Machine learning and natural language processing
doc. Mgr. Bc. Vít Nováček, PhD
Machine learning and natural language processing
Info
Období
podzim 2023

QUESTIONS AND TASKS:

  • Natural language (pre)processing techniques (the "classical" NLP pipeline)

  • Classes of machine learning algorithms, examples of models representing the classes

  • Typical machine learning pipeline

  • Typical applications of machine learning - a selection of examples, detailed description of one approach

  • Bag of words representation of text - pros and cons

  • Distributional hypothesis - historical context, linguistic motivations and practical implementations

  • Distributional vs. formal semantics

  • Word embeddings - the basic principles, example of a specific technique, pros and cons

  • Latent semantic analysis - basic principles, pros and cons

  • Document classification and text clustering

  • Perceptron - motivation and basic principles

  • Deep learning - description of the approach, and how does it differ from other machine learning techniques

  • Gradient descent and back-propagation - motivation and basic principles

  • Feed-forward neural networks - basic principles, pros and cons

  • Convolutional neural networks - basic principles, pros and cons

  • Recurrent neural networks - basic principles, pros and cons

  • Vanishing/exploding gradients and how to deal with them - description of a selected approach

  • Encoder-decoder architecture - basic principles

  • LSTM architecture - motivation and basic principles

  • Attention mechanism - motivation and basic principles

  • Transformer architecture - motivation and basic principles

  • Basic principles of language models (both traditional and neural ones)

  • Training language models - typical approaches and architecture of the models

  • Evaluation of standard machine learning models - description of the process and an example of an evaluation metric

  • Evaluation of language models - description of the process and an example of an evaluation metric

  • Typical applications of language models - a selection of examples, detailed description of one approach

  • Sentiment analysis - the problem addressed, justification of its practical relevance, general description of typical approaches

  • Detailed overview of a selected lexicon-based approach to sentiment analysis

  • Detailed overview of a selected classical machine learning approach to sentiment analysis

  • Detailed overview of a selected deep learning approach to sentiment analysis

  • Comparison of lexicon-based, classical machine learning and deep learning approaches to sentiment analysis

  • Basic principles of knowledge representation

  • Ontologies vs. knowledge graphs - pros and cons of each approach to knowledge representation

  • The stack of typical tasks in ontology learning

  • Main challenges and open problems of ontology learning

  • Techniques used for term extraction, synonym discovery and concept formation

  • Techniques used for taxonomy extraction

  • Techniques used for relation, rule and axiom extraction

  • Overview of a selected deep learning approach to knowledge extraction

Kapitola obsahuje:
1
Další soubory
1
PDF
1
Studijní text
1
Web
Učitel doporučuje studovat od 18. 9. 2023 do 24. 9. 2023.
Kapitola obsahuje:
1
Další soubory
1
PDF
1
Studijní text
Učitel doporučuje studovat od 25. 9. 2023 do 1. 10. 2023.
Kapitola obsahuje:
1
PDF
1
Studijní text
1
Web
Učitel doporučuje studovat od 2. 10. 2023 do 8. 10. 2023.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 9. 10. 2023 do 15. 10. 2023.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 16. 10. 2023 do 22. 10. 2023.
Kapitola obsahuje:
1
Další soubory
1
PDF
1
Studijní text
Učitel doporučuje studovat od 23. 10. 2023 do 29. 10. 2023.

We'll use (part of) the usual lecture slot for resolving any issues or questions you may have about posters and projects.

Učitel doporučuje studovat od 30. 10. 2023 do 5. 11. 2023.
Kapitola obsahuje:
1
Studijní text
Učitel doporučuje studovat od 6. 11. 2023 do 12. 11. 2023.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 13. 11. 2023 do 19. 11. 2023.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 20. 11. 2023 do 26. 11. 2023.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 27. 11. 2023 do 3. 12. 2023.
Kapitola obsahuje:
1
Studijní text
Učitel doporučuje studovat od 4. 12. 2023 do 10. 12. 2023.
Kapitola obsahuje:
1
Studijní text
Učitel doporučuje studovat od 11. 12. 2023 do 17. 12. 2023.
Předchozí