C1020 General Chemistry

Faculty of Science
Autumn 2024
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Taught in person.
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Aleš Stýskalík, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Learning outcomes
Upon completing this course, students will be able: To apply principal chemical laws and uderstand stoichiometry; To describe elemental particles and distinguish terms element, nuclide, and isotope; To express mass of atoms and molecules, molar amount, and molar mass; To understand basic terms in radioactivity, radioactivity laws, Fajans-Soddy rules, and write equations for nuclear reactions; To appreciate the historical importance of the Bohr theory of hydrogen atom, to describe X-ray radiation and Moseley‘s law; To understand meaning of the Schrödinger wave equation, wave function, and probability of electron occurrence; To apply the Aufbau principle, Pauli principle, and Hund’s rule to the electronic structure of many electron atoms; To present Periodic law and predict trends in properties of elements (covalent and ionic radii, ionization energy, electron affinity, electronegativity); To describe covalent bonding by overlap of atomic orbitals and MO, draw molecular diagrams of biatomic molecules, describe polarity, ionic degree, bond order, length and energy of bonds; To derive shape of molecules by the VSEPR method and find symmetry elements; To understand terms central atom, ligand, coordination polyhedra, to describe structural isomerism of complexes, to present principles of ligand field theory for octahedral and tetrahedral complexes, to distinguish high- and low spin complexes; To apply the state equation and simple laws for ideal gas, and van der Waals state equation; To describe structure of solids, to distinguish terms motif, crystal lattice, and crystal structure, describe properties by lattice energy and bonding in solids by Band theory, distinguish conductors, semiconductors, and insulators; To describe energy changes in course of chemical reactions, to know fundamental thermodynamical parameters and laws, chemical equilibrium, equilibrium constant, influence of state variables on equilibrium; To desribe reaction kinetics by reaction velocity and rate law, to understand the meaning of rate constant and influence of temperature and activation energy on reaction rate; To use different concentration variables, to understand electrolytical dissociation, to describe phase equilibrium by Gibbs phase rule; To apply acid-base theories, to express acidity and basicity of aqueous solutions and strength of acids and bases; To apply Faraday law, standard electrochemical potentials, and Nernst and Nernst-Peters equations; To describe basic principles and results of X-ray diffraction analysis, mass spectrometry, and NMR spectroscopy
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
    recommended literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HOUSECROFT, Catherine E. and A. G. SHARPE. Anorganická chemie. Vyd. 1. Praha: Vysoká škola chemicko-technologická v Praze, 2014, xxx, 1119. ISBN 9788070808726. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023.

