗ S2F∗ ⊗ sl(F)

More details on the indicated decomposition and the torsion component are in Sects. 4.2
and 4.3, respectively.

Note that the notion of β-, respectively, α-integrability of the almost Grassmannian struc-
ture is controlled by the vanishing of the first, respectively, the second, component in the
displayed tables; see the results of [2,13] and [18].

In the case n = 2, it follows that the almost Grassmannian structure is equivalent to a
conformal structure of split signature so the two harmonic curvatures correspond to anti-
self-dual, respectively self-dual, part of the Weyl curvature tensor.4 More comments on this
special case are in Sect. 6.1.

3.4 Weyl connections

As for any parabolic geometry, there is a natural class of compatible connections, the Weyl
connections. These are in bijective correspondence with reductions of the principal P-bundle
G → M to the structure group G0 ⊂ P . Equivalently, they correspond to global G0-
equivariant sections of the canonical projection G → G0, where G0 → M is the quotient
principal bundle with structure group G0, i.e., G0 = G / exp g1 in the current setting. The
family ofWeyl connections is parametrized by one-forms on M . The difference between two
such connections, ∇ and ∇̂, is expressed via Υ ∈ Ω1(M) so that

∇̂ξ η = ∇ξ η − {{Υ , ξ}, η}, (12)

for any ξ, η ∈ Γ (T M). Each bracket on the right-hand side is the algebraic bracket induced
by the one in the Lie algebra g = g−1 ⊕ g0 ⊕ g1; see [9, sec. 5.1.6]. In particular, {Υ , ξ} is
an endomorphism of T M ∼= E∗ ⊗ F , pointwise corresponding to elements of g0.

As for any |1|-graded parabolic geometry, all Weyl connections share the same torsion,
namely the torsion of the Cartan connection ω. In these terms, the integrability of an almost
Grassmannian structure is equivalent to the vanishing of the torsion of the corresponding
normal Cartan connection, i.e., to the vanishing of the harmonic curvature component of
homogeneity one. This condition is automatically satisfied for n = 2.

3.5 Grassmannian circles

Belonging to the broad family of parabolic geometries, almostGrassmannian structures admit
classes of distinguished curves in the sense of [10].5 According to the absolute parallelism
TG ∼= G × g determined by ω, they are given as projections of flow lines of constant vector
fields corresponding to elements from g−1. Equivalently, they are the curves that develop to

4 Be aware that the conventions in references are not always consistent; we follow the one in which the
β-integrability corresponds to the anti-self-duality.
5 Beside an enormous terminology related to concrete geometries, these curves have various general nick-
names, e.g., Cartan’s circles, generalized geodesics or canonical curves.
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the orbits of one-parameter groups in the homogeneous model with generators in g−1. We
note that many geometric properties of such curves are controlled by the algebraic properties
of the map g1 → g−1 given by Z �→ [[Z , X ], X ], where X ∈ g−1 is a representing element
of a respective type of curve and the brackets are the Lie brackets in g.

It follows that, for almost Grassmannian structures of type (2, n), there are two types of
distinguished curves: those that are everywhere, respectively nowhere, tangent to the Segre
cone; in this article, we call them null, respectively generic, Grassmannian circles. The
former curves are given by a tangent vector in one point so that a collinear tangent vector
yields just different parametrization of the same path. In particular, null Grassmannian circles
are common unparametrized geodesic of all compatible connections. The latter curves are
given by an initial condition of second order. It also follows that any Grassmannian circle is
a geodesic of a Weyl connection satisfying some additional condition. This point of view is
applied in Sect. 4.4.

The previous notions correspond to the ones from conformal geometry. For n = 2, the
Grassmannian circles truly coincide with their better known conformal counterparts, cf.
Sect. 6.1.

3.6 Twistor correspondence for almost Grassmannian structures

Here we describe the twistor spaces of [7], respectively [18], following the vocabulary of [8]
and [9]. Let G = PGL(2 + n,R) and P ⊂ G be as above. Let P ′ ⊂ G be the stabilizer of
the line 〈e1〉 spanned by the first vector of the standard basis in R

2+n . Hence Q := P ∩ P ′
is the stabilizer of the flag 〈e1〉 ⊂ 〈e1, e2〉. Alike G/P was identified with the Grassmannian
Gr2(R2+n), the homogeneous space G/P ′ is identified with the projective space RP

1+n

and G/Q with the proper flag manifold. The flag manifold G/Q is fibered both over the
Grassmannian G/P and over the projective space G/P ′. It is called the correspondence
space of G/P and G/P ′, while the latter spaces are its twistor spaces. For later use, we
figure the respective subgroups of G in the block matrix form:

Q =
⎛
⎝ a b Z1

0 d Z2

0 0 B

⎞
⎠ , P =

⎛
⎝ a b Z1

c d Z2

0 0 B

⎞
⎠ , P ′ =

⎛
⎝ a b Z1

0 d Z2

0 Y B

⎞
⎠ ,

where the separators distinguish the blocks of sizes 2 and n as before; in particular, a, b, c, d ∈
R. Note that all these subgroups are parabolic.

Let (G → M, ω) be the normal parabolic geometry of type G/P associated to an almost
Grassmannian structure on M . The correspondence space of M with respect to Q ⊂ P is
the orbit space

CM := G /Q,

the total space of the fiber bundle overM whose typical fiber is P/Q ∼= RP
1. It easily follows

that elements of CM correspond to one-dimensional subspaces in the rank 2 auxiliary vector
bundle from (11), i.e., CM ∼= PE .

The restricted Cartan geometry (G → CM, ω) is a parabolic geometry of type G/Q,
which is automatically normal, but not necessarily regular. The regularity means that all
homogeneous components of the curvature function have a positive degree. (This condition
is satisfied trivially for |1|-graded geometries; the current length of gradation corresponding
to the Lie subalgebra q ⊂ g of the parabolic subgroup Q ⊂ G is two.)
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Regular and normal parabolic geometries of type G/Q are equivalent to the so-called
generalized path geometries. Such structure on CM consists of two subbundles D, V ⊂
TCM of rank 1 and n, respectively, with trivial intersection and some other properties; see
[14] or [9, sec. 4.4.3]. Under the identification TCM ∼= G ×Q (g/q), the two subbundles in
TCM are

D ∼= G ×Q (p/q), V ∼= G ×Q (p′/q), (13)

where q, p and p′ is the Lie algebra to Q, P and P ′, respectively. Clearly, the line subbundle
D ⊂ TCM is the vertical subbundle of the projection CM → M .

The integrability of the almost Grassmannian structure is reflected on the correspondence
space level as follows; see [9, Prop. 4.4.5].

Proposition 4 ([9]) Let E∗ ⊗ F
∼=−→ T M be an almost Grassmannian structure of type

(2, n) on M, let (G → M, ω) be the corresponding normal parabolic geometry and let
(G → CM, ω) be the normal parabolic geometry over the correspondence space. Then the
former parabolic geometry is torsion free (i.e., the almost Grassmannian structure on M is
integrable) if and only if the letter parabolic geometry is regular.

