F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2024
Rozsah
3/0/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 19. 2. až Ne 26. 5. Po 8:00–10:50 F1 6/1014
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Výstupy z učení
Student bude po absolvování kursu schopen aplikovat pokročilejší poznatky z matematické analýzy a algebry (viz Osnova) na typické situace, s nimiž se setkává v bakalářském studiu obecné fyziky.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná zkouška, popřípadě následná ústní zkouška. Student prokazuje znalosti a výpočetní dovednosti z jednotlivých okruhů a schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2025
Rozsah
3/0/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Výstupy z učení
Student bude po absolvování kursu schopen aplikovat pokročilejší poznatky z matematické analýzy a algebry (viz Osnova) na typické situace, s nimiž se setkává v bakalářském studiu obecné fyziky.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná zkouška, popřípadě následná ústní zkouška. Student prokazuje znalosti a výpočetní dovednosti z jednotlivých okruhů a schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2023
Rozsah
3/0/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 12:00–14:50 F2 6/2012
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Výstupy z učení
Student bude po absolvování kursu schopen aplikovat pokročilejší poznatky z matematické analýzy a algebry (viz Osnova) na typické situace, s nimiž se setkává v bakalářském studiu obecné fyziky.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná zkouška, popřípadě následná ústní zkouška. Student prokazuje znalosti a výpočetní dovednosti z jednotlivých okruhů a schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2022
Rozsah
3/0/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 12:00–14:50 F1 6/1014
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Výstupy z učení
Student bude po absolvování kursu schopen aplikovat pokročilejší poznatky z matematické analýzy a algebry (viz Osnova) na typické situace, s nimiž se setkává v bakalářském studiu obecné fyziky.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná zkouška, popřípadě následná ústní zkouška. Student prokazuje znalosti a výpočetní dovednosti z jednotlivých okruhů a schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2021
Rozsah
3/0/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 1. 3. až Pá 14. 5. Po 12:00–14:50 F1 6/1014
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Výstupy z učení
Student bude po absolvování kursu schopen aplikovat pokročilejší poznatky z matematické analýzy a algebry (viz Osnova) na typické situace, s nimiž se setkává v bakalářském studiu obecné fyziky.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná zkouška, popřípadě následná ústní zkouška. Student prokazuje znalosti a výpočetní dovednosti z jednotlivých okruhů a schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2020
Rozsah
3/0/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
prof. RNDr. Jana Musilová, CSc. (přednášející)
Mgr. Pavla Musilová, Ph.D. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 11:00–13:50 F3,03015
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Výstupy z učení
Student bude po absolvování kursu schopen aplikovat pokročilejší poznatky z matematické analýzy a algebry (viz Osnova) na typické situace, s nimiž se setkává v bakalářském studiu obecné fyziky.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná zkouška, popřípadě následná ústní zkouška. Student prokazuje znalosti a výpočetní dovednosti z jednotlivých okruhů a schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2019
Rozsah
3/0/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 18. 2. až Pá 17. 5. Po 13:00–15:50 F4,03017
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je umožnit studentovi porozumět pojmům a získat výpočetní praxi z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a lineární algebry (základy počítání s tenzory) s cílem využití těchto pojmů v předmětech obecné, popřípadě teoretické fyziky. Získání početních dovedností (kalkul) je předmětem souvisejícího Početního praktika F2423. Součástí každé kapitoly osnovy předmětu jsou geometrické a fyzikální aplikace.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
  • 13. Vybrané fyzikální aplikace.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška. Student při individuální rozpravě prokazuje teoretické znalosti z jednotlivých okruhů i schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2018
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
St 16:00–18:50 F4,03017
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška. Student při individuální rozpravě prokazuje teoretické znalosti z jednotlivých okruhů i schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2017
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 20. 2. až Po 22. 5. St 17:00–19:50 F3,03015