C1020 General Chemistry

Faculty of Science
Autumn 2023
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Taught in person.
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Aleš Stýskalík, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Learning outcomes
Upon completing this course, students will be able: To apply principal chemical laws and uderstand stoichiometry; To describe elemental particles and distinguish terms element, nuclide, and isotope; To express mass of atoms and molecules, molar amount, and molar mass; To understand basic terms in radioactivity, radioactivity laws, Fajans-Soddy rules, and write equations for nuclear reactions; To appreciate the historical importance of the Bohr theory of hydrogen atom, to describe X-ray radiation and Moseley‘s law; To understand meaning of the Schrödinger wave equation, wave function, and probability of electron occurrence; To apply the Aufbau principle, Pauli principle, and Hund’s rule to the electronic structure of many electron atoms; To present Periodic law and predict trends in properties of elements (covalent and ionic radii, ionization energy, electron affinity, electronegativity); To describe covalent bonding by overlap of atomic orbitals and MO, draw molecular diagrams of biatomic molecules, describe polarity, ionic degree, bond order, length and energy of bonds; To derive shape of molecules by the VSEPR method and find symmetry elements; To understand terms central atom, ligand, coordination polyhedra, to describe structural isomerism of complexes, to present principles of ligand field theory for octahedral and tetrahedral complexes, to distinguish high- and low spin complexes; To apply the state equation and simple laws for ideal gas, and van der Waals state equation; To describe structure of solids, to distinguish terms motif, crystal lattice, and crystal structure, describe properties by lattice energy and bonding in solids by Band theory, distinguish conductors, semiconductors, and insulators; To describe energy changes in course of chemical reactions, to know fundamental thermodynamical parameters and laws, chemical equilibrium, equilibrium constant, influence of state variables on equilibrium; To desribe reaction kinetics by reaction velocity and rate law, to understand the meaning of rate constant and influence of temperature and activation energy on reaction rate; To use different concentration variables, to understand electrolytical dissociation, to describe phase equilibrium by Gibbs phase rule; To apply acid-base theories, to express acidity and basicity of aqueous solutions and strength of acids and bases; To apply Faraday law, standard electrochemical potentials, and Nernst and Nernst-Peters equations; To describe basic principles and results of X-ray diffraction analysis, mass spectrometry, and NMR spectroscopy
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
    recommended literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HOUSECROFT, Catherine E. and A. G. SHARPE. Anorganická chemie. Vyd. 1. Praha: Vysoká škola chemicko-technologická v Praze, 2014, xxx, 1119. ISBN 9788070808726. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2022
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Taught in person.
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Aleš Stýskalík, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Learning outcomes
Upon completing this course, students will be able: To apply principal chemical laws and uderstand stoichiometry; To describe elemental particles and distinguish terms element, nuclide, and isotope; To express mass of atoms and molecules, molar amount, and molar mass; To understand basic terms in radioactivity, radioactivity laws, Fajans-Soddy rules, and write equations for nuclear reactions; To appreciate the historical importance of the Bohr theory of hydrogen atom, to describe X-ray radiation and Moseley‘s law; To understand meaning of the Schrödinger wave equation, wave function, and probability of electron occurrence; To apply the Aufbau principle, Pauli principle, and Hund’s rule to the electronic structure of many electron atoms; To present Periodic law and predict trends in properties of elements (covalent and ionic radii, ionization energy, electron affinity, electronegativity); To describe covalent bonding by overlap of atomic orbitals and MO, draw molecular diagrams of biatomic molecules, describe polarity, ionic degree, bond order, length and energy of bonds; To derive shape of molecules by the VSEPR method and find symmetry elements; To understand terms central atom, ligand, coordination polyhedra, to describe structural isomerism of complexes, to present principles of ligand field theory for octahedral and tetrahedral complexes, to distinguish high- and low spin complexes; To apply the state equation and simple laws for ideal gas, and van der Waals state equation; To describe structure of solids, to distinguish terms motif, crystal lattice, and crystal structure, describe properties by lattice energy and bonding in solids by Band theory, distinguish conductors, semiconductors, and insulators; To describe energy changes in course of chemical reactions, to know fundamental thermodynamical parameters and laws, chemical equilibrium, equilibrium constant, influence of state variables on equilibrium; To desribe reaction kinetics by reaction velocity and rate law, to understand the meaning of rate constant and influence of temperature and activation energy on reaction rate; To use different concentration variables, to understand electrolytical dissociation, to describe phase equilibrium by Gibbs phase rule; To apply acid-base theories, to express acidity and basicity of aqueous solutions and strength of acids and bases; To apply Faraday law, standard electrochemical potentials, and Nernst and Nernst-Peters equations; To describe basic principles and results of X-ray diffraction analysis, mass spectrometry, and NMR spectroscopy
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
    recommended literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HOUSECROFT, Catherine E. and A. G. SHARPE. Anorganická chemie. Vyd. 1. Praha: Vysoká škola chemicko-technologická v Praze, 2014, xxx, 1119. ISBN 9788070808726. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
autumn 2021
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Taught in person.
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Learning outcomes