Note that the stated property is automatically satisfied in the case n = 2.
Generalized path geometry generalizes the notion of path geometry, which is a system

of unparametrized curves that are determined by a tangent direction in one point. A path
geometry on a smooth manifold X induces a generalized path geometry on the projectivized
tangent bundle PT X so that the paths on X coincides with the projections of the integral
curves of the distribution D. The complementary distribution V corresponds to the vertical
subbundle of the projectionPT X → X , in particular, it is involutive. We return to this topic
in Sect. 5.4.

4 Equivalence and first interactions

Here we come with first couple of interactions. Most of them are expected from the previous
preparations, and they should not be surprising; we only make these expectations precise.
The main observations of this section are summarized as follows:

Theorem 5 Let M be a smooth manifold of dimension 2n ≥ 4. There is a natural bijective
correspondence between (equivalent classes of) almost para-quaternionic structures Q ⊂
End(T M) and almost Grassmannian structures E∗ ⊗ F

∼=−→ T M of type (2, n). Under this
identification:

(1) The eigenspaces of almost para-complex structures (equivalently, the kernels of almost
tangent structures) from Q ⊂ End(T M) are just the β-planes, the maximal linear
subspaces contained in the Segre cone of E∗ ⊗ F ∼= T M.

(2) Minimal para-quaternionic connections are just the Weyl connections of the associated
normal Cartan connection.

(3) A null Q-planar curve is a null Grassmannian circle if and only if it is a common
unparametrized geodesic of all compatible connections.

(4) A generic Q-planar curve is a Grassmannian circle if and only if the differential equa-
tion (28) is satisfied.

Proofs and details are divided into individual subsections.
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4.1 Equivalence of structures

Both almost para-quaternionic structures and almost Grassmannian structures of type (2, n)

can be regarded as G-structures. We have vaguely referred to the structure group of the
former structure in Sect. 2.3, while the structure group of the latter structure is described
in Sect. 3.1. Passing to the vector space level TxM ∼= R

2n , x ∈ M , this is a subgroup of
GL(TxM) ∼= GL(2n,R) up to a covering. At this stage, the equivalence of the two structures
is easy to see, cf., e.g., [3, sec. 4.3]:

Consider we are given a vector space W of dimension 2n and a linear isomorphism
W ∼= R

2∗ ⊗ R
n . Then an endomorphism of R2 gives rise to an endomorphism of W via the

action on the first factor. The restriction just to the trace-free endomorphisms of R2 yields
a three-dimensional subspace of endomorphisms of W . This defines a para-quaternionic
structure, which we call the standard para-quaternionic structure and denote byQstd . Con-
versely, given a para-quaternionic structureQW on W , the algebra 〈id〉 +QW is isomorphic
to the algebra of para-quaternions, i.e., to the matrix algebra Mat2×2(R). Any irreducible
Mat2×2(R)-module is isomorphic to R2, hence the Mat2×2(R)-module W is isomorphic to
the tensor product R2 ⊗ R

n . Under this identification, the action of QW on W corresponds
to the action on the first factor.

More concretely, let X be an element of R2∗ ⊗ R
n , seen as a linear map X : R2 → R

n ,
and let A be a trace-free endomorphism of R2. Then the corresponding element A of Qstd ,
i.e., an endomorphism of R2∗ ⊗ R

n , is given by

A(X) = X ◦ A. (14)

In these terms, the norm squared on Qstd , defined by (3), corresponds to the determinant,

|A|2 = det A. (15)

Now, the interpretation of the structure group of an almost Grassmannian structure in
terms of the corresponding para-quaternionic structure may be seen as follows. According
to Sect. 3.1, we have R

2∗ ⊗ R
n ∼= g−1 and the restricted adjoint representation identifies

the structure group G0 with a subgroup of GL(g−1) ∼= GL(2n,R). Let an element of G0

be represented by a pair (C, D) ∈ GL(2,R) × GL(n,R), let f = Ad(C,D) ∈ GL(g−1)

be the corresponding linear isomorphism and let an element A ∈ Qstd be represented by
A ∈ End(R2). Then (10) and (14) yield

f (A(X)) = D ◦ (X ◦ A) ◦ C−1 = (D ◦ X ◦ C−1) ◦ (C ◦ A ◦ C−1) = φ(A)( f (X)),

whereφ(A) denotes the element ofQstd corresponding toC◦A◦C−1 ∈ End(R2). Thus, f =
Ad(C,D) is a para-quaternionic automorphism of the standard para-quaternionic structure on
g−1. Conversely, if f ∈ GL(g−1) is such an automorphism, then the defining condition (4)
translates under the current notation as

f (A(X)) = f (X) ◦ φ(A),

whereφ is an algebra automorphism of End(R2), i.e., an automorphism of the algebra of para-
quaternions. From Sect. 2.1, we know that φ can be represented by an elementC ∈ SL(2,R)

so that φ(A) = C ◦ A ◦ C−1. It is now easy to see that f = Ad(C,D), where D ∈ GL(n,R)

is determined by the condition D ◦ X = f (X) ◦ C . To summarize,

Lemma 6 A para-quaternionic structure QW on a vector space W of dimension 2n is
equivalent to an isomorphism W ∼= R

2∗ ⊗ R
n so that QW corresponds to the standard
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para-quaternionic structure. Under this identification, the Lie group G0 from (9) coincides
with the group of para-quaternionic automorphisms of QW .

Passing to the Lie algebra level, g0 is the direct sum of the semisimple part sl(2,R) ⊕
sl(n,R) and one-dimensional center. This allows the interpretation g0 ∼= sl(2,R)⊕gl(n,R).
The first summand consists of trace-free endomorphisms of R2, i.e., of elements of the
standard para-quaternionic structure on g−1 ∼= R

2∗ ⊗ R
n . The second summand consists of

all endomorphisms ofRn , i.e., of endomorphisms of g−1 commutingwithQg−1 . In particular,
gl(n,R) and g0 may be seen as the centralizer and the normalizer, respectively, of Qg−1

∼=
sl(2,R) in gl(g−1) ∼= gl(2n,R). This point of view is employed in [12], see also Sect. 4.3.

Nowwe can characterize the Segre cone inR2∗⊗R
n as follows. By definition, a linearmap

X : R2 → R
n belongs to the Segre cone if and only if the kernel of X has dimension one.

Arbitrary complementary subspace � to ker X in R
2 determines a para-complex structure

A so that � and ker X is its eigenspace corresponding to +1 and −1, respectively. Then,
according to (14), X is an eigenvector (corresponding to the eigenvalue 1) of the associated
para-complex structure A on R2∗ ⊗R

n . Conversely, let X be an (+1)-eigenvector of a para-
complex structure A ∈ Qstd and let A be the corresponding para-complex structure on R

2;
i.e., A(X) = X ◦ A = X . Since A is not the identity, X cannot be of full rank and, since
X �= 0, it has rank one. Hence X belongs to the Segre cone. Alternatively, an eigenspace of
a para-complex structure can be realized as the kernel (image) of some tangent structure and
vice versa. Altogether,

Lemma 7 With previous identifications, a nonzero element of W ∼= R
2∗ ⊗R

n belongs to the
Segre cone if and only if it is an eigenvector of a para-complex structure (equivalently, lies
in the kernel of a tangent structure) from QW ∼= Qstd .