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška. Student při individuální rozpravě prokazuje teoretické znalosti z jednotlivých okruhů i schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2016
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Jana Musilová, CSc.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Čt 12:00–14:50 F1 6/1014
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška. Student při individuální rozpravě prokazuje teoretické znalosti z jednotlivých okruhů i schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2015
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Čt 15:00–17:50 F1 6/1014
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška. Student při individuální rozpravě prokazuje teoretické znalosti z jednotlivých okruhů i schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2014
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Po 13:00–15:50 F3,03015
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška. Student při individuální rozpravě prokazuje teoretické znalosti z jednotlivých okruhů i schopnost aplikovat je na praktické matematické i fyzikální situace.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2013
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
St 8:00–10:50 F1 6/1014
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
    povinná literatura
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika II pro porozumění i praxi. první. Brno: VUTIUM (Vysoké učení technické v Brně), 2012, 697 s. ISBN 978-80-214-4071-5. info
    doporučená literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 s. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2012
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Rozvrh
Pá 7:00–9:50 F1 6/1014
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná a ústní zkouška.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2011
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Rozvrh
Po 7:00–9:50 F4,03017
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Ústní zkouška.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2010
Rozsah
2/1. 4 kr. (plus ukončení). Ukončení: kz.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Mgr. Marek Chrastina, Ph.D. (cvičící)
Mgr. Martin Bureš, Ph.D. (cvičící)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Rozvrh
Po 8:00–9:50 F1 6/1014
  • Rozvrh seminárních/paralelních skupin:
F2422/01: Út 19:00–19:50 F4,03017, M. Chrastina
F2422/02: St 17:00–17:50 F3,03015, M. Chrastina
F2422/03: St 12:00–12:50 F3,03015, M. Bureš
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy; získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky.
Osnova
  • 1. Dvojný a trojný integrál, metody výpočtu, geometrické a fyzikální aplikace (opakování).
  • 2. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 5. Praktické výpočty plošných integrálů.
  • 6. Integrální věty.
  • 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 8. Aplikace integrálních vět v mechanice kontinua.
  • 9. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 10. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 11. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Výukové metody
Přednáška: teoretická výuka kombinovaná s praktickými příklady. Cvičení: teoretické cvičení zaměřené na procvičení základních pojmů a tvrzení a samostatné řešení úloh.
Metody hodnocení
klasifikovaný zápočet (tři písemné testy v průběhu semestru, domácí úkoly, povinnost navštěvovat výuku (tento požadavek lze nahradit vypracováním příkladů))
Informace učitele

Požadavky pro úspěšné ukončení předmětu pro studenty prezenční formy studia:

  1. Absolvování tří písemek, termíny budou oznámeny alespoň dva týdny předem. Každá písemka je klasifikována podle stupnice uvedené ve Studijním a zkušebním řádu MU. Pro úspěšné ukončení předmětu je třeba, aby stupněm F byla hodnocena nejvýše jedna písemka. K dosažení hodnocení alespoň E na dané písemce je třeba získat nejméně 50 procent z maximálního počtu bodů. Výsledná klasifikace předmětu se stanoví jako průměr hodnocení jednotlivých písemek.
  2. Odevzdání domácích úkolů. Úkoly budou ukládány na konci každého cvičení v rozsahu dvou příkladů. Každý úkol je možno opravovat nejvýše jednou. Domácí úkoly a jejich opravy je nutné odevzdávat vždy do týdne po uplynutí příslušného cvičení. Výjimku tvoří pouze omluvitelné situace, jako je například nemoc podložená lékařským potvrzením nebo nekonání výuky; v takovém případě je třeba odevzdat úkoly v bezprostředně následující výuce předmětu.
  3. Účast na všech cvičeních. Tento požadavek lze nahradit vypracováním dvou náhradních příkladů za každé cvičení. Každý soubor náhradních příkladů lze opravovat nejvýše jednou. Náhradní příklady za neúčasti ve cvičení je nutno odevzdat do 21. června 2010.
  4. Dodatečné informace k ukončení předmětu jsou od 5. května 2010 k dispozici na stránce http://physics.muni.cz/~czudkova/ (položka Výuka).
Porušení pravidel 1. až 3. bude posuzováno individuálně v průběhu zkouškového období. Termín opravné písemky bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním květnovém týdnu 2010.
