FI:MA004 Linear Algebra and Geometry II - Course Information
MA004 Linear Algebra and Geometry II
Faculty of InformaticsSpring 2004
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Faculty of Informatics
Contact Person: doc. RNDr. Martin Čadek, CSc. - Timetable
- Thu 14:00–15:50 U5
- Prerequisites
- MB003 Linear Algebra and Geometry I
Prerequisites MB003 Linear Algebra and Geometry I - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, M-IN)
- Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS)
- Course objectives
- The aim of this second course in linear algebra is to introduce other basic notions such as affine and projective spaces, bilinear and quadratic forms, eingenvalues and eigenvectors of linear operators. In more details the spaces with scalar product and properties of orthogonal and selfadjoint operators are examined. All is applied in affine and Euclidean geometry. At the end we deal with the Jordan canonical form.
- Syllabus
- Affine geometry: affine spaces and subspaces, affine geometry and affine mappings. Linear forms: dual space, dual basis, dual homomorphism. Bilinear and quadratic forms: definition, matrix with respect to given basis, diagonalization, signature. Euklidean geometry: orthogonal projection, distance and deviation of affine subspaces. Linear operators: invariant subspaces, eigenvalues and eigen vectors, charakteristic polynomial, algebraic and geometric multiplicity of eigenvalues, conditions for diagonalization. Ortogonal a unitar operators: definition and basic properties, eigenvalues, geometric meaning. Self adjoint operators: adjoint operator, symmetric and hermitian matrices, spectral decomposition. Jordan canonical form: nilpotent endomorphisms, root subspaces, computations.
- Literature
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita,1998. 138. elektronicky dostupné na
http://www.math.muni.cz/~slovak . - Zlatoš, Pavol. Lineárna algebra a geometria. Předběžné učební texty MFF UK v Bratislavě.
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita,1998. 138. elektronicky dostupné na
- Assessment methods (in Czech)
- Početní a teoretické zvládnutí přednesené látky (porozumnění základním pojmům a větám, jednoduché důkazy).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~slovak http://www.math.muni.cz/~cadek
- Enrolment Statistics (Spring 2004, recent)
- Permalink: https://is.muni.cz/course/fi/spring2004/MA004