As a consequence, we note that the eigenspaces of para-complex structures (equivalently,
the kernels of tangent structures) form the maximal linear subspaces contained in the Segre
cone. Altogether, the first part of Theorem 5 follows.

4.2 Decompositions

The decomposition of complex forms into (p, q)-types has the following generalization.
Suppose we are given a real vector space W endowed with an endomorphism A ∈ End(W )

which squares to a multiple of the identity, written A2 = A ◦ A = −|A|2 id as in (3). Let us
consider the bilinear maps ϕ : W ×W → W . The notion of the type (p, q) of ϕ with respect
to A is given as follows:

– ϕ is of type (1, 1) if ϕ(AX , AY ) = −A2ϕ(X , Y ) = |A|2ϕ(X , Y ),
– ϕ is of type (0, 2) if ϕ(AX , Y ) = ϕ(X , AY ) = −Aϕ(X , Y ),
– ϕ is of type (2, 0) if ϕ(AX , Y ) = ϕ(X , AY ) = Aϕ(X , Y ),

where, here and after, all identities are meant to hold for all X , Y ∈ W .
If |A|2 �= 0, then ϕ decomposes uniquely into the sum of components of particular types

with respect to A, namely ϕ = ϕ
2,0
A + ϕ

1,1
A + ϕ

0,2
A , where

ϕ
1,1
A (X , Y ) := 1

2|A|2
(|A|2ϕ(X , Y ) + ϕ(AX , AY )

)
,

ϕ
0,2
A (X , Y ) := 1

4|A|2
(|A|2ϕ(X , Y ) − ϕ(AX , AY ) + Aϕ(AX , Y ) + Aϕ(X , AY )

)
,

ϕ
2,0
A (X , Y ) := 1

4|A|2
(|A|2ϕ(X , Y ) − ϕ(AX , AY ) − Aϕ(AX , Y ) − Aϕ(X , AY )

)
.

(16)
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The respective elements ϕ
p,q
A are called the (p, q)-parts of ϕ with respect to A.

If |A|2 = 0, the notion of the type of ϕ is rather degenerate. For example, there are forms
which are, simultaneously, of all three types with respect to A, so any type decomposition
is a priori meaningless. However, in order to unify the later treatment and simplify some
formulations, we will use the label (0, 2)-part of ϕ with respect to A also for the map given
by

ϕ
0,2
A (X , Y ) := 1

4
(−ϕ(AX , AY ) + Aϕ(AX , Y ) + Aϕ(X , AY )) , where |A|2 = 0. (17)

IfW carries a para-quaternionic structureQW ⊂ End(W ), wemay consider bilinear maps
W ×W → W that are of previous types with respect to all of A ∈ QW . Moreover, the notion
of type (1, 1) has a good meaning also for bilinear formsW ×W → R. The space of bilinear
forms of type (1, 1) with respect to all A ∈ QW is denoted by

⊗1,1 W ∗. There is a natural
projection

⊗2 W ∗ → ⊗1,1 W ∗, ϕ �→ ϕ1,1, given by

ϕ1,1(X , Y ) := 1

4
(ϕ(X , Y ) − ϕ(I X , IY ) − ϕ(J X , JY ) + ϕ(K X , KY )) , (18)

where (I , J , K ) is an arbitrary basis of QW , i.e., a triple satisfying (2). The kernel of this
projection is a natural complementary subspace to

⊗1,1 W ∗ in
⊗2 W ∗. In particular, this

yields the decomposition

Λ2W ∗ = Λ1,1W ∗ ⊕ ker π1,1, (19)

where π1,1 denotes the restriction of the projection above to Λ2W ∗ ⊂ ⊗2 W ∗.
From the previous subsection, we know that any para-quaternionic structure on a 2n-

dimensional vector spaceW can always be viewed as the standard para-quaternionic structure
under an identification W ∼= R

2∗ ⊗ R
n . This yields the decomposition

Λ2W ∗ ∼= (Λ2
R
2 ⊗ S2Rn∗) ⊕ (S2R2 ⊗ Λ2

R
n∗). (20)

In order that our endeavor has somemeaning, this must agree with the decomposition in (19):

Lemma 8 With the current notation, the following hold:

Λ2
R
2 ⊗ S2Rn∗ = Λ1,1(R2 ⊗ R

n∗) and S2R2 ⊗ Λ2
R
n∗ = ker π1,1.

Proof The standard para-quaternionic structure on R
2∗ ⊗ R

n is given by the action on R
2.

For any A ∈ Qstd and any ϕ ∈ Λ2
R
2 ⊗ S2Rn∗, we have ϕ(AX , AY ) = det A ·ϕ(X , Y ),

where A is the corresponding endomorphism of R2. According to (15), we see that ϕ is of
type (1, 1) so Λ2

R
2 ⊗ S2Rn∗ ⊆ Λ1,1(R2 ⊗ R

n∗).
Any element of S2R2⊗Λ2

R
n∗ is a linear combination of simple elements ei �e j ⊗vk∧vl ,

where (ei ) is the standard basis of R2 and (vi ) is the standard basis of Rn∗. Let us choose a
basis (I , J , K ) of Qstd so that it corresponds to the matrices as in (1). According to (18), it
follows that

π1,1(e1 � e2 ⊗ vk ∧ vl) = 1

4
(e1 � e2 + e1 � e2 − e2 � e1 − e2 � e1) ⊗ vk ∧ vl = 0

and, similarly, thatπ1,1(e1�e1⊗vk∧vl) = π1,1(e2�e2⊗vk∧vl) = 0, for any vk, vl ∈ R
n∗.

Thus, S2R2 ⊗ Λ2
R
n∗ ⊆ ker π1,1.

Now, the statement follows from the complementarity of the respective subspaces, i.e.,
from (19) and (20). ��
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4.3 Distinguished connections

Both minimal para-quaternionic connections and Weyl connections of a normal Cartan con-
nection are affine connections that are compatible with the structure in question and share
the same normalized torsion. The respective normalization conditions, i.e., the invariant
subbundles in Λ2T ∗M ⊗ T M , are described in two different ways according to either para-
quaternionic or Grassmannian (parabolic) terminology. In the previous two subsections, we
explained the equivalence of the two geometric structures, and this was used for a double
expression of the decomposition of the space of 2-forms. With a bit finer discussion, we can
directly show the two normalization conditions coincide. We recall that there is no torsion in
dimension four, so the only non-trivial discussion concerns the general case corresponding
to n > 2.

