FI:MB153 Statistics I - Course Information
MB153 Statistics I
Faculty of InformaticsSpring 2022
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Jan Koláček, Ph.D. (lecturer)
Mgr. Jan Holub (seminar tutor)
Mgr. Tereza Juchelková (seminar tutor)
Mgr. Tomáš Macháček (seminar tutor)
Mgr. Ondřej Pokora, Ph.D. (seminar tutor)
Mgr. Markéta Zoubková (seminar tutor) - Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Faculty of Informatics
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 15. 2. to Tue 10. 5. Tue 10:00–11:50 D3
- Timetable of Seminar Groups:
MB153/02: Tue 15. 2. to Tue 10. 5. Tue 18:00–19:50 A320, T. Juchelková
MB153/03: Mon 14. 2. to Mon 9. 5. Mon 12:00–13:50 A320, M. Zoubková
MB153/04: Mon 14. 2. to Mon 9. 5. Mon 14:00–15:50 A320, M. Zoubková
MB153/05: Thu 17. 2. to Thu 12. 5. Thu 18:00–19:50 A215, T. Macháček
MB153/06: Fri 18. 2. to Fri 13. 5. Fri 10:00–11:50 A215, T. Macháček
MB153/07: Wed 16. 2. to Wed 11. 5. Wed 12:00–13:50 A320, J. Holub
MB153/08: Wed 16. 2. to Wed 11. 5. Wed 14:00–15:50 A320, J. Holub
MB153/09: Wed 16. 2. to Wed 11. 5. Wed 18:00–19:50 A320, T. Juchelková - Prerequisites
- ( MB151 Linear models || MB101 Mathematics I || MB201 Linear models B || MB152 Calculus || MB102 Calculus || MB202 Calculus B ) && ( ! MB103 Cont. models and statistics && ! MB203 Cont. models, statistics B && ! MV011 Statistics I )
Prerequisites: calculus in one and several variables, basics of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 74 fields of study the course is directly associated with, display
- Course objectives
- Introductory course to educate students in descriptive statistics, theory of probability, random values and probabilistic distributions, including the theory of hypothesis testing.
- Learning outcomes
- Upon completing this course, students will be able to perform basic computer aided statistical data set analysis in R language, resulting in tables, graphs and numerical characteristics; will understand basic probability concepts; will be able to solve probability tasks related to explained theory (in some cases using statistical software); will be able to generate realizations of selected types random variables using statistical software; has basic knowledge of statistical hypothesis testing, will be able carry out tests in statistical software and interpret the results.
- Syllabus
- Introduction to the probability theory.
- Random variables and vectors. Probability distribution and distribution function.
- Discrete and continuous random variables and vectors. Typical distribution laws. Simultaneous and marginal distributions.
- Stochastic independence of random variables and vectors. The sequence of independent trials.
- Quantiles, expectation, variance, covariance, correlation coeficient and their properties.
- Weak law of large number and central limit theorem.
- Data files, empirical characteristics and graphs, numerical characteristics. Descriptive statistics in R language.
- Random sample, point and interval estimators.
- Basics of testing hypothesis. Testing hypothesis in R language.
- Regression analysis in R language.
- Literature
- recommended literature
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika I. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6710-3. url info
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika II. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6711-0. url info
- not specified
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 3rd ed. Brno: Masarykova univerzita, 2004, 127 pp. ISBN 80-210-3313-4. info
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- Teaching methods
- Lectures, Exercises
- Assessment methods
- The weekly class schedule consists of 2 hour lecture and 2 hours of class exercises. Throughout semester, students fill in question sets and solve practical task in R. The examination is written: theory and examples. Evaluation has 2 phases: 1.Filling sets of questions through the semester - 40% points. 2.Final exam - 60%. 50% of points is needed to pass.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Spring 2022, recent)
- Permalink: https://is.muni.cz/course/fi/spring2022/MB153