IA008 Computational Logic

Faculty of Informatics
Spring 2006
Extent and Intensity
2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
Teacher(s)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
RNDr. Jan Blaťák, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Timetable
Wed 12:00–13:50 A107 and each even Tuesday 10:00–11:50 B410
Prerequisites (in Czech)
! I008 Computational Logic
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 253 student(s).
Current registration and enrolment status: enrolled: 0/253, only registered: 0/253, only registered with preference (fields directly associated with the programme): 0/253
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
Logic as a computational tool.
Syllabus
  • Essentials of proof theory in propositional and first-order predicate logic.
  • Technical notions: trees, König lemma, formulae analysis, abstract truth-tables, clausal form.
  • Proofs in the propositional logic: system G, soundness, completeness, proof structure, compactness, cut elimination; resolution, refinements of the resolution, Horn clauses, SLD-resolution.
  • Proof in the propositional logic: substitution, system G, compatness, Skolem-Löwenheim theorem, Herbrand theorem; prenex form, Skolemization, unification, resolution and its refinements, Horn clauses, SLD-resolution.
  • Logic programming: SLD-serching, SLD-resolution trees, semantics. Prolog. Metanterpreters.
  • Datalog and deductive databases
  • Inductive logic programming.
  • Modal logic, nonmonotonic inference, many-valued logic, inference with uncertainty
Literature
  • NERODE, Anil and Richard A. SHORE. Logic for applications. New York: Springer-Verlag, 1993, xvii, 365. ISBN 0387941290. info
  • FITTING, Melvin. First order logic and automated theorem proving. 2nd ed. New York: Springer, 1996, xvi, 326. ISBN 0387945938. info
  • NIENHUYS-CHENG, Shan-Hwei and Ronald de WOLF. Foundations of inductive logic programming. Berlin: Springer, 1997, xvii, 404. ISBN 3540629270. info
Assessment methods (in Czech)
Předmět je ukončen písemnou zkouškou formou testu.
Language of instruction
English
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2003, Spring 2004, Spring 2005, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2006, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2006/IA008