Požadavky pro úspěšné ukončení předmětu pro studenty kombinované formy studia (studenti kombinované formy mohou též zvolit jako alternativu požadavky pro studenty prezenční formy):
  1. Absolvování závěrečné písemky pokrývající látku celého semestru. Písemka bude obsahovat tři odděleně klasifikované tematické části (viz dílčí písemky pro prezenční formu). Klasifikace je dána stupnicí uvedenou ve Studijním a zkušebním řádu MU. Písemka je úspěšná pouze v případě, že nejvýše jedna z jejích částí je hodnocena stupněm F. Další pravidla klasifikace jsou shodná s pravidly pro prezenční formu. Výsledná klasifikace předmětu je stanovena jako průměr známek za jednotlivé části písemky. Termín písemky bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním květnovém týdnu 2010.
  2. Odevzdání domácích úkolů shodných s úkoly pro prezenční formu. Každý domácí úkol lze opravovat nejvýše jednou.
  3. Odevzdání náhradních příkladů za neúčasti ve cvičení (dva příklady za každé cvičení). Každý soubor náhradních příkladů lze opravovat nejvýše jednou.
  4. Domácí úkoly i příklady za neúčasti ve cvičení je nutno odevzdat do 21. června 2010. Způsob zveřejňování příkladů bude oznámen mailem rozeslaným prostřednictvím Informačního systému v druhém březnovém týdnu 2010.
  5. Dodatečné informace k ukončení předmětu jsou od 5. května 2010 k dispozici na stránce http://physics.muni.cz/~czudkova/ (položka Výuka).
Porušení pravidel 1. až 4. bude posuzováno individuálně v průběhu zkouškového období.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2009
Rozsah
2/1. 4 kr. (plus ukončení). Ukončení: kz.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Mgr. Marek Chrastina, Ph.D. (cvičící)
Mgr. Martin Bureš, Ph.D. (cvičící)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Rozvrh
St 7:00–8:50 F2 6/2012
  • Rozvrh seminárních/paralelních skupin:
F2422/01: Čt 13:00–13:50 F2 6/2012, M. Chrastina
F2422/02: St 16:00–16:50 F1 6/1014, M. Bureš
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy; získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky.
Osnova
  • 1. Dvojný a trojný integrál, metody výpočtu, geometrické a fyzikální aplikace (opakování).
  • 2. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 5. Praktické výpočty plošných integrálů.
  • 6. Integrální věty.
  • 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 8. Aplikace integrálních vět v mechanice kontinua.
  • 9. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 10. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 11. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Metody hodnocení
klasifikovaný zápočet (tři písemné testy v průběhu semestru, domácí úkoly, povinnost navštěvovat výuku (tento požadavek lze nahradit vypracováním příkladů))
Informace učitele

Požadavky pro úspěšné ukončení předmětu pro studenty prezenční formy studia:

  1. Absolvování tří písemek, termíny budou oznámeny alespoň dva týdny předem. Každá písemka je klasifikována podle stupnice uvedené ve Studijním a zkušebním řádu MU. Pro úspěšné ukončení předmětu je třeba, aby stupněm F byla hodnocena nejvýše jedna písemka. K dosažení hodnocení alespoň E na dané písemce je třeba získat nejméně 50 procent z maximálního počtu bodů. Výsledná klasifikace předmětu se stanoví jako průměr hodnocení jednotlivých písemek.
  2. Odevzdání domácích úkolů. Úkoly budou ukládány na konci každého cvičení v rozsahu dvou příkladů. Každý úkol je možno opravovat nejvýše jednou. Domácí úkoly a jejich opravy je nutné odevzdávat vždy do týdne po uplynutí příslušného cvičení. Výjimku tvoří pouze omluvitelné situace, jako je například nemoc podložená lékařským potvrzením nebo nekonání výuky; v takovém případě je třeba odevzdat úkoly v bezprostředně následující výuce předmětu.
  3. Účast na všech cvičeních. Tento požadavek lze nahradit vypracováním dvou náhradních příkladů za každé cvičení. Každý soubor náhradních příkladů lze opravovat nejvýše jednou. Náhradní příklady za neúčasti ve cvičení je nutno odevzdat do 21. června 2009.
Porušení pravidel 1. až 3. bude posuzováno individuálně v průběhu zkouškového období. Termín opravné písemky bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním květnovém týdnu 2009.
