J 2013

Segmentation and Shape Tracking of Whole Fluorescent Cells Based on the Chan-Vese Model

MAŠKA, Martin, Ondřej DANĚK, Saray GARASA, Ana ROUZAUT, Arrate MUÑOZ-BARRUTIA et. al.

Basic information

Original name

Segmentation and Shape Tracking of Whole Fluorescent Cells Based on the Chan-Vese Model

Authors

MAŠKA, Martin (203 Czech Republic, guarantor, belonging to the institution), Ondřej DANĚK (203 Czech Republic, belonging to the institution), Saray GARASA (724 Spain), Ana ROUZAUT (724 Spain), Arrate MUÑOZ-BARRUTIA (724 Spain) and Carlos ORTIZ-DE-SOLÓRZANO (724 Spain)

Edition

IEEE Transactions on Medical Imaging, 2013, 0278-0062

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10600 1.6 Biological sciences

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.799

RIV identification code

RIV/00216224:14330/13:00081861

Organization unit

Faculty of Informatics

UT WoS

000319701800003

Keywords in English

Cell tracking;Chan–Vese model;fluorescence microscopy;graph cut optimization;level set framework

Tags

Tags

International impact, Reviewed
Změněno: 13/4/2018 14:55, doc. RNDr. Martin Maška, Ph.D.

Abstract

V originále

We present a fast and robust approach to tracking the evolving shape of whole fluorescent cells in time-lapse series. The proposed tracking scheme involves two steps. First, coherence-enhancing diffusion filtering is applied on each frame to reduce the amount of noise and enhance flow-like structures. Second, the cell boundaries are detected by minimizing the Chan–Vese model in the fast level set-like and graph cut frameworks. To allow simultaneous tracking of multiple cells over time, both frameworks have been integrated with a topological prior exploiting the object indication function. The potential of the proposed tracking scheme and the advantages and disadvantages of both frameworks are demonstrated on 2-D and 3-D time-lapse series of rat adipose-derived mesenchymal stem cells and human lung squamous cell carcinoma cells, respectively.

Links

EE2.3.30.0009, research and development project
Name: Zaměstnáním čerstvých absolventů doktorského studia k vědecké excelenci