On the one hand, the normalization condition from [12, sec. 3] is described in terms
of the (p, q)-type decompositions as follows. Firstly, for a basis (I , J , K ) of QW , let the
endomorphism of Λ2W ∗ ⊗ W be defined by

Π(ϕ) := 2

3

(
ϕ
0,2
I + ϕ

0,2
J + ϕ

0,2
K

)
,

where the individual summands are as in (16). It turns out that the definition is independent of
the basis ofQW ,Π is a projector (i.e.,Π ◦Π = Π), and its kernel coincides with the image of
∂ : W ∗ ⊗ gl(n,R) → Λ2W ∗ ⊗W . Here gl(n,R) denotes the centralizer ofQstd ∼= sl(2,R)

in gl(W ) ∼= gl(2n,R) as discussed in Sect. 4.1. Thus, the image of Π is a complementary
subspace to the image of ∂ . In particular, it is contained in the kernel of π1,1.

Secondly, extending the Lie algebra to sl(2,R) ⊕ gl(n,R) ∼= g0, the natural G0-invariant
complement of the image of ∂ : W ∗ ⊗ g0 → Λ2W ∗ ⊗ W is described within the image of
Π as

C := {ϕ ∈ imΠ : tr(A ◦ ϕ(X ,−)) = 0, for allX ∈ WandA ∈ {I , J , K }}.
On the other hand, for W = g−1 ⊂ g, the natural complement of the image of ∂ : g∗−1 ⊗

g0 → Λ2g∗−1⊗g−1 is givenby the kernel of ∂∗, namely,D := (ker ∂∗)∩(Λ2g∗−1⊗g−1). Since
g is |1|-graded, this subspace is harmonic, i.e., it coincides with the corresponding irreducible
component in the kernel of the Kostant Laplacian, cf. Sect. 3.3. Since g−1 ∼= R

2∗ ⊗ R
n , the

spaceΛ2g∗−1⊗g−1 decomposes according to (20). In the summand corresponding to ker π1,1,
we have two obvious traces,

R
2 ⊗ Λ2

R
n∗ ⊗ R

n tr1←− S2R2 ⊗ Λ2
R
n∗ ⊗ R

2∗ ⊗ R
n tr2−→ S2R2 ⊗ R

n∗ ⊗ R
2∗.

It is shown in [9, sec. 4.1.3] that D is characterized as the intersection of the kernels of these
two traces:

D = {
ϕ ∈ S2R2 ⊗ Λ2

R
n∗ ⊗ R

2∗ ⊗ R
n : tr1(ϕ) = tr2(ϕ) = 0

}
. (21)

Lemma 9 The two normalization conditions, i.e., the invariant subspaces C ,D ⊂ Λ2W ∗ ⊗
W, coincide.

Proof As a typical element of D we choose

ϕ := e1 � e1 ⊗ υ1 ∧ υ2 ⊗ ε2 ⊗ u3, (22)

where (ei ) denotes the standard basis of R2, (εi ) its dual basis of R2∗, (ui ) denotes the
standard basis of Rn and (υi ) its dual basis of Rn∗. We also choose a basis (I , J , K ) of
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Qstd so that the corresponding matrices are as in (1). Now, it is an easy exercise to show that
ϕ
0,2
I = ϕ and ϕ

0,2
J + ϕ

0,2
K = 1

2ϕ. Hence Π(ϕ) = ϕ, i.e., ϕ ∈ imΠ . As a consequence of
tr2(ϕ) = 0, we also see that the full trace of A ◦ ϕ(X ,−) vanishes for any X ∈ R

2∗ ⊗ R
n

and A ∈ Qstd . Thus, ϕ ∈ C and, since D is an irreducible G0-representation, it follows that
D ⊆ C . Since D and C are both complementary to the same subspace, we have D = C . ��

Altogether, the second part of Theorem 5 follows.

Remarks Note that, as representations of the reductive Lie group G0, the source and the
target space of the map ∂ are completely reducible. A closer look on the decompositions
shows that all components on both sides appear with multiplicity one. From this, and the fact
that ∂ is either trivial or an isomorphism on each irreducible component, it follows that the
invariant complement to im ∂ is actually unique. From this perspective, the previous lemma
is no surprise.

We conclude by a comment on the difference between two compatible connections having
the same torsion. On the one hand, two Weyl connections differ as in (12). Expanding the
difference term in our case yields

{{Υ , ξ}, η} = −Υ (ξ)η − Υ (η)ξ = −ξ ◦ Υ ◦ η − η ◦ Υ ◦ ξ, (23)

where the second expression is due to the interpretation of ξ, η, respectively Υ , as fields of
linear maps E → F , respectively F → E . On the other hand, the difference between two
para-quaternionic connections is displayed in (6). This and (23) have to be just two distinct
expressions of the same difference term. For a concrete choice of basis (I , J , K ), following
the identifications from Sect. 4.1, one easily shows they indeed coincide (up to a constant
multiple).

4.4 Distinguished curves

Q-planar curves of an almost para-quaternionic structure are defined in terms of compatible
affine connections; see Sect. 2.4. Grassmannian circles of an almost Grassmannian structure
are defined via the associated Cartan connection; see Sect. 3.5. We start with several easy
observations on Q-planar curves, then remind an alternative characterization of Grassman-
nian circles in terms of compatible affine connections, which in turn leads to a comparison
of these two families of distinguished curves.

Let Q ⊂ End(T M) be an almost para-quaternionic structure and let T M ∼= E∗ ⊗ F be
the corresponding almost Grassmannian structure. Let γ be a curve and let us interpret the
tangent vector field γ̇ as a field of linear maps E → F along γ . According to the reasoning
in Sect. 4.1, the Q-planarity of γ with respect to a compatible connection ∇ may be written
as

∇γ̇ γ̇ = γ̇ ◦ S, (24)

where S ∈ End(E). Expressing the Q-planarity of γ with respect to another compatible
connection, it follows from (23) that the corresponding endomorphism changes as

Ŝ = S + 2Υ ◦ γ̇ , (25)

where Υ is interpreted as a field of linear maps F → E as above. As we already observed
before, geodesics of a compatible connection are Q-planar with respect to this (equivalently,
to any) compatible connection. For the converse, we have to distinguish two cases:
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If γ is generic, we see that Υ may always be chosen so that (25) vanishes, i.e., so that γ
is a geodesic of the corresponding connection. If γ is null, this is not the case. But if γ is a
geodesic of one compatible connection, then it is an (unparametrized) geodesic of all of them
(this is because γ̇ ◦ Υ ◦ γ̇ is a multiple of γ̇ , for any Υ ). Since the torsion does not play any
role concerning geodesics, we may indeed refer to any compatible connection. Altogether,
we summarize as

Lemma 10 Let γ be a Q-planar curve of some (equivalently, any) compatible connection,
seen as an unparametrized curve.

(1) If γ is generic, then it is a geodesic of some compatible connection.
(2) If γ is null, then it is a geodesic of some compatible connection if and only if it is a

geodesic of any compatible connection.

