PřF:M7180 Functional Analysis II - Course Information
M7180 Functional Analysis II
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
doc. RNDr. Michal Veselý, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- The final oral exam (60 minutes) for 20 points. For successfull examination (the grade at least E), the student needs 10 points or more.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years.
- Enrolment Statistics (Autumn 2019, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2019/M7180