Požadavky pro úspěšné ukončení předmětu pro studenty kombinované formy studia (studenti kombinované formy mohou též zvolit jako alternativu požadavky pro studenty prezenční formy):
  1. Absolvování závěrečné písemky pokrývající látku celého semestru. Písemka bude obsahovat tři odděleně klasifikované tematické části (viz dílčí písemky pro prezenční formu). Klasifikace je dána stupnicí uvedenou ve Studijním a zkušebním řádu MU. Písemka je úspěšná pouze v případě, že nejvýše jedna z jejích částí je hodnocena stupněm F. Další pravidla klasifikace jsou shodná s pravidly pro prezenční formu. Výsledná klasifikace předmětu je stanovena jako průměr známek za jednotlivé části písemky. Termín písemky bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním květnovém týdnu 2009.
  2. Odevzdání domácích úkolů shodných s úkoly pro prezenční formu. Každý domácí úkol lze opravovat nejvýše jednou.
  3. Odevzdání náhradních příkladů za neúčasti ve cvičení (dva příklady za každé cvičení). Každý soubor náhradních příkladů lze opravovat nejvýše jednou.
  4. Domácí úkoly i příklady za neúčasti ve cvičení je nutno odevzdat do 21. června 2009. Způsob zveřejňování příkladů bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním březnovém týdnu 2009.
Porušení pravidel 1. až 4. bude posuzováno individuálně v průběhu zkouškového období.
Dodatečné informace k ukončení předmětu jsou od 21.4.2009 k dispozici na stránce http://physics.muni.cz/~czudkova/
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2008
Rozsah
2/1. 4 kr. (příf plus uk plus > 4). Ukončení: kz.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Mgr. Marek Chrastina, Ph.D. (cvičící)
Mgr. Martin Bureš, Ph.D. (cvičící)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Rozvrh
Pá 12:00–13:50 F1 6/1014
  • Rozvrh seminárních/paralelních skupin:
F2422/01: St 16:00–16:50 F3,03015, M. Chrastina
F2422/02: Út 12:00–12:50 F4,03017, M. Chrastina
F2422/03: St 13:00–13:50 F4,03017, M. Bureš
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
Osnova
  • 1. Dvojný a trojný integrál, metody výpočtu, geometrické a fyzikální aplikace (opakování). 2. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice. 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti). 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou). 5. Praktické výpočty plošných integrálů. 6. Integrální věty. 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic. 8. Aplikace integrálních vět v mechanice kontinua. 9. Řady funkcí: Taylorova řada, aplikace (odhady). 10. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu). 11. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Metody hodnocení
přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Informace učitele

Požadavky pro úspěšné ukončení předmětu pro studenty prezenční formy:

  1. Absolvování tří písemek, termíny budou oznámeny alespoň dva týdny předem. Každá písemka je klasifikována podle stupnice uvedené ve Studijním a zkušebním řádu MU. Pro úspěšné ukončení předmětu je třeba, aby stupněm F byla hodnocena nejvýše jedna písemka. K dosažení hodnocení alespoň E na dané písemce je třeba získat nejméně 50 procent z maximálního počtu bodů. Výsledná klasifikace předmětu se stanoví jako průměr hodnocení jednotlivých písemek.
  2. Odevzdání domácích úkolů. Úkoly budou ukládány na konci každého cvičení v rozsahu dvou příkladů a odevzdávány nejpozději v násedujícím cvičení (výjimkou je pouze nemoc podložená pracovní neschopností nebo odpadnutí výuky (např. státní svátky) - v tom případě je nutné úlohu odevzdat v bezprostředně navazujícím cvičení). Každý úkol je možno opravovat nejvýše jednou.
  3. Účast na všech cvičeních. Tento požadavek lze nahradit vypracováním dvou náhradních příkladů za každé cvičení. Každý soubor náhradních příkladů lze opravovat nejvýše jednou. Náhradní příklady za neúčasti ve cvičení je nutno odevzdat do 20. června 2008.
  4. Dodatečné informace k ukončení předmětu jsou k dispozici na stránce http://physics.muni.cz/~czudkova/, položka "Výuka".
Požadavky pro úspěšné ukončení předmětu pro studenty kombinované formy (studenti kombinované formy mohou též zvolit jako alternativu požadavky pro studenty prezenční formy):
  1. Absolvování závěrečné písemky pokrývající látku celého semestru. Písemka bude obsahovat tři odděleně klasifikované tematické části. Klasifikace je dána stupnicí uvedenou ve Studijním a zkušebním řádu MU. Písemka je úspěšná pouze v případě, že nejvýše jedna z jejích částí je hodnocena stupněm F. Další pravidla klasifikace jsou shodná s pravidly pro prezenční formu. Výsledná klasifikace předmětu je stanovena jako průměr známek za jednotlivé části písemky. Termín písemky bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním květnovém týdnu 2008.
