PřF:F5330 Basic numerical methods - Course Information
F5330 Basic numerical methods
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 1/1/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- doc. RNDr. Jan Celý, CSc. (lecturer)
doc. RNDr. Jan Celý, CSc. (seminar tutor) - Guaranteed by
- prof. RNDr. Josef Humlíček, CSc.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Jan Celý, CSc. - Timetable
- Wed 9:00–9:50 F1 6/1014, Wed 10:00–10:50 F1 6/1014
- Prerequisites
- Knowledge of the programming (Pascal,Fortran, C,C++)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Biophysics (programme PřF, M-FY)
- Physics (programme PřF, B-FY)
- Physics (programme PřF, M-FY)
- Physics (programme PřF, N-FY)
- Course objectives
- The course presents to students knowledge on basic numerical methods:
matrix operations, solving systems of linear algebraic equations and regression. Another part of the lecture deals with polynomial interpolation and solution of one-dimensional nonlinear equations.
After successful passing of the course the students should be able to
- list and describe basic numerical methods lectured
- successfully apply these methods for solving a specified problem. - Syllabus
- 1) Number representation in a computer,precision, accuracy. Errors in numerical algorithms, propagation of the errors. Stability of the algorthims. Ill-posed methods.
- 2) Systems of linear algebraic equations, direct and iterative metods.
- The Gauss elimination method, pivoting. LU decomposition.
- Systems with special matrices: The Choleski theorem and the Choleski method, tridiagonal systems.
- Iterative methods: the Jacobi method, the Gauss-Seidel method. The problem of the convergence of the iteration methods.
- 3) Eigenvalues and eigenvectors of matrices. The Jacobi-method. The Householder transformation and the QR algorithm.
- Iterative methods: the power method, convergence.
- 4) Singular value decomposition and its applications. Linear regression.
- 5) Interpolation: divided difference tables, polynomial interpolation, cubic splines.
- 6) The solution of nonlinear equations in 1D: bisection, Newton's and secant method, fixed-point iteration.
- Literature
- MÍKA, Stanislav. Numerické metody algebry. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1982, 169 s. info
- HUMLÍČEK, Josef. Základní metody numerické matematiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1981, 171 s. info
- CELÝ, Jan. Programové moduly pro fyzikální výpočty. 1. vyd. Brno: Rektorát UJEP, 1985, 99 s. info
- PRESS, William H. Numerical recipes in C : the art of scientific computing. 2nd ed. Cambridge: Cambridge University Press, 1992, xxvi, 994. ISBN 0521431085. info
- MARČUK, Gurij Ivanovič. Metody numerické matematiky. Vyd. 1. Praha: Academia, 1987, 528 s. URL info
- CELÝ, Jan. Řešení fyzikálních úloh na mikropočítačích. 1. vyd. Brno: Rektorát Masarykovy university, 1990, 108 s. ISBN 8021001267. info
- PANG, Tao. An introduction to computational physics. 2nd ed. Cambridge: Cambridge University Press, 2006, xv, 385. ISBN 0521825695. info
- Teaching methods
- Lecture + individual work on PC.
- Assessment methods
- Requirements for credit: knowledge on topics presented in the lectures + discussion of worked out programs.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.physics.muni.cz/~jancely
- Enrolment Statistics (Autumn 2009, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2009/F5330