Upon completing this course, students will be able: To apply principal chemical laws and uderstand stoichiometry; To describe elemental particles and distinguish terms element, nuclide, and isotope; To express mass of atoms and molecules, molar amount, and molar mass; To understand basic terms in radioactivity, radioactivity laws, Fajans-Soddy rules, and write equations for nuclear reactions; To appreciate the historical importance of the Bohr theory of hydrogen atom, to describe X-ray radiation and Moseley‘s law; To understand meaning of the Schrödinger wave equation, wave function, and probability of electron occurrence; To apply the Aufbau principle, Pauli principle, and Hund’s rule to the electronic structure of many electron atoms; To present Periodic law and predict trends in properties of elements (covalent and ionic radii, ionization energy, electron affinity, electronegativity); To describe covalent bonding by overlap of atomic orbitals and MO, draw molecular diagrams of biatomic molecules, describe polarity, ionic degree, bond order, length and energy of bonds; To derive shape of molecules by the VSEPR method and find symmetry elements; To understand terms central atom, ligand, coordination polyhedra, to describe structural isomerism of complexes, to present principles of ligand field theory for octahedral and tetrahedral complexes, to distinguish high- and low spin complexes; To apply the state equation and simple laws for ideal gas, and van der Waals state equation; To describe structure of solids, to distinguish terms motif, crystal lattice, and crystal structure, describe properties by lattice energy and bonding in solids by Band theory, distinguish conductors, semiconductors, and insulators; To describe energy changes in course of chemical reactions, to know fundamental thermodynamical parameters and laws, chemical equilibrium, equilibrium constant, influence of state variables on equilibrium; To desribe reaction kinetics by reaction velocity and rate law, to understand the meaning of rate constant and influence of temperature and activation energy on reaction rate; To use different concentration variables, to understand electrolytical dissociation, to describe phase equilibrium by Gibbs phase rule; To apply acid-base theories, to express acidity and basicity of aqueous solutions and strength of acids and bases; To apply Faraday law, standard electrochemical potentials, and Nernst and Nernst-Peters equations; To describe basic principles and results of X-ray diffraction analysis, mass spectrometry, and NMR spectroscopy
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
    recommended literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HOUSECROFT, Catherine E. and A. G. SHARPE. Anorganická chemie. Vyd. 1. Praha: Vysoká škola chemicko-technologická v Praze, 2014, xxx, 1119. ISBN 9788070808726. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2020
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Taught online.
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 12:00–13:50 prace doma, Thu 10:00–11:50 prace doma
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Learning outcomes
Upon completing this course, students will be able: To apply principal chemical laws and uderstand stoichiometry; To describe elemental particles and distinguish terms element, nuclide, and isotope; To express mass of atoms and molecules, molar amount, and molar mass; To understand basic terms in radioactivity, radioactivity laws, Fajans-Soddy rules, and write equations for nuclear reactions; To appreciate the historical importance of the Bohr theory of hydrogen atom, to describe X-ray radiation and Moseley‘s law; To understand meaning of the Schrödinger wave equation, wave function, and probability of electron occurrence; To apply the Aufbau principle, Pauli principle, and Hund’s rule to the electronic structure of many electron atoms; To present Periodic law and predict trends in properties of elements (covalent and ionic radii, ionization energy, electron affinity, electronegativity); To describe covalent bonding by overlap of atomic orbitals and MO, draw molecular diagrams of biatomic molecules, describe polarity, ionic degree, bond order, length and energy of bonds; To derive shape of molecules by the VSEPR method and find symmetry elements; To understand terms central atom, ligand, coordination polyhedra, to describe structural isomerism of complexes, to present principles of ligand field theory for octahedral and tetrahedral complexes, to distinguish high- and low spin complexes; To apply the state equation and simple laws for ideal gas, and van der Waals state equation; To describe structure of solids, to distinguish terms motif, crystal lattice, and crystal structure, describe properties by lattice energy and bonding in solids by Band theory, distinguish conductors, semiconductors, and insulators; To describe energy changes in course of chemical reactions, to know fundamental thermodynamical parameters and laws, chemical equilibrium, equilibrium constant, influence of state variables on equilibrium; To desribe reaction kinetics by reaction velocity and rate law, to understand the meaning of rate constant and influence of temperature and activation energy on reaction rate; To use different concentration variables, to understand electrolytical dissociation, to describe phase equilibrium by Gibbs phase rule; To apply acid-base theories, to express acidity and basicity of aqueous solutions and strength of acids and bases; To apply Faraday law, standard electrochemical potentials, and Nernst and Nernst-Peters equations; To describe basic principles and results of X-ray diffraction analysis, mass spectrometry, and NMR spectroscopy
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
    recommended literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HOUSECROFT, Catherine E. and A. G. SHARPE. Anorganická chemie. Vyd. 1. Praha: Vysoká škola chemicko-technologická v Praze, 2014, xxx, 1119. ISBN 9788070808726. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2019
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Learning outcomes
Upon completing this course, students will be able: To apply principal chemical laws and uderstand stoichiometry; To describe elemental particles and distinguish terms element, nuclide, and isotope; To express mass of atoms and molecules, molar amount, and molar mass; To understand basic terms in radioactivity, radioactivity laws, Fajans-Soddy rules, and write equations for nuclear reactions; To appreciate the historical importance of the Bohr theory of hydrogen atom, to describe X-ray radiation and Moseley‘s law; To understand meaning of the Schrödinger wave equation, wave function, and probability of electron occurrence; To apply the Aufbau principle, Pauli principle, and Hund’s rule to the electronic structure of many electron atoms; To present Periodic law and predict trends in properties of elements (covalent and ionic radii, ionization energy, electron affinity, electronegativity); To describe covalent bonding by overlap of atomic orbitals and MO, draw molecular diagrams of biatomic molecules, describe polarity, ionic degree, bond order, length and energy of bonds; To derive shape of molecules by the VSEPR method and find symmetry elements; To understand terms central atom, ligand, coordination polyhedra, to describe structural isomerism of complexes, to present principles of ligand field theory for octahedral and tetrahedral complexes, to distinguish high- and low spin complexes; To apply the state equation and simple laws for ideal gas, and van der Waals state equation; To describe structure of solids, to distinguish terms motif, crystal lattice, and crystal structure, describe properties by lattice energy and bonding in solids by Band theory, distinguish conductors, semiconductors, and insulators; To describe energy changes in course of chemical reactions, to know fundamental thermodynamical parameters and laws, chemical equilibrium, equilibrium constant, influence of state variables on equilibrium; To desribe reaction kinetics by reaction velocity and rate law, to understand the meaning of rate constant and influence of temperature and activation energy on reaction rate; To use different concentration variables, to understand electrolytical dissociation, to describe phase equilibrium by Gibbs phase rule; To apply acid-base theories, to express acidity and basicity of aqueous solutions and strength of acids and bases; To apply Faraday law, standard electrochemical potentials, and Nernst and Nernst-Peters equations; To describe basic principles and results of X-ray diffraction analysis, mass spectrometry, and NMR spectroscopy
