MB103 Mathematics III

Faculty of Informatics
Autumn 2010
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Mgr. Michal Bulant, Ph.D. (lecturer)
RNDr. Jana Komárková (seminar tutor)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Petr Pupík (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Wed 15:00–16:50 D1, Thu 17:00–18:50 D1
  • Timetable of Seminar Groups:
MB103/01: Mon 10:00–11:50 B007, M. Bulant
MB103/02: Tue 18:00–19:50 B204, M. Werl
MB103/03: Tue 16:00–17:50 B007, P. Pupík
MB103/04: Tue 18:00–19:50 B007, P. Pupík
MB103/05: Wed 10:00–11:50 B007, S. Zlatošová
MB103/06: Wed 12:00–13:50 B007, S. Zlatošová
MB103/07: Mon 8:00–9:50 B003, M. Werl
MB103/08: Mon 10:00–11:50 B003, M. Werl
MB103/09: Tue 14:00–15:50 B007, A. Novotná
MB103/10: Mon 12:00–13:50 B003, L. Mžourková Macálková
MB103/11: Mon 14:00–15:50 B003, L. Mžourková Macálková
MB103/12: Wed 12:00–13:50 B003, J. Komárková
MB103/13: Mon 16:00–17:50 B003, J. Komárková
MB103/14: Wed 8:00–9:50 B007, A. Novotná
MB103/15: No timetable has been entered into IS. A. Novotná
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 19 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002. xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000. 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999. 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994. 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987. 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979. 316 s. info
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory tutorials, the exam includes at least 2 written mid-term tests and final written test.
Language of instruction
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.
  • Enrolment Statistics (Autumn 2010, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2010/MB103