  2. Odevzdání domácích úkolů shodných s úkoly pro prezenční formu. Každý domácí úkol lze opravovat nejvýše jednou.
  3. Odevzdání náhradních příkladů za neúčasti ve cvičení (dva příklady za každé cvičení). Každý soubor náhradních příkladů lze opravovat nejvýše jednou.
  4. Domácí úkoly i příklady za neúčasti ve cvičení je nutno odevzdat do 20. června 2008. Způsob zveřejňování příkladů bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním březnovém týdnu 2008.
  5. Dodatečné informace k ukončení předmětu jsou k dispozici na stránce http://physics.muni.cz/~czudkova/, položka "Výuka".
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2007
Rozsah
2/1. 4 kr. (příf plus uk plus > 4). Ukončení: kz.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Mgr. Marek Chrastina, Ph.D. (cvičící)
Mgr. Tomáš Nečas, Ph.D. (cvičící)
Mgr. Roman Šteigl, Ph.D. (cvičící)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Rozvrh
St 11:00–12:50 F2 6/2012
  • Rozvrh seminárních/paralelních skupin:
F2422/01: Čt 14:00–14:50 F4,03017, M. Chrastina
F2422/02: Čt 16:00–16:50 F4,03017, T. Nečas
F2422/03: Čt 12:00–12:50 F3,03015, R. Šteigl
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
Osnova
  • 1. Dvojný a trojný integrál, metody výpočtu, geometrické a fyzikální aplikace (opakování). 2. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice. 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti). 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou). 5. Praktické výpočty plošných integrálů. 6. Integrální věty. 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic. 8. Aplikace integrálních vět v mechanice kontinua. 9. Řady funkcí: Taylorova řada, aplikace (odhady). 10. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu). 11. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Metody hodnocení
přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Informace učitele
Požadavky pro získání zápočtu pro studenty prezenční formy: (1) účast ve všech cvičeních (neúčast v příslušném cvičení lze nahradit vyřešením a odevzdáním příkladů stanovených cvičícím učitelem), (2) vypracování domácích úkolů (celkem 20 příkladů za semestr) zveřejněných nejpozději v den příslušného cvičení; příklady je nutno odevzdávat průběžně, nejpozději dva týdny po proběhnutí příslušného cvičení (3) získání nejméně 50 procent v součtu dosažitelných bodů na třech písemkách oznámených alespoň dva týdny předem; na každou z nich lze získat maximálně 10 bodů; hodnocení písemek: 30-25 bodů A, 20-24 bodů C, 15-19 bodů E, méně než 15 bodů nebo nesplnění požadavků (1) a (2) F. Požadavky pro získání zápočtu pro studenty kombinované formy, nezvolí-li jako možnou alternativu požadavky pro studenty prezenční formy: (1) vyřešení náhradních příkladů za neúčasti ve cvičení (2} vypracování domácích úloh (celkem 20 příkladů za semestr) (3) napsání závěrečné písemky pokrývající látku celého semestru (úspěšnost alespoň 50 procent v součtu dosažitelných bodů). Požadavky (1) a (2) je nutné splnit do konce semestru. Způsob zveřejňování příkladů za neúčasti ve cvičení a domácích úkolů oznámí učitel příslušné seminární skupiny hromadným mailem prostřednictvím Informačního systému nejpozději v průběhu března 2007. Stejným způsobem budou s dostatečným předstihem (v průběhu května 2007) oznámeny také termíny závěrečné písemky.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2006
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: kz.