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
    recommended literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HOUSECROFT, Catherine E. and A. G. SHARPE. Anorganická chemie. Vyd. 1. Praha: Vysoká škola chemicko-technologická v Praze, 2014, xxx, 1119. ISBN 9788070808726. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2018
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Jiří Křivohlávek (assistant)
Mgr. Vít Vykoukal, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 17. 9. to Fri 14. 12. Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
autumn 2017
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Jiří Křivohlávek (assistant)
Mgr. Vít Vykoukal, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 18. 9. to Fri 15. 12. Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2016
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Jiří Křivohlávek (assistant)
Mgr. Vít Vykoukal, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 19. 9. to Sun 18. 12. Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2015
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Aleš Stýskalík, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2014
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 13:00–14:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2013
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Principles of chemistry, matter, its properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristics of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave equation, wave function, probability of electron occurrence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent and donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap integral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatomic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomerism of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liquids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetry of molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, Le Chatelier's principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogeneous and heterogeneous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Precipitation and solubility product, properties of diluted solutions, Raoult law, ebullioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2012
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Jiří Křivohlávek (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Teaching methods
The course is composed of 22 lectures. There are two lectures 2 hr each per week.
Assessment methods
The course consists of 22 lectures. The final examination is a written test (2 hrs).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2011
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Timetable
Wed 12:00–13:50 B11/132, Thu 10:00–11:50 B11/132
Prerequisites
! C1021 General Chemistry
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The course objective is to introduce students to a variety of chemical principles, in preparation for more detailed chemistry study in later years. Description of concepts and facts seeks the understanding of chemical world on an atomic and molecular level based on qualitative quantum theory. The molecular approach supports the comprehension of macroscopic phenomena and laws firmly depicted by thermodynamics and chemical kinetics.
Syllabus
  • 1. Contemporary Chemistry and its Prospect. Chemical Information. Composition of matter. Molecular Entity, Substance and Amount of Substance.
  • 2. Quantum Theory, Operators, States and Energy Levels, Schrödinger Equation, Stationary States.
  • 3. Hydrogen atom. Atomic Structure and Atomic Orbitals. Periodic Table and Trends, Categories of Elements.
  • 4. Description of Molecular Structure, Molecular Sates. Isomers. Molecular Symmetry, Chirality.
  • 5. Molecular Orbitals, Electron Density Distribution. Orbital Interactions, Electron Count. Pauli Principle.
  • 6. Diatomic and Triatomic Molecules. Photoelectron Spectroscopy.
  • 7. Polyatomic Molecules. Mass Spectrometry. Ionic and Metallic Substances. Relativity in Chemistry.
  • 8. VSEPR, Hybridization and Ligand Field. VB-methods. Quantum Chemical Calculations. Density Functional.
  • 9. Molecular Assemblies. Intermolecular Forces. Statistics in Chemistry, Boltzmann Distribution.
  • 10. Photon Absorption and Emission, the Spectral Line. Change of Rotational, Vibrational and Electronic Molecular State. Spectroscopy. NMR.
  • 11. Gases, Equation of State. Molecular Motion. The Kinetic Model of Gases. Liquids.
  • 12. Solids. Crystalline Solids. Unit Cells. X-Ray Diffraction. Liquid Crystals.
  • 13. Laws of Thermodynamics. Heat and Work. State Functions. The First Law. Enthalpy and Thermochemistry. Reaction Enthalpies and Standard Enthalpies of Formation. Bond Enthalpies.
  • 14. Entropy and Spontaneous Change, the Second Law. Gibbs Energy. The Third Law.
  • 15. Ideal and Real systems, Fugacity, Activity. Colligative Properties. Chemical Potential.
  • 16. Phase Equilibrium and Diagrams, Phase rule. The Vapor Pressure of a Binary Liquid Mixture, Azeotropes.
  • 17. Chemical Equilibrium, Equilibrium Constant and Reaction Quotient. Response to Conditions, Le Chatelier's Principle.
  • 18. Acid and Bases, Autoprotolysis. Donors and Acceptors. Solvents. Solubility.
  • 19. Ions in Solution, Conductivity of Electrolytes. Homogeneous and Heterogeneous Electron Transfer. Electrodes and Electrochemical Cells.
  • 20. Reactivity, Reaction Rates, Mechanisms and Molecularity. Photochemical, Chain, Catalytic, and Oscillation Reactions. Molecular Beams.
  • 21. Reaction Coordinate, Transition state, Activated Complex, Activation Energy. Potential Energy Surface.
  • 22. Chemical Synthesis. Supramolecular Chemistry. Biomolecules. Materials.
Literature
  • POLÁK, Rudolf and Rudolf ZAHRADNÍK. Obecná chemie : stručný úvod. Vyd. 1. Praha: Academia, 2000, 224 s. ISBN 8020007946. info
  • ATKINS, P. W. and Loretta JONES. Chemical principles : the quest for insight. 3rd ed. New York: W.H. Freeman and Company, 2005, 1 sv. ISBN 071675701X. info
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
Assessment methods
23(24) non-obligatory lectures with 10 running optional homeworks. Final written examination (test on the computer).
