2013
Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory
MLÁDEK, Arnošt, Miroslav KREPL, Daniel SVOZIL, Petr CECH, Michal OTYEPKA et. al.Základní údaje
Originální název
Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory
Autoři
MLÁDEK, Arnošt (203 Česká republika), Miroslav KREPL (203 Česká republika), Daniel SVOZIL (203 Česká republika), Petr CECH (203 Česká republika), Michal OTYEPKA (203 Česká republika), Pavel BANÁŠ (203 Česká republika), Marie ZGARBOVA (203 Česká republika), Petr JURECKA (203 Česká republika) a Jiří ŠPONER (203 Česká republika, garant, domácí)
Vydání
Physical Chemistry Chemical Physics, CAMBRIDGE, ROYAL SOC CHEMISTRY, 2013, 1463-9076
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.198
Kód RIV
RIV/00216224:14740/13:00068739
Organizační jednotka
Středoevropský technologický institut
UT WoS
000317980600036
Klíčová slova anglicky
GAUSSIAN-BASIS SETS; GENERALIZED GRADIENT APPROXIMATION; CORRELATED MOLECULAR CALCULATIONS; ZETA VALENCE QUALITY; AUXILIARY BASIS-SETS; NUCLEIC-ACIDS; CONFORMATIONAL-ANALYSIS; INTERACTION ENERGIES; FORCE-FIELD; BASE-PAIRS
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 6. 2013 13:19, Olga Křížová
Anotace
V originále
The DNA sugar-phosphate backbone has a substantial influence on the DNA structural dynamics. Structural biology and bioinformatics studies revealed that the DNA backbone in experimental structures samples a wide range of distinct conformational substates, known as rotameric DNA backbone conformational families. Their correct description is essential for methods used to model nucleic acids and is known to be the Achilles heel of force field computations. In this study we report the benchmark database of MP2 calculations extrapolated to the complete basis set of atomic orbitals with aug-cc-pVTZ and aug-cc-pVQZ basis sets, MP2(T, Q), augmented by DCCSD(T)/aug-cc-pVDZ corrections. The calculations are performed in the gas phase as well as using a COSMO solvent model. This study includes a complete set of 18 established and biochemically most important families of DNA backbone conformations and several other salient conformations that we identified in experimental structures. We utilize an electronically sufficiently complete DNA sugar-phosphate-sugar (SPS) backbone model system truncated to prevent undesired intramolecular interactions. The calculations are then compared with other QM methods. The BLYP and TPSS functionals supplemented with Grimme's D3(BJ) dispersion term provide the best tradeoff between computational demands and accuracy and can be recommended for preliminary conformational searches as well as calculations on large model systems. Among the tested methods, the best agreement with the benchmark database has been obtained for the double-hybrid DSD-BLYP functional in combination with a quadruple-zeta basis set, which is, however, computationally very demanding. The new hybrid density functionals PW6B95-D3 and MPW1B95-D3 yield outstanding results and even slightly outperform the computationally more demanding PWPB95 double-hybrid functional. B3LYP-D3 is somewhat less accurate compared to the other hybrids. Extrapolated MP2(D, T) calculations are not as accurate as the less demanding DFT-D3 methods. Preliminary force field tests using several charge sets reveal an almost order of magnitude larger deviations from the reference QM data compared to modern DFT-D3, underlining the challenges facing force field simulations of nucleic acids. As expected, inclusion of the solvent environment approximated by a continuum approach has a large impact on the relative stabilities of different backbone substates and is important when comparing the QM data with structural bioinformatics and other experimental data.
Návaznosti
ED1.1.00/02.0068, projekt VaV |
|