PřF:M3501 Mathematical Analysis 3 - Course Information
M3501 Mathematical Analysis 3
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/2/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- prof. RNDr. Zuzana Došlá, DSc. (lecturer)
RNDr. Bc. Jiří Rosenberg (seminar tutor) - Guaranteed by
- doc. RNDr. Eduard Fuchs, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 11:00–12:50 M1,01017
- Timetable of Seminar Groups:
M3501/02: Mon 12:00–13:50 MS1,01016, J. Rosenberg - Prerequisites
- Mathematical Analysis 1 (M1510), Mathematical Analysis 2 (M2510)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics with a view to Education (programme PřF, B-MA)
- Upper Secondary School Teacher Training in Mathematics (programme PřF, M-MA)
- Upper Secondary School Teacher Training in Mathematics (programme PřF, M-SS)
- Course objectives
- The aim of the course is to familiarize the student with the elementary methods of the solution of the basic types of ordinary differential equations, with the fundamentals of the theory of metric spaces and with the introductory parts of differential calculus in more variables. After passing the course, the student will be able to solve selected types of ordinary differential equations and to understand and explain basic notions and techniques of the above-mentioned fields of mathematics including their mutual context.
- Syllabus
- Ordinary differential equations: elementary methods of solution of first order differential equations, higher order linear differential equations with constant coefficients. Metric spaces: metrics, convergence, closure, boundary and interior of a set, continuous mapping, compact set, Banach contraction principle. Differential calculcus of functions of several variables: limits, continuity, partial derivatives, differential.
- Literature
- RÁB, Miloš. Metody řešení obyčejných diferenciálních rovnic. 3. vyd. Brno: Masarykova univerzita, 2004, ii, 96. ISBN 8021034165. info
- Diferenciální počet. Edited by Vojtěch Jarník. Vyd. 3., dopl. Praha: Academia, 1976, 669 s. URL info
- DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Metrické prostory : teorie a příklady. 1. dotisk 2. přeprac. vyd. Brno: Masarykova univerzita, 2000, [iii], 83. ISBN 8021013281. info
- DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vyd. 2. přeprac. Brno: Masarykova univerzita, 1999, iv, 143. ISBN 8021020520. info
- PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
- Teaching methods
- Standard lectute and excersise in mathematical analysis.
- Assessment methods
- Teaching: lectures 2 hours a week, seminar 2 hours a week. Completion: credit written exam.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2009, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2009/M3501