Vyučující
Mgr. Lenka Czudková, Ph.D. (cvičící)
Mgr. Ondřej Přibyla (cvičící)
prof. RNDr. Jana Musilová, CSc. (přednášející)
Mgr. Tomáš Nečas, Ph.D. (cvičící)
Mgr. Roman Šteigl, Ph.D. (cvičící)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Rozvrh
Čt 15:00–16:50 F1 6/1014
  • Rozvrh seminárních/paralelních skupin:
F2422/01: Čt 17:00–17:50 F3,03015, L. Czudková
F2422/02: Po 8:00–8:50 F2 6/2012, J. Musilová, T. Nečas
F2422/03: Po 11:00–11:50 F1 6/1014, J. Musilová, O. Přibyla
F2422/04: St 18:00–18:50 F1 6/1014, J. Musilová, R. Šteigl
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty, diferenciální rovnice). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
Osnova
  • 1. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice. 2. Kvadratické plochy a jejich klasifikace, fyzikální aplikace. 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, tenzor momentu setrvačnosti). 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou). 5. Praktické výpočty plošných integrálů. 6. Integrální věty. 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic. 8. Aplikace integrálních vět v mechanice kontinua. 9. Řady funkcí: Taylorova řada, aplikace (odhady). 10. Řady funkcí: Fourierova řada, aplikace (obsah harmonických v periodickém signálu). 11. Integrální transformace (základní vlastnosti): Laplaceova a Fourierova transformace, aplikace (řešení diferenciálních rovnic). 12. Některé aspekty řešení diferenciálních rovnic. 13. Rezerva - státní svátky.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Metody hodnocení
přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Informace učitele
Požadavky pro získání zápočtu pro studenty prezenční formy: (1) účast ve všech cvičeních (neúčast v příslušném cvičení lze nahradit vyřešením a odevzdáním příkladů stanovených cvičícím učitelem), (2) vypracování domácích úkolů (celkem 20 příkladů za semestr) zveřejněných nejpozději v den příslušného cvičení; příklady je nutno odevzdávat průběžně, nejpozději dva týdny po proběhnutí příslušného cvičení (3) získání nejméně 50 procent v součtu dosažitelných bodů na třech písemkách oznámených alespoň dva týdny předem; na každou z nich lze získat maximálně 10 bodů; hodnocení písemek: 30-25 bodů A, 20-24 bodů C, 15-19 bodů E, méně než 15 bodů nebo nesplnění požadavků (1) a (2) F. Požadavky pro získání zápočtu pro studenty kombinované formy, nezvolí-li jako možnou alternativu požadavky pro studenty prezenční formy: (1) vyřešení náhradních příkladů za neúčasti ve cvičení (2} vypracování domácích úloh (celkem 20 příkladů za semestr) (3) napsání závěrečné písemky pokrývající látku celého semestru (úspěšnost alespoň 50 procent v součtu dosažitelných bodů). Požadavky (1) a (2) je nutné splnit do konce semestru, způsob zveřejňování příkladů za neúčasti ve cvičení a domácích úkolů oznámí učitel příslušné seminární skupiny hromadným mailem prostřednictvím Informačního systému. Stejným způsobem budou s dostatečným předstihem (v průběhu května 2006) oznámeny také termíny závěrečné písemky.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2005
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: kz.
Vyučující
Mgr. Pavla Musilová, Ph.D. (přednášející)
Mgr. Ondřej Přibyla (pomocník)
Mgr. Petr Velan (cvičící)
doc. Mgr. Josef Klusoň, Ph.D., DSc. (cvičící)
Mgr. Martin Netolický (cvičící)
Mgr. Roman Šteigl, Ph.D. (cvičící)
Mgr. Martin Mráz (pomocník)
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Pavla Musilová, Ph.D.
Rozvrh
St 11:00–12:50 U-aula
  • Rozvrh seminárních/paralelních skupin:
F2422/01: Po 8:00–9:50 F23-106, M. Netolický
F2422/02: Po 17:00–18:50 F23-109, R. Šteigl
F2422/03: Út 15:00–16:50 F23-106, J. Klusoň
F2422/04: Út 10:00–11:50 F23-106, P. Velan
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty, diferenciální rovnice). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
Osnova
  • 1. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice. 2. Kvadratické plochy a jejich klasifikace, fyzikální aplikace. 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, tenzor momentu setrvačnosti). 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou). 5. Praktické výpočty plošných integrálů. 6. Integrální věty. 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic. 8. Aplikace integrálních vět v mechanice kontinua. 9. Řady funkcí: Taylorova řada, aplikace (odhady). 10. Řady funkcí: Fourierova řada, aplikace (obsah harmonických v periodickém signálu). 11. Integrální transformace (základní vlastnosti): Laplaceova a Fourierova transformace, aplikace (řešení diferenciálních rovnic). 12. Některé aspekty řešení diferenciálních rovnic. 13. Rezerva - státní svátky.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Metody hodnocení
přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Informace učitele
Podrobné informace na http://www.physics.muni.cz/~pavla/teaching.php Požadavky k získání zápočtu: (1) účast ve cvičení (neúčast v každém cvičení lze nahradit vyřešením a odevzdáním příkladů stanovených cvičícím učitelem), (2) získání nejméně 50 procent dosažitelných bodů na písemkách. písemek), (3) odevzdání průběžně zadávaných domácích úkolů dle pokynů cvičícího učitele.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2004
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: kz.