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2010
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Petra Polášková (seminar tutor)
doc. Mgr. Dominik Heger, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Timetable
Tue 17:00–18:50 B11/132, Tue 17:00–18:50 B11/205, Thu 10:00–11:50 B11/132, Thu 10:00–11:50 B11/205
Prerequisites
! C1021 General Chemistry
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 9 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky. Z kapacitních důvodů bude přednáška probíhat v aule a paralelně v učebně F1, do které bude výklad přenášen pomocí TV kamery. Zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2009
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Michal Horní (assistant)
Mgr. Petra Polášková (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Timetable
Mon 16:00–17:50 aula_Vinařská, Wed 12:00–13:50 aula_Vinařská
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 19 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky. Z kapacitních důvodů bude přednáška probíhat v aule a paralelně v učebně F1, do které bude výklad přenášen pomocí TV kamery. Zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2007
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Timetable
Mon 15:00–16:50 F1 6/1014, Mon 15:00–16:50 A,01026, Wed 10:00–11:50 A,01026, Wed 10:00–11:50 F1 6/1014
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 25 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky. Z kapacitních důvodů bude přednáška probíhat v aule a paralelně v učebně F1, do které bude výklad přenášen pomocí TV kamery. Zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2005
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Timetable
Mon 12:00–13:50 U-aula, Wed 12:00–13:50 U-aula
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 25 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2003
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 25 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2002
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
prof. RNDr. Jiří Příhoda, CSc. (lecturer)
Guaranteed by
prof. RNDr. Jiří Příhoda, CSc.
Chemistry Section – Faculty of Science
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 26 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2001
Extent and Intensity
4/0/0. 7 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Příhoda, CSc. (lecturer)
Guaranteed by
prof. RNDr. Jiří Příhoda, CSc.
Chemistry Section – Faculty of Science
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 26 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus (in Czech)
  • 1.Předmět obecné chemie, pojem hmoty, její vlastnosti a formy existence, základní chemické zákony, chemické vzorce, chemické látky, čistota látek, stupně čistoty, směsi, fyzikální a chemické charakteristiky čistých látek. 2.Atomová symbolika, základní elementární částice, pojem prvku, nuklidu, izotopu, izotonu a izobaru, hmotnost atomů a molekul, atomová hmotnostní jednotka m, vyjadřování hmotnosti v chemii, látkové množství, molární hmotnost.Atomové jádro, hmotnostní defekt, stabilita jader a-, b- a g- radioaktivita, spontánní štěpení, základní pojmy o radioaktivitě látek, základní zákon radioaktivních přeměn, Fajans-Soddyho posunová pravidla, jaderné reakce a jejich symbolika. 3.Fyzikální rozdíly mikro- a makrosvěta, korpuskulárně-vlnový charakter mikročástic, dualismus hmoty, Heisenbergův princip neurčitosti, Bohrův a Sommerfeldův model atomu, Bohrova teorie vodíkového atomu, emisní spektra atomu vodíku, rtg. záření, Moseleyův zákon. Schrödingerova vlnová rovnice, elektronová vlnová funkce a její význam, pravděpodobnost výskytu částice, hustota pravděpodobnosti, atomový orbital, kvantová čísla n, l, m a s, tvary atomových orbitalů, energetické stavy a degenerace, výstavbový princip víceelektronových systémů, Pauliho princip výlučnosti, Hundovo pravidlo. 4.Periodický zákon a periodický systém prvků, primární a sekundární periodicita vlastností prvků. Vlastnosti atomů (ionizační potenciál, elektronová afinita, elektronegativita).Historický vývoj názorů na chemickou vazbu, tvorba iontů, ionty s 18 a 20 valenčními elektrony, iontové poloměry, iontové krystaly, metody studia iontových krystalů. 5.Kovalentní a donor-akceptorová vazba, vlnově-mechanický model vazby, překryv atomových orbitalů, integrál překryvu, typy překryvů (s, p, d), molekulové orbitaly (MO) a metoda MO-LCAO, výstavbový princip MO, molekulové diagramy biatomických homo- a heteronukleárních molekul, ostatní molekuly, polarita, stupeň iontovosti, vazebný řád a vaznost atomu, délka kovalentní vazby, vazebná energie. 6.Tvar molekul, teorie hybridizace, typy hybridizace, metoda VSEPR. Delokalizované p-systémy, rezonance, sloučeniny s nedostatkem elektronů, slabé interakce (van der Waalsovy síly, vazba vodíkovým můstkem). 7.Koordinační částice (centrální atom, ligand), koordinační polyedry, cheláty, chelátový efekt, vícejaderné komplexy, klastry, strukturní izomerie (vazebná, koordinační a ionizační); prostorová izomerie (geometrická, optická). Názvosloví koordinačních sloučenin. Koordinační vazba, donor-akceptorové vlastnosti ligandů, základy teorie ligandového pole, oktaedrické, tetraedrické a tetragonální komplexy, vysoko- a nízkospinové komplexy, Jahn-Tellerův efekt, spektrální a magnetické vlastnosti komplexů. Komplexní rovnováha, stabilita komplexů, mechanismy komplexotvorných reakcí, trans-efekt. 8.Stavová rovnice a jednoduché zákony pro ideální plyn, transportní jevy v plynech, Grahamův zákon, stavová rovnice reálného plynu, kritický stav, zkapalňování plynů, redukovaná van der Waalsova rovnice. Stavová rovnice pro kapaliny, tenze páry, povrchové napětí, viskozita kapalin. 9.Obecné vlastnosti pevných látek, krystalová mřížka, Madelungova konstanta, Born-Haberův cyklus, mřížková energie, prvky a operace symetrie, symetrie molekul a iontů. Pásová teorie vazby v pevných látkách, vlastnosti kovů, kovová vazba, vodiče, polovodiče a izolanty. Typy a mechanismy chemických reakcí, energetické změny při průběhu chemických reakcí, základní thermodynamické veličiny (U,H,G,S) a zákony, thermodynamické podmínky průběhu chemických reakcí. 10.Vratné reakce, zákon rovnováhy, rovnovážná konstanta, vliv změny koncentrace, tlaku a teploty na rovnováhu, Le Chatelier-Brownův princip, reakční kinetika, rychlost reakce, rychlostní zákon, rychlostní konstanta, řád reakce, molekularita reakce, vliv teploty na reakční rychlost, Arrheniova rovnice, aktivační energie, reakční koordináta, homogenní a heterogenní katalýza. 11.Rovnováha ve vícefázovém systému, Gibbsovo pravidlo fází, definice fáze, složky a stupně volnosti, roztoky, rozpustnost, vyjadřování koncentrace, vodivost roztoků, elektrolytická disociace, solvatace a asociace iontů, iontová síla, aktivita a aktivitní koeficient. Srážení a součin rozpustnosti, vlastnosti zředěných roztoků, Raoultův zákon, ebulioskopie a kryoskopie, základní fázové diagramy jedno- a dvousložkových systémů, destilace, rektifikace a destilace s vodní parou, sublimace, tavení. 12.Arrheniova, Brönstedova-Lawryho a Lewisova teorie kyselin a zásad, solvoteorie kyselin a zásad, superkyselá prostředí, acidita a bazicita vodných roztoků, síla kyselin, stupnice pH, hydrolýza solí, tlumivé roztoky, kapacita tlumivých roztoků. 13.Základní pojmy v oblasti elektrolýzy, Faradayovy zákony, coulometrie, elektrochemické potenciály, typy elektrod, standardní elektrodové potenciály, standardní vodíková elektroda, Nernstova a Nernst-Petersova rovnice, galvanické články. 14.Absorpce elektromagnetického záření, funkce spektrometru. Molekulární spektra, infračervená a Ramanova spektroskopie, elektronová spektroskopie, luminiscence (fosforescence a fluorescence). Magnetické vlastnosti látek, magnetický moment atomu a jádra, dia- a paramagnetismus, ferro- a antiferromagnetismus Rentgenová strukturní analýza, hmotnostní spektroskopie.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2000