Concerning Grassmannian circles, their alternative definition is provided by the so-called
Rho (or Schouten) tensor, which is associated with any Weyl connection of any parabolic
geometry. The following formulations are specialized to the |1|-graded case. Let σ : G0 → G
be theG0-equivariant section corresponding to aWeyl connection∇ and let ω1 ∈ Ω1(G , g1)

be the g1-part of the Cartan connection ω. The Rho tensor P is given by the pullback σ ∗ω1 ∈
Ω1(G0, g1). By the horizontality of ω and the identification g1 ∼= g∗−1, it may be seen as
a tensor field P ∈ Ω1(M, T ∗M). The Rho tensor transforms under the change of Weyl
connection as

P̂(ξ) = P(ξ) + ∇ξΥ + 1

2
{Υ , {Υ , ξ}} = P(ξ) + ∇ξΥ − Υ ◦ ξ ◦ Υ , (26)

for any ξ ∈ Γ (T M), where we follow that same conventions as in (23), see [9, sec. 5.1.8].
Now, as a special case of a much more general setting [9, sec. 5.3.1], a curve γ is a

Grassmannian circle if and only if there is a Weyl connection ∇ such that γ is its geodesic
and the corresponding Rho tensor P vanishes for the tangent vectors of γ , i.e.,

∇γ̇ γ̇ = 0 and P(γ̇ ) = 0. (27)

From this characterization, it is clear that Grassmannian circles are Q-planar curves of∇ and
hence of all compatible connections. The identification of the former class of curves among
the latter one is as follows:

If γ is null, then from general properties of null Grassmannian circles and the previous
lemma, we see that a null Q-planar curve is a null Grassmannian circle if and only it is
a common unparametrized geodesic of all compatible connections. Hence the third part of
Theorem 5 follows.

If γ is generic, then the description of Grassmannian circles among the Q-planar curves
can be easily adapted from [7, sec. 6.2] to our setting. Namely, Theorem 6.4 of that reference
translates to a characterization in terms of the invariant differential equation,6

∇γ̇ S = 1

2
S ◦ S + 2P(γ̇ ) ◦ γ̇ , (28)

where ∇ is a compatible connection, S is an endomorphism given by (24), P is the Rho
tensor of ∇ and P(γ̇ ) is seen as a field of linear maps F → E . The invariance of this
equation follows from the transformation formulas for ∇, S and P with respect to a change
of compatible connection, cf. (23), (25) and (26). A curve satisfying (27) satisfies (28),

6 Comparing with the original formulation, we differ in the sign in the front of the term containing P. This
just reflects the difference in the definition of Rho tensor here, which we took from [9], and in [7].

123



Annals of Global Analysis and Geometry

i.e., a Grassmannian circle is a Q-planar curve satisfying the latter equation. The converse
statement is shown by suitable changes of compatible connections. Altogether, the fourth
part of Theorem 5 follows.

5 Twistor spaces revised

In this section, we recover the canonical almost ε-complex structures on ε-twistor spaces and
the corresponding integrability statement from Sect. 2.5, which we extend also to the case
ε = 0. Then we comment on the 0-twistor space in detail, both in general and integrable
case. This provides a link between the two notions of twistor correspondence for almost
para-quaternionic and almost Grassmannian structures.

5.1 Setup

Let (M,Q) be an almost para-quaternionic manifold, equivalently an almost Grassmannian
structure, and let (G → M, ω) be the induced normal parabolic geometry of type G/P . For
any x ∈ M , the Cartan connection ω identifies (TxM,Qx ) with (g−1,Qstd), where Qstd

denotes the standard para-quaternionic structure on g−1 ∼= R
2∗ ⊗R

n . This is represented by
trace-free endomorphisms of R2, which form the Lie algebra sl(2,R), and this is seen as the
left-upper block from the matrix description of gss0 in Sect. 3.1.

The parabolic subgroup P acts on Qstd via the adjoint action so that the orbits of the
action consist of those elements which have the same norm. For any ε ∈ {−1, 0, 1}, let us
choose an ε-complex structure jε ∈ Qstd and let us denote by Rε ⊂ P the stabilizer of
jε . In other words, Rε is the subgroup consisting of all para-quaternionic automorphisms of
(g−1,Qstd) which commute with jε . Hence each orbit is the homogeneous space P/Rε and
this is the typical fiber of the ε-twistor bundle Z ε → M defined in Sect. 2.5. Hence

Z ε ∼= G ×P (P/Rε) ∼= G /Rε . (29)

and the Cartan geometry (G → M, ω) gives rise to a Cartan geometry (G → Z ε, ω) of
type G/Rε on each ε-twistor space. Note that none of these Cartan geometries is parabolic.
Nevertheless, the Cartan connection ω provides the identification

TZ ε ∼= G ×Rε (g/rε),

where rε is the Lie algebra to Rε . To summarize,

Lemma 11 For each ε ∈ {−1, 0, 1}, the ε-twistor space is Z ε ∼= G /Rε , and it carries a
canonical Cartan geometry (G → Z ε, ω) of type G/Rε .

Only the semisimple part of the left-upper block of P acts non-trivially on Qstd . Thus,
the typical fibers of ε-twistor bundles may be identified as

P/R− ∼= SL(2,R)/SO(2), P/R0 ∼= SL(2,R)/R+, P/R+ ∼= SL(2,R)/SO(1, 1),

where R+ stands for the additive group of real numbers, which is realized as the subgroup

of the form

(
1 b
0 1

)
in SL(2,R).
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Considering the G0-principal bundle G0 = G / exp g1 as in Sect. 3.4 and Rε
0 := G0 ∩ Rε ,

the identification (29) can be written as Z ε ∼= G0/Rε
0, cf. [3,19]. The individual subgroups

Rε
0 are isomorphic to

R−
0

∼= SO(2) ·GL(n,R), R0
0

∼= R+ ·GL(n,R), R+
0

∼= SO(1, 1) ·GL(n,R).

In concrete computations, we use the ε-complex structures jε ∈ Qstd , whose 2×2-blocks
in the previously indicated matrix description are as follows:

j− =
(

0 1
−1 0

)
, j0 =

(
0 1
0 0

)
, j+ =

(
1 0
0 −1

)
. (30)

(Be aware of a small abuse of notation, which also applies below.) The explicit description
of the corresponding subgroups Rε ⊂ P and their Lie algebras rε ⊂ p yields that elements
of g/rε may be represented by the matrices of the form⎡

⎣ b c 0
c −b 0
X1 X2 0

⎤
⎦ ∈ g/r−,

⎡
⎣ b 0 0

e −b 0
X1 X2 0

⎤
⎦ ∈ g/r0,

⎡
⎣ b d 0

−d −b 0
X1 X2 0

⎤
⎦ ∈ g/r+.

5.2 Induced�-complex structures

The current point of view allows an alternative description of almost ε-complex structures
on ε-twistor spaces. In contrast to the development in Sect. 2.5, they are now described via
the associated Cartan connection and related identifications.