Vyučující
Mgr. Pavla Musilová, Ph.D. (cvičící)
Mgr. Ondřej Přibyla (cvičící)
prof. RNDr. Jana Musilová, CSc. (přednášející)
Mgr. Anna Campbellová, Ph.D. (cvičící)
doc. Mgr. Josef Klusoň, Ph.D., DSc. (cvičící)
Mgr. Aleš Paták, Ph.D. (cvičící)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Rozvrh seminárních/paralelních skupin
F2422/01: Rozvrh nebyl do ISu vložen. A. Paták
F2422/02: Rozvrh nebyl do ISu vložen. J. Klusoň
F2422/03: Rozvrh nebyl do ISu vložen. O. Přibyla
F2422/04: Rozvrh nebyl do ISu vložen. A. Campbellová
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty, diferenciální rovnice). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
Osnova
  • 1. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice. 2. Kvadratické plochy a jejich klasifikace, fyzikální aplikace. 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, tenzor momentu setrvačnosti). 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou). 5. Praktické výpočty plošných integrálů. 6. Integrální věty. 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic. 8. Aplikace integrálních vět v mechanice kontinua. 9. Řady funkcí: Taylorova řada, aplikace (odhady). 10. Řady funkcí: Fourierova řada, aplikace (obsah harmonických v periodickém signálu). 11. Integrální transformace (základní vlastnosti): Laplaceova a Fourierova transformace, aplikace (řešení diferenciálních rovnic). 12. Některé aspekty řešení diferenciálních rovnic. 13. Rezerva - státní svátky.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Metody hodnocení
přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Informace učitele
Požadavky k získání zápočtu: (1) účast ve cvičení (neúčast v každém cvičení lze nahradit vyřešením a odevzdáním příkladů stanovených cvičícím učitelem), (2) získání nejméně 50 procent dosažitelných bodů na písemkách (celkový součet ze všech písemek), (3) odevzdání průběžně zadávaných domácích úkolů dle pokynů cvičícího učitele.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve Fyzice 2

Přírodovědecká fakulta
jaro 2003
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: kz.
Vyučující
Mgr. Pavla Musilová, Ph.D. (cvičící)
Mgr. Ondřej Přibyla (cvičící)
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jana Musilová, CSc.
Rozvrh seminárních/paralelních skupin
F2422/01: Rozvrh nebyl do ISu vložen. P. Musilová, O. Přibyla
F2422/02: Rozvrh nebyl do ISu vložen. P. Musilová, O. Přibyla
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, křivkový a plošný integrál, integrální věty, diferenciální rovnice). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
Osnova
  • 1. Základní operace se skalárními a vektorovými funkcemi více proměnných, derivace v daném směru, gradient, divergence, rotace. 2. Dvojný a trojný integrál, Fubiniova věta, věta o transformaci integrálu. 3. Úplný diferenciál funkcí více proměnných. 4. Křivkový integrál prvého a druhého druhu, práce silového pole. 5. Plošný integrál prvého a druhého druhu, tok vektorového pole plochou. 6. Integrální věty. 7. Fyzikální aplikace integrálu. Integrální a diferenciální tvar Maxwellových rovnic. 8. Aplikace integrálních vět v mechanice kontinua. 9. Fourierova řada, aplikace. 10.,11. Některé aspekty řešení diferenciálních rovnic.
Metody hodnocení
přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Informace učitele
Požadavky k získání zápočtu: (1) účast ve cvičení nejméně 75 procent, (2) získání nejméně 50 procent dosažitelných bodů na písemkách (celkový součet ze všech písemek), (3) odevzdání průběžně zadávaných domácích úkolů dle pokynů cvičícího učitele.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve Fyzice 2

Přírodovědecká fakulta
jaro 2002
Rozsah
2/1. 4 kr. Ukončení: kz.
