MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2019
Extent and Intensity
2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
doc. Mgr. Josef Šilhan, Ph.D. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Mgr. Martin Doležal (seminar tutor)
Mgr. Radek Suchánek (seminar tutor)
Mgr. Tomáš Svoboda (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Mgr. Stanislav Zámečník (seminar tutor)
Mgr. Jakub Záthurecký (seminar tutor)
doc. RNDr. Martin Čadek, CSc. (alternate examiner)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Tue 16:00–17:50 D1
  • Timetable of Seminar Groups:
MB103/01: Mon 14:00–15:50 B204, J. Šilhan
MB103/02: Tue 12:00–13:50 B204, J. Böhm
MB103/03: Tue 10:00–11:50 B204, M. Doležal
MB103/04: Thu 12:00–13:50 B204, R. Suchánek
MB103/05: Wed 16:00–17:50 A320, R. Suchánek
MB103/06: Thu 14:00–15:50 B204, R. Suchánek
MB103/07: Wed 10:00–11:50 B204, T. Svoboda
MB103/08: Wed 12:00–13:50 B204, T. Svoboda
MB103/09: Thu 16:00–17:50 A320, J. Záthurecký
MB103/10: Thu 18:00–19:50 A320, J. Záthurecký
MB103/11: Wed 18:00–19:50 B204, M. Doležal
! MB203 Cont. models, statistics B && ! NOW ( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 53 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994. 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001. 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002. xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999. 80 pp. ISBN 80-210-2203-5. URL info
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 18 points or more and at least 5 points for the last exam. More can be found in the IS of this course.
Language of instruction
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2019/MB103