Proposition 12 Let p : Z ε → M be the ε-twistor space, ε ∈ {−1, 0, 1}, of an almost para-
quaternionic manifold (M,Q). Then the total space Z ε carries a unique almost ε-complex
structure J ε such that (7) holds.

Proof For each ε ∈ {−1, 0, 1}, let jε , Rε and rε be as above. Let us define an endomorphism
J ε : g/rε → g/rε by

[
U ∗
X ∗

]
�→

[
U jε ∗
X jε ∗

]
=

[
U ∗
X ∗

]
·
(

jε 0
0 0

)
mod rε . (31)

Obviously, J ε ◦ J ε = ε id and it is easy to check that J ε is also Rε-invariant. Hence it gives
rise to an almost ε-complex structure J ε on Z ε .

By the identification (29), a section s of the projection Z ε → M is represented by a P-
equivariant function σ : G → P such that s(x) = uσ(u)Rε , for each x ∈ M and any u ∈ Gx .
The tangent vector ξ ∈ TxM is represented by the couple [u, X+p] ∈ G×P (g/p). Remember
that anyother representative of the sameequivalence class is of the form [up,Adp−1 X+p], for
some p ∈ P . In these terms, the action of the ε-complex structure J s on TxM corresponding
to s is given by

[u, X + p] �→ [u, X · Adσ(u) j
ε + p], (32)

Next, the tangent map to the section s : M → Z ε is written as

[u, X + p] �→ [uσ(u),Adσ(u)−1 X + rε],
whereas the tangent map to the projection p : Z ε → M is just [u, X + rε] �→ [u, X + p].
Altogether, the composition T p ◦ J ε ◦ T s maps

[u, X + p] �→ [uσ(u),Adσ(u)−1 X · jε + p],
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which clearly coincides with (32). Thus, T p ◦ J ε ◦ T s = J s and the equality (7) holds.
A direct computation shows that if J is an Rε-invariant ε-complex structure on g/rε then

J coincides with J ε up to the sign in the case ε = ±1, respectively, up to a nonzero real
multiple in the case ε = 0. However, the previous paragraph reveals that the condition (7) is
satisfied if and only if J and J ε coincide. Hence the almost ε-complex structureJ ε on Z ε

is unique. ��
Of course, this almost ε-complex structure must recover the canonical one from Sect. 2.5,

which was determined by an (arbitrary) minimal para-quaternionic connection. The relation
can be made explicit with the following observations. From Sect. 4.3 we know that the
minimal para-quaternionic connections are exactly the Weyl connections of the associated
normal Cartan connection. Any such connection ∇ is given by a reduction G0 → M of the
Cartan P-bundleG → M toG0 ⊂ P .HenceT M ∼= G0×G0 (g/p) andTZ

ε ∼= G0×Rε
0
(g/rε),

where Rε
0 = G0 ∩ Rε as before. In this description, the vertical subbundle of the projection

p : Z ε → M corresponds to the subspace p/rε ⊂ g/rε , while the horizontal subbundle
H∇ ⊂ TZ ε corresponds to (g− ⊕ rε)/rε , the unique subspace in g/rε that is both Rε

0-
invariant and complementary to p/rε . Now, the original description of J ε in terms of its
horizontal and vertical part can be readily compared with the current invariant approach.

5.3 Integrability

In the setting of Sect. 5.1, the torsion of the Cartan geometry (G → M, ω) and (G → Z ε, ω)

is denoted by τ ∈ Ω2(M, T M) and T ∈ Ω2(Z ε, TZ ε), respectively. By definitions, T
is strictly horizontal with respect to the projection p : Z ε → M , and hence τ(ξ, η) =
T p(T (ξ̂ , η̂)), where ξ̂ , η̂ ∈ Γ (TZ ε) are any lifts of ξ, η ∈ Γ (T M). In other words,

τ = T p ◦ T ◦ (T s × T s) (33)

for any section s : M → Z ε .
The following lemma can be seen as a Cartan-geometric analogue of the well-known fact

that an almost (para-)complex structure is integrable if and only if the (0, 2)-part of the torsion
of some (and consequently any) compatible affine connection vanishes. The reasoning below
is very similar to the one in [9, sec. 4.4.10]. An alternative treatment in the case ε = 1 can
be found in [3, sec. 5].

Lemma 13 Let Z ε be the ε-twistor space with the canonical almost ε-complex structure,
ε ∈ {−1, 0, 1}, and let T be the torsion of the associated Cartan connection overZ ε . Then
the Nijenhuis tensor ofJ ε is a nonzero constant multiple of the (0, 2)-part ofT with respect
to J ε , which is taken according to the definition in (16), respectively (17).

Proof To deal efficiently with the tensor fields onZ ε , we use the corresponding frame forms
with respect to the Cartan connection ω. On the one hand, the frame form of the torsion T
is the Rε-equivariant functions G → Λ2(g/rε)∗ ⊗ (g/rε), which assigns to each u ∈ G the
bilinear map

(X + rε, Y + rε) �→ π
([X , Y ] − ω([ω−1(X)(u), ω−1(Y )(u)])) ,

where π is the quotient projection g → g/rε . Similarly, the frame form of J ε is the
constant function G → (g/rε)∗ ⊗ (g/rε) with value J ε , which is described in (31). Now one
can express the frame form of T 0,2

J ε following the conventions from Sect. 4.2, distinguishing
the cases ε �= 0 and ε = 0.
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On the other hand, the frame form of the Nijenhuis tensor NJ ε , cf. (8), is the equivariant
function, which assigns to each u ∈ G the bilinear map

(X + rε, Y + rε) �→
− (J ε)2(π(ω([ω−1(X)(u), ω−1(Y )(u)]))) − π(ω([ω−1(J εX)(u), ω−1(J εY )(u)]))
+ J ε(π(ω([ω−1(J εX)(u), ω−1(Y )(u)]))) + J ε(π(ω([ω−1(X)(u), ω−1(J εY )(u)]))),

where J εX denotes any element in g such that π(J εX) = J ε(π(X)). Note that, by the
Rε-invariancy of the ε-complex structure J ε , this is indeed a well-defined object.

Let us consider the tensorfieldS := NJ ε −4T 0,2
J ε . Taking into accounts that (J ε)2 = ε id,

a simple substitution shows the frame form of S is the constant function assigning to each
u ∈ G the bilinear map

(X + rε, Y + rε) �→
− (J ε)2(π([X , Y ])) − π([J εX , J εY ]) + J ε(π([J εX , Y ])) + J ε(π([X , J εY ])).

However, by the definition of J ε in (31), it immediately follows that

(J ε)2(π([X , Y ])) = J ε(π([X , J εY ])) and π([J εX , J εY ]) = J ε(π([J εX , Y ])),
for any ε ∈ {−1, 0, 1}. Therefore S = 0, which completes the proof. ��

Here is the promised extension and reinterpretation of the statement cited as Theorem 2.
An analogous statement in the four-dimensional case is formulated in Sect. 6.1.