Extent and Intensity
4/0/0. 7 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Příhoda, CSc. (lecturer)
Guaranteed by
prof. RNDr. Jiří Příhoda, CSc.
Chemistry Section – Faculty of Science
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 26 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus (in Czech)
  • Předmět obecné chemie, pojem hmoty, její vlastnosti a formy existence, základní chemické zákony, chemické vzorce, chemické látky, čistota látek, stupně čistoty, směsi, fyzikální a chemické charakteristiky čistých látek. Atomová symbolika, základní elementární částice, pojem prvku, nuklidu, izotopu, izotonu a izobaru, hmotnost atomů a molekul, atomová hmotnostní jednotka m, vyjadřování hmotnosti v chemii, látkové množství, molární hmotnost Atomové jádro, hmotnostní defekt, stabilita jader a-, b- a g- radioaktivita, spontánní štěpení, základní pojmy o radioaktivitě látek, základní zákon radioaktivních přeměn, Fajans-Soddyho posunová pravidla, jaderné reakce a jejich symbolika. Fyzikální rozdíly mikro- a makrosvěta, korpuskulárně-vlnový charakter mikročástic, dualismus hmoty, Heisenbergův princip neurčitosti, Bohrův a Sommerfeldův model atomu, Bohrova teorie vodíkového atomu, emisní spektra atomu vodíku, rtg. záření, Moseleyův zákon. Schrödingerova vlnová rovnice, elektronová vlnová funkce a její význam, pravděpodobnost výskytu částice, hustota pravděpodobnosti, atomový orbital, kvantová čísla n, l, m a s, tvary atomových orbitalů, energetické stavy a degenerace, výstavbový princip víceelektronových systémů, Pauliho princip výlučnosti, Hundovo pravidlo. Periodický zákon a periodický systém prvků, primární a sekundární periodicita vlastností prvků. Vlastnosti atomů (ionizační potenciál, elektronová afinita, elektronegativita), Historický vývoj názorů na chemickou vazbu, tvorba iontů, ionty s 18 a 20 valenčními elektrony, iontové poloměry, iontové krystaly, metody studia iontových krystalů. Kovalentní a donor-akceptorová vazba, vlnově-mechanický model vazby, překryv atomových orbitalů, integrál překryvu, typy překryvů (s, p, d), molekulové orbitaly (MO) a metoda MO-LCAO, výstavbový princip MO, molekulové diagramy biatomických homo- a heteronukleárních molekul, ostatní molekuly, polarita, stupeň iontovosti, vazebný řád a vaznost atomu, délka kovalentní vazby, vazebná energie. Tvar molekul, teorie hybridizace, typy hybridizace, metoda VSEPR. Delokalizované p-systémy, rezonance, sloučeniny s nedostatkem elektronů, slabé interakce (van der Waalsovy síly, vazba vodíkovým můstkem). Pojem koordinační částice (centrální atom, ligand), koordinační polyedry, cheláty, chelátový efekt, vícejaderné komplexy, klastry, strukturní izomerie (vazebná, koordinační a ionizační); prostorová izomerie (geometrická, optická). Názvosloví koordinačních sloučenin. Koordinační vazba, donor-akceptorové vlastnosti ligandů, základy teorie ligandového pole, oktaedrické, tetraedrické a tetragonální komplexy, vysoko- a nízkospinové komplexy, Jahn-Tellerův efekt, spektrální a magnetické vlastnosti komplexů. Komplexní rovnováha, stabilita komplexů, mechanismy komplexotvorných reakcí, trans-efekt. Stavová rovnice a jednoduché zákony pro ideální plyn, transportní jevy v plynech, Grahamův zákon, stavová rovnice reálného plynu, kritický stav, zkapalňování plynů, redukovaná van der Waalsova rovnice. Stavová rovnice pro kapaliny, tenze páry, povrchové napětí, viskozita kapalin. Obecné vlastnosti pevných látek, krystalová mřížka, Madelungova konstanta, Born-Haberův cyklus, mřížková energie, prvky a operace symetrie, symetrie molekul a iontů. Pásová teorie vazby v pevných látkách, vlastnosti kovů, kovová vazba, vodiče, polovodiče a izolanty. Typy a mechanismy chemických reakcí, energetické změny při průběhu chemických reakcí, základní thermodynamické veličiny (U,H,G,S) a zákony, thermodynamické podmínky průběhu chemických reakcí. Vratné reakce, zákon rovnováhy, rovnovážná konstanta, vliv změny koncentrace, tlaku a teploty na rovnováhu, Le Chatelier-Brownův princip, reakční kinetika, rychlost reakce, rychlostní zákon, rychlostní konstanta, řád reakce, molekularita reakce, vliv teploty na reakční rychlost, Arrheniova rovnice, aktivační energie, reakční koordináta, homogenní a heterogenní katalýza. Rovnováha ve vícefázovém systému, Gibbsovo pravidlo fází, definice fáze, složky a stupně volnosti, roztoky, rozpustnost, vyjadřování koncentrace, vodivost roztoků, elektrolytická disociace, solvatace a asociace iontů, iontová síla, aktivita a aktivitní koeficient. Srážení a součin rozpustnosti, vlastnosti zředěných roztoků, Raoultův zákon, ebulioskopie a kryoskopie, základní fázové diagramy jedno- a dvousložkových systémů, destilace, rektifikace a destilace s vodní parou, sublimace, tavení. Arrheniova, Brönstedova-Lawryho a Lewisova teorie kyselin a zásad, solvoteorie kyselin a zásad, superkyselá prostředí, acidita a bazicita vodných roztoků, síla kyselin, stupnice pH, hydrolýza solí, tlumivé roztoky, kapacita tlumivých roztoků. Základní pojmy v oblasti elektrolýzy, Faradayovy zákony, coulometrie, elektrochemické potenciály, typy elektrod, standardní elektrodové potenciály, standardní vodíková elektroda, Nernstova a Nernst-Petersova rovnice, galvanické články. Absorpce elektromagnetického záření, funkce spektrometru. Molekulární spektra, infračervená a Ramanova spektroskopie, elektronová spektroskopie, luminiscence (fosforescence a fluorescence). Magnetické vlastnosti látek, magnetický moment atomu a jádra, dia- a paramagnetismus, ferro- a antiferromagnetismus Rentgenová strukturní analýza, hmotnostní spektroskopie.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 1999
Extent and Intensity
4/2/0. 10 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Příhoda, CSc. (lecturer)
RNDr. Milan Alberti, CSc. (seminar tutor)
RNDr. Aleš Mareček, CSc. (seminar tutor)
prof. RNDr. Jiří Pinkas, Ph.D. (seminar tutor)
prof. RNDr. Jiří Příhoda, CSc. (seminar tutor)
doc. RNDr. Jiří Toužín, CSc. (seminar tutor)
Guaranteed by
prof. RNDr. Jiří Příhoda, CSc.
Chemistry Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 26 fields of study the course is directly associated with, display
Syllabus
  • The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
General note: Ve studijních programech 1407R a 1407T nutno zapsat a úspěšně zakončit v prvním semestru studia.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2008

