PřF:F5330 Basic numerical methods - Course Information
F5330 Basic numerical methods
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 1/1/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. Jiří Chaloupka, Ph.D. (lecturer)
doc. Mgr. Jiří Chaloupka, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Josef Humlíček, CSc.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Jiří Chaloupka, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science - Timetable
- Fri 10:00–10:50 Fs1 6/1017, Fri 11:00–11:50 Fs1 6/1017
- Prerequisites
- Knowledge of the programming (Pascal,Fortran, C,C++)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Course objectives
- The course presents to students knowledge on basic numerical methods
of calculus and linear algebra.
After successful passing of the course the students should be able to
- list and describe basic numerical methods lectured
- successfully apply these methods for solving a specified problem. - Syllabus
- 1. number representation in a computer, errors in numerical calculations, stability of the algorithms, ill-posed problems
- 2. solution of nonlinear equations with a single variable (bisection, secant method, Ridders' method, Newton-Raphson method)
- 3. minimization and maximalization in one dimension
- 4. interpolating polynomials
- 5. numerical quadrature (classical rules, Romberg quadrature, improper integrals, multidimensional integrals)
- 6. initial value problems for ordinary differetial equations and their systems (Euler's method, methods of Runge-Kutta type)
- 7. linear systems of equations (Gaussian elimination method, LU decomposition, Cholesky decomposition, iterative methods for sparse matrices)
- 8. eigenvalues and eigenvectors of matrices (Jacobi method)
- 9. systems of nonlinear equations (Newton-Raphson method)
- 10. boundary value problems for ordinary differential equations
- 11. partial differential equations (Laplace equation, heat conduction)
- Literature
- MÍKA, Stanislav. Numerické metody algebry. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1982, 169 s. info
- HUMLÍČEK, Josef. Základní metody numerické matematiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1981, 171 s. info
- CELÝ, Jan. Programové moduly pro fyzikální výpočty. 1. vyd. Brno: Rektorát UJEP, 1985, 99 s. info
- PRESS, William H. Numerical recipes in C : the art of scientific computing. 2nd ed. Cambridge: Cambridge University Press, 1992, xxvi, 994. ISBN 0521431085. info
- MARČUK, Gurij Ivanovič. Metody numerické matematiky. Vyd. 1. Praha: Academia, 1987, 528 s. URL info
- CELÝ, Jan. Řešení fyzikálních úloh na mikropočítačích. 1. vyd. Brno: Rektorát Masarykovy university, 1990, 108 s. ISBN 8021001267. info
- PANG, Tao. An introduction to computational physics. 2nd ed. Cambridge: Cambridge University Press, 2006, xv, 385. ISBN 0521825695. info
- Teaching methods
- Lecture + individual work on PC.
- Assessment methods
- Requirements for credit: knowledge on topics presented in the lectures + discussion of worked out programs.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.physics.muni.cz/~chaloupka/F5330/
- Enrolment Statistics (Autumn 2015, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2015/F5330