FI:IB107 Computability and Complexity - Course Information
IB107 Computability and Complexity
Faculty of InformaticsAutumn 2008
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
RNDr. Jakub Chaloupka, Ph.D. (assistant)
RNDr. Pavel Šimeček, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Thu 9:00–11:50 A107
- Timetable of Seminar Groups:
IB107/02: Tue 18:00–18:50 B204, J. Chaloupka
IB107/04: Mon 12:00–12:50 B011, P. Šimeček
IB107/05: Mon 13:00–13:50 B011, P. Šimeček - Prerequisites (in Czech)
- IB005 Formal languages and Automata || IB102 Automata and Grammars
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course introduces basic approaches and methods for classification
of problems with respect to their algorithmic solvability. It explores
theoretical and practical limits of computers usage and consequences
these limitations have for advancing information technologies.
The main goals are: to understand basic notions of computabillity and complexity; to understand the main techniquies used to classify problems (reductions, diagonalization, closure properties). - Syllabus
- Problems and algorithms.
- Algorithms and models of computation. Basic models of computation. Church thesis.
- Classification of problems. Decidable, undecidable and partially decidable problems.
- Closure properties. Post correspondence problem. Selected undecidable problems in the theory of languages.
- Computational complexity. Feasible and unfeasible problems. Polynomial computational thesis.
- Reduction a completness in problem classes. Many-one reduction and polynomial reduction. Complete problems with respect to decidability, NP-complete problems. Applications.
- Non-sequential models of computation. Parallel computational thesis.
- Literature
- KOZEN, Dexter C. Automata and computability. New York: Springer, 1997, xiii, 400. ISBN 0387949070. info
- SIPSER, Michael. Introduction to the theory of computation. Boston: PWS Publishing Company, 1997, xv, 396 s. ISBN 0-534-94728-X. info
- BOVET, D. and Pierluigi CRESCENZI. Introduction to the theory of complexity. New York: Prentice-Hall, 1994, xi, 282 s. ISBN 0-13-915380-2. info
- KFOURY, A. J., Robert N. MOLL and Michael A. ARBIB. A programming approach to computability. New York: Springer-Verlag, 1982, viii, 251. ISBN 0-387-90743-2. info
- Assessment methods
- The course has a form of a lecture with a seminar. During the term students are assigned homeworks. The course is concluded by the written exam. Student can attend the final exam providing she/he has acquired given number of points from homeworks.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IB107
- Enrolment Statistics (Autumn 2008, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2008/IB107