Vyučující
doc. Franz Hinterleitner, Ph.D. (přednášející)
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Franz Hinterleitner, Ph.D.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Základy vektorové analýzy: vektorové funkce v R^3, definice divergence, rotace, Laplaceova operátoru, pojem tenzoru, identity pro operátory vektorové analýzy; orientované integrační obory a jejich orientované okraje, integralní věty: Gaussova, Greeneova, Stokesova věta; jednoduché příklady Hamiltonových-Jacobiho diferenciálních rovnic, součtový ansatz k separaci proměnných; přehled o lineárních parciálních diferenciálních rovnic druheho řadu, součinový ansatz, příklady: jednorozměrné vedení tepla, jednorozměrná vlnová rovnice, Poissonova rovnice, Keplerův problém; metoda řešení diferenciálních rovnic pomoci Greenovy funkce.
Osnova
  • Základy vektorové analýzy: vektorové funkce v R^3, definice divergence, rotace, Laplaceova operátoru, pojem tenzoru, identity pro operátory vektorové analýzy; orientované integrační obory a jejich orientované okraje, integralní věty: Gaussova, Greeneova, Stokesova věta; jednoduché příklady Hamiltonových-Jacobiho diferenciálních rovnic, součtový ansatz k separaci proměnných; přehled o lineárních parciálních diferenciálních rovnic druheho řadu, součinový ansatz, příklady: jednorozměrné vedení tepla, jednorozměrná vlnová rovnice, Poissonova rovnice, Keplerův problém; metoda řešení diferenciálních rovnic pomoci Greenovy funkce.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná a ústní zkouška.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2011 - akreditace
Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
prof. RNDr. Jana Musilová, CSc. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná a ústní zkouška.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2008 - akreditace
Rozsah
2/1. 4 kr. (příf plus uk plus > 4). Ukončení: kz.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Mgr. Marek Chrastina, Ph.D. (cvičící)
Mgr. Roman Šteigl, Ph.D. (cvičící)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
Osnova
  • 1. Dvojný a trojný integrál, metody výpočtu, geometrické a fyzikální aplikace (opakování). 2. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice. 3. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti). 4. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou). 5. Praktické výpočty plošných integrálů. 6. Integrální věty. 7. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic. 8. Aplikace integrálních vět v mechanice kontinua. 9. Řady funkcí: Taylorova řada, aplikace (odhady). 10. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu). 11. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Metody hodnocení
přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Informace učitele
Požadavky pro získání zápočtu pro studenty prezenční formy: (1) účast ve všech cvičeních (neúčast v příslušném cvičení lze nahradit vyřešením a odevzdáním příkladů stanovených cvičícím učitelem), (2) vypracování domácích úkolů (celkem 20 příkladů za semestr) zveřejněných nejpozději v den příslušného cvičení; příklady je nutno odevzdávat průběžně, nejpozději dva týdny po proběhnutí příslušného cvičení (3) získání nejméně 50 procent v součtu dosažitelných bodů na třech písemkách oznámených alespoň dva týdny předem; na každou z nich lze získat maximálně 10 bodů; hodnocení písemek: 30-25 bodů A, 20-24 bodů C, 15-19 bodů E, méně než 15 bodů nebo nesplnění požadavků (1) a (2) F. Požadavky pro získání zápočtu pro studenty kombinované formy, nezvolí-li jako možnou alternativu požadavky pro studenty prezenční formy: (1) vyřešení náhradních příkladů za neúčasti ve cvičení (2} vypracování domácích úloh (celkem 20 příkladů za semestr) (3) napsání závěrečné písemky pokrývající látku celého semestru (úspěšnost alespoň 50 procent v součtu dosažitelných bodů). Požadavky (1) a (2) je nutné splnit do konce semestru. Způsob zveřejňování příkladů za neúčasti ve cvičení a domácích úkolů oznámí učitel příslušné seminární skupiny hromadným mailem prostřednictvím Informačního systému nejpozději v průběhu března 2007. Stejným způsobem budou s dostatečným předstihem (v průběhu května 2007) oznámeny také termíny závěrečné písemky.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.