Theorem 14 Let (M,Q) be an almost para-quaternionic manifold of dimension 2n > 4.
Let (Z ε,J ε) be the ε-twistor space with the canonical almost ε-complex structure, where
ε ∈ {−1, 0, 1}. Then Q is integrable if and only if J ε is integrable.

Proof On the one hand, the integrability ofQ is equivalent to the vanishing of the torsion τ of
the associated normal Cartan connection ω over M , which equals to the harmonic curvature
component of homogeneity one, cf. Proposition 3. On the other hand, the integrability ofJ ε

is equivalent to the vanishing of the (0, 2)-part of the torsion T of ω understood as a Cartan
connection over Z ε , cf. Lemma 13.

Let Q be integrable, i.e., τ = 0. Hence the whole Cartan curvature is determined by the
harmonic curvature component of homogeneity two. By the description in Proposition 3, its
frame form takes values in sl(n,R), the lower right block in g0, and the curvature component
of homogeneity three has necessarily values in g1. Hence, for each ε, the Cartan curvature
takes values in rε . This means that the torsion T is also trivial, i.e., J ε is integrable.

Conversely, let J ε be integrable, i.e., the torsion T has trivial (0, 2)-part with respect
to J ε . The main consequence of the relations (7) and (33) is that τ must have vanishing
(0, 2)-part with respect to any ε-complex structure contained in Q. Since τ coincides with
the harmonic torsion, it is heavily restricted. Namely, its frame form takes values in the
irreducible G0-representation D as described in (21). For each ε, we are going to show that
there is no nonzero element ofD that would satisfy the requirement. Hence this requirement
can be satisfied if and only if τ = 0, which is equivalent to the integrability of Q:

Since D is an irreducible representation, it is enough to find, for each ε, a concrete
ε-complex structure with respect to which an arbitrarily chosen element of D has non-
vanishing (0, 2)-part. As a representative element ϕ ∈ D we choose the one as in (22) and,
for ε ∈ {−1, 0, 1}, we choose the elements jε ∈ Qstd as in (30). Now it easily follows that
ϕ is of type (0, 2) with respect to j+, has non-trivial (0, 2)-part with respect to j− and also
with respect to j0. ��
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5.4 The 0-twistor space

We have several fiber bundles over M , arising either from the para-quaternionic or the
Grassmannian side. On the one hand, the bundle Q ⊂ End(T M) defining an almost para-
quaternionic structure on M is decomposed into disjoint subbundles such that Q0 ⊂ Q
coincides with the 0-twistor space Z 0, see Sect. 2.5, On the other hand, for the correspond-
ing almost Grassmannian structure E∗ ⊗ F ∼= T M , the projectivization PE is identified
with the bundle E of β-planes in T M and this is further identified with the correspondence
spaceCM ; see Sects. 3.2 and 3.6. The following statement supplies yet another identification
that relates the two universes.

Proposition 15 LetZ 0 be the 0-twistor space over an almost para-quaternionicmanifold M,
let CM be the correspondence space of the corresponding almost Grassmannian structure
on M and let D ⊂ TCM be the vertical subbundle of the projection CM → M. Then Z 0

is naturally identified with D. In particular, PZ 0 is identified with CM.

Proof As an associated bundle over CM , the line bundle D is identified with G ×Q (p/q),
see (13). The action of Q on p/q is transitive and the stabilizer of any element is just the
subgroup R0 from Sect. 5.1. Hence, D ∼= G ×Q (Q/R0) ∼= G /R0 ∼= Z 0, according to (29).

��

As a consequence of Proposition 4, an integrable Grassmannian structure on M gives
rise to a generalized path geometry on CM . The one-dimensional distribution D ⊂ TCM
is just the vertical subbundle of the projection CM → M . If n > 2, the distribution V ⊂
TCM is automatically involutive, which allows constructing a leaf space X so that CM is
locally identified with PT X and V corresponds to the vertical subbundle of the projection
PT X → X , see [9, Prop. 4.4.4]. In particular, the generalized path geometry on CM is
locally equivalent to a path geometry on X so that the points in M corresponds to the paths in
X . In conclusion, we have an additional interpretation of the 0-twistor space in the integrable
case:

Proposition 16 In addition to assumptions of the previous proposition, let dim M > 4, let
the structure on M be integrable and let X be a local leaf space of the foliation determined
by the involutive distribution V ⊂ TCM. Let J 0 be the canonical 0-complex structure on
the 0-twistor space Z 0. Then Z 0 is locally identified with the tangent bundle T X so that
the rank n + 1 distribution kerJ 0 ⊂ TZ 0 corresponds to the vertical subbundle of the
canonical projection T X → X.

Proof Following [9, Prop. 4.4.4], we recall some details on the local identification of CM
withPT X . Denoting byψ : CM ⊃ U → X the local leaf space projection, its tangent map
Tψ induces a linear isomorphism TxU/Vx → Tψ(x)X , for any x ∈ U . Hence Dx ⊂ TxU
projects to a one-dimensional subspace in Tψ(x)X , i.e., an element in PTψ(x)X which is
denoted as ψ̃(x). It is shown the tangent map to ψ̃ : U → PT X is invertible, therefore ψ̃ is
an open embedding. It is now easy to see that ψ̃ extends to a local embedding of D into T X .

From Proposition 5.4 we know that Z 0 coincides with D, hence Z 0 is locally identified
with T X . The projection Z 0 ∼= T X → X factorizes throughPT X ∼= CM and we already
know that the vertical subbundle ofPT X → X coincides with V . It is enough to show that,
under the canonical projection Z 0 → PZ 0, kerJ 0 maps to V.
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By the proof of Proposition 5.2, the almost complex structure J 0 corresponds to the
R0-invariant endomorphism J 0 : g/r0 → g/r0 given by (31). With the same conventions as
before, the kernel of J 0 is the R0-invariant subspace represented by the matrices of the form

⎡
⎣ u 0 0
0 −u 0
0 X2 0

⎤
⎦ .

The tangent map to the canonical projection Z 0 ∼= G /R0 → G /Q ∼= PZ 0 corresponds to
the obvious R0-invariant projection g/r0 → g/q determined by r0 ⊂ q. The image of ker J 0

in g/q is then represented by

⎡
⎣ 0 0 0
0 0 0
0 X2 0

⎤
⎦ .

Now we see that the image coincides with the Q-invariant subspace p′/q ⊂ g/q, which
defines the distribution V ⊂ TCM as in (13). ��

6 Remarks

Here we add two things: several necessary remarks on the four-dimensional case and a note
on compatible metrics.

6.1 Dimension four

As we repeatedly noticed, the case when the base manifold M has dimension four (i.e., the
case n = 2 according to the previous notation) is quite specific. While the four-dimensional
para-quaternionic structures are sometimes considered as a degenerate case, it is well-known
that almost Grassmannian structures of type (2, 2) are equivalent to conformal structures of
split signature. In terms of distinguished directions in the tangent bundle T M , the relation
is such that the Segre cone of T M ∼= E∗ ⊗ F is just the cone of the nonzero null vectors of
the conformal structure. Note that the Segre cone forms a hyper-quadric in the tangent space
exactly in this dimension.

