2012
Elongated Thrombin Binding Aptamer: A G-Quadruplex Cation-Sensitive Conformational Switch
RACHE, Aurore De, Iva KEJNOVSKÁ, Michaela VORLÍČKOVÁ a Claudine BUESS-HERMANZákladní údaje
Originální název
Elongated Thrombin Binding Aptamer: A G-Quadruplex Cation-Sensitive Conformational Switch
Autoři
RACHE, Aurore De, Iva KEJNOVSKÁ, Michaela VORLÍČKOVÁ a Claudine BUESS-HERMAN
Vydání
Chemistry - A European Journal, WEINHEIM, WILEY-VCH, 2012, 0947-6539
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10610 Biophysics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.831
Organizační jednotka
Středoevropský technologický institut
UT WoS
000302073700033
Klíčová slova anglicky
circular dichroism; DNA structures; G-quadruplexes; hexa-ammine ruthenium; thermal difference spectra
Štítky
Změněno: 6. 4. 2016 14:05, Olga Křížová
Anotace
V originále
Aptamer-based biosensors offer promising perspectives for high performance, specific detection of proteins. The thrombin binding aptamer (TBA) is a G-quadruplex-forming DNA sequence, which is frequently elongated at one end to increase its analytical performances in a biosensor configuration. Herein, we investigate how the elongation of TBA at its 5' end affects its structure and stability. Circular dichroism spectroscopy shows that TBA folds in an antiparallel G-quadruplex conformation with all studied cations (Ba2+, Ca2+, K+, Mg2+, Na+, NH4+, Sr2+ and the [Ru(NH3)6]2+/3+ redox marker) whereas other structures are adopted by the elongated aptamers in the presence of some of these cations. The stability of each structure is evaluated on the basis of UV spectroscopy melting curves. Thermal difference spectra confirm the quadruplex character of all conformations. The elongated sequences can adopt a parallel or an antiparallel structure, depending on the nature of the cation; this can potentially confer an ion-sensitive switch behavior. This switch property is demonstrated with the frequently employed redox complex [Ru(NH3)6]3+, which induces the parallel conformation at very low concentrations (10 equiv per strand). The addition of large amounts of K+ reverts the conformation to the antiparallel form, and opens interesting perspectives for electrochemical biosensing or redox-active responsive devices.