2012
Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression
SILVER, Matt, Eva JANOUŠOVÁ, Xue HUA, Paul M. THOMPSON, Giovanni MONTANA et. al.Základní údaje
Originální název
Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression
Autoři
SILVER, Matt (826 Velká Británie a Severní Irsko, garant), Eva JANOUŠOVÁ (203 Česká republika, domácí), Xue HUA (840 Spojené státy), Paul M. THOMPSON (840 Spojené státy) a Giovanni MONTANA (840 Spojené státy)
Vydání
Neuroimage, Elsevier, 2012, 1053-8119
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
Genetika a molekulární biologie
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 6.252
Kód RIV
RIV/00216224:14110/12:00063448
Organizační jednotka
Lékařská fakulta
UT WoS
000310379100066
Klíčová slova anglicky
Alzheimer's disease; Imaging genetics; Atrophy; Gene pathways; Sparse regression
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 1. 2014 12:45, RNDr. Eva Koriťáková, Ph.D.
Anotace
V originále
We present a new method for the detection of gene pathways associated with a multivariate quantitative trait, and use it to identify causal pathways associated with an imaging endophenotype characteristic of longitudinal structural change in the brains of patients with Alzheimer's disease (AD). Our method, known as pathways sparse reduced-rank regression (PsRRR), uses group lasso penalised regression to jointly model the effects of genome-wide single nucleotide polymorphisms (SNPs), grouped into functional pathways using prior knowledge of gene-gene interactions. Pathways are ranked in order of importance using a resampling strategy that exploits finite sample variability. Our application study uses whole genome scans and MR images from 99 probable AD patients and 164 healthy elderly controls in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 66,182 SNPs are mapped to 185 gene pathways from the KEGG pathway database. Voxel-wise imaging signatures characteristic of AD are obtained by analysing 3D patterns of structural change at 6,12 and 24 months relative to baseline. High-ranking, AD endophenotype-associated pathways in our study include those describing insulin signalling, vascular smooth muscle contraction and focal adhesion. All of these have been previously implicated in AD biology. In a secondary analysis, we investigate SNPs and genes that may be driving pathway selection. High ranking genes include a number previously linked in gene expression studies to beta-amyloid plaque formation in the AD brain (PIK3R3,PIK3CC, PRKCA and PRKCB), and to AD related changes in hippocampal gene expression (ADCY2, ACTN1, ACACA, and GNAI1). Other high ranking previously validated AD endophenotype-related genes include CR1, TOMM40 and APOE.