On the level of Lie algebras, with the description as in Sect. 3.1, g = sl(4,R) and the
block corresponding to g−1 is of size 2 × 2. Let us consider the quadratic form on g−1

defined by the determinant; the corresponding polar form is denoted by δ for later purposes.
The null vectors of this form exhaust exactly the Segre cone of rank-one elements in g−1 ∼=
R
2∗ ⊗R

2. The adjoint action of G0 on g−1 changes the form conformally, which leads to the
identification G0 ∼= CSO0(2, 2). For oriented almost Grassmannian structures, the structure
group is a twofold covering of the just mentioned one, namely G0 ∼= CSpin(2, 2). Under
this identification, the bundles E and F are identified with the two spinor bundles. Hence,
the correspondence space CM , as defined in Sect. 3.6, is identified with the projectivized
spinor bundle. The two harmonic curvature components from Proposition 3 corresponds
to the self-dual and the anti-self-dual part of the conformal Weyl curvature, see, e.g., [9,
sec. 4.1.4].

Concerning other notions from Sect. 3, we just remark that the Weyl connections for
conformal structures are the torsion-free connections preserving the conformal class of met-
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rics and that null, respectively generic, Grassmannian circles coincide with null geodesics,
respectively conformal circles.

The development of Sect. 4 includes also the case n = 2, only the discussion on the normal-
ization condition in Sect. 4.3 is vacuous as there is no torsion in that case. The description of
the para-quaternionic structure in terms of the conformal one is as follows. It is an easy obser-
vation that the inner product δ is, up to a nonzero constantmultiple, the unique non-degenerate
bilinear form on g−1 which is of type (1, 1) with respect to the standard para-quaternionic
structure Qstd . This means that, for any A ∈ Qstd and X , Y ∈ g−1, the following holds:

δ(AX , AY ) = |A|2δ(X , Y ).

If |A|2 �= 0, then this condition is equivalent to

δ(AX , Y ) + δ(X , AY ) = 0,

i.e., A is skew with respect to δ. For |A|2 = 0, the latter condition is stronger. Conversely,
it turns out that if A is an endomorphism of g−1, which is skew with respect to δ and
whose square A2 is a multiple of the identity, then A belongs toQstd . Altogether, we have a
characterization of the standard para-quaternionic structure in terms of δ, which is obviously
independent of a multiple of δ. The geometric interpretation of these observations is the
following: An endomorphism A of the tangent bundle of a para-quaternionic four-manifold
(M,Q) belongs to Q ⊂ End(T M) if and only if A ◦ A is a multiple of the identity and A
is skew with respect to any metric form the conformal class of the corresponding conformal
structure.

Finally, let us consider the ε-twistor spaces with the canonical almost ε-complex struc-
tures from Sect. 5. Everything works fine for this dimension up to the following adjustment of
Theorem 14 (the structure on M is automatically integrable so this is no relevant condition).
According to the description of the harmonic curvatures in Proposition 3, it follows that
vanishing of the first component in the corresponding table is a sufficient condition for the
integrability of the induced almost ε-complex structure. That this condition is also necessary
follows by the very same scenario as in the proof of Theorem 14. By remarks after Propo-
sition 3, this condition corresponds to the anti-self-duality of the corresponding conformal
structure (respectively, to the β-integrability of the Grassmannian structure).

Altogether, we conclude with

Proposition 17 Let (M,Q) be a four-dimensional para-quaternionic manifold, let [g] be the
corresponding conformal structure on M and let ε ∈ {−1, 0, 1}.
(1) The ε-twistor spaceZ ε is identified with the subbundle of End(T M) of those elements

which square to ε id and which are skew with respect to [g].
(2) The canonical almost ε-complex structure on Z ε is integrable if and only if the con-

formal structure on M is anti-self-dual.

For ε = −1, the characterization of the respective twistor space may be shortened by
saying that Z −1 consists of orthogonal almost complex structures in T M . This should
commemorate the classical formulations, cf. [6] and [9, Prop. 4.4.11].

Note that the interpretation of the 0-twistor space as in Proposition 16 has to be adjusted
accordingly in this dimension. That is, the assumption of integrability has to be substituted
by the anti-self-duality of the conformal structure (respectively, by the β-integrability of the
Grassmannian structure). This is what is needed to form a local leaf space X , the rest remains
the same.
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6.2 Compatible metrics

It is a very important situation if there exists a (pseudo-)Riemannian metric which is
compatible with the given geometric structure. This is thoroughly studied both from the
para-quaternionic and the Grassmannian point of view. Following [3,4] and [7], let us quickly
summarize some classical issues here.

There is a natural decomposition of the bundle S2T ∗M in the spirit of Sect. 4.2. On the
one hand, the almost para-quaternionic structureQ ⊂ End(T M) induces the decomposition

S2T ∗M = S1,1T ∗M ⊕ ker π1,1,

where π1,1 : S2T ∗M → S1,1T ∗M is the restriction of the natural projection (18) to S2T ∗M .
On the other hand, the corresponding almost Grassmannian structure T M ∼= E∗ ⊗ F yields

S2T ∗M = (Λ2E ⊗ Λ2F∗) ⊕ (S2E ⊗ S2F∗).

Analogously to Lemma 8, the two decompositions agree so that

Λ2E ⊗ Λ2F∗ ∼= S1,1(E∗ ⊗ F) and S2E ⊗ S2F∗ ∼= ker π1,1.

Themetric onM is compatiblewith the geometric structure if it is a section ofΛ2E⊗Λ2F∗ ∼=
S1,1(E∗ ⊗ F). In order that the metric is non-degenerate, the rank of the vector bundle F has
to be even. Hence, if there is a compatible metric then the dimension of the base manifold
is a multiple of 4. It is also obvious, that all tangent vectors in the Segre cone are null with
respect to any compatible metric. Consequently, the compatible metric is of split signature.

If the Levi-Civita connection of a compatible metric is a compatible connection of the
geometric structure, then themetric (aswell as the structure itself) is called para-quaternionic
Kähler. Since Levi-Civita connection is torsion free, para-quaternionic Kähler structures are
integrable. It is also the case, that para-quaternionic Kähler metrics are necessarily Einstein.
In the four-dimensional case, this feature may be stated so that the corresponding conformal
manifold is anti-self-dual and contains an Einstein metric in the conformal class. It follows
that the existence of para-quaternionicKählermetrics is controlled by solutions to an invariant
overdetermined system of differential equations, the so-called first BGG equation. This is
studied in [7] in the holomorphic category with some minor additional assumptions.

Acknowledgements I am grateful to Dmitri V. Alekseevsky, Andreas Čap, Jan Slovák and Josef Šilhan for
many helpful conversations.
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8. Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries. J. Reine Angew. Math. 582,
143–182 (2005)
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