The course is not taught in Autumn 2008

Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 26 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky. Z kapacitních důvodů bude přednáška probíhat v aule a paralelně v učebně F1, do které bude výklad přenášen pomocí TV kamery. Zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2006

The course is not taught in Autumn 2006

Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 25 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2004

The course is not taught in Autumn 2004

Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 25 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2011 - acreditation

The information about the term Autumn 2011 - acreditation is not made public

Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Mgr. Petra Polášková (seminar tutor)
doc. Mgr. Dominik Heger, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Prerequisites
! C1021 General Chemistry
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 9 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Teaching methods
Lecture twice a week for 2 hours, consulting.
Assessment methods
Two-hour written exam, must attain 50% or more to pass.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2010 - only for the accreditation
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Prerequisites
! C1021 General Chemistry
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • ZUMDAHL, Steven S. and Susan A. ZUMDAHL. Chemistry. 6th ed. Boston: Houghton Mifflin Company, 2003, xxiv, 1102. ISBN 0618221565. info
  • HILL, John W. General chemistry. 4th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, xxvii, 107. ISBN 0131180037. info
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky. Z kapacitních důvodů bude přednáška probíhat v aule a paralelně v učebně F1, do které bude výklad přenášen pomocí TV kamery. Zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C1020 General Chemistry

Faculty of Science
Autumn 2007 - for the purpose of the accreditation
Extent and Intensity
4/0/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Pinkas, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jiří Pinkas, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jiří Pinkas, Ph.D.
Prerequisites
Knowledge of chemistry on secondary school level
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 25 fields of study the course is directly associated with, display
Course objectives
The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important to the further work in the field of chemistry and biochemistry. The course consists of a lecture, numerical exercises and problem classes.
Syllabus
  • 1. Principles of chemistry, matter, their properties and forms of matter existence, principal chemical laws, chemical formula, chemical materials, purity of compounds, mixtures, physical and chemical characteristcis of pure compounds.

