MMOTO Elements of monoidal topology

Přírodovědecká fakulta
podzim 2012
Rozsah
6/0. 1 kr. Ukončení: k.
Vyučující
Sergejs Solovjovs, Dr., Ph.D. (přednášející)
Garance
prof. RNDr. Jan Paseka, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: Sergejs Solovjovs, Dr., Ph.D.
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 6. 11. 14:00–15:50 M3,01023, Út 13. 11. 14:00–15:50 M3,01023, Út 20. 11. 14:00–15:50 M3,01023
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Osnova
  • Monoidal topology is an approach to categorical topology based in monads and quantales. Motivated by the representation of topological spaces as lax relational algebras for the ultrafilter monad on the category of sets, it replaces the ultrafilter monad with an arbitrary monad T, and the two-element chain with a unital quantale V, thereby getting the construct (T,V)-Cat of (T,V)- categories and (T,V)-functors. Examples of these constructs include the categories of topological space, preordered sets, (probabilistic) metric spaces, closure spaces, and approach spaces. The constructs (T,V)-Cat also have convenient properties, e.g., are topological.

  • The lectures will introduce the constructs (T,V)-Cat in full detail; show how to incorporate the above-mentioned examples in their framework; describe their basic properties; and consider an example of the application of their theory to general topology, i.e., a generalization of the Kuratowski- Mrowka theorem on the equivalence between the concepts of proper and perfect map.

Literatura
  • http://www.math.muni.cz/~solovjovs/Lectures.html
Vyučovací jazyk
Angličtina
Další komentáře
Předmět je vyučován jednorázově.

  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/sci/podzim2012/MMOTO