2012
Tracking customer portrait by unsupervised classification techniques
PITNER, Tomáš, Dalia KRIKSCIUNIENE a Virgilijus SAKALAUSKASZákladní údaje
Originální název
Tracking customer portrait by unsupervised classification techniques
Autoři
PITNER, Tomáš (203 Česká republika, domácí), Dalia KRIKSCIUNIENE (440 Litva, garant, domácí) a Virgilijus SAKALAUSKAS (440 Litva)
Vydání
Transformations in Business & Economics. Kaunas Faculty of Humanitie, Vilnius, Litva, Vilnius University, 2012, 1648-4460
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Litva
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 0.459
Kód RIV
RIV/00216224:14330/12:00062000
Organizační jednotka
Fakulta informatiky
UT WoS
000311708800011
Klíčová slova anglicky
customer relationship management; CRM indicators; neural network analysis; sensitivity analysis; cluster analysis
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 4. 2013 15:48, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The problem of the research is targeted to exploring the customer-related information by analysing marketing indicators in order to substantiate the enterprise financial results. The concept of dynamic customer portrait is introduced for creating analytical model. The suggested model explores the most influential variable sets for identifying customer clusters and basis for their membership. The computational methods of neural network, sensitivity analysis and self-organized maps for unsupervised classification were applied and verified by the experimental research. The experimental research was performed by applying the suggested model for customer database of the travel agency. The analysis results were summarized and the research insights presented by analyzing the effectiveness of the method in forecasting financial outcomes related to customer mapping and migrating between clusters over the dynamic development of the customer portrait indicators.
Návaznosti
LA09016, projekt VaV |
|