    2. Atom symbolics, elemental particles, element, nuclide, isotope, isotone, isobare, mass of elements and molecules, mass unit u, mole, molar mass. Atomic nucleus, mass defect, stability of nuclei, radioactivity, radioactivity law, Fajans-Soddy rules, nuclear reactions.

    3. Physical differences between micro- and macro world, particle-wave character of microparticles, dualistic view on matter, Heisenberg principle of uncertainty. Bohr theory of hydrogen atom, emission spectrum of H.- atom, X-ray irradiation, Moseley law. Wave eguation, wave function, probalility of electron occurence, atomic orbital, quantum numbers, shapes of atomic orbitals, energy states and their degeneration, Aufbau principle of many electron atom, Pauli principle, Hund principle.

    4. Periodical law, primary and secondary periodicity. Properties of elements, ionization energy, electron affinity, electronegativity. Formation of ions, ions with 18 and 20 valence electrons, ionic radii, ionic crystals, methods of their study.

    5. Covalent nad donor-acceptor bonding, wave-mechanic model of chemical bond, overlap of atomic orbitals, overlap ingral, types of molecular orbitals (s, p, d), LCAO-MO, molecular diagrams of homo- and heteronuclear biatonic molecules. Polarity, ionic degree, bond order, length and energy of bond.

    6. Shape of molecules, hybridization, VSEPR method, delocalization of electron density, resonance, compounds with lack of electrons, weak interactions between molecules (van der Waals forces, H-bonding).

    7. Principles of coordination chemistry, central atom, ligand, coordination polyhedra, chelates, chelate effect, polynuclear complexes, clusters, structural isomery of complexes. Nomenclature of complex compounds. Donor-acceptor properties of ligands, principles of ligand field theory, octahedral, tetrahedral and tetragonal complexes, high- and low spin complexes, Jahn-Teller effect, spectral and magnetic properties of complexes. Complex equilibria, mechanisms of complexing reactions, trans-effect.

    8. State equation and simple laws for ideal gas, transport phenomena in gases, Graham law, real gas, critical state, liquefaction of gases, reduced van der Waals state equation, State equation for liguids, surface tension, viscosity.

    9. Common properties of solids, crystal lattice, Madelung constant, Born-Haber cycle, lattice energy, symmetryof molecules and ions. Band theory in electronic structure of solids, properties of metals, metallic bond, conductors, semiconductors, insulators. 10. Types and mechanism of chemical reactions, energy changes in course of chemical reactions, fundamental thermodynamical parameters (U,H,G,S) and laws, Hess law, thermodynamical conditions of spontaneous reaction course. Chemical equilibrium, equilibrium constant, influence of temperature and pressure, LeChatelier principle. Reaction kinetics, reaction velocity law, reaction molecularity and order. Arrhenius law, activation energy, reaction coordinate, homogenous and heterogenous catalysis.

    11. Equilibrium in polyphase system. Gibbs phase rule, definition of phase, component and degree of freedom. Solutions, solubility, concentration units, conductivity of solutions, electrolytical dissociation, solvation and association of ions, ionic strength, activity and activity coefficient. Pricipitation and solubility product, properties of diluted solutions, Raoult law, ebulioscopy and cryoscopy, distillation, rectification, sublimation, melting.

    12. Acid-base theories, solvotheory of acids and bases, superacid media, acidity and basicity of aqueous solutions, pH, hydrolysis of salts, buffers anf their capacity.

    13. Fundamentals of electrochemistry, Faraday law, coulometry, electrochemical potential, types of electrodes, standard electrode potentials, standard hydrogen electrode, Nernst and Nernst-Peters equations, galvanic cells.

    14. Absorption of elecrtomagnetic irradiation, function of spectrometer. Molecular spectra, IR and Raman spectrometry, electron spectrometry, luminiscence. Magnetic properties og compounds, magnetic moment of atom and nucleus, dia- and paramagnetism, ferro- and antiferromagnetism. X-ray structural analysis, mass spectrometry.
Literature
  • KLIKORKA, Jiří, Bohumil HÁJEK and Jiří VOTINSKÝ. Obecná a anorganická chemie [Klikorka, 1989] a. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989, 592 s. info
  • HÁLA, Jiří. Pomůcka ke studiu obecné chemie. 1. vyd. Brno: Masarykova univerzita, 1993, 85 s. ISBN 8021002891. info
  • VACÍK, Jiří. Obecná chemie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 303 s. info
Assessment methods (in Czech)
Výuka formou přednášky, zkouška je písemná a ústní.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses

Zobrazit další předměty

The